text
stringlengths 29
12.2k
| tokens
listlengths 5
1.47k
| label
listlengths 0
64
|
|---|---|---|
For the first cycle, the objectives
could correspond to the goals set out in this report. Governance of the Action Plans should aim to minimise bureau -
cracy and involve a wide range of stakeholders: Member States, technical experts, the private sector, and EU insti -
tutions and agencies. The Commission should have a mandate for horizontal actions and exclusive competencies
of the EU, such as revamping competition policy and reducing administrative and regulatory burdens. For shared
competencies like closing the skills gap and accelerating innovation, the Commission should provide guidelines and
share the institutional setup for implementation with relevant national bodies and industry experts, as discussed in
the relevant chapters of this report. In specific sectors of the economy, a new setup could be envisaged bringing
together the Commission, industry and Member States, as well as relevant sectoral agencies.
01. During the first half of the 2019-2024 parliamentary term.
02. Article 121 TFEU provides a legal basis for establishing a Competitiveness Coordination
Framework. The procedure involves the Council and the European Council.
67THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 6
The consolidation of the EU’s various coordination mechanisms should be matched by a consolidation of
its budgetary resources . EU resources should focus on funding public goods that are critical to the EU’s strategic
priorities and which would otherwise be undersupplied by Member States or the private sector [see the chapter on
investment] . Already under the current Multiannual Financial Framework (MFF), programmes such as InvestEU could
be made more effective by adjusting the mandates of the implementing partners to enable more risk-taking. Under
the next MFF, the report recommends defining a “Competitiveness Pillar” with funding hypothecated to delivering
the Action Plans. The EU also needs to leverage better the large spending power of the Member States – which
is collectively equivalent to other major economies – by improving cooperation and focus. It is recommended to
create nationally pre-allocated envelopes in the MFF to incentivise and co-finance multi-country industrial projects,
which can be activated by a sub-group of interested Member States if necessary. It is also proposed to deploy two
revamped tools: a new Competitiveness IPCEI allowing State aid for cross-border projects, including industrial infra -
structure, and a new Competitiveness Joint Undertaking to quickly set up public-private partnerships between the
Commission, interested Member States and industries.
At the same time, refocusing implies that the EU
|
[
"For",
"the",
"first",
"cycle",
",",
"the",
"objectives",
"\n",
"could",
"correspond",
"to",
"the",
"goals",
"set",
"out",
"in",
"this",
"report",
".",
"Governance",
"of",
"the",
"Action",
"Plans",
"should",
"aim",
"to",
"minimise",
"bureau",
"-",
"\n",
"cracy",
"and",
"involve",
"a",
"wide",
"range",
"of",
"stakeholders",
":",
"Member",
"States",
",",
"technical",
"experts",
",",
"the",
"private",
"sector",
",",
"and",
"EU",
"insti",
"-",
"\n",
"tutions",
"and",
"agencies",
".",
"The",
"Commission",
"should",
"have",
"a",
"mandate",
"for",
"horizontal",
"actions",
"and",
"exclusive",
"competencies",
"\n",
"of",
"the",
"EU",
",",
"such",
"as",
"revamping",
"competition",
"policy",
"and",
"reducing",
"administrative",
"and",
"regulatory",
"burdens",
".",
"For",
"shared",
"\n",
"competencies",
"like",
"closing",
"the",
"skills",
"gap",
"and",
"accelerating",
"innovation",
",",
"the",
"Commission",
"should",
"provide",
"guidelines",
"and",
"\n",
"share",
"the",
"institutional",
"setup",
"for",
"implementation",
"with",
"relevant",
"national",
"bodies",
"and",
"industry",
"experts",
",",
"as",
"discussed",
"in",
"\n",
"the",
"relevant",
"chapters",
"of",
"this",
"report",
".",
"In",
"specific",
"sectors",
"of",
"the",
"economy",
",",
"a",
"new",
"setup",
"could",
"be",
"envisaged",
"bringing",
"\n",
"together",
"the",
"Commission",
",",
"industry",
"and",
"Member",
"States",
",",
"as",
"well",
"as",
"relevant",
"sectoral",
"agencies",
".",
"\n",
"01",
".",
"During",
"the",
"first",
"half",
"of",
"the",
"2019",
"-",
"2024",
"parliamentary",
"term",
".",
"\n",
"02",
".",
"Article",
"121",
"TFEU",
"provides",
"a",
"legal",
"basis",
"for",
"establishing",
"a",
"Competitiveness",
"Coordination",
"\n",
"Framework",
".",
"The",
"procedure",
"involves",
"the",
"Council",
"and",
"the",
"European",
"Council",
".",
"\n",
"67THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"6",
"\n",
"The",
"consolidation",
"of",
"the",
"EU",
"’s",
"various",
"coordination",
"mechanisms",
"should",
"be",
"matched",
"by",
"a",
"consolidation",
"of",
"\n",
"its",
"budgetary",
"resources",
".",
"EU",
"resources",
"should",
"focus",
"on",
"funding",
"public",
"goods",
"that",
"are",
"critical",
"to",
"the",
"EU",
"’s",
"strategic",
"\n",
"priorities",
"and",
"which",
"would",
"otherwise",
"be",
"undersupplied",
"by",
"Member",
"States",
"or",
"the",
"private",
"sector",
"[",
"see",
"the",
"chapter",
"on",
"\n",
"investment",
"]",
".",
"Already",
"under",
"the",
"current",
"Multiannual",
"Financial",
"Framework",
"(",
"MFF",
")",
",",
"programmes",
"such",
"as",
"InvestEU",
"could",
"\n",
"be",
"made",
"more",
"effective",
"by",
"adjusting",
"the",
"mandates",
"of",
"the",
"implementing",
"partners",
"to",
"enable",
"more",
"risk",
"-",
"taking",
".",
"Under",
"\n",
"the",
"next",
"MFF",
",",
"the",
"report",
"recommends",
"defining",
"a",
"“",
"Competitiveness",
"Pillar",
"”",
"with",
"funding",
"hypothecated",
"to",
"delivering",
"\n",
"the",
"Action",
"Plans",
".",
"The",
"EU",
"also",
"needs",
"to",
"leverage",
"better",
"the",
"large",
"spending",
"power",
"of",
"the",
"Member",
"States",
"–",
"which",
"\n",
"is",
"collectively",
"equivalent",
"to",
"other",
"major",
"economies",
"–",
"by",
"improving",
"cooperation",
"and",
"focus",
".",
"It",
"is",
"recommended",
"to",
"\n",
"create",
"nationally",
"pre",
"-",
"allocated",
"envelopes",
"in",
"the",
"MFF",
"to",
"incentivise",
"and",
"co",
"-",
"finance",
"multi",
"-",
"country",
"industrial",
"projects",
",",
"\n",
"which",
"can",
"be",
"activated",
"by",
"a",
"sub",
"-",
"group",
"of",
"interested",
"Member",
"States",
"if",
"necessary",
".",
"It",
"is",
"also",
"proposed",
"to",
"deploy",
"two",
"\n",
"revamped",
"tools",
":",
"a",
"new",
"Competitiveness",
"IPCEI",
"allowing",
"State",
"aid",
"for",
"cross",
"-",
"border",
"projects",
",",
"including",
"industrial",
"infra",
"-",
"\n",
"structure",
",",
"and",
"a",
"new",
"Competitiveness",
"Joint",
"Undertaking",
"to",
"quickly",
"set",
"up",
"public",
"-",
"private",
"partnerships",
"between",
"the",
"\n",
"Commission",
",",
"interested",
"Member",
"States",
"and",
"industries",
".",
"\n",
"At",
"the",
"same",
"time",
",",
"refocusing",
"implies",
"that",
"the",
"EU"
] |
[] |
be realized locally without involving a need in complex interrelated efforts.
And the source of the last category is the Amudarya River 1250 km long (in the Panj upper reaches). In spite of its ample flow the waters of this river are used in Afghanistan only for irrigation of a narrow land strip along the river itself sizing about 10 thou ha, net.
Water resources in the Aral Sea Basin formed by the Amudarya River are distributed as follows: Tajikistan - 62.9 cu. km/year, Kyrgyzstan - 1.9 cu. km/year, Uzbekistan - 4.7 cu. km/year, other countries (Iran, Afghanistan) - 8.9 cu. km/year. Thus, the total flow in the Amudarya upper reaches is equal to approximately 78.5 cu. km/year. The greater part of the surface flow of the Amudarya River basin, or 83% are formed on the territory of Tajikistan, about 8% - on the territory of Afghanistan, 6% - in Uzbekistan and less than 3% - in Turkmenistan and Iran.
Vast areas of lands suitable for irrigation are separated from the river by a strip of mobile barkhan sands up to 20-30 km wide. In the past difficulties with construction of the head water intake and a canal through sands made impossible progress in irrigation with waters from the Amudarya River in Afghanistan. Only with the help of uptodate construction technique it becomes possible to construct irrigation systems. However, such construction can be economically feasible only for rather large irrigated areas, and this will demand significant water intakes from the river.
Irrigation of the whole free land stock in Northern Afghanistan (more than 1.5 mln ha) is possible without construction of waterworks, it will be enough to construct a damless water intake with water pumping in three places:
- -near the confluence of the Panj and Vakhsh Rivers;
- -near the Geshtepe outpost (opposite the mouth of the Kafirnigan River);
- -near the Kelif gap (Fig. 2,3).
In the remaining part of the border section the river is meandering, has not permanent riverbed and, hence, not suitable for construction of a damless water intake.
In all cases water should be pumped to a height no more than 20 to 30 m, power supply can be provided by the thermal power plant using local natural gas.
Kowkchen and Konduz Rivers are wholly internal sources of Afghanistan (similarly to rivers Vakhsh, Kafirnigan and Surkhandarya). Their free annual flow of 50%-probability used at
|
[
"be",
"realized",
"locally",
"without",
"involving",
"a",
"need",
"in",
"complex",
"interrelated",
"efforts",
".",
"\n\n",
"And",
"the",
"source",
"of",
"the",
"last",
"category",
"is",
"the",
"Amudarya",
"River",
"1250",
"km",
"long",
"(",
"in",
"the",
"Panj",
"upper",
"reaches",
")",
".",
"In",
"spite",
"of",
"its",
"ample",
"flow",
"the",
"waters",
"of",
"this",
"river",
"are",
"used",
"in",
"Afghanistan",
"only",
"for",
"irrigation",
"of",
"a",
"narrow",
"land",
"strip",
"along",
"the",
"river",
"itself",
"sizing",
"about",
"10",
"thou",
"ha",
",",
"net",
".",
"\n\n",
"Water",
"resources",
"in",
"the",
"Aral",
"Sea",
"Basin",
"formed",
"by",
"the",
"Amudarya",
"River",
"are",
"distributed",
"as",
"follows",
":",
"Tajikistan",
"-",
"62.9",
"cu",
".",
"km",
"/",
"year",
",",
"Kyrgyzstan",
"-",
"1.9",
"cu",
".",
"km",
"/",
"year",
",",
"Uzbekistan",
"-",
"4.7",
"cu",
".",
"km",
"/",
"year",
",",
"other",
"countries",
"(",
"Iran",
",",
"Afghanistan",
")",
"-",
"8.9",
"cu",
".",
"km",
"/",
"year",
".",
"Thus",
",",
"the",
"total",
"flow",
"in",
"the",
"Amudarya",
"upper",
"reaches",
"is",
"equal",
"to",
"approximately",
"78.5",
"cu",
".",
"km",
"/",
"year",
".",
"The",
"greater",
"part",
"of",
"the",
"surface",
"flow",
"of",
"the",
"Amudarya",
"River",
"basin",
",",
"or",
"83",
"%",
"are",
"formed",
"on",
"the",
"territory",
"of",
"Tajikistan",
",",
"about",
"8",
"%",
"-",
"on",
"the",
"territory",
"of",
"Afghanistan",
",",
"6",
"%",
"-",
"in",
"Uzbekistan",
"and",
"less",
"than",
"3",
"%",
"-",
"in",
"Turkmenistan",
"and",
"Iran",
".",
"\n\n",
"Vast",
"areas",
"of",
"lands",
"suitable",
"for",
"irrigation",
"are",
"separated",
"from",
"the",
"river",
"by",
"a",
"strip",
"of",
"mobile",
"barkhan",
"sands",
"up",
"to",
"20",
"-",
"30",
"km",
"wide",
".",
"In",
"the",
"past",
"difficulties",
"with",
"construction",
"of",
"the",
"head",
"water",
"intake",
"and",
"a",
"canal",
"through",
"sands",
"made",
"impossible",
"progress",
"in",
"irrigation",
"with",
"waters",
"from",
"the",
"Amudarya",
"River",
"in",
"Afghanistan",
".",
"Only",
"with",
"the",
"help",
"of",
"uptodate",
"construction",
"technique",
"it",
"becomes",
"possible",
"to",
"construct",
"irrigation",
"systems",
".",
"However",
",",
"such",
"construction",
"can",
"be",
"economically",
"feasible",
"only",
"for",
"rather",
"large",
"irrigated",
"areas",
",",
"and",
"this",
"will",
"demand",
"significant",
"water",
"intakes",
"from",
"the",
"river",
".",
"\n\n",
"Irrigation",
"of",
"the",
"whole",
"free",
"land",
"stock",
"in",
"Northern",
"Afghanistan",
"(",
"more",
"than",
"1.5",
"mln",
"ha",
")",
"is",
"possible",
"without",
"construction",
"of",
"waterworks",
",",
"it",
"will",
"be",
"enough",
"to",
"construct",
"a",
"damless",
"water",
"intake",
"with",
"water",
"pumping",
"in",
"three",
"places",
":",
"\n\n",
"-",
"-near",
"the",
"confluence",
"of",
"the",
"Panj",
"and",
"Vakhsh",
"Rivers",
";",
"\n",
"-",
"-near",
"the",
"Geshtepe",
"outpost",
"(",
"opposite",
"the",
"mouth",
"of",
"the",
"Kafirnigan",
"River",
")",
";",
"\n",
"-",
"-near",
"the",
"Kelif",
"gap",
"(",
"Fig",
".",
"2,3",
")",
".",
"\n\n",
"In",
"the",
"remaining",
"part",
"of",
"the",
"border",
"section",
"the",
"river",
"is",
"meandering",
",",
"has",
"not",
"permanent",
"riverbed",
"and",
",",
"hence",
",",
"not",
"suitable",
"for",
"construction",
"of",
"a",
"damless",
"water",
"intake",
".",
"\n\n",
"In",
"all",
"cases",
"water",
"should",
"be",
"pumped",
"to",
"a",
"height",
"no",
"more",
"than",
"20",
"to",
"30",
"m",
",",
"power",
"supply",
"can",
"be",
"provided",
"by",
"the",
"thermal",
"power",
"plant",
"using",
"local",
"natural",
"gas",
".",
"\n\n",
"Kowkchen",
"and",
"Konduz",
"Rivers",
"are",
"wholly",
"internal",
"sources",
"of",
"Afghanistan",
"(",
"similarly",
"to",
"rivers",
"Vakhsh",
",",
"Kafirnigan",
"and",
"Surkhandarya",
")",
".",
"Their",
"free",
"annual",
"flow",
"of",
"50%-probability",
"used",
"at"
] |
[] |
in the structure illustrated in FIG. 4 .
- the conductor 240 and the conductor 209
are electrically connected to each other through the conductor 242 b and the region 243 b of the oxide 230 b and the oxide 230 a .
- FIG. 5 (B)
is an enlarged view in the channel width direction of the structure obtained by changing the shape of the area around the conductor 240 and the conductor 209 from that in the structure illustrated in FIG. 4 .
- the conductor 240
in the channel width direction, may be in contact with a top surface and a side surface of the conductor 242 b , a side surface of the oxide 230 b , a side surface of the oxide 230 a , and a top surface of the conductor 209 .
- the length of the conductor 242 b , the oxide 230 b , and the oxide 230 a in the channel width direction
is smaller than the length of the conductor 240 and the conductor 209 in the channel width direction.
- both the transistor 200 a and the transistor 200 b
are formed in the oxide 230 , and one of the source and the drain of the transistor 200 a and one of the source and the drain of the transistor 200 b are in contact with the conductor 240 .
- the transistor 200 a and the transistor 200 b
share a contact portion, and the number of plugs and contact holes can be reduced. Sharing the wiring that is electrically connected to one of the source and the drain in the above manner can further reduce the area occupied by the memory cell array.
- a constituent material described below
can be deposited by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, an atomic layer deposition (ALD) method, or the like.
- CVD
chemical vapor deposition
- MBE
molecular beam epitaxy
- PLD
pulsed laser deposition
- ALD
atomic layer deposition
- CVD methods
can be classified into a plasma enhanced CVD (PECVD) method using plasma, a thermal CVD (TCVD) method using heat, a photo CVD method using light, and the like.
- CVD method
can be classified into a metal CVD (MCVD) method and a metal organic CVD (MOCVD) method depending on
|
[
"in",
"the",
"structure",
"illustrated",
"in",
"FIG",
".",
"4",
".",
"\n",
"-",
"the",
"conductor",
"240",
"and",
"the",
"conductor",
"209",
"\n",
"are",
"electrically",
"connected",
"to",
"each",
"other",
"through",
"the",
"conductor",
"242",
"b",
"and",
"the",
"region",
"243",
"b",
"of",
"the",
"oxide",
"230",
"b",
"and",
"the",
"oxide",
"230",
"a",
".",
"\n",
"-",
"FIG",
".",
"5",
"(",
"B",
")",
"\n",
"is",
"an",
"enlarged",
"view",
"in",
"the",
"channel",
"width",
"direction",
"of",
"the",
"structure",
"obtained",
"by",
"changing",
"the",
"shape",
"of",
"the",
"area",
"around",
"the",
"conductor",
"240",
"and",
"the",
"conductor",
"209",
"from",
"that",
"in",
"the",
"structure",
"illustrated",
"in",
"FIG",
".",
"4",
".",
"\n",
"-",
"the",
"conductor",
"240",
"\n",
"in",
"the",
"channel",
"width",
"direction",
",",
"may",
"be",
"in",
"contact",
"with",
"a",
"top",
"surface",
"and",
"a",
"side",
"surface",
"of",
"the",
"conductor",
"242",
"b",
",",
"a",
"side",
"surface",
"of",
"the",
"oxide",
"230",
"b",
",",
"a",
"side",
"surface",
"of",
"the",
"oxide",
"230",
"a",
",",
"and",
"a",
"top",
"surface",
"of",
"the",
"conductor",
"209",
".",
"\n",
"-",
"the",
"length",
"of",
"the",
"conductor",
"242",
"b",
",",
"the",
"oxide",
"230",
"b",
",",
"and",
"the",
"oxide",
"230",
"a",
"in",
"the",
"channel",
"width",
"direction",
"\n",
"is",
"smaller",
"than",
"the",
"length",
"of",
"the",
"conductor",
"240",
"and",
"the",
"conductor",
"209",
"in",
"the",
"channel",
"width",
"direction",
".",
"\n",
"-",
"both",
"the",
"transistor",
"200",
"a",
"and",
"the",
"transistor",
"200",
"b",
"\n",
"are",
"formed",
"in",
"the",
"oxide",
"230",
",",
"and",
"one",
"of",
"the",
"source",
"and",
"the",
"drain",
"of",
"the",
"transistor",
"200",
"a",
"and",
"one",
"of",
"the",
"source",
"and",
"the",
"drain",
"of",
"the",
"transistor",
"200",
"b",
"are",
"in",
"contact",
"with",
"the",
"conductor",
"240",
".",
"\n",
"-",
"the",
"transistor",
"200",
"a",
"and",
"the",
"transistor",
"200",
"b",
"\n",
"share",
"a",
"contact",
"portion",
",",
"and",
"the",
"number",
"of",
"plugs",
"and",
"contact",
"holes",
"can",
"be",
"reduced",
".",
"Sharing",
"the",
"wiring",
"that",
"is",
"electrically",
"connected",
"to",
"one",
"of",
"the",
"source",
"and",
"the",
"drain",
"in",
"the",
"above",
"manner",
"can",
"further",
"reduce",
"the",
"area",
"occupied",
"by",
"the",
"memory",
"cell",
"array",
".",
"\n",
"-",
"a",
"constituent",
"material",
"described",
"below",
"\n",
"can",
"be",
"deposited",
"by",
"a",
"sputtering",
"method",
",",
"a",
"chemical",
"vapor",
"deposition",
"(",
"CVD",
")",
"method",
",",
"a",
"molecular",
"beam",
"epitaxy",
"(",
"MBE",
")",
"method",
",",
"a",
"pulsed",
"laser",
"deposition",
"(",
"PLD",
")",
"method",
",",
"an",
"atomic",
"layer",
"deposition",
"(",
"ALD",
")",
"method",
",",
"or",
"the",
"like",
".",
"\n",
"-",
"CVD",
"\n",
"chemical",
"vapor",
"deposition",
"\n",
"-",
"MBE",
"\n",
"molecular",
"beam",
"epitaxy",
"\n",
"-",
"PLD",
"\n",
"pulsed",
"laser",
"deposition",
"\n",
"-",
"ALD",
"\n",
"atomic",
"layer",
"deposition",
"\n",
"-",
"CVD",
"methods",
"\n",
"can",
"be",
"classified",
"into",
"a",
"plasma",
"enhanced",
"CVD",
"(",
"PECVD",
")",
"method",
"using",
"plasma",
",",
"a",
"thermal",
"CVD",
"(",
"TCVD",
")",
"method",
"using",
"heat",
",",
"a",
"photo",
"CVD",
"method",
"using",
"light",
",",
"and",
"the",
"like",
".",
"\n",
"-",
"CVD",
"method",
"\n",
"can",
"be",
"classified",
"into",
"a",
"metal",
"CVD",
"(",
"MCVD",
")",
"method",
"and",
"a",
"metal",
"organic",
"CVD",
"(",
"MOCVD",
")",
"method",
"depending",
"on"
] |
[] |
the re-
spective country (either per number of companies,
or per number of employees) and in the top 10 In-
dustry Groups per specialisation of the respective
country (either per number of companies, or per
number of employees). In what follows, we pres-
ent the results for each individual country concise-
ly by means of a series of tables.
Armenia
In Armenia, the most relevant Industry Groups
supporting the definition of innovation potential
domains found via the Crunchbase analysis are in
Table 2.49.
All of the Industry Groups are seen to be espe-
cially prominent per number of respective employ-
ees (both at critical mass and specialisation level)
and all of them, except Gaming and Travel and
Tourism, are also featured in the top 10 Industry
Groups per number of companies.
Azerbaijan
In Azerbaijan, the most relevant Industry Groups
supporting the definition of innovation potential
domains found via the Crunchbase analysis are in
Table 2.50.
All of the Industry Groups are seen to be especial-
ly prominent per number of respective employees
(both at critical mass and specialisation level) and
all of them, except Natural Resources and Energy, are also featured in the top 10 Industry Groups
per number of companies. The prominence of the
Natural Resources and Energy Industry Groups is
indeed dominated by the presence of the Kentech
Group, the third firm per number of employees in-
dexed by Crunchbase in Azerbaijan.
Georgia
In Georgia, the most relevant Industry Groups sup-
porting the definition of innovation potential do-
mains found via the Crunchbase analysis are in
Table 2.51.
All of the Industry Groups are seen to be especial-
ly prominent per number of respective employ-
ees (both at critical mass and specialisation level)
and all of them, except Payments and Lending
and Investments are also featured in the top 10
Industry Groups per number of companies. The
Industry Group Payments and Lending and Invest-
ments are considered to be so prominent because
they are dominated by the presence of the Bank
of Georgia and Liberty Capital, which are by far
the largest companies based in Georgia indexed
by Crunchbase.
Moldova
In Moldova, the most relevant Industry Groups
supporting the definition of innovation potential
domains found via the Crunchbase analysis are in
Table 2.52.
All of the Industry Groups are seen to be especial-
ly prominent per number of respective employees
(both at critical mass and specialisation level).
Furthermore,
|
[
"the",
"re-",
"\n",
"spective",
"country",
"(",
"either",
"per",
"number",
"of",
"companies",
",",
"\n",
"or",
"per",
"number",
"of",
"employees",
")",
"and",
"in",
"the",
"top",
"10",
"In-",
"\n",
"dustry",
"Groups",
"per",
"specialisation",
"of",
"the",
"respective",
"\n",
"country",
"(",
"either",
"per",
"number",
"of",
"companies",
",",
"or",
"per",
"\n",
"number",
"of",
"employees",
")",
".",
"In",
"what",
"follows",
",",
"we",
"pres-",
"\n",
"ent",
"the",
"results",
"for",
"each",
"individual",
"country",
"concise-",
"\n",
"ly",
"by",
"means",
"of",
"a",
"series",
"of",
"tables",
".",
"\n",
"Armenia",
"\n",
"In",
"Armenia",
",",
"the",
"most",
"relevant",
"Industry",
"Groups",
"\n",
"supporting",
"the",
"definition",
"of",
"innovation",
"potential",
"\n",
"domains",
"found",
"via",
"the",
"Crunchbase",
"analysis",
"are",
"in",
"\n",
"Table",
"2.49",
".",
"\n",
"All",
"of",
"the",
"Industry",
"Groups",
"are",
"seen",
"to",
"be",
"espe-",
"\n",
"cially",
"prominent",
"per",
"number",
"of",
"respective",
"employ-",
"\n",
"ees",
"(",
"both",
"at",
"critical",
"mass",
"and",
"specialisation",
"level",
")",
"\n",
"and",
"all",
"of",
"them",
",",
"except",
"Gaming",
"and",
"Travel",
"and",
"\n",
"Tourism",
",",
"are",
"also",
"featured",
"in",
"the",
"top",
"10",
"Industry",
"\n",
"Groups",
"per",
"number",
"of",
"companies",
".",
"\n",
"Azerbaijan",
"\n",
"In",
"Azerbaijan",
",",
"the",
"most",
"relevant",
"Industry",
"Groups",
"\n",
"supporting",
"the",
"definition",
"of",
"innovation",
"potential",
"\n",
"domains",
"found",
"via",
"the",
"Crunchbase",
"analysis",
"are",
"in",
"\n",
"Table",
"2.50",
".",
"\n",
"All",
"of",
"the",
"Industry",
"Groups",
"are",
"seen",
"to",
"be",
"especial-",
"\n",
"ly",
"prominent",
"per",
"number",
"of",
"respective",
"employees",
"\n",
"(",
"both",
"at",
"critical",
"mass",
"and",
"specialisation",
"level",
")",
"and",
"\n",
"all",
"of",
"them",
",",
"except",
"Natural",
"Resources",
"and",
"Energy",
",",
"are",
"also",
"featured",
"in",
"the",
"top",
"10",
"Industry",
"Groups",
"\n",
"per",
"number",
"of",
"companies",
".",
"The",
"prominence",
"of",
"the",
"\n",
"Natural",
"Resources",
"and",
"Energy",
"Industry",
"Groups",
"is",
"\n",
"indeed",
"dominated",
"by",
"the",
"presence",
"of",
"the",
"Kentech",
"\n",
"Group",
",",
"the",
"third",
"firm",
"per",
"number",
"of",
"employees",
"in-",
"\n",
"dexed",
"by",
"Crunchbase",
"in",
"Azerbaijan",
".",
"\n",
"Georgia",
"\n",
"In",
"Georgia",
",",
"the",
"most",
"relevant",
"Industry",
"Groups",
"sup-",
"\n",
"porting",
"the",
"definition",
"of",
"innovation",
"potential",
"do-",
"\n",
"mains",
"found",
"via",
"the",
"Crunchbase",
"analysis",
"are",
"in",
"\n",
"Table",
"2.51",
".",
"\n",
"All",
"of",
"the",
"Industry",
"Groups",
"are",
"seen",
"to",
"be",
"especial-",
"\n",
"ly",
"prominent",
"per",
"number",
"of",
"respective",
"employ-",
"\n",
"ees",
"(",
"both",
"at",
"critical",
"mass",
"and",
"specialisation",
"level",
")",
"\n",
"and",
"all",
"of",
"them",
",",
"except",
"Payments",
"and",
"Lending",
"\n",
"and",
"Investments",
"are",
"also",
"featured",
"in",
"the",
"top",
"10",
"\n",
"Industry",
"Groups",
"per",
"number",
"of",
"companies",
".",
"The",
"\n",
"Industry",
"Group",
"Payments",
"and",
"Lending",
"and",
"Invest-",
"\n",
"ments",
"are",
"considered",
"to",
"be",
"so",
"prominent",
"because",
"\n",
"they",
"are",
"dominated",
"by",
"the",
"presence",
"of",
"the",
"Bank",
"\n",
"of",
"Georgia",
"and",
"Liberty",
"Capital",
",",
"which",
"are",
"by",
"far",
"\n",
"the",
"largest",
"companies",
"based",
"in",
"Georgia",
"indexed",
"\n",
"by",
"Crunchbase",
".",
"\n",
"Moldova",
"\n",
"In",
"Moldova",
",",
"the",
"most",
"relevant",
"Industry",
"Groups",
"\n",
"supporting",
"the",
"definition",
"of",
"innovation",
"potential",
"\n",
"domains",
"found",
"via",
"the",
"Crunchbase",
"analysis",
"are",
"in",
"\n",
"Table",
"2.52",
".",
"\n",
"All",
"of",
"the",
"Industry",
"Groups",
"are",
"seen",
"to",
"be",
"especial-",
"\n",
"ly",
"prominent",
"per",
"number",
"of",
"respective",
"employees",
"\n",
"(",
"both",
"at",
"critical",
"mass",
"and",
"specialisation",
"level",
")",
".",
"\n",
"Furthermore",
","
] |
[] |
The also includes , some of which provide the output of at least one as an input to at least another . Each may be assigned a weight that represents its relative importance. The weights may also be adjusted as learning proceeds. The weight increases or decreases the strength of the signal at a .
The can be aggregated or grouped into one or more layers L where different layers L may perform different transformations on their inputs. In , the comprises an input layer L, one or more hidden layers L, L, and L, and an output layer L(where a, b, c, x, and y may be numbers), where each layer L comprises one or . Signals travel from the first layer (e.g., the input layer L), to the last layer (e.g., the output layer L), possibly after traversing the hidden layers L, L, and Lmultiple times. In , the input layer Lreceives data of input variables x(where i=1, . . . , p, where p is a number). Hidden layers L, L, and Lprocesses the inputs x, and eventually, output layer Lprovides output variables y(where j=1, . . . , p′, where p′ is a number that is the same or different than p). In the example of , for simplicity of illustration, there are only three hidden layers L, L, and Lin the , however, the may include many more (or fewer) hidden layers L, L, and Lthan are shown.
In one example, the ML/ are used for object tracking, recognition, detection, and/or classification using, for example, computer vision techniques and/or other mechanisms such as any of those discussed herein. Examples of such computer vision techniques can include edge detection, corner detection, blob detection, Kalman filters, Gaussian Mixture Models, particle filters, mean-shift based kernel tracking, object detection techniques (e.g., Viola-Jones framework, histogram of oriented gradients (HOG), invariance, scale-invariant feature transform (SIFT), geometric hashing, speeded up robust features (SURF), and/or the like), deep learning object detection techniques (e.g., fully convolutional neural network (FCNN), region proposal convolution neural network (R-CNN), single shot multibox detector, ‘you only look once’ (YOLO) algorithm, and/or the like), and/or the like. The object detection and/or recognition models may include an enrollment phase and an evaluation phase.
During the enrollment phase, one or more (object) features are extracted from sensor data (e.g., image data, video data, and/or other data). An object feature may include an
|
[
"The",
" ",
"also",
"includes",
" ",
",",
"some",
"of",
"which",
"provide",
"the",
"output",
"of",
"at",
"least",
"one",
" ",
"as",
"an",
"input",
"to",
"at",
"least",
"another",
" ",
".",
"Each",
" ",
"may",
"be",
"assigned",
"a",
"weight",
"that",
"represents",
"its",
"relative",
"importance",
".",
"The",
"weights",
"may",
"also",
"be",
"adjusted",
"as",
"learning",
"proceeds",
".",
"The",
"weight",
"increases",
"or",
"decreases",
"the",
"strength",
"of",
"the",
"signal",
"at",
"a",
" ",
".",
"\n\n",
"The",
" ",
"can",
"be",
"aggregated",
"or",
"grouped",
"into",
"one",
"or",
"more",
"layers",
"L",
"where",
"different",
"layers",
"L",
"may",
"perform",
"different",
"transformations",
"on",
"their",
"inputs",
".",
"In",
",",
"the",
" ",
"comprises",
"an",
"input",
"layer",
"L",
",",
"one",
"or",
"more",
"hidden",
"layers",
"L",
",",
"L",
",",
"and",
"L",
",",
"and",
"an",
"output",
"layer",
"L(where",
"a",
",",
"b",
",",
"c",
",",
"x",
",",
"and",
"y",
"may",
"be",
"numbers",
")",
",",
"where",
"each",
"layer",
"L",
"comprises",
"one",
"or",
" ",
".",
"Signals",
"travel",
"from",
"the",
"first",
"layer",
"(",
"e.g.",
",",
"the",
"input",
"layer",
"L",
")",
",",
"to",
"the",
"last",
"layer",
"(",
"e.g.",
",",
"the",
"output",
"layer",
"L",
")",
",",
"possibly",
"after",
"traversing",
"the",
"hidden",
"layers",
"L",
",",
"L",
",",
"and",
"Lmultiple",
"times",
".",
"In",
",",
"the",
"input",
"layer",
"Lreceives",
"data",
"of",
"input",
"variables",
"x(where",
"i=1",
",",
".",
".",
".",
",",
"p",
",",
"where",
"p",
"is",
"a",
"number",
")",
".",
"Hidden",
"layers",
"L",
",",
"L",
",",
"and",
"Lprocesses",
"the",
"inputs",
"x",
",",
"and",
"eventually",
",",
"output",
"layer",
"Lprovides",
"output",
"variables",
"y(where",
"j=1",
",",
".",
".",
".",
",",
"p′",
",",
"where",
"p′",
"is",
"a",
"number",
"that",
"is",
"the",
"same",
"or",
"different",
"than",
"p",
")",
".",
"In",
"the",
"example",
"of",
",",
"for",
"simplicity",
"of",
"illustration",
",",
"there",
"are",
"only",
"three",
"hidden",
"layers",
"L",
",",
"L",
",",
"and",
"Lin",
"the",
" ",
",",
"however",
",",
"the",
" ",
"may",
"include",
"many",
"more",
"(",
"or",
"fewer",
")",
"hidden",
"layers",
"L",
",",
"L",
",",
"and",
"Lthan",
"are",
"shown",
".",
"\n\n",
"In",
"one",
"example",
",",
"the",
"ML/",
" ",
"are",
"used",
"for",
"object",
"tracking",
",",
"recognition",
",",
"detection",
",",
"and/or",
"classification",
"using",
",",
"for",
"example",
",",
"computer",
"vision",
"techniques",
"and/or",
"other",
"mechanisms",
"such",
"as",
"any",
"of",
"those",
"discussed",
"herein",
".",
"Examples",
"of",
"such",
"computer",
"vision",
"techniques",
"can",
"include",
"edge",
"detection",
",",
"corner",
"detection",
",",
"blob",
"detection",
",",
"Kalman",
"filters",
",",
"Gaussian",
"Mixture",
"Models",
",",
"particle",
"filters",
",",
"mean",
"-",
"shift",
"based",
"kernel",
"tracking",
",",
"object",
"detection",
"techniques",
"(",
"e.g.",
",",
"Viola",
"-",
"Jones",
"framework",
",",
"histogram",
"of",
"oriented",
"gradients",
"(",
"HOG",
")",
",",
"invariance",
",",
"scale",
"-",
"invariant",
"feature",
"transform",
"(",
"SIFT",
")",
",",
"geometric",
"hashing",
",",
"speeded",
"up",
"robust",
"features",
"(",
"SURF",
")",
",",
"and/or",
"the",
"like",
")",
",",
"deep",
"learning",
"object",
"detection",
"techniques",
"(",
"e.g.",
",",
"fully",
"convolutional",
"neural",
"network",
"(",
"FCNN",
")",
",",
"region",
"proposal",
"convolution",
"neural",
"network",
"(",
"R",
"-",
"CNN",
")",
",",
"single",
"shot",
"multibox",
"detector",
",",
"‘",
"you",
"only",
"look",
"once",
"’",
"(",
"YOLO",
")",
"algorithm",
",",
"and/or",
"the",
"like",
")",
",",
"and/or",
"the",
"like",
".",
"The",
"object",
"detection",
"and/or",
"recognition",
"models",
"may",
"include",
"an",
"enrollment",
"phase",
"and",
"an",
"evaluation",
"phase",
".",
"\n\n",
"During",
"the",
"enrollment",
"phase",
",",
"one",
"or",
"more",
"(",
"object",
")",
"features",
"are",
"extracted",
"from",
"sensor",
"data",
"(",
"e.g.",
",",
"image",
"data",
",",
"video",
"data",
",",
"and/or",
"other",
"data",
")",
".",
"An",
"object",
"feature",
"may",
"include",
"an"
] |
[] |
female doctors pursuing a position in girls’ schools. More so since such
161
161
Female doctors in schools in interwar Romania
disputes were clearly asymmetric, as boys’ middle and high schools were in
fact more numerous than the ones available for female students and, conse -
quently, offered more positions for male doctors.54
Obtaining tenure
The 1928 secondary- school law was followed by the Regulation of the
Secondary- Schools Teaching Personnel approved by the Parliament and
published in the Official Monitor on 18 February 1929.55 This second doc -
ument regulated the way doctors obtained tenure; as Article 239 stated,
all medical personnel already working in secondary schools, appointed and
paid by the Ministry of Instruction, were able to get tenure provided they
met the criteria of the law. Those who had served for at least three years
could ask the Ministry to appoint them for special inspection; a reviser
would visit the school, attend the classes, evaluate the medical office and
inspect the registers and health leaflets for students before finally writing his
report for the Board of General Revisers to give their resolution.
As it became obvious when analysing the Ministry of Instruction’s
archives, very few doctors (all men) were able to get tenure in 1929. It
was not only a matter of such personnel not meeting every single criterion
requested by the law, as many as there might have been; it was also a clear
tendency among the central authorities. As one of the revisers appointed
to evaluate and asses the request to get tenure for a female doctor put it,
‘School doctors who do not have tenure do not enjoy any stability, they are
being appointed and dismissed according to the Ministry’s needs.’56 This
becomes clear when reading the documents: central authorities tended to
avoid allowing too many doctors to get tenure at the same time because of
budgetary reasons. Once a doctor got tenure, he would have been entitled
to a full payment not from the School Committee, but from the Ministry
itself, which represented an additional financial burden. Given the economic
distress that followed the 1929 crisis, it is not entirely surprising that such
practices appeared. Therefore, female doctors had to wait for the economy
to recover, almost five years later, to benefit from the provisions of the law
regarding tenure.
However, this longer period was not entirely the result of budgetary cuts
or
|
[
"female",
"doctors",
"pursuing",
"a",
"position",
"in",
"girls",
"’",
"schools",
".",
"More",
"so",
"since",
"such",
" \n \n \n \n",
"161",
"\n",
"161",
"\n",
"Female",
"doctors",
"in",
"schools",
"in",
"interwar",
"Romania",
"\n",
"disputes",
"were",
"clearly",
"asymmetric",
",",
"as",
"boys",
"’",
"middle",
"and",
"high",
"schools",
"were",
"in",
"\n",
"fact",
"more",
"numerous",
"than",
"the",
"ones",
"available",
"for",
"female",
"students",
"and",
",",
"conse",
"-",
"\n",
"quently",
",",
"offered",
"more",
"positions",
"for",
"male",
"doctors.54",
"\n",
"Obtaining",
"tenure",
"\n",
"The",
"1928",
"secondary-",
" ",
"school",
"law",
"was",
"followed",
"by",
"the",
"Regulation",
"of",
"the",
"\n",
"Secondary-",
" ",
"Schools",
"Teaching",
"Personnel",
"approved",
"by",
"the",
"Parliament",
"and",
"\n",
"published",
"in",
"the",
"Official",
"Monitor",
"on",
"18",
"February",
"1929.55",
"This",
"second",
"doc",
"-",
"\n",
"ument",
"regulated",
"the",
"way",
"doctors",
"obtained",
"tenure",
";",
"as",
"Article",
"239",
"stated",
",",
"\n",
"all",
"medical",
"personnel",
"already",
"working",
"in",
"secondary",
"schools",
",",
"appointed",
"and",
"\n",
"paid",
"by",
"the",
"Ministry",
"of",
"Instruction",
",",
"were",
"able",
"to",
"get",
"tenure",
"provided",
"they",
"\n",
"met",
"the",
"criteria",
"of",
"the",
"law",
".",
"Those",
"who",
"had",
"served",
"for",
"at",
"least",
"three",
"years",
"\n",
"could",
"ask",
"the",
"Ministry",
"to",
"appoint",
"them",
"for",
"special",
"inspection",
";",
"a",
"reviser",
"\n",
"would",
"visit",
"the",
"school",
",",
"attend",
"the",
"classes",
",",
"evaluate",
"the",
"medical",
"office",
"and",
"\n",
"inspect",
"the",
"registers",
"and",
"health",
"leaflets",
"for",
"students",
"before",
"finally",
"writing",
"his",
"\n",
"report",
"for",
"the",
"Board",
"of",
"General",
"Revisers",
"to",
"give",
"their",
"resolution",
".",
"\n",
"As",
"it",
"became",
"obvious",
"when",
"analysing",
"the",
"Ministry",
"of",
"Instruction",
"’s",
"\n",
"archives",
",",
"very",
"few",
"doctors",
"(",
"all",
"men",
")",
"were",
"able",
"to",
"get",
"tenure",
"in",
"1929",
".",
"It",
"\n",
"was",
"not",
"only",
"a",
"matter",
"of",
"such",
"personnel",
"not",
"meeting",
"every",
"single",
"criterion",
"\n",
"requested",
"by",
"the",
"law",
",",
"as",
"many",
"as",
"there",
"might",
"have",
"been",
";",
"it",
"was",
"also",
"a",
"clear",
"\n",
"tendency",
"among",
"the",
"central",
"authorities",
".",
"As",
"one",
"of",
"the",
"revisers",
"appointed",
"\n",
"to",
"evaluate",
"and",
"asses",
"the",
"request",
"to",
"get",
"tenure",
"for",
"a",
"female",
"doctor",
"put",
"it",
",",
"\n",
"‘",
"School",
"doctors",
"who",
"do",
"not",
"have",
"tenure",
"do",
"not",
"enjoy",
"any",
"stability",
",",
"they",
"are",
"\n",
"being",
"appointed",
"and",
"dismissed",
"according",
"to",
"the",
"Ministry",
"’s",
"needs",
".",
"’56",
"This",
"\n",
"becomes",
"clear",
"when",
"reading",
"the",
"documents",
":",
"central",
"authorities",
"tended",
"to",
"\n",
"avoid",
"allowing",
"too",
"many",
"doctors",
"to",
"get",
"tenure",
"at",
"the",
"same",
"time",
"because",
"of",
"\n",
"budgetary",
"reasons",
".",
"Once",
"a",
"doctor",
"got",
"tenure",
",",
"he",
"would",
"have",
"been",
"entitled",
"\n",
"to",
"a",
"full",
"payment",
"not",
"from",
"the",
"School",
"Committee",
",",
"but",
"from",
"the",
"Ministry",
"\n",
"itself",
",",
"which",
"represented",
"an",
"additional",
"financial",
"burden",
".",
"Given",
"the",
"economic",
"\n",
"distress",
"that",
"followed",
"the",
"1929",
"crisis",
",",
"it",
"is",
"not",
"entirely",
"surprising",
"that",
"such",
"\n",
"practices",
"appeared",
".",
"Therefore",
",",
"female",
"doctors",
"had",
"to",
"wait",
"for",
"the",
"economy",
"\n",
"to",
"recover",
",",
"almost",
"five",
"years",
"later",
",",
"to",
"benefit",
"from",
"the",
"provisions",
"of",
"the",
"law",
"\n",
"regarding",
"tenure",
".",
"\n",
"However",
",",
"this",
"longer",
"period",
"was",
"not",
"entirely",
"the",
"result",
"of",
"budgetary",
"cuts",
"\n",
"or"
] |
[
{
"end": 338,
"label": "CITATION_REF",
"start": 336
},
{
"end": 554,
"label": "CITATION_REF",
"start": 552
},
{
"end": 1763,
"label": "CITATION_REF",
"start": 1761
}
] |
changes and continuities in Chinese responses to calamity by employing case studies of three major famines that struck North China under governments with markedly differ -
ent ideological foundations.
Graeme Gooday is Professor of History of Science and Technology at the
School of Philosophy, Religion and History of Science, University of Leeds. He has published widely on the social histories of measurement, electric lighting, patenting, energy consumption and hearing loss. More recently, he has been working collaboratively on the transnational history of women
xiii
xiii
Contributors
in engineering, building upon the AHRC- funded public engagement project
‘Electrifying Women’ (2019– 2020).
Anne Hardgrove has a PhD from the Inter- Departmental Program in
Anthropology and History from the University of Michigan, Ann Arbor. She
is the author of Community and Public Culture: The Marwaris in Calcutta,
1897– 1997 (Columbia University Press, 2007). Her research focuses on
gender, sexuality and colonialism in India and world history. Hardgrove is
Associate Professor of History at the University of Texas at San Antonio.
Adéla Jůnová Mackov á studied economy and social history at the Faculty
of Arts, Charles University, Prague. She works as a scientist at the Masaryk
Institute and Archives of the Czech Academy of Sciences. Her research
focuses on Czechoslovak relations with the Middle East, economic history,
the history of science and historical correspondence.
Kathryn Keeble lectures in diverse areas of literary production, including
literature and its philosophical contexts and how art and literature repre -
sent otherwise inexpressible conditions such as the experiences of trauma
in wars. She also teaches study skills and critical thinking. Dr Keeble writes
on the history of science, literature and the arts, biography, Australian
literature, film and arts discourse. Published in the Journal of Australian
Studies , Historical Records of Australian Science , Antithesis and various
edited volumes for Lexington and Cambridge Scholars Press, she is also an
academic peer reviewer for the Quarterly Journal of Film and Television
and Bloomsbury and an editorial board member of the arts journal Double
Dialogues . As an arts reviewer, she regularly writes on art forms as diverse
as dance, opera, jazz, theatre, comedy and circus.
Savithri Preetha Nair received her PhD from the School of Oriental and
African Studies (SOAS), University of London, for a dissertation on the
museum and the shaping of the sciences in colonial India. Nair’s research
focuses on the history of science, modernity and enlightenment at
|
[
"changes",
"and",
"continuities",
"in",
"Chinese",
"responses",
"to",
"calamity",
"by",
"employing",
"case",
"studies",
"of",
"three",
"major",
"famines",
"that",
"struck",
"North",
"China",
"under",
"governments",
"with",
"markedly",
"differ",
"-",
"\n",
"ent",
"ideological",
"foundations",
".",
"\n",
"Graeme",
"Gooday",
"is",
"Professor",
"of",
"History",
"of",
"Science",
"and",
"Technology",
"at",
"the",
"\n",
"School",
"of",
"Philosophy",
",",
"Religion",
"and",
"History",
"of",
"Science",
",",
"University",
"of",
"Leeds",
".",
"He",
"has",
"published",
"widely",
"on",
"the",
"social",
"histories",
"of",
"measurement",
",",
"electric",
"lighting",
",",
"patenting",
",",
"energy",
"consumption",
"and",
"hearing",
"loss",
".",
"More",
"recently",
",",
"he",
"has",
"been",
"working",
"collaboratively",
"on",
"the",
"transnational",
"history",
"of",
"women",
"\n",
"xiii",
"\n",
"xiii",
"\n",
"Contributors",
"\n",
"in",
"engineering",
",",
"building",
"upon",
"the",
"AHRC-",
"funded",
"public",
"engagement",
"project",
"\n",
"‘",
"Electrifying",
"Women",
"’",
"(",
"2019",
"–",
"2020",
")",
".",
"\n",
"Anne",
"Hardgrove",
" ",
"has",
"a",
"PhD",
"from",
"the",
"Inter-",
"Departmental",
"Program",
"in",
"\n",
"Anthropology",
"and",
"History",
"from",
"the",
"University",
"of",
"Michigan",
",",
"Ann",
"Arbor",
".",
"She",
"\n",
"is",
"the",
"author",
"of",
"Community",
"and",
"Public",
"Culture",
":",
"The",
"Marwaris",
"in",
"Calcutta",
",",
"\n",
"1897",
"–",
"1997",
" ",
"(",
"Columbia",
"University",
"Press",
",",
"2007",
")",
".",
"Her",
"research",
"focuses",
"on",
"\n",
"gender",
",",
"sexuality",
"and",
"colonialism",
"in",
"India",
"and",
"world",
"history",
".",
"Hardgrove",
"is",
"\n",
"Associate",
"Professor",
"of",
"History",
"at",
"the",
"University",
"of",
"Texas",
"at",
"San",
"Antonio",
".",
"\n",
"Adéla",
"Jůnová",
"Mackov",
"á",
"studied",
"economy",
"and",
"social",
"history",
"at",
"the",
"Faculty",
"\n",
"of",
"Arts",
",",
"Charles",
"University",
",",
"Prague",
".",
"She",
"works",
"as",
"a",
"scientist",
"at",
"the",
"Masaryk",
"\n",
"Institute",
"and",
"Archives",
"of",
"the",
"Czech",
"Academy",
"of",
"Sciences",
".",
"Her",
"research",
"\n",
"focuses",
"on",
"Czechoslovak",
"relations",
"with",
"the",
"Middle",
"East",
",",
"economic",
"history",
",",
"\n",
"the",
"history",
"of",
"science",
"and",
"historical",
"correspondence",
".",
"\n",
"Kathryn",
"Keeble",
" ",
"lectures",
"in",
"diverse",
"areas",
"of",
"literary",
"production",
",",
"including",
"\n",
"literature",
"and",
"its",
"philosophical",
"contexts",
"and",
"how",
"art",
"and",
"literature",
"repre",
"-",
"\n",
"sent",
"otherwise",
"inexpressible",
"conditions",
"such",
"as",
"the",
"experiences",
"of",
"trauma",
"\n",
"in",
"wars",
".",
"She",
"also",
"teaches",
"study",
"skills",
"and",
"critical",
"thinking",
".",
"Dr",
"Keeble",
"writes",
"\n",
"on",
"the",
"history",
"of",
"science",
",",
"literature",
"and",
"the",
"arts",
",",
"biography",
",",
"Australian",
"\n",
"literature",
",",
"film",
"and",
"arts",
"discourse",
".",
"Published",
"in",
"the",
"Journal",
"of",
"Australian",
"\n",
"Studies",
",",
"Historical",
"Records",
"of",
"Australian",
"Science",
",",
"Antithesis",
" ",
"and",
"various",
"\n",
"edited",
"volumes",
"for",
"Lexington",
"and",
"Cambridge",
"Scholars",
"Press",
",",
"she",
"is",
"also",
"an",
"\n",
"academic",
"peer",
"reviewer",
"for",
"the",
"Quarterly",
"Journal",
"of",
"Film",
"and",
"Television",
" \n",
"and",
"Bloomsbury",
"and",
"an",
"editorial",
"board",
"member",
"of",
"the",
"arts",
"journal",
"Double",
"\n",
"Dialogues",
".",
"As",
"an",
"arts",
"reviewer",
",",
"she",
"regularly",
"writes",
"on",
"art",
"forms",
"as",
"diverse",
"\n",
"as",
"dance",
",",
"opera",
",",
"jazz",
",",
"theatre",
",",
"comedy",
"and",
"circus",
".",
"\n",
"Savithri",
"Preetha",
"Nair",
" ",
"received",
"her",
"PhD",
"from",
"the",
"School",
"of",
"Oriental",
"and",
"\n",
"African",
"Studies",
"(",
"SOAS",
")",
",",
"University",
"of",
"London",
",",
"for",
"a",
"dissertation",
"on",
"the",
"\n",
"museum",
"and",
"the",
"shaping",
"of",
"the",
"sciences",
"in",
"colonial",
"India",
".",
"Nair",
"’s",
"research",
"\n",
"focuses",
"on",
"the",
"history",
"of",
"science",
",",
"modernity",
"and",
"enlightenment",
"at"
] |
[] |
Wilcox, S. (2013). Audit of the mining industry. In Inter-American Center of Tax Administrations, Prevention and control of tax evasion: Proceedings of CIAT Technical Conference. https:// www.ciat.org/Biblioteca/ConferenciasTecnicas/2013/Ingles/2013\_topic3.2\_Wilcox\_ASI.pdf
<!-- image -->
|
[
"Wilcox",
",",
"S.",
"(",
"2013",
")",
".",
"Audit",
"of",
"the",
"mining",
"industry",
".",
"In",
"Inter",
"-",
"American",
"Center",
"of",
"Tax",
"Administrations",
",",
"Prevention",
"and",
"control",
"of",
"tax",
"evasion",
":",
"Proceedings",
"of",
"CIAT",
"Technical",
"Conference",
".",
"https://",
"www.ciat.org/Biblioteca/ConferenciasTecnicas/2013/Ingles/2013\\_topic3.2\\_Wilcox\\_ASI.pdf",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">"
] |
[
{
"end": 276,
"label": "CITATION_SPAN",
"start": 0
}
] |
or more physical or virtual buttons, a physical or virtual keyboard, keypad, mouse, touchpad, touchscreen, microphones, scanner, headset, and/or the like. In implementations where the input device circuitry includes a capacitive, resistive, or other like touch-surface, a touch signal may be obtained from circuitry of the touch-surface. The touch signal may include information regarding a location of the touch (e.g., one or more sets of (x,y) coordinates describing an area, shape, and/or movement of the touch), a pressure of the touch (e.g., as measured by area of contact between a user's finger or a deformable stylus and the touch-surface, or by a pressure sensor), a duration of contact, any other suitable information, or any combination of such information. In these implementations, one or more apps operated by the may identify gesture(s) based on the information of the touch signal, and utilizing a gesture library that maps determined gestures with specified actions.
The output device circuitry is used to show or convey information, such as sensor readings, actuator position(s), or other like information. Data and/or graphics may be displayed on one or more user interface components of the output device circuitry. The output device circuitry may include any number and/or combinations of audio or visual display, including, inter alia, one or more simple visual outputs/indicators (e.g., binary status indicators (e.g., light emitting diodes (LEDs)) and multi-character visual outputs, or more complex outputs such as display devices or touchscreens (e.g., Liquid Chrystal Displays (LCD), LED and/or OLED displays, quantum dot displays, projectors, and the like), with the output of characters, graphics, multimedia objects, and the like being generated or produced from operation of the . The output device circuitry may also include speakers or other audio emitting devices, printer(s), and/or the like. In some implementations, the may be used as the input device circuitry (e.g., an image capture device, motion capture device, or the like) and one or may be used as the output device circuitry (e.g., an actuator to provide haptic feedback or the like). In another example, near-field communication (NFC) circuitry comprising an NFC controller coupled with an antenna element and a processing device may be included to read electronic tags and/or connect with another NFC-enabled device. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, a power supply interface, and the like.
A may be
|
[
"or",
"more",
"physical",
"or",
"virtual",
"buttons",
",",
"a",
"physical",
"or",
"virtual",
"keyboard",
",",
"keypad",
",",
"mouse",
",",
"touchpad",
",",
"touchscreen",
",",
"microphones",
",",
"scanner",
",",
"headset",
",",
"and/or",
"the",
"like",
".",
"In",
"implementations",
"where",
"the",
"input",
"device",
"circuitry",
"includes",
"a",
"capacitive",
",",
"resistive",
",",
"or",
"other",
"like",
"touch",
"-",
"surface",
",",
"a",
"touch",
"signal",
"may",
"be",
"obtained",
"from",
"circuitry",
"of",
"the",
"touch",
"-",
"surface",
".",
"The",
"touch",
"signal",
"may",
"include",
"information",
"regarding",
"a",
"location",
"of",
"the",
"touch",
"(",
"e.g.",
",",
"one",
"or",
"more",
"sets",
"of",
"(",
"x",
",",
"y",
")",
"coordinates",
"describing",
"an",
"area",
",",
"shape",
",",
"and/or",
"movement",
"of",
"the",
"touch",
")",
",",
"a",
"pressure",
"of",
"the",
"touch",
"(",
"e.g.",
",",
"as",
"measured",
"by",
"area",
"of",
"contact",
"between",
"a",
"user",
"'s",
"finger",
"or",
"a",
"deformable",
"stylus",
"and",
"the",
"touch",
"-",
"surface",
",",
"or",
"by",
"a",
"pressure",
"sensor",
")",
",",
"a",
"duration",
"of",
"contact",
",",
"any",
"other",
"suitable",
"information",
",",
"or",
"any",
"combination",
"of",
"such",
"information",
".",
"In",
"these",
"implementations",
",",
"one",
"or",
"more",
"apps",
"operated",
"by",
"the",
" ",
"may",
"identify",
"gesture(s",
")",
"based",
"on",
"the",
"information",
"of",
"the",
"touch",
"signal",
",",
"and",
"utilizing",
"a",
"gesture",
"library",
"that",
"maps",
"determined",
"gestures",
"with",
"specified",
"actions",
".",
"\n\n",
"The",
"output",
"device",
"circuitry",
"is",
"used",
"to",
"show",
"or",
"convey",
"information",
",",
"such",
"as",
"sensor",
"readings",
",",
"actuator",
"position(s",
")",
",",
"or",
"other",
"like",
"information",
".",
"Data",
"and/or",
"graphics",
"may",
"be",
"displayed",
"on",
"one",
"or",
"more",
"user",
"interface",
"components",
"of",
"the",
"output",
"device",
"circuitry",
".",
"The",
"output",
"device",
"circuitry",
"may",
"include",
"any",
"number",
"and/or",
"combinations",
"of",
"audio",
"or",
"visual",
"display",
",",
"including",
",",
"inter",
"alia",
",",
"one",
"or",
"more",
"simple",
"visual",
"outputs",
"/",
"indicators",
"(",
"e.g.",
",",
"binary",
"status",
"indicators",
"(",
"e.g.",
",",
"light",
"emitting",
"diodes",
"(",
"LEDs",
")",
")",
"and",
"multi",
"-",
"character",
"visual",
"outputs",
",",
"or",
"more",
"complex",
"outputs",
"such",
"as",
"display",
"devices",
"or",
"touchscreens",
"(",
"e.g.",
",",
"Liquid",
"Chrystal",
"Displays",
"(",
"LCD",
")",
",",
"LED",
"and/or",
"OLED",
"displays",
",",
"quantum",
"dot",
"displays",
",",
"projectors",
",",
"and",
"the",
"like",
")",
",",
"with",
"the",
"output",
"of",
"characters",
",",
"graphics",
",",
"multimedia",
"objects",
",",
"and",
"the",
"like",
"being",
"generated",
"or",
"produced",
"from",
"operation",
"of",
"the",
" ",
".",
"The",
"output",
"device",
"circuitry",
"may",
"also",
"include",
"speakers",
"or",
"other",
"audio",
"emitting",
"devices",
",",
"printer(s",
")",
",",
"and/or",
"the",
"like",
".",
"In",
"some",
"implementations",
",",
"the",
" ",
"may",
"be",
"used",
"as",
"the",
"input",
"device",
"circuitry",
"(",
"e.g.",
",",
"an",
"image",
"capture",
"device",
",",
"motion",
"capture",
"device",
",",
"or",
"the",
"like",
")",
"and",
"one",
"or",
" ",
"may",
"be",
"used",
"as",
"the",
"output",
"device",
"circuitry",
"(",
"e.g.",
",",
"an",
"actuator",
"to",
"provide",
"haptic",
"feedback",
"or",
"the",
"like",
")",
".",
"In",
"another",
"example",
",",
"near",
"-",
"field",
"communication",
"(",
"NFC",
")",
"circuitry",
"comprising",
"an",
"NFC",
"controller",
"coupled",
"with",
"an",
"antenna",
"element",
"and",
"a",
"processing",
"device",
"may",
"be",
"included",
"to",
"read",
"electronic",
"tags",
"and/or",
"connect",
"with",
"another",
"NFC",
"-",
"enabled",
"device",
".",
"Peripheral",
"component",
"interfaces",
"may",
"include",
",",
"but",
"are",
"not",
"limited",
"to",
",",
"a",
"non",
"-",
"volatile",
"memory",
"port",
",",
"a",
"universal",
"serial",
"bus",
"(",
"USB",
")",
"port",
",",
"an",
"audio",
"jack",
",",
"a",
"power",
"supply",
"interface",
",",
"and",
"the",
"like",
".",
"\n\n",
"A",
" ",
"may",
"be"
] |
[] |
- 42 D. Haraway, 'Situated knowledges: The science question in feminism and the privilege of partial perspective', Feminist Studies , 14: 3 (1988), 575- 99. Original emphasis. In this connection, see also Livingstone's argument that 'What passes as science is contingent on time and place'. D. N. Livingstone, Putting Science in Its Place: Geographies of Scientific Knowledge (Chicago, IL: University of Chicago Press, 2003), p. 13.
- 43 N. Oreskes, 'Objectivity or heroism? On the invisibility of women in science', Osiris , 11 (1996), 89.
- 44 E.g., A. Digby, W. Ernst and P. B. Mukharji (eds), Crossing Colonial Historiographies: Histories of Colonial and Indigenous Medicines in Transnational Perspective (Newcastle upon Tyne: Cambridge Scholars Publishing, 2010); M. Elshakry and S. Sivasundaram (eds), Science, Race and Imperialism , vol. 6 of Victorian Science and Literature (London: Chatto and Pickering, 2012); Fan, 'Science in cultural borderlands'; Special Issue: 'Colonial science in former Japanese Imperial Universities', East Asian Science, Technology and Society : An International Journal , 1: 2 (2007).
- 45 Fan, 'Science in cultural borderlands'; J. A. Secord, 'Knowledge in transit', Isis 95: 4 (2004), 654- 72; K. Raj, Relocating Modern Science: Circulation and the Construction of Knowledge in South Asia and Europe, 1650- 1900 (Basingstoke: Palgrave Macmillan, 2007); L. Fleetwood, Science on the Roof of the World: Empire and the Remaking of the Himalaya (Cambridge: Cambridge University Press, 2022); A. Bonea, 'Owning the (deep) past: Paleontological knowledge and the political afterlives of fossils', History of Knowledge (25 July 2023), https:// his tory ofkn owle dge.net/ 2023/ 07/ 25/ pale onto logi calknowle dge/ . The discourse/ practice duality has also been discussed in feminist history, e.g., J. W. Scott, Gender and the Politics of History (New York: Columbia University Press, 1988); L. Jordanova, History in Practice (London: Bloomsbury Academic, 2019).
- 46 The literature on this topic in relation to the history of science in this region is sparse, but some works discuss the 'Orientalization' of Eastern Europe and its struggle to construct a 'Western' identity for itself. E.g., M. Buchowski, 'The specter of Orientalism in Europe: From exotic other to stigmatized brother', Anthropological Quarterly , 79: 3 (2006), 463- 82; M. Todorova, Imagining the Balkans (Oxford: Oxford University Press, 1997). See also Katherine Verdery's nuanced interrogation of the Cold War dichotomies which replaced the 'self' versus 'other' and 'the metropole' versus 'the colony' with 'West' versus 'East': K. Verdery, 'Nationalism, postsocialism, and space in Eastern Europe', Social
3
5
Research , 63: 1 (1996), 77- 95;
|
[
"-",
"42",
" ",
"D.",
" ",
"Haraway",
",",
" ",
"'",
"Situated",
" ",
"knowledges",
":",
" ",
"The",
" ",
"science",
" ",
"question",
" ",
"in",
" ",
"feminism",
" ",
"and",
"the",
"privilege",
"of",
"partial",
"perspective",
"'",
",",
"Feminist",
"Studies",
",",
" ",
"14",
":",
" ",
"3",
" ",
"(",
"1988",
")",
",",
" ",
"575-",
" ",
"99",
".",
"Original",
" ",
"emphasis",
".",
" ",
"In",
" ",
"this",
" ",
"connection",
",",
" ",
"see",
" ",
"also",
" ",
"Livingstone",
"'s",
" ",
"argument",
" ",
"that",
"'",
"What",
"passes",
"as",
"science",
"is",
"contingent",
"on",
"time",
"and",
"place",
"'",
".",
"D.",
"N.",
"Livingstone",
",",
"Putting",
"Science",
"in",
"Its",
"Place",
":",
"Geographies",
"of",
"Scientific",
"Knowledge",
"(",
"Chicago",
",",
"IL",
":",
"University",
"of",
"Chicago",
"Press",
",",
"2003",
")",
",",
"p.",
"13",
".",
"\n",
"-",
"43",
" ",
"N.",
"Oreskes",
",",
"'",
"Objectivity",
"or",
"heroism",
"?",
"On",
"the",
"invisibility",
"of",
"women",
"in",
"science",
"'",
",",
"Osiris",
",",
"11",
"(",
"1996",
")",
",",
"89",
".",
"\n",
"-",
"44",
" ",
"E.g.",
",",
"A.",
" ",
"Digby",
",",
" ",
"W.",
" ",
"Ernst",
" ",
"and",
" ",
"P.",
" ",
"B.",
" ",
"Mukharji",
" ",
"(",
"eds",
")",
",",
"Crossing",
" ",
"Colonial",
"Historiographies",
":",
"Histories",
"of",
"Colonial",
"and",
"Indigenous",
"Medicines",
"in",
"Transnational",
"Perspective",
"(",
"Newcastle",
"upon",
"Tyne",
":",
"Cambridge",
"Scholars",
"Publishing",
",",
" ",
"2010",
")",
";",
" ",
"M.",
" ",
"Elshakry",
" ",
"and",
" ",
"S.",
" ",
"Sivasundaram",
" ",
"(",
"eds",
")",
",",
"Science",
",",
" ",
"Race",
"and",
"Imperialism",
",",
"vol",
".",
"6",
"of",
"Victorian",
"Science",
"and",
"Literature",
"(",
"London",
":",
"Chatto",
"and",
" ",
"Pickering",
",",
" ",
"2012",
")",
";",
" ",
"Fan",
",",
" ",
"'",
"Science",
" ",
"in",
" ",
"cultural",
" ",
"borderlands",
"'",
";",
" ",
"Special",
" ",
"Issue",
":",
"'",
"Colonial",
"science",
"in",
"former",
"Japanese",
"Imperial",
"Universities",
"'",
",",
"East",
"Asian",
"Science",
",",
"Technology",
"and",
"Society",
":",
"An",
"International",
"Journal",
",",
"1",
":",
"2",
"(",
"2007",
")",
".",
"\n",
"-",
"45",
" ",
"Fan",
",",
" ",
"'",
"Science",
" ",
"in",
" ",
"cultural",
" ",
"borderlands",
"'",
";",
" ",
"J.",
" ",
"A.",
" ",
"Secord",
",",
" ",
"'",
"Knowledge",
" ",
"in",
" ",
"transit",
"'",
",",
"Isis",
"95",
":",
" ",
"4",
" ",
"(",
"2004",
")",
",",
" ",
"654-",
" ",
"72",
";",
" ",
"K.",
" ",
"Raj",
",",
"Relocating",
" ",
"Modern",
" ",
"Science",
":",
" ",
"Circulation",
"and",
"the",
"Construction",
"of",
"Knowledge",
"in",
"South",
"Asia",
"and",
"Europe",
",",
"1650-",
" ",
"1900",
"(",
"Basingstoke",
":",
"Palgrave",
"Macmillan",
",",
"2007",
")",
";",
"L.",
"Fleetwood",
",",
"Science",
"on",
"the",
"Roof",
"of",
"the",
"World",
":",
"Empire",
"and",
"the",
"Remaking",
"of",
"the",
"Himalaya",
"(",
"Cambridge",
":",
"Cambridge",
"University",
"Press",
",",
"2022",
")",
";",
"A.",
"Bonea",
",",
"'",
"Owning",
"the",
"(",
"deep",
")",
"past",
":",
"Paleontological",
"knowledge",
" ",
"and",
" ",
"the",
" ",
"political",
" ",
"afterlives",
" ",
"of",
" ",
"fossils",
"'",
",",
"History",
" ",
"of",
" ",
"Knowledge",
"(",
"25",
" ",
"July",
"2023",
")",
",",
" ",
"https://",
" ",
"his",
" ",
"tory",
" ",
"ofkn",
" ",
"owle",
" ",
"dge.net/",
" ",
"2023/",
" ",
"07/",
" ",
"25/",
" ",
"pale",
" ",
"onto",
" ",
"logi",
" ",
"calknowle",
" ",
"dge/",
" ",
".",
" ",
"The",
" ",
"discourse/",
" ",
"practice",
" ",
"duality",
" ",
"has",
" ",
"also",
" ",
"been",
" ",
"discussed",
" ",
"in",
" ",
"feminist",
"history",
",",
"e.g.",
",",
"J.",
"W.",
"Scott",
",",
"Gender",
"and",
"the",
"Politics",
"of",
"History",
"(",
"New",
"York",
":",
"Columbia",
"University",
"Press",
",",
"1988",
")",
";",
"L.",
"Jordanova",
",",
"History",
"in",
"Practice",
"(",
"London",
":",
"Bloomsbury",
"Academic",
",",
"2019",
")",
".",
"\n",
"-",
"46",
" ",
"The",
"literature",
"on",
"this",
"topic",
"in",
"relation",
"to",
"the",
"history",
"of",
"science",
"in",
"this",
"region",
"is",
"sparse",
",",
"but",
"some",
"works",
"discuss",
"the",
"'",
"Orientalization",
"'",
"of",
"Eastern",
"Europe",
"and",
"its",
"struggle",
"to",
"construct",
"a",
"'",
"Western",
"'",
"identity",
"for",
"itself",
".",
"E.g.",
",",
"M.",
"Buchowski",
",",
"'",
"The",
"specter",
"of",
"Orientalism",
"in",
"Europe",
":",
"From",
"exotic",
"other",
"to",
"stigmatized",
"brother",
"'",
",",
"Anthropological",
"Quarterly",
",",
"79",
":",
"3",
"(",
"2006",
")",
",",
"463-",
" ",
"82",
";",
"M.",
"Todorova",
",",
"Imagining",
"the",
"Balkans",
"(",
"Oxford",
":",
"Oxford",
"University",
"Press",
",",
"1997",
")",
".",
"See",
"also",
"Katherine",
"Verdery",
"'s",
"nuanced",
"interrogation",
"of",
"the",
"Cold",
"War",
"dichotomies",
"which",
"replaced",
"the",
"'",
"self",
"'",
"versus",
"'",
"other",
"'",
"and",
"'",
"the",
"metropole",
"'",
"versus",
"'",
"the",
"colony",
"'",
"with",
"'",
"West",
"'",
"versus",
"'",
"East",
"'",
":",
"K.",
"Verdery",
",",
"'",
"Nationalism",
",",
"postsocialism",
",",
"and",
"space",
"in",
"Eastern",
"Europe",
"'",
",",
"Social",
"\n\n",
"3",
"\n\n",
"5",
"\n\n",
"Research",
",",
" ",
"63",
":",
" ",
"1",
" ",
"(",
"1996",
")",
",",
" ",
"77-",
" ",
"95",
";"
] |
[
{
"end": 4,
"label": "CITATION_ID",
"start": 2
},
{
"end": 461,
"label": "CITATION_ID",
"start": 459
},
{
"end": 570,
"label": "CITATION_ID",
"start": 568
},
{
"end": 1178,
"label": "CITATION_ID",
"start": 1176
},
{
"end": 2108,
"label": "CITATION_ID",
"start": 2106
},
{
"end": 171,
"label": "CITATION_SPAN",
"start": 6
},
{
"end": 456,
"label": "CITATION_SPAN",
"start": 315
},
{
"end": 565,
"label": "CITATION_SPAN",
"start": 463
},
{
"end": 803,
"label": "CITATION_SPAN",
"start": 578
},
{
"end": 964,
"label": "CITATION_SPAN",
"start": 806
},
{
"end": 1173,
"label": "CITATION_SPAN",
"start": 967
},
{
"end": 1222,
"label": "CITATION_SPAN",
"start": 1180
},
{
"end": 1463,
"label": "CITATION_SPAN",
"start": 1225
},
{
"end": 1598,
"label": "CITATION_SPAN",
"start": 1465
},
{
"end": 1843,
"label": "CITATION_SPAN",
"start": 1600
},
{
"end": 2031,
"label": "CITATION_SPAN",
"start": 1940
},
{
"end": 2103,
"label": "CITATION_SPAN",
"start": 2033
},
{
"end": 2481,
"label": "CITATION_SPAN",
"start": 2335
},
{
"end": 2558,
"label": "CITATION_SPAN",
"start": 2483
},
{
"end": 2867,
"label": "CITATION_SPAN",
"start": 2746
}
] |
of EC projects
analysed in the country) ......................................................................................................................... 171
Figure 3.23. Example of the figures used to present the citation impact and specialisation
index for publications (left) and the specialisation index for patents (right) .................. 174
Figure 3.24. Number of records per S&T specialisation domain in Armenia ................ 176
Figure 3.25. Specialisation index and citation impact across domains of Armenia’s S&T
ecosystem against the EaP average, for publications .............................................................. 177
Figure 3.26. Specialisation index across domains of Armenia’s S&T ecosystem against
the EaP average, for patents ................................................................................................................ 177
Figure 3.27. Number of records per S&T specialisation domain in Azerbaijan ........... 180
Figure 3.28. Specialisation index and citation impact across domains of Azerbaijan’s
S&T ecosystem against the EaP average, for publications .................................................... 181
Figure 3.29. Specialisation index across domains of Azerbaijan’s S&T ecosystem
against the EaP average, for patents ............................................................................................... 181
Figure 3.30. Number of records per S&T specialisation domain in Georgia ................. 184
Figure 3.31. Specialisation index and citation impact across domains of Georgia’s S&T
ecosystem against the EaP average, for publications .............................................................. 185
260
List of figures and tables
Figure 3.32. Specialisation index across domains of Georgia’s S&T ecosystem against
the EaP average, for patents ................................................................................................................ 185
Figure 3.33. Number of records per S&T specialisation domain in Moldova ................ 188
Figure 3.34. Specialisation index across domains of Moldova’s S&T ecosystem against
the EaP average, for publications ...................................................................................................... 189
Figure 3.35. Specialisation index across domains of Moldova’s S&T ecosystem against
the EaP average, for patents ................................................................................................................ 189
Figure 3.36. Number of records per S&T specialisation domain in Ukraine ................. 192
Figure 3.37. Specialisation index and citation impact across domains of Ukraine’s S&T
ecosystem against the EaP average, for publications .............................................................. 193
Figure 3.38. Specialisation index across domains of Ukraine’s S&T ecosystem against
the EaP average, for patents ................................................................................................................ 193
Figure 3.39. Example of an interactive visualisation tool, depicting the main analysed
actors and collaboration networks in the Eastern Partnership ............................................ 196
Figure 3.40. Top actors in Armenia by number of records (all types), across all
domains .......................................................................................................................................................... 197
Figure 3.41. Top actors in Azerbaijan by number of records (all types), across all
domains .......................................................................................................................................................... 199
Figure 3.42. Top actors in Georgia by number of records (all types), across all
domains .......................................................................................................................................................... 201
Figure 3.43. Top actors in Moldova by number of records (all types), across all
domains .......................................................................................................................................................... 203
Figure 3.44. Top actors in Ukraine by number of records (all
|
[
"of",
"EC",
"projects",
"\n",
"analysed",
"in",
"the",
"country",
")",
".........................................................................................................................",
"171",
"\n",
"Figure",
"3.23",
".",
"Example",
"of",
"the",
"figures",
"used",
"to",
"present",
"the",
"citation",
"impact",
"and",
"specialisation",
"\n",
"index",
"for",
"publications",
"(",
"left",
")",
"and",
"the",
"specialisation",
"index",
"for",
"patents",
"(",
"right",
")",
"..................",
"174",
"\n",
"Figure",
"3.24",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Armenia",
"................",
"176",
"\n",
"Figure",
"3.25",
".",
"Specialisation",
"index",
"and",
"citation",
"impact",
"across",
"domains",
"of",
"Armenia",
"’s",
"S&T",
"\n",
"ecosystem",
"against",
"the",
"EaP",
"average",
",",
"for",
"publications",
"..............................................................",
"177",
"\n",
"Figure",
"3.26",
".",
"Specialisation",
"index",
"across",
"domains",
"of",
"Armenia",
"’s",
"S&T",
"ecosystem",
"against",
"\n",
"the",
"EaP",
"average",
",",
"for",
"patents",
"................................................................................................................",
"177",
"\n",
"Figure",
"3.27",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Azerbaijan",
"...........",
"180",
"\n",
"Figure",
"3.28",
".",
"Specialisation",
"index",
"and",
"citation",
"impact",
"across",
"domains",
"of",
"Azerbaijan",
"’s",
"\n",
"S&T",
"ecosystem",
"against",
"the",
"EaP",
"average",
",",
"for",
"publications",
"....................................................",
"181",
"\n",
"Figure",
"3.29",
".",
"Specialisation",
"index",
"across",
"domains",
"of",
"Azerbaijan",
"’s",
"S&T",
"ecosystem",
"\n",
"against",
"the",
"EaP",
"average",
",",
"for",
"patents",
"...............................................................................................",
"181",
"\n",
"Figure",
"3.30",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Georgia",
".................",
"184",
"\n",
"Figure",
"3.31",
".",
"Specialisation",
"index",
"and",
"citation",
"impact",
"across",
"domains",
"of",
"Georgia",
"’s",
"S&T",
"\n",
"ecosystem",
"against",
"the",
"EaP",
"average",
",",
"for",
"publications",
"..............................................................",
"185",
"\n",
"260",
"\n",
"List",
"of",
"figures",
"and",
"tables",
"\n",
"Figure",
"3.32",
".",
"Specialisation",
"index",
"across",
"domains",
"of",
"Georgia",
"’s",
"S&T",
"ecosystem",
"against",
"\n",
"the",
"EaP",
"average",
",",
"for",
"patents",
"................................................................................................................",
"185",
"\n",
"Figure",
"3.33",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Moldova",
"................",
"188",
"\n",
"Figure",
"3.34",
".",
"Specialisation",
"index",
"across",
"domains",
"of",
"Moldova",
"’s",
"S&T",
"ecosystem",
"against",
"\n",
"the",
"EaP",
"average",
",",
"for",
"publications",
"......................................................................................................",
"189",
"\n",
"Figure",
"3.35",
".",
"Specialisation",
"index",
"across",
"domains",
"of",
"Moldova",
"’s",
"S&T",
"ecosystem",
"against",
"\n",
"the",
"EaP",
"average",
",",
"for",
"patents",
"................................................................................................................",
"189",
"\n",
"Figure",
"3.36",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Ukraine",
".................",
"192",
"\n",
"Figure",
"3.37",
".",
"Specialisation",
"index",
"and",
"citation",
"impact",
"across",
"domains",
"of",
"Ukraine",
"’s",
"S&T",
"\n",
"ecosystem",
"against",
"the",
"EaP",
"average",
",",
"for",
"publications",
"..............................................................",
"193",
"\n",
"Figure",
"3.38",
".",
"Specialisation",
"index",
"across",
"domains",
"of",
"Ukraine",
"’s",
"S&T",
"ecosystem",
"against",
"\n",
"the",
"EaP",
"average",
",",
"for",
"patents",
"................................................................................................................",
"193",
"\n",
"Figure",
"3.39",
".",
"Example",
"of",
"an",
"interactive",
"visualisation",
"tool",
",",
"depicting",
"the",
"main",
"analysed",
"\n",
"actors",
"and",
"collaboration",
"networks",
"in",
"the",
"Eastern",
"Partnership",
"............................................",
"196",
"\n",
"Figure",
"3.40",
".",
"Top",
"actors",
"in",
"Armenia",
"by",
"number",
"of",
"records",
"(",
"all",
"types",
")",
",",
"across",
"all",
"\n",
"domains",
"..........................................................................................................................................................",
"197",
"\n",
"Figure",
"3.41",
".",
"Top",
"actors",
"in",
"Azerbaijan",
"by",
"number",
"of",
"records",
"(",
"all",
"types",
")",
",",
"across",
"all",
"\n",
"domains",
"..........................................................................................................................................................",
"199",
"\n",
"Figure",
"3.42",
".",
"Top",
"actors",
"in",
"Georgia",
"by",
"number",
"of",
"records",
"(",
"all",
"types",
")",
",",
"across",
"all",
"\n",
"domains",
"..........................................................................................................................................................",
"201",
"\n",
"Figure",
"3.43",
".",
"Top",
"actors",
"in",
"Moldova",
"by",
"number",
"of",
"records",
"(",
"all",
"types",
")",
",",
"across",
"all",
"\n",
"domains",
"..........................................................................................................................................................",
"203",
"\n",
"Figure",
"3.44",
".",
"Top",
"actors",
"in",
"Ukraine",
"by",
"number",
"of",
"records",
"(",
"all"
] |
[] |
## 5.0 THE IMPLEMENTATION OF RING-FENCING RULES
6.0 CONCLUSION
## BOX 18. APPORTIONMENT OF MANAGERIAL, SALES, AND ADMINISTRATION EXPENDITURES IN MONGOLIA
The Mongolian CIT Law offers guidance on how to apportion a specific type of general expenses: management, sales, and administration expenses. Article 6.7 of the Mongolian Regulations sets out that 'managerial, sales and administration expenses should be apportioned in proportion to the production amount in accordance with the IAS.'
Under the current method, a taxpayer that holds two mines, one producing mine and one at the exploration or development stage, is required to allocate 100% of management, sales, and administrative costs to the producing mine. None of the costs are allocated to the mine under exploration or development, even though it presumably benefits from the same managerial and administrative expenditures. The result is that the tax base of the producing mine is reduced by 100% expenses, which may equally benefit both mines and, as a consequence, the tax payable may be substantially deferred compared to if some of the costs were allocated to the exploration or development licence. The method of apportionment, based on production as an allocation key, diminishes the policy objective of ring-fencing rules, which is to avoid the deferral of taxes; however, this does provide an advantage to taxpayers that could stimulate investment. Instead, Mongolia might consider separating the management and administration from the sales expenses and allocating such expenditures based on the nature of those expenses.
The sales expenses could continue being apportioned based on the production volumes, but the management and administrative expenses may be better allocated with a method using CapEx as the allocation key, as that would better allocate these expenses among both mining projects that benefit from such expenditure.
Resource-rich countries should use an appropriate method to apportion indirect and general expenditures and revenues. A suggested approach is the following:
- · For significant expenses exceeding a set materiality threshold-for example, more than 5% of total annual costs-the taxpayers should apply the more direct allocation keys, such as tracking the actual usage of the drilling rig on the different projects, as explained above. Such expenses would then be allocated using direct allocation keys and approximating the outcomes under the direct allocation method.
- · For most types of expenditures below a given threshold, a method based on CapEx will generally result in a reasonable outcome. It preserves the policy intent of
|
[
"#",
"#",
"5.0",
"THE",
"IMPLEMENTATION",
"OF",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"6.0",
"CONCLUSION",
"\n\n",
"#",
"#",
"BOX",
"18",
".",
"APPORTIONMENT",
"OF",
"MANAGERIAL",
",",
"SALES",
",",
"AND",
"ADMINISTRATION",
"EXPENDITURES",
"IN",
"MONGOLIA",
"\n\n",
"The",
"Mongolian",
"CIT",
"Law",
"offers",
"guidance",
"on",
"how",
"to",
"apportion",
"a",
"specific",
"type",
"of",
"general",
"expenses",
":",
"management",
",",
"sales",
",",
"and",
"administration",
"expenses",
".",
"Article",
"6.7",
"of",
"the",
"Mongolian",
"Regulations",
"sets",
"out",
"that",
"'",
"managerial",
",",
"sales",
"and",
"administration",
"expenses",
"should",
"be",
"apportioned",
"in",
"proportion",
"to",
"the",
"production",
"amount",
"in",
"accordance",
"with",
"the",
"IAS",
".",
"'",
"\n\n",
"Under",
"the",
"current",
"method",
",",
"a",
"taxpayer",
"that",
"holds",
"two",
"mines",
",",
"one",
"producing",
"mine",
"and",
"one",
"at",
"the",
"exploration",
"or",
"development",
"stage",
",",
"is",
"required",
"to",
"allocate",
"100",
"%",
"of",
"management",
",",
"sales",
",",
"and",
"administrative",
"costs",
"to",
"the",
"producing",
"mine",
".",
"None",
"of",
"the",
"costs",
"are",
"allocated",
"to",
"the",
"mine",
"under",
"exploration",
"or",
"development",
",",
"even",
"though",
"it",
"presumably",
"benefits",
"from",
"the",
"same",
"managerial",
"and",
"administrative",
"expenditures",
".",
"The",
"result",
"is",
"that",
"the",
"tax",
"base",
"of",
"the",
"producing",
"mine",
"is",
"reduced",
"by",
"100",
"%",
"expenses",
",",
"which",
"may",
"equally",
"benefit",
"both",
"mines",
"and",
",",
"as",
"a",
"consequence",
",",
"the",
"tax",
"payable",
"may",
"be",
"substantially",
"deferred",
"compared",
"to",
"if",
"some",
"of",
"the",
"costs",
"were",
"allocated",
"to",
"the",
"exploration",
"or",
"development",
"licence",
".",
"The",
"method",
"of",
"apportionment",
",",
"based",
"on",
"production",
"as",
"an",
"allocation",
"key",
",",
"diminishes",
"the",
"policy",
"objective",
"of",
"ring",
"-",
"fencing",
"rules",
",",
"which",
"is",
"to",
"avoid",
"the",
"deferral",
"of",
"taxes",
";",
"however",
",",
"this",
"does",
"provide",
"an",
"advantage",
"to",
"taxpayers",
"that",
"could",
"stimulate",
"investment",
".",
"Instead",
",",
"Mongolia",
"might",
"consider",
"separating",
"the",
"management",
"and",
"administration",
"from",
"the",
"sales",
"expenses",
"and",
"allocating",
"such",
"expenditures",
"based",
"on",
"the",
"nature",
"of",
"those",
"expenses",
".",
"\n\n",
"The",
"sales",
"expenses",
"could",
"continue",
"being",
"apportioned",
"based",
"on",
"the",
"production",
"volumes",
",",
"but",
"the",
"management",
"and",
"administrative",
"expenses",
"may",
"be",
"better",
"allocated",
"with",
"a",
"method",
"using",
"CapEx",
"as",
"the",
"allocation",
"key",
",",
"as",
"that",
"would",
"better",
"allocate",
"these",
"expenses",
"among",
"both",
"mining",
"projects",
"that",
"benefit",
"from",
"such",
"expenditure",
".",
"\n\n",
"Resource",
"-",
"rich",
"countries",
"should",
"use",
"an",
"appropriate",
"method",
"to",
"apportion",
"indirect",
"and",
"general",
"expenditures",
"and",
"revenues",
".",
"A",
"suggested",
"approach",
"is",
"the",
"following",
":",
"\n\n",
"-",
"·",
"For",
"significant",
"expenses",
"exceeding",
"a",
"set",
"materiality",
"threshold",
"-",
"for",
"example",
",",
"more",
"than",
"5",
"%",
"of",
"total",
"annual",
"costs",
"-",
"the",
"taxpayers",
"should",
"apply",
"the",
"more",
"direct",
"allocation",
"keys",
",",
"such",
"as",
"tracking",
"the",
"actual",
"usage",
"of",
"the",
"drilling",
"rig",
"on",
"the",
"different",
"projects",
",",
"as",
"explained",
"above",
".",
"Such",
"expenses",
"would",
"then",
"be",
"allocated",
"using",
"direct",
"allocation",
"keys",
"and",
"approximating",
"the",
"outcomes",
"under",
"the",
"direct",
"allocation",
"method",
".",
"\n",
"-",
"·",
"For",
"most",
"types",
"of",
"expenditures",
"below",
"a",
"given",
"threshold",
",",
"a",
"method",
"based",
"on",
"CapEx",
"will",
"generally",
"result",
"in",
"a",
"reasonable",
"outcome",
".",
"It",
"preserves",
"the",
"policy",
"intent",
"of"
] |
[] |
revenues, however, comes into conflict with the objective of the investors, which is to optimize the cash flows by benefiting from the tax deferral effect. Careful consideration is therefore needed to assess whether this benefit of accelerated revenues outweighs the negative implications that this may have on the investment decisions and expectations of investors. In balancing these conflicting objectives, it may also be useful to consider whether other fiscal instruments could achieve such an objective (e.g., mining royalty) without the negative spillovers on investment decisions. 13
13 Without ring-fencing, there may be neutrality concerns where mining entities are also engaged in non-mining activities. Entities in the non-mining activity sector may be disadvantaged by having to compete with entities that have additional mining activities
## 1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
## 3.0 THE BENEFITS AND RISKS OF RING-FENCING
4.0 DESIGNING RING-FENCING RULES
5.0 THE IMPLEMENTATION OF RING-FENCING RULES
6.0 CONCLUSION
## BOX 4. AN EXAMPLE OF HOW RING-FENCING DELIVERS EARLY GOVERNMENT REVENUES
|
[
"revenues",
",",
"however",
",",
"comes",
"into",
"conflict",
"with",
"the",
"objective",
"of",
"the",
"investors",
",",
"which",
"is",
"to",
"optimize",
"the",
"cash",
"flows",
"by",
"benefiting",
"from",
"the",
"tax",
"deferral",
"effect",
".",
"Careful",
"consideration",
"is",
"therefore",
"needed",
"to",
"assess",
"whether",
"this",
"benefit",
"of",
"accelerated",
"revenues",
"outweighs",
"the",
"negative",
"implications",
"that",
"this",
"may",
"have",
"on",
"the",
"investment",
"decisions",
"and",
"expectations",
"of",
"investors",
".",
"In",
"balancing",
"these",
"conflicting",
"objectives",
",",
"it",
"may",
"also",
"be",
"useful",
"to",
"consider",
"whether",
"other",
"fiscal",
"instruments",
"could",
"achieve",
"such",
"an",
"objective",
"(",
"e.g.",
",",
"mining",
"royalty",
")",
"without",
"the",
"negative",
"spillovers",
"on",
"investment",
"decisions",
".",
"13",
"\n\n",
"13",
" ",
"Without",
"ring",
"-",
"fencing",
",",
"there",
"may",
"be",
"neutrality",
"concerns",
"where",
"mining",
"entities",
"are",
"also",
"engaged",
"in",
"non",
"-",
"mining",
"activities",
".",
"Entities",
"in",
"the",
"non",
"-",
"mining",
"activity",
"sector",
"may",
"be",
"disadvantaged",
"by",
"having",
"to",
"compete",
"with",
"entities",
"that",
"have",
"additional",
"mining",
"activities",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"#",
"#",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"5.0",
"THE",
"IMPLEMENTATION",
"OF",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"6.0",
"CONCLUSION",
"\n\n",
"#",
"#",
"BOX",
"4",
".",
"AN",
"EXAMPLE",
"OF",
"HOW",
"RING",
"-",
"FENCING",
"DELIVERS",
"EARLY",
"GOVERNMENT",
"REVENUES"
] |
[] |
PubMed Central
Google Scholar
Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W. & Starnini, M. The echo chamber effect on social media.
Proc. Natl Acad. Sci. USA
118
, e2023301118 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks.
Rev. Mod. Phys.
87
, 925–979 (2015).
ADS
MathSciNet
Google Scholar
Perret, J., Gribaudi, M. & Barthelemy, M. Roads and cities of 18th century France.
Sci. Data
2
, 150048 (2015).
PubMed
PubMed Central
Google Scholar
Cagé, J. & Piketty, T.
Une histoire du conflit politique: Elections et inégalités sociales en France, 1789–2022
(Seuil, 2023).
Labrousse, C.-E.
Esquisse du mouvement des prix et des revenus en France au 18e siècle
(Dalloz, 1933).
Markoff, J.
Abolition of Feudalism: Peasants, Lords, and Legislators in the French Revolution
(Penn State Press, 2010).
Hesse, P.-J. Géographie coutumière et révoltes paysannes en 1789: una hypothèse de travail.
Ann. Hist. Revolut. Fr.
51
, 280–306 (1979).
Google Scholar
Root, H. L. Challenging the seigneurie: community and contention on the eve of the French Revolution.
J. Mod. Hist.
57
, 652–681 (1985).
Google Scholar
Vovelle, M.
La Chute de la monarchie (1787–1792)
(Seuil, 2014).
Zapperi, R. Sieyès et l’abolition de la féodalité en 1789.
Ann. Hist. Revolut. Fr.
44
, 321–351 (1972).
Google Scholar
Parent, A. France after 1789: essay on Elster’s France before 1789.
J. Econ. Lit.
62
, 1230–1255 (2024).
Google Scholar
McPhee, P.
The French Revolution, 1789–1799
(Oxford Univ. Press, 2001).
Tackett, T. Collective panics in the early French Revolution, 1789–1791: a comparative perspective.
French History
17
, 149–171 (2003).
Google Scholar
Wahnich, S. La foule, l’émeute, la fête entre révolte et révolution. France révolutionnaire 1789–1792, émeutes françaises de 2005, Tunisie–Égypte, 2011.
L’Homme & la Société
187–188
, 63–87 (2013).
Google Scholar
Le Bon, G. & Miall, B.
The Psychology of Revolution
(Unwin, 1913).
Gurr, T. Psychological factors in civil violence.
World Polit.
20
, 245–278 (1968).
Google Scholar
Gurr, T. A causal model of civil strife: a comparative analysis using new indices.
Am. Polit. Sci. Rev.
62
, 1104–1124 (1968).
Google Scholar
Elster, J. The night of August 4, 1789. a study of social interaction in collective decision-making.
Rev. Eur. Sci. Soc.
45
, 71–94 (2007).
Google Scholar
Elster, J. The two great fears of 1789.
Soc. Sci. Inf.
50
, 317–329 (2011).
Google Scholar
Elster, J.
France Before
|
[
"PubMed",
"Central",
"\n \n \n\n ",
"Google",
"Scholar",
"\n \n \n",
"Cinelli",
",",
"M.",
",",
"De",
"Francisci",
"Morales",
",",
"G.",
",",
"Galeazzi",
",",
"A.",
",",
"Quattrociocchi",
",",
"W.",
"&",
"Starnini",
",",
"M.",
"The",
"echo",
"chamber",
"effect",
"on",
"social",
"media",
".",
"\n",
"Proc",
".",
"Natl",
"Acad",
".",
"Sci",
".",
"USA",
"\n \n",
"118",
"\n",
",",
"e2023301118",
"(",
"2021",
")",
".",
"\n",
"CAS",
"\n \n \n",
"PubMed",
"\n \n \n",
"PubMed",
"Central",
"\n \n \n\n ",
"Google",
"Scholar",
"\n \n \n",
"Pastor",
"-",
"Satorras",
",",
"R.",
",",
"Castellano",
",",
"C.",
",",
"Van",
"Mieghem",
",",
"P.",
"&",
"Vespignani",
",",
"A.",
"Epidemic",
"processes",
"in",
"complex",
"networks",
".",
"\n",
"Rev.",
"Mod",
".",
"Phys",
".",
"\n \n",
"87",
"\n",
",",
"925–979",
"(",
"2015",
")",
".",
"\n",
"ADS",
"\n \n \n",
"MathSciNet",
"\n \n \n\n ",
"Google",
"Scholar",
"\n \n \n",
"Perret",
",",
"J.",
",",
"Gribaudi",
",",
"M.",
"&",
"Barthelemy",
",",
"M.",
"Roads",
"and",
"cities",
"of",
"18th",
"century",
"France",
".",
"\n",
"Sci",
".",
"Data",
"\n \n",
"2",
"\n",
",",
"150048",
"(",
"2015",
")",
".",
"\n",
"PubMed",
"\n \n \n",
"PubMed",
"Central",
"\n \n \n\n ",
"Google",
"Scholar",
"\n \n \n",
"Cagé",
",",
"J.",
"&",
"Piketty",
",",
"T.",
"\n",
"Une",
"histoire",
"du",
"conflit",
"politique",
":",
"Elections",
"et",
"inégalités",
"sociales",
"en",
"France",
",",
"1789–2022",
"\n ",
"(",
"Seuil",
",",
"2023",
")",
".",
"\n",
"Labrousse",
",",
"C.-E.",
"\n",
"Esquisse",
"du",
"mouvement",
"des",
"prix",
"et",
"des",
"revenus",
"en",
"France",
"au",
"18e",
"siècle",
"\n ",
"(",
"Dalloz",
",",
"1933",
")",
".",
"\n",
"Markoff",
",",
"J.",
"\n",
"Abolition",
"of",
"Feudalism",
":",
"Peasants",
",",
"Lords",
",",
"and",
"Legislators",
"in",
"the",
"French",
"Revolution",
"\n ",
"(",
"Penn",
"State",
"Press",
",",
"2010",
")",
".",
"\n",
"Hesse",
",",
"P.-J.",
"Géographie",
"coutumière",
"et",
"révoltes",
"paysannes",
"en",
"1789",
":",
"una",
"hypothèse",
"de",
"travail",
".",
"\n",
"Ann",
".",
"Hist",
".",
"Revolut",
".",
"Fr",
".",
"\n \n",
"51",
"\n",
",",
"280–306",
"(",
"1979",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Root",
",",
"H.",
"L.",
"Challenging",
"the",
"seigneurie",
":",
"community",
"and",
"contention",
"on",
"the",
"eve",
"of",
"the",
"French",
"Revolution",
".",
"\n",
"J.",
"Mod",
".",
"Hist",
".",
"\n \n",
"57",
"\n",
",",
"652–681",
"(",
"1985",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Vovelle",
",",
"M.",
"\n",
"La",
"Chute",
"de",
"la",
"monarchie",
"(",
"1787–1792",
")",
"\n ",
"(",
"Seuil",
",",
"2014",
")",
".",
"\n",
"Zapperi",
",",
"R.",
"Sieyès",
"et",
"l’abolition",
"de",
"la",
"féodalité",
"en",
"1789",
".",
"\n",
"Ann",
".",
"Hist",
".",
"Revolut",
".",
"Fr",
".",
"\n \n",
"44",
"\n",
",",
"321–351",
"(",
"1972",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Parent",
",",
"A.",
"France",
"after",
"1789",
":",
"essay",
"on",
"Elster",
"’s",
"France",
"before",
"1789",
".",
"\n",
"J.",
"Econ",
".",
"Lit",
".",
"\n \n",
"62",
"\n",
",",
"1230–1255",
"(",
"2024",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"McPhee",
",",
"P.",
"\n",
"The",
"French",
"Revolution",
",",
"1789–1799",
"\n ",
"(",
"Oxford",
"Univ",
".",
"Press",
",",
"2001",
")",
".",
"\n",
"Tackett",
",",
"T.",
"Collective",
"panics",
"in",
"the",
"early",
"French",
"Revolution",
",",
"1789–1791",
":",
"a",
"comparative",
"perspective",
".",
"\n",
"French",
"History",
"\n \n",
"17",
"\n",
",",
"149–171",
"(",
"2003",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Wahnich",
",",
"S.",
"La",
"foule",
",",
"l’émeute",
",",
"la",
"fête",
"entre",
"révolte",
"et",
"révolution",
".",
"France",
"révolutionnaire",
"1789–1792",
",",
"émeutes",
"françaises",
"de",
"2005",
",",
"Tunisie",
"–",
"Égypte",
",",
"2011",
".",
"\n",
"L’Homme",
"&",
"la",
"Société",
"\n \n",
"187–188",
"\n",
",",
"63–87",
"(",
"2013",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Le",
"Bon",
",",
"G.",
"&",
"Miall",
",",
"B.",
"\n",
"The",
"Psychology",
"of",
"Revolution",
"\n ",
"(",
"Unwin",
",",
"1913",
")",
".",
"\n",
"Gurr",
",",
"T.",
"Psychological",
"factors",
"in",
"civil",
"violence",
".",
"\n",
"World",
"Polit",
".",
"\n \n",
"20",
"\n",
",",
"245–278",
"(",
"1968",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Gurr",
",",
"T.",
"A",
"causal",
"model",
"of",
"civil",
"strife",
":",
"a",
"comparative",
"analysis",
"using",
"new",
"indices",
".",
"\n",
"Am",
".",
"Polit",
".",
"Sci",
".",
"Rev.",
"\n \n",
"62",
"\n",
",",
"1104–1124",
"(",
"1968",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Elster",
",",
"J.",
"The",
"night",
"of",
"August",
"4",
",",
"1789",
".",
"a",
"study",
"of",
"social",
"interaction",
"in",
"collective",
"decision",
"-",
"making",
".",
"\n",
"Rev.",
"Eur",
".",
"Sci",
".",
"Soc",
".",
"\n \n",
"45",
"\n",
",",
"71–94",
"(",
"2007",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Elster",
",",
"J.",
"The",
"two",
"great",
"fears",
"of",
"1789",
".",
"\n",
"Soc",
".",
"Sci",
".",
"Inf",
".",
"\n \n",
"50",
"\n",
",",
"317–329",
"(",
"2011",
")",
".",
"\n\n ",
"Google",
"Scholar",
"\n \n \n",
"Elster",
",",
"J.",
"\n",
"France",
"Before"
] |
[] |
98 ₋₁ … | | | | ₋₁ | | | 11.9 | 22.0 | PAN | PAN | PAN |
| 16 ₋₂ | … | 6 ₋₂ | … | … | 34 ₋₁ | … | 15 ₋₁ | 28 ₊₁ | … | … | … 13 | … | … | … | … … … | 3.4 3.3 | 3.4 3.4 | | 15.2 18.2 ₊₁ | | PRY | PRY | PRY | PRY | PRY | PRY |
| 31 ₋₂ | … | 23 ₋₂ | … | … | 50 ₋₁ | … … | 34 ₋₁ … | 71 ₊₁ ₊₁ | 80 | … | 68 ₋₂ | | | 4.0 2.5 | | | | | | 17.6 | 19.2 ₊₁ | PER | PER | PER | PER | PER |
| … | … | … | … | … | … … | … | … | 100 … | 100 ₋₂ | 72 | 77 | … | … 70 | … | | 4.2 3.6 ₋₁ | | | | | 8.8 | 10.2 ₊₁ | | | KNA | KNA |
| … | … | … | … | … | | | | | 100 … | … | 79 | … | | … 66 … | 3.9 | 3.7 ₋₁ | | 7.2 ₋₁ | | 16.5 | | 16.3 ₋₁ 12.6 ₊₁ | | | | LCA |
| … … | … … | … | … … | … … | … … | … … | … … | 100 ₊₁ … | … … | 84 … | … | … … | … … | … … … | 5.0 … | 4.2 | | | ₋₁ | | 17.2 … | 23.0 | VCT SXM | VCT SXM | VCT SXM | VCT SXM |
| … 44 ₋₂ | … … | … … 38 ₋₂ | … … | … 61 100 ₋₁ | … … 59 ₋₁ | … 48 | … 43 ₋₁ | … 100 | 84 … … … | 98 100 | 100 100 ₋₁ | | 82 ₋₂ … | … 50 … … | 5.5 … | 2.9 4.2 | 2.9 4.5 ₋₁ | 14.7 | | SUR | | ₋₁
|
[
"98",
"₋₁",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
"11.9",
" ",
"|",
"22.0",
" ",
"|",
"PAN",
" ",
"|",
"PAN",
" ",
"|",
"PAN",
" ",
"|",
"\n",
"|",
"16",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"6",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"34",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"15",
"₋₁",
" ",
"|",
"28",
"₊₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"13",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
"…",
" ",
"|",
"3.4",
"3.3",
" ",
"|",
"3.4",
"3.4",
" ",
"|",
" ",
"|",
"15.2",
"18.2",
"₊₁",
" ",
"|",
" ",
"|",
"PRY",
" ",
"|",
"PRY",
" ",
"|",
"PRY",
" ",
"|",
"PRY",
" ",
"|",
"PRY",
" ",
"|",
"PRY",
" ",
"|",
"\n",
"|",
"31",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"23",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"50",
"₋₁",
" ",
"|",
"…",
"…",
" ",
"|",
"34",
"₋₁",
"…",
" ",
"|",
"71",
"₊₁",
"₊₁",
" ",
"|",
"80",
" ",
"|",
"…",
" ",
"|",
"68",
"₋₂",
" ",
"|",
" ",
"|",
" ",
"|",
"4.0",
"2.5",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"17.6",
" ",
"|",
"19.2",
"₊₁",
" ",
"|",
"PER",
" ",
"|",
"PER",
" ",
"|",
"PER",
" ",
"|",
"PER",
" ",
"|",
"PER",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
"…",
" ",
"|",
"100",
"₋₂",
" ",
"|",
"72",
" ",
"|",
"77",
" ",
"|",
"…",
" ",
"|",
"…",
"70",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"4.2",
"3.6",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"8.8",
" ",
"|",
"10.2",
"₊₁",
" ",
"|",
" ",
"|",
" ",
"|",
"KNA",
" ",
"|",
"KNA",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"100",
"…",
" ",
"|",
"…",
" ",
"|",
"79",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
"66",
"…",
" ",
"|",
"3.9",
" ",
"|",
"3.7",
"₋₁",
" ",
"|",
" ",
"|",
"7.2",
"₋₁",
" ",
"|",
" ",
"|",
"16.5",
" ",
"|",
" ",
"|",
"16.3",
"₋₁",
"12.6",
"₊₁",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"LCA",
" ",
"|",
"\n",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"100",
"₊₁",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"84",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
"…",
" ",
"|",
"5.0",
"…",
" ",
"|",
"4.2",
" ",
"|",
" ",
"|",
" ",
"|",
"₋₁",
" ",
"|",
" ",
"|",
"17.2",
"…",
" ",
"|",
"23.0",
" ",
"|",
"VCT",
"SXM",
" ",
"|",
"VCT",
"SXM",
" ",
"|",
"VCT",
"SXM",
" ",
"|",
"VCT",
"SXM",
" ",
"|",
"\n",
"|",
"…",
"44",
"₋₂",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
"38",
"₋₂",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"61",
"100",
"₋₁",
" ",
"|",
"…",
"…",
"59",
"₋₁",
" ",
"|",
"…",
"48",
" ",
"|",
"…",
"43",
"₋₁",
" ",
"|",
"…",
"100",
" ",
"|",
"84",
"…",
"…",
"…",
" ",
"|",
"98",
"100",
" ",
"|",
"100",
"100",
"₋₁",
" ",
"|",
" ",
"|",
"82",
"₋₂",
"…",
" ",
"|",
"…",
"50",
"…",
"…",
" ",
"|",
"5.5",
"…",
" ",
"|",
"2.9",
"4.2",
" ",
"|",
"2.9",
"4.5",
"₋₁",
" ",
"|",
"14.7",
" ",
"|",
" ",
"|",
"SUR",
" ",
"|",
" ",
"|",
"₋₁",
" "
] |
[] |
public actors depends on the
public sector structure of each country, since hos-
pitals and medical facilities, ministries and minis-
terial institutes and state companies (notably in
Azerbaijan and Ukraine) can be observed with a
differing presence depending on the country.
196
Part 3 Analysis of scientific and technological potential
Figure 3.39. Example of an interactive visualisation tool, depicting the main analysed actors and collaboration
networks in the Eastern Partnership
Regarding private for-profit companies, their pres-
ence in the international S&T data sources is for
the most part rather small. In all countries, there is
a relevant presence of scientific, applied research and technical companies, as well as ICT compa-
nies. Beyond those, some clear national cham-
pions and small and medium highly specialised
companies, in specific sectors, can be found.
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation197
Fundamental physics and
mathematics
Nanotechnology and materials
Health and wellbeing
Optics and photonics
Chemistry and chemical engineering
Governance, culture, education and
the economy
Biotechnology
Environmental sciences and
industries
ICT and computer science
Agrifood
Energy
Mechanical engineering and heavy
machinery
Electric and electronic technologies
National Academy of Sciences
of Armenia899 530 431 255 446 234 134 257 143 116 24 13 3
A.I. Alikhanyan National
Science Laboratory 2 670 123 19 69 10 13 10 10 42 5 6 26 4
Yerevan State University 626 518 200 253 139 170 263 136 77 147 25 6 5
Yerevan State Medical
University16 25 423 7 13 21 36 12 4 19 8 1 0
Russian-Armenian University 93 160 36 21 34 57 16 10 20 12 6 6 2
National Polytechnic
University of Armenia54 94 1 45 16 11 9 17 39 9 2 7 2
American University of
Armenia16 4 77 5 1 56 5 12 34 11 2 0 2
Armenian National Agrarian
University25 7 36 2 14 16 24 17 2 24 2 0 1
Armenian State Pedagogical
University after Khachatur
Abovyan30 36 11 27 13 10 2 5 0 1 0 0 0
Center for the Advancement
of Natural Discoveries using
Light Emission50 14 6 11 0 1 4 0 1 3 0 0 2Figure 3.40. Top actors in Armenia by number of records (all types), across all domainsArmenia
Scientific production in Armenia is heavily concen-
trated in a few institutions, notably the National
Academy of Sciences, and a few comprehensive
and specialised universities.
|
[
"public",
"actors",
"depends",
"on",
"the",
"\n",
"public",
"sector",
"structure",
"of",
"each",
"country",
",",
"since",
"hos-",
"\n",
"pitals",
"and",
"medical",
"facilities",
",",
"ministries",
"and",
"minis-",
"\n",
"terial",
"institutes",
"and",
"state",
"companies",
"(",
"notably",
"in",
"\n",
"Azerbaijan",
"and",
"Ukraine",
")",
"can",
"be",
"observed",
"with",
"a",
"\n",
"differing",
"presence",
"depending",
"on",
"the",
"country",
".",
"\n",
"196",
"\n ",
"Part",
"3",
"Analysis",
"of",
"scientific",
"and",
"technological",
"potential",
"\n",
"Figure",
"3.39",
".",
"Example",
"of",
"an",
"interactive",
"visualisation",
"tool",
",",
"depicting",
"the",
"main",
"analysed",
"actors",
"and",
"collaboration",
"\n",
"networks",
"in",
"the",
"Eastern",
"Partnership",
"\n",
"Regarding",
"private",
"for",
"-",
"profit",
"companies",
",",
"their",
"pres-",
"\n",
"ence",
"in",
"the",
"international",
"S&T",
"data",
"sources",
"is",
"for",
"\n",
"the",
"most",
"part",
"rather",
"small",
".",
"In",
"all",
"countries",
",",
"there",
"is",
"\n",
"a",
"relevant",
"presence",
"of",
"scientific",
",",
"applied",
"research",
"and",
"technical",
"companies",
",",
"as",
"well",
"as",
"ICT",
"compa-",
"\n",
"nies",
".",
"Beyond",
"those",
",",
"some",
"clear",
"national",
"cham-",
"\n",
"pions",
"and",
"small",
"and",
"medium",
"highly",
"specialised",
"\n",
"companies",
",",
"in",
"specific",
"sectors",
",",
"can",
"be",
"found",
".",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation197",
"\n",
"Fundamental",
"physics",
"and",
"\n",
"mathematics",
"\n",
"Nanotechnology",
"and",
"materials",
"\n",
"Health",
"and",
"wellbeing",
"\n",
"Optics",
"and",
"photonics",
"\n",
"Chemistry",
"and",
"chemical",
"engineering",
"\n",
"Governance",
",",
"culture",
",",
"education",
"and",
"\n",
"the",
"economy",
"\n",
"Biotechnology",
"\n",
"Environmental",
"sciences",
"and",
"\n",
"industries",
"\n",
"ICT",
"and",
"computer",
"science",
"\n",
"Agrifood",
"\n",
"Energy",
"\n",
"Mechanical",
"engineering",
"and",
"heavy",
"\n",
"machinery",
"\n",
"Electric",
"and",
"electronic",
"technologies",
"\n",
"National",
"Academy",
"of",
"Sciences",
"\n",
"of",
"Armenia899",
"530",
"431",
"255",
"446",
"234",
"134",
"257",
"143",
"116",
"24",
"13",
"3",
"\n",
"A.I.",
"Alikhanyan",
"National",
"\n",
"Science",
"Laboratory",
"2",
"670",
"123",
"19",
"69",
"10",
"13",
"10",
"10",
"42",
"5",
"6",
"26",
"4",
"\n",
"Yerevan",
"State",
"University",
"626",
"518",
"200",
"253",
"139",
"170",
"263",
"136",
"77",
"147",
"25",
"6",
"5",
"\n",
"Yerevan",
"State",
"Medical",
"\n",
"University16",
"25",
"423",
"7",
"13",
"21",
"36",
"12",
"4",
"19",
"8",
"1",
"0",
"\n",
"Russian",
"-",
"Armenian",
"University",
"93",
"160",
"36",
"21",
"34",
"57",
"16",
"10",
"20",
"12",
"6",
"6",
"2",
"\n",
"National",
"Polytechnic",
"\n",
"University",
"of",
"Armenia54",
"94",
"1",
"45",
"16",
"11",
"9",
"17",
"39",
"9",
"2",
"7",
"2",
"\n",
"American",
"University",
"of",
"\n",
"Armenia16",
"4",
"77",
"5",
"1",
"56",
"5",
"12",
"34",
"11",
"2",
"0",
"2",
"\n",
"Armenian",
"National",
"Agrarian",
"\n",
"University25",
"7",
"36",
"2",
"14",
"16",
"24",
"17",
"2",
"24",
"2",
"0",
"1",
"\n",
"Armenian",
"State",
"Pedagogical",
"\n",
"University",
"after",
"Khachatur",
"\n",
"Abovyan30",
"36",
"11",
"27",
"13",
"10",
"2",
"5",
"0",
"1",
"0",
"0",
"0",
"\n",
"Center",
"for",
"the",
"Advancement",
"\n",
"of",
"Natural",
"Discoveries",
"using",
"\n",
"Light",
"Emission50",
"14",
"6",
"11",
"0",
"1",
"4",
"0",
"1",
"3",
"0",
"0",
"2Figure",
"3.40",
".",
"Top",
"actors",
"in",
"Armenia",
"by",
"number",
"of",
"records",
"(",
"all",
"types",
")",
",",
"across",
"all",
"domainsArmenia",
"\n",
"Scientific",
"production",
"in",
"Armenia",
"is",
"heavily",
"concen-",
"\n",
"trated",
"in",
"a",
"few",
"institutions",
",",
"notably",
"the",
"National",
"\n",
"Academy",
"of",
"Sciences",
",",
"and",
"a",
"few",
"comprehensive",
"\n",
"and",
"specialised",
"universities",
".",
"\n"
] |
[] |
also clearly showed an additional
short-lived isomeric state with a half-life of (1 .6±0.1) ns
atE
∗=328 keV, that was never reported before. However,
this new isomeric state cannot explain the inconsistency we
observed for the other half-lives. These results indicate that
further investigations might be required regarding the94Rb
isomer.
3.1.4 Other noteworthy isomers
In this final subsection, we show how the present data could
be beneficial for the evaluation community, besides the newisomers previously reported.
A first interesting result is the half-life of the
97Sr isomer
atE∗=831 keV. In the evaluated data [ 23], an inconsistency
between two measurements of this half-life is reported by theevaluator. Since then, the half-life was re-measured a couple
of times, addressing this issue [ 16,49]. The result obtained
in the present work with VESPA is consistent with these newmeasurements.
Another point of interest concerns the short-lived isomer
in
92Rb ((0 .82±0.04) ns at E∗=142 keV). This is, to our
knowledge, the first time that a measurement of this half-
life is published, although the isomer is already known since
1972, but was only reported as private communication in theevaluated data [ 19].3.2 Charge calibration of the IC
The identified isomers constitute a large data set of known
post-neutron fission fragments, of various mass and nuclear
charge (see Fig. 7).
As initially demonstrated in the pioneer work from Ref.
[8], a twin Frisch-grid ionization chamber could be used
to estimate the nuclear charge of fission fragments from a
ratio between electron-ion pair track position in both sidesof the chamber. In Ref. [ 8], the authors based their analysis
on events having a high Total Kinetic Energy (TKE), cor-
responding to events of neutronless fission (i.e., the excita-tion energy of the fragments lies below the neutron emission
threshold), for a better mass determination. Here, we propose
to generalize their approach using the isomer determinationpreviously described. It should be noted that such a calibra-tion presents several difficulties due to the low kinetic energy
of the fragments, that is below 2 MeV/u, and the correlation
between the various fission fragment characteristics (mass,nuclear charge, and kinetic energy).
The IC used in the VESPA setup can return the pulse height
at each anode to obtain the energy of both fission fragments,as well as average electron drift times ( ¯t), to deduce their
position along the zaxis [ 7]. We define the drift-time ratio
(r
t) as the ratio between
|
[
"also",
"clearly",
"showed",
"an",
"additional",
"\n",
"short",
"-",
"lived",
"isomeric",
"state",
"with",
"a",
"half",
"-",
"life",
"of",
"(",
"1",
".6±0.1",
")",
"ns",
"\n",
"atE",
"\n",
"∗=328",
"keV",
",",
"that",
"was",
"never",
"reported",
"before",
".",
"However",
",",
"\n",
"this",
"new",
"isomeric",
"state",
"can",
"not",
"explain",
"the",
"inconsistency",
"we",
"\n",
"observed",
"for",
"the",
"other",
"half",
"-",
"lives",
".",
"These",
"results",
"indicate",
"that",
"\n",
"further",
"investigations",
"might",
"be",
"required",
"regarding",
"the94Rb",
"\n",
"isomer",
".",
"\n",
"3.1.4",
"Other",
"noteworthy",
"isomers",
"\n",
"In",
"this",
"final",
"subsection",
",",
"we",
"show",
"how",
"the",
"present",
"data",
"could",
"\n",
"be",
"beneficial",
"for",
"the",
"evaluation",
"community",
",",
"besides",
"the",
"newisomers",
"previously",
"reported",
".",
"\n",
"A",
"first",
"interesting",
"result",
"is",
"the",
"half",
"-",
"life",
"of",
"the",
"\n",
"97Sr",
"isomer",
"\n",
"atE∗=831",
"keV.",
"In",
"the",
"evaluated",
"data",
"[",
"23",
"]",
",",
"an",
"inconsistency",
"\n",
"between",
"two",
"measurements",
"of",
"this",
"half",
"-",
"life",
"is",
"reported",
"by",
"theevaluator",
".",
"Since",
"then",
",",
"the",
"half",
"-",
"life",
"was",
"re",
"-",
"measured",
"a",
"couple",
"\n",
"of",
"times",
",",
"addressing",
"this",
"issue",
"[",
"16,49",
"]",
".",
"The",
"result",
"obtained",
"\n",
"in",
"the",
"present",
"work",
"with",
"VESPA",
"is",
"consistent",
"with",
"these",
"newmeasurements",
".",
"\n",
"Another",
"point",
"of",
"interest",
"concerns",
"the",
"short",
"-",
"lived",
"isomer",
"\n",
"in",
"\n",
"92Rb",
"(",
"(",
"0",
".82±0.04",
")",
"ns",
"at",
"E∗=142",
"keV",
")",
".",
"This",
"is",
",",
"to",
"our",
"\n",
"knowledge",
",",
"the",
"first",
"time",
"that",
"a",
"measurement",
"of",
"this",
"half-",
"\n",
"life",
"is",
"published",
",",
"although",
"the",
"isomer",
"is",
"already",
"known",
"since",
"\n",
"1972",
",",
"but",
"was",
"only",
"reported",
"as",
"private",
"communication",
"in",
"theevaluated",
"data",
"[",
"19].3.2",
"Charge",
"calibration",
"of",
"the",
"IC",
"\n",
"The",
"identified",
"isomers",
"constitute",
"a",
"large",
"data",
"set",
"of",
"known",
"\n",
"post",
"-",
"neutron",
"fission",
"fragments",
",",
"of",
"various",
"mass",
"and",
"nuclear",
"\n",
"charge",
"(",
"see",
"Fig",
".",
"7",
")",
".",
"\n",
"As",
"initially",
"demonstrated",
"in",
"the",
"pioneer",
"work",
"from",
"Ref",
".",
"\n",
"[",
"8",
"]",
",",
"a",
"twin",
"Frisch",
"-",
"grid",
"ionization",
"chamber",
"could",
"be",
"used",
"\n",
"to",
"estimate",
"the",
"nuclear",
"charge",
"of",
"fission",
"fragments",
"from",
"a",
"\n",
"ratio",
"between",
"electron",
"-",
"ion",
"pair",
"track",
"position",
"in",
"both",
"sidesof",
"the",
"chamber",
".",
"In",
"Ref",
".",
"[",
"8",
"]",
",",
"the",
"authors",
"based",
"their",
"analysis",
"\n",
"on",
"events",
"having",
"a",
"high",
"Total",
"Kinetic",
"Energy",
"(",
"TKE",
")",
",",
"cor-",
"\n",
"responding",
"to",
"events",
"of",
"neutronless",
"fission",
"(",
"i.e.",
",",
"the",
"excita",
"-",
"tion",
"energy",
"of",
"the",
"fragments",
"lies",
"below",
"the",
"neutron",
"emission",
"\n",
"threshold",
")",
",",
"for",
"a",
"better",
"mass",
"determination",
".",
"Here",
",",
"we",
"propose",
"\n",
"to",
"generalize",
"their",
"approach",
"using",
"the",
"isomer",
"determinationpreviously",
"described",
".",
"It",
"should",
"be",
"noted",
"that",
"such",
"a",
"calibra",
"-",
"tion",
"presents",
"several",
"difficulties",
"due",
"to",
"the",
"low",
"kinetic",
"energy",
"\n",
"of",
"the",
"fragments",
",",
"that",
"is",
"below",
"2",
"MeV",
"/",
"u",
",",
"and",
"the",
"correlation",
"\n",
"between",
"the",
"various",
"fission",
"fragment",
"characteristics",
"(",
"mass",
",",
"nuclear",
"charge",
",",
"and",
"kinetic",
"energy",
")",
".",
"\n",
"The",
"IC",
"used",
"in",
"the",
"VESPA",
"setup",
"can",
"return",
"the",
"pulse",
"height",
"\n",
"at",
"each",
"anode",
"to",
"obtain",
"the",
"energy",
"of",
"both",
"fission",
"fragments",
",",
"as",
"well",
"as",
"average",
"electron",
"drift",
"times",
"(",
"¯t",
")",
",",
"to",
"deduce",
"their",
"\n",
"position",
"along",
"the",
"zaxis",
"[",
"7",
"]",
".",
"We",
"define",
"the",
"drift",
"-",
"time",
"ratio",
"\n",
"(",
"r",
"\n",
"t",
")",
"as",
"the",
"ratio",
"between"
] |
[
{
"end": 621,
"label": "CITATION_REF",
"start": 619
},
{
"end": 800,
"label": "CITATION_REF",
"start": 798
},
{
"end": 803,
"label": "CITATION_REF",
"start": 801
},
{
"end": 1212,
"label": "CITATION_REF",
"start": 1210
},
{
"end": 1644,
"label": "CITATION_REF",
"start": 1643
},
{
"end": 1444,
"label": "CITATION_REF",
"start": 1443
},
{
"end": 2471,
"label": "CITATION_REF",
"start": 2470
}
] |
of 100 GB of generated data and maximum 1 GB of re-used data.
To whom might your data be useful ('data utility'), outside your project?
Data will be mainly useful to academia and research institute for reproduction and verification.
## 2. FAIR data
In compliance with the European Commission guidelines, the data generated by the project must be FAIR, that is findable, accessible, interoperable and re-usable. The decision to be taken on how to publish its documents and data sets will come after the more general decision on whether to go for an academic publication directly or to first seek protection by registering the developed Intellectual Property.
## 2.1. Making data findable, including provisions for metadata
Will data be identified by a persistent identifier? Only the publications.
Will rich metadata be provided to allow discovery? What metadata will be created? What disciplinary or general standards will be followed? In case metadata standards do not exist in your discipline, please outline what type of metadata will be created and how. No.
Will search keywords be provided in the metadata to optimize the possibility for discovery and then potential re-use? No.
Will metadata be offered in such a way that it can be harvested and indexed? No.
## 2.2. Making data accessible
Repository: Local repository for data, arXiv for publications, when not in open access journals.
Will the data be deposited in a trusted repository? Yes.
Have you explored appropriate arrangements with the identified repository where your data will be deposited? Not needed.
Does the repository ensure that the data is assigned an identifier? Will the repository resolve the identifier to a digital object? Yes for publications, no for other data.
## Data:
Will all data be made openly available? If certain datasets cannot be shared (or need to be shared under restricted access conditions), explain why, clearly separating legal and contractual reasons from intentional restrictions. Note that in multi-beneficiary projects it is also possible for specific beneficiaries to keep their data closed if opening their data goes against their legitimate interests or other constraints as per the Grant Agreement.
If an embargo is applied to give time to publish or seek protection of the intellectual property (e.g. patents), specify why and how long this will apply, bearing in mind that research data should be made available as soon as possible.
The data produced will be stored locally in designated, regularly updated
|
[
"of",
"100",
"GB",
"of",
"generated",
"data",
"and",
"maximum",
"1",
"GB",
"of",
"re",
"-",
"used",
"data",
".",
"\n\n",
"To",
"whom",
"might",
"your",
"data",
"be",
"useful",
"(",
"'",
"data",
"utility",
"'",
")",
",",
"outside",
"your",
"project",
"?",
"\n\n",
"Data",
"will",
"be",
"mainly",
"useful",
"to",
"academia",
"and",
"research",
"institute",
"for",
"reproduction",
"and",
"verification",
".",
"\n\n",
"#",
"#",
"2",
".",
"FAIR",
"data",
"\n\n",
"In",
" ",
"compliance",
" ",
"with",
" ",
"the",
" ",
"European",
" ",
"Commission",
" ",
"guidelines",
",",
" ",
"the",
" ",
"data",
"generated",
"by",
" ",
"the",
" ",
"project",
"must",
" ",
"be",
" ",
"FAIR",
",",
" ",
"that",
" ",
"is",
" ",
"findable",
",",
"accessible",
",",
"interoperable",
"and",
"re",
"-",
"usable",
".",
"The",
"decision",
"to",
"be",
"taken",
"on",
"how",
"to",
"publish",
"its",
"documents",
"and",
"data",
"sets",
"will",
"come",
"after",
"the",
"more",
"general",
"decision",
"on",
"whether",
"to",
"go",
"for",
"an",
"academic",
"publication",
"directly",
"or",
"to",
"first",
"seek",
"protection",
"by",
"registering",
"the",
"developed",
"Intellectual",
"Property",
".",
"\n\n",
"#",
"#",
"2.1",
".",
"Making",
"data",
"findable",
",",
"including",
"provisions",
"for",
"metadata",
"\n\n",
"Will",
"data",
"be",
"identified",
"by",
"a",
"persistent",
"identifier",
"?",
"Only",
"the",
"publications",
".",
"\n\n",
"Will",
"rich",
"metadata",
"be",
"provided",
"to",
"allow",
"discovery",
"?",
"What",
"metadata",
"will",
"be",
"created",
"?",
"What",
"disciplinary",
"or",
"general",
"standards",
"will",
"be",
"followed",
"?",
"In",
"case",
"metadata",
"standards",
"do",
"not",
"exist",
"in",
"your",
"discipline",
",",
"please",
"outline",
"what",
"type",
"of",
"metadata",
"will",
"be",
"created",
"and",
"how",
".",
"No",
".",
"\n\n",
"Will",
"search",
"keywords",
"be",
"provided",
"in",
"the",
"metadata",
"to",
"optimize",
"the",
"possibility",
"for",
"discovery",
"and",
"then",
"potential",
"re",
"-",
"use",
"?",
"No",
".",
"\n\n",
"Will",
"metadata",
"be",
"offered",
"in",
"such",
"a",
"way",
"that",
"it",
"can",
"be",
"harvested",
"and",
"indexed",
"?",
"No",
".",
"\n\n",
"#",
"#",
"2.2",
".",
"Making",
"data",
"accessible",
"\n\n",
"Repository",
":",
"Local",
"repository",
"for",
"data",
",",
"arXiv",
"for",
"publications",
",",
"when",
"not",
"in",
"open",
"access",
"journals",
".",
"\n\n",
"Will",
"the",
"data",
"be",
"deposited",
"in",
"a",
"trusted",
"repository",
"?",
"Yes",
".",
"\n\n",
"Have",
"you",
"explored",
"appropriate",
"arrangements",
"with",
"the",
"identified",
"repository",
"where",
"your",
"data",
"will",
"be",
"deposited",
"?",
"Not",
"needed",
".",
"\n\n",
"Does",
"the",
"repository",
"ensure",
"that",
"the",
"data",
"is",
"assigned",
"an",
"identifier",
"?",
"Will",
"the",
"repository",
"resolve",
"the",
"identifier",
"to",
"a",
"digital",
"object",
"?",
"Yes",
"for",
"publications",
",",
"no",
"for",
"other",
"data",
".",
"\n\n",
"#",
"#",
"Data",
":",
"\n\n",
"Will",
" ",
"all",
" ",
"data",
" ",
"be",
" ",
"made",
" ",
"openly",
" ",
"available",
"?",
" ",
"If",
" ",
"certain",
" ",
"datasets",
" ",
"can",
"not",
" ",
"be",
" ",
"shared",
" ",
"(",
"or",
" ",
"need",
" ",
"to",
" ",
"be",
" ",
"shared",
" ",
"under",
" ",
"restricted",
" ",
"access",
"conditions",
")",
",",
"explain",
"why",
",",
"clearly",
"separating",
"legal",
"and",
"contractual",
"reasons",
"from",
"intentional",
"restrictions",
".",
"Note",
"that",
"in",
"multi",
"-",
"beneficiary",
"projects",
"it",
"is",
"also",
"possible",
"for",
"specific",
"beneficiaries",
"to",
"keep",
"their",
"data",
"closed",
"if",
"opening",
"their",
"data",
"goes",
"against",
"their",
"legitimate",
"interests",
"or",
"other",
"constraints",
"as",
"per",
"the",
"Grant",
"Agreement",
".",
"\n\n",
"If",
"an",
"embargo",
"is",
"applied",
"to",
"give",
"time",
"to",
"publish",
"or",
"seek",
"protection",
"of",
"the",
"intellectual",
"property",
"(",
"e.g.",
"patents",
")",
",",
"specify",
"why",
"and",
"how",
"long",
"this",
"will",
"apply",
",",
"bearing",
"in",
"mind",
"that",
"research",
"data",
"should",
"be",
"made",
"available",
"as",
"soon",
"as",
"possible",
".",
"\n\n",
"The",
"data",
"produced",
"will",
"be",
"stored",
"locally",
"in",
"designated",
",",
"regularly",
"updated"
] |
[] |
the flows is not straightforward ( Chapter 18 ).
International student mobility among Latin American students is relatively low, with most students heading to the United States (UIS, 2024; IESALC, 2019). In Brazil, Science Without Borders, a flagship scholarship programme launched in 2011 and funded by the Brazilian government, was terminated in 2017 for reasons ranging from students' low English proficiency to the lack of a strategy for the internationalization of the higher education sector (Nery, 2018; Sá, 2016). Two major actors are the Lemann Foundation and the Brazil Foundation, which offer scholarships to Brazilian students accepted to globally top-ranked universities, with the objective of developing the skills of tomorrow's leaders in Brazil (Campbell, 2021).
•
<!-- image -->
## KEY MESSAGES
- Globally, at least a bachelor's degree is required by 38% of countries in pre-primary, 50% in primary, 62% in lower secondary and 73% in upper secondary education. In sub-Saharan Africa, however, 17% of countries only require a lower secondary certificate to teach in primary.
- Monitoring pedagogical training is hard because of the lack of a common international classification. Globally, around 85% of teachers in pre-primary, primary and secondary education have received at least the minimum pedagogical teacher training. These shares have declined in Europe and Northern America and in sub-Saharan Africa.
- There are between 10 and 30 students per teacher in primary education in most countries. Ratios can be far higher when considering only trained teachers. In Mali, where only 36% of teachers have the minimum pedagogical teacher training, there are 50 students per teacher, but 133 students per trained teacher.
- New UIS data shows that 45% of countries have a policy of compulsory continuous professional development for pre-primary teachers and 53% for primary and secondary education teachers. But policies are not enough. Fewer than 60% of primary school teachers in Denmark, Finland, Norway and Türkiye participated in-service training.
- Insufficient teachers in classrooms can be due to a shortage of teachers or a shortage of teacher positions. The first is more common in rich countries due to higher pressures, lower relative salaries and the declining prestige of the teaching profession. The second is more common in poorer countries, due to the higher relative costs of teachers and constrained budgets. In Senegal, in 2020, there was a surplus of over 1,000 qualified teachers.
## CHAPTER 17
<!-- image -->
|
[
"the",
"flows",
"is",
"not",
"straightforward",
"(",
"Chapter",
"18",
")",
".",
"\n\n",
"International",
"student",
"mobility",
"among",
"Latin",
"American",
"students",
"is",
"relatively",
"low",
",",
"with",
"most",
"students",
"heading",
"to",
"the",
"United",
"States",
"(",
"UIS",
",",
"2024",
";",
"IESALC",
",",
"2019",
")",
".",
"In",
"Brazil",
",",
"Science",
"Without",
"Borders",
",",
"a",
"flagship",
"scholarship",
"programme",
"launched",
"in",
"2011",
"and",
"funded",
"by",
"the",
"Brazilian",
"government",
",",
"was",
"terminated",
"in",
"2017",
"for",
"reasons",
"ranging",
"from",
"students",
"'",
"low",
"English",
"proficiency",
"to",
"the",
"lack",
"of",
"a",
"strategy",
"for",
"the",
"internationalization",
"of",
"the",
"higher",
"education",
"sector",
"(",
"Nery",
",",
"2018",
";",
"Sá",
",",
"2016",
")",
".",
"Two",
"major",
"actors",
"are",
"the",
"Lemann",
"Foundation",
"and",
"the",
"Brazil",
"Foundation",
",",
"which",
"offer",
"scholarships",
"to",
"Brazilian",
"students",
"accepted",
"to",
"globally",
"top",
"-",
"ranked",
"universities",
",",
"with",
"the",
"objective",
"of",
"developing",
"the",
"skills",
"of",
"tomorrow",
"'s",
"leaders",
"in",
"Brazil",
"(",
"Campbell",
",",
"2021",
")",
".",
"\n\n",
"•",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"#",
"#",
"KEY",
"MESSAGES",
"\n\n",
"-",
"",
"Globally",
",",
"at",
"least",
"a",
"bachelor",
"'s",
"degree",
"is",
"required",
"by",
"38",
"%",
"of",
"countries",
"in",
"pre",
"-",
"primary",
",",
"50",
"%",
"in",
"primary",
",",
"62",
"%",
"in",
"lower",
"secondary",
"and",
"73",
"%",
"in",
"upper",
"secondary",
"education",
".",
"In",
"sub",
"-",
"Saharan",
"Africa",
",",
"however",
",",
"17",
"%",
"of",
"countries",
"only",
"require",
"a",
"lower",
"secondary",
"certificate",
"to",
"teach",
"in",
"primary",
".",
"\n",
"-",
"",
"Monitoring",
"pedagogical",
"training",
"is",
"hard",
"because",
"of",
"the",
"lack",
"of",
"a",
"common",
"international",
"classification",
".",
"Globally",
",",
"around",
"85",
"%",
"of",
"teachers",
"in",
"pre",
"-",
"primary",
",",
"primary",
"and",
"secondary",
"education",
"have",
"received",
"at",
"least",
"the",
"minimum",
"pedagogical",
"teacher",
"training",
".",
"These",
"shares",
"have",
"declined",
"in",
"Europe",
"and",
"Northern",
"America",
"and",
"in",
"sub",
"-",
"Saharan",
"Africa",
".",
"\n",
"-",
"",
"There",
"are",
"between",
"10",
"and",
"30",
"students",
"per",
"teacher",
"in",
"primary",
"education",
"in",
"most",
"countries",
".",
"Ratios",
"can",
"be",
"far",
"higher",
"when",
"considering",
"only",
"trained",
"teachers",
".",
"In",
"Mali",
",",
"where",
"only",
"36",
"%",
"of",
"teachers",
"have",
"the",
"minimum",
"pedagogical",
"teacher",
"training",
",",
"there",
"are",
"50",
"students",
"per",
"teacher",
",",
"but",
"133",
"students",
"per",
"trained",
"teacher",
".",
"\n",
"-",
"",
"New",
"UIS",
"data",
"shows",
"that",
"45",
"%",
"of",
"countries",
"have",
"a",
"policy",
"of",
"compulsory",
"continuous",
"professional",
"development",
"for",
"pre",
"-",
"primary",
"teachers",
"and",
"53",
"%",
"for",
"primary",
"and",
"secondary",
"education",
"teachers",
".",
"But",
"policies",
"are",
"not",
"enough",
".",
"Fewer",
"than",
"60",
"%",
"of",
"primary",
"school",
"teachers",
"in",
"Denmark",
",",
"Finland",
",",
"Norway",
"and",
"Türkiye",
"participated",
"in",
"-",
"service",
"training",
".",
"\n",
"-",
"",
"Insufficient",
"teachers",
"in",
"classrooms",
"can",
"be",
"due",
"to",
"a",
"shortage",
"of",
"teachers",
"or",
"a",
"shortage",
"of",
"teacher",
"positions",
".",
"The",
"first",
"is",
"more",
"common",
"in",
"rich",
"countries",
"due",
"to",
"higher",
"pressures",
",",
"lower",
"relative",
"salaries",
"and",
"the",
"declining",
"prestige",
"of",
"the",
"teaching",
"profession",
".",
"The",
"second",
"is",
"more",
"common",
"in",
"poorer",
"countries",
",",
"due",
"to",
"the",
"higher",
"relative",
"costs",
"of",
"teachers",
"and",
"constrained",
"budgets",
".",
"In",
"Senegal",
",",
"in",
"2020",
",",
"there",
"was",
"a",
"surplus",
"of",
"over",
"1,000",
"qualified",
"teachers",
".",
"\n\n",
"#",
"#",
"CHAPTER",
"17",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n"
] |
[
{
"end": 188,
"label": "CITATION_REF",
"start": 179
},
{
"end": 202,
"label": "CITATION_REF",
"start": 190
},
{
"end": 182,
"label": "AUTHOR",
"start": 179
},
{
"end": 188,
"label": "YEAR",
"start": 184
},
{
"end": 196,
"label": "AUTHOR",
"start": 190
},
{
"end": 202,
"label": "YEAR",
"start": 198
},
{
"end": 510,
"label": "CITATION_REF",
"start": 500
},
{
"end": 520,
"label": "CITATION_REF",
"start": 512
},
{
"end": 504,
"label": "AUTHOR",
"start": 500
},
{
"end": 510,
"label": "YEAR",
"start": 506
},
{
"end": 514,
"label": "AUTHOR",
"start": 512
},
{
"end": 520,
"label": "YEAR",
"start": 516
},
{
"end": 777,
"label": "CITATION_REF",
"start": 763
},
{
"end": 771,
"label": "AUTHOR",
"start": 763
},
{
"end": 777,
"label": "YEAR",
"start": 773
}
] |
Edgerton- Tarpley discusses remain anonymous in the archives of science. Invisible but not absent, 'women health workers and researchers' nevertheless 'played a key role in fostering Maoist 'grassroots science' during China's famine- era campaign to treat 'women's illnesses' ( fun ǚ bing ).' In a remarkable display of agency under exceptionally difficult circumstances, they not only tried to alleviate women's suffering, but also devised TCM therapies and published important texts on them, challenging official policies around women and medicine on the ground.
## Intimate knowledge and in/ visible domesticities: Science, medicine and the home
As a growing body of literature discusses, the private lives of women (and men) are as important to understanding their contributions to science as their professional, more public, scientific personas. 57 This also means that women did not become involved in the making, pedagogy and communication of science only in heavily institutionalized and professionalized settings like universities, laboratories or professional associations, but also in the confines of their homes. Their contributions to science were frequently
2
3
intertwined with specific concerns of domesticity and motherhood that shaped their lives in many other ways. Focusing on the stereotype of the scientist and the institutionalized, professionalized sites of 'modern' science favours the 'accumulators' of scientific prestige and credits, rendering invisible the myriad contributions of women who rarely fit the profile of the model scientist. By including domestic spaces and domesticity in the equation, we can offer new insights into processes of knowledge- making and bring to life portraits of women involved in both small scientific innovations and large scientific breakouts.
Indeed, all chapters in this volume engage with women's personal lives at their intersection with science, underscoring a point made earlier in the introduction, that the five thematical sections into which the volume is divided should be treated as overlapping and interconnected. They also show how diverse women's experiences of domesticity and science were. For example, Keeble's chapter discusses Reinet Maasdorp's relationship with her husband John Fremlin and the ways in which marriage circumscribed her career options, even though Fremlin was supportive of her scientific activities. Two other scientific couples, William and Nora Wooster and Norman and Antoinette Pirie, are also discussed in that context. Somewhat similarly, Lynn Margulis' scientific achievements were overshadowed by her scientist superstar first husband, Carl Sagan, to whom she was sometimes compared. Vlasta Kálalová Di- Lotti's activity in Iraq was also profoundly shaped
|
[
"Edgerton-",
" ",
"Tarpley",
"discusses",
"remain",
"anonymous",
"in",
"the",
"archives",
"of",
"science",
".",
"Invisible",
"but",
"not",
"absent",
",",
"'",
"women",
"health",
"workers",
"and",
"researchers",
"'",
"nevertheless",
"'",
"played",
"a",
"key",
"role",
"in",
"fostering",
"Maoist",
"'",
"grassroots",
"science",
"'",
"during",
"China",
"'s",
"famine-",
" ",
"era",
"campaign",
"to",
"treat",
"'",
"women",
"'s",
"illnesses",
"'",
"(",
"fun",
"ǚ",
"bing",
")",
".",
"'",
"In",
" ",
"a",
" ",
"remarkable",
" ",
"display",
" ",
"of",
" ",
"agency",
" ",
"under",
" ",
"exceptionally",
" ",
"difficult",
" ",
"circumstances",
",",
"they",
"not",
"only",
"tried",
"to",
"alleviate",
"women",
"'s",
"suffering",
",",
"but",
"also",
"devised",
"TCM",
"therapies",
"and",
"published",
"important",
"texts",
"on",
"them",
",",
"challenging",
"official",
"policies",
"around",
"women",
"and",
"medicine",
"on",
"the",
"ground",
".",
"\n\n",
"#",
"#",
"Intimate",
"knowledge",
"and",
"in/",
" ",
"visible",
"domesticities",
":",
"Science",
",",
"medicine",
"and",
"the",
"home",
"\n\n",
"As",
"a",
"growing",
"body",
"of",
"literature",
"discusses",
",",
"the",
"private",
"lives",
"of",
"women",
"(",
"and",
"men",
")",
"are",
"as",
"important",
"to",
"understanding",
"their",
"contributions",
"to",
"science",
"as",
"their",
"professional",
",",
"more",
"public",
",",
"scientific",
"personas",
".",
"57",
" ",
"This",
"also",
"means",
"that",
"women",
"did",
"not",
"become",
"involved",
"in",
"the",
"making",
",",
"pedagogy",
"and",
"communication",
"of",
"science",
"only",
"in",
"heavily",
"institutionalized",
"and",
"professionalized",
"settings",
"like",
"universities",
",",
"laboratories",
"or",
"professional",
"associations",
",",
"but",
"also",
"in",
"the",
"confines",
"of",
"their",
"homes",
".",
"Their",
"contributions",
"to",
"science",
"were",
"frequently",
"\n\n",
"2",
"\n\n",
"3",
"\n\n",
"intertwined",
" ",
"with",
" ",
"specific",
" ",
"concerns",
" ",
"of",
" ",
"domesticity",
" ",
"and",
" ",
"motherhood",
" ",
"that",
"shaped",
"their",
"lives",
"in",
"many",
"other",
"ways",
".",
"Focusing",
"on",
"the",
"stereotype",
"of",
"the",
"scientist",
"and",
"the",
"institutionalized",
",",
"professionalized",
"sites",
"of",
"'",
"modern",
"'",
"science",
"favours",
"the",
"'",
"accumulators",
"'",
"of",
"scientific",
"prestige",
"and",
"credits",
",",
"rendering",
"invisible",
" ",
"the",
" ",
"myriad",
" ",
"contributions",
" ",
"of",
" ",
"women",
" ",
"who",
" ",
"rarely",
" ",
"fit",
" ",
"the",
" ",
"profile",
" ",
"of",
" ",
"the",
"model",
"scientist",
".",
"By",
"including",
"domestic",
"spaces",
"and",
"domesticity",
"in",
"the",
"equation",
",",
" ",
"we",
" ",
"can",
" ",
"offer",
" ",
"new",
" ",
"insights",
" ",
"into",
" ",
"processes",
" ",
"of",
" ",
"knowledge-",
" ",
"making",
" ",
"and",
"bring",
"to",
"life",
"portraits",
"of",
"women",
"involved",
"in",
"both",
"small",
"scientific",
"innovations",
"and",
"large",
"scientific",
"breakouts",
".",
"\n\n",
"Indeed",
",",
"all",
"chapters",
"in",
"this",
"volume",
"engage",
"with",
"women",
"'s",
"personal",
"lives",
"at",
" ",
"their",
" ",
"intersection",
" ",
"with",
" ",
"science",
",",
" ",
"underscoring",
" ",
"a",
" ",
"point",
" ",
"made",
" ",
"earlier",
" ",
"in",
"the",
"introduction",
",",
"that",
"the",
"five",
"thematical",
"sections",
"into",
"which",
"the",
"volume",
"is",
"divided",
"should",
"be",
"treated",
"as",
"overlapping",
"and",
"interconnected",
".",
"They",
"also",
"show",
"how",
"diverse",
"women",
"'s",
"experiences",
"of",
"domesticity",
"and",
"science",
"were",
".",
"For",
" ",
"example",
",",
" ",
"Keeble",
"'s",
" ",
"chapter",
" ",
"discusses",
" ",
"Reinet",
" ",
"Maasdorp",
"'s",
" ",
"relationship",
"with",
"her",
"husband",
"John",
"Fremlin",
"and",
"the",
"ways",
"in",
"which",
"marriage",
"circumscribed",
"her",
"career",
"options",
",",
"even",
"though",
"Fremlin",
"was",
"supportive",
"of",
"her",
"scientific",
"activities",
".",
"Two",
"other",
"scientific",
"couples",
",",
"William",
"and",
"Nora",
"Wooster",
"and",
" ",
"Norman",
" ",
"and",
" ",
"Antoinette",
" ",
"Pirie",
",",
" ",
"are",
" ",
"also",
" ",
"discussed",
" ",
"in",
" ",
"that",
" ",
"context",
".",
"Somewhat",
"similarly",
",",
"Lynn",
"Margulis",
"'",
"scientific",
"achievements",
"were",
"overshadowed",
"by",
"her",
"scientist",
" ",
"superstar",
" ",
"first",
" ",
"husband",
",",
" ",
"Carl",
" ",
"Sagan",
",",
" ",
"to",
" ",
"whom",
" ",
"she",
"was",
"sometimes",
"compared",
".",
"Vlasta",
"Kálalová",
"Di-",
" ",
"Lotti",
"'s",
"activity",
"in",
"Iraq",
"was",
"also",
"profoundly",
"shaped"
] |
[] |
short non-financial corporate counterparties and positions in % of average
daily trading volume, in % rhs. The high concentration of positions indicates
that if several firms with similar directional positions were to reduce their
exposures, they could amplify market moves.
Sources: EMIR, ESMA.
44THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 3
FIGURE 6
Electricity wholesale and retail prices across Member States for industry
EUR/MWh, 2023
Source: European Commission, 2024. Based on Eurostat, S&P Global, and ENTSO-E, 2024.
A lengthy and uncertain permitting process for new power supply and grids is a major obstacle to faster
installation of new capacity . Investments in both power generation and grids require several years between feasi -
bility studies and project completion. However, there is a large variation in permitting times between Member States.
The entire permit granting process for onshore wind farms can take up to 9 years in some Member States, compared
with under 3 years in the most efficient ones. Ground-mounted solar PV systems can take 3-4 years to approve in
some countries but 1 year in others. The time devoted to analyses of environmental impacts represents a significant
share of the difference between best and worst performers. The EU has developed initiatives to shorten permitting
(such as the Article 122 emergency proposals), but there are still significant hurdles to implementation, in particular
lack of administrative capacity and digitalisation. 69% of municipalities report a lack of skills related to environmental
and climate assessments.
Finally, over time energy taxation has become an important source of budget revenues, contributing to
higher retail prices . While taxation can be a policy tool to encourage decarbonisation, significant variation exists
among Member States concerning taxes and price relief schemes. In contrast to the EU, the US does not levy any
federal taxes on electricity or natural gas consumption. Moreover, as power generation falls under the scope of
the EU’s ETS, its carbon intensity is priced in electricity generation costs. This cost is high and volatile in the EU
(amounting to EUR 20-25/MWh for gas-fired generation in EU), while in California the same cost stands at around
EUR 10-15/MWh. Excluding the CO₂ costs paid by producers (which are estimated to lie in the range of 15-20% the
commodity costs in 2022), generation cost is in the range of 45% for households and 65% of industrial retail prices.
The residual costs were approximately equally shared
|
[
"short",
"non",
"-",
"financial",
"corporate",
"counterparties",
"and",
"positions",
"in",
"%",
"of",
"average",
"\n",
"daily",
"trading",
"volume",
",",
"in",
"%",
"rhs",
".",
"The",
"high",
"concentration",
"of",
"positions",
"indicates",
"\n",
"that",
"if",
"several",
"firms",
"with",
"similar",
"directional",
"positions",
"were",
"to",
"reduce",
"their",
"\n",
"exposures",
",",
"they",
"could",
"amplify",
"market",
"moves",
".",
"\n",
"Sources",
":",
"EMIR",
",",
"ESMA",
".",
"\n",
"44THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"3",
"\n",
"FIGURE",
"6",
"\n",
"Electricity",
"wholesale",
"and",
"retail",
"prices",
"across",
"Member",
"States",
"for",
"industry",
" \n",
"EUR",
"/",
"MWh",
",",
"2023",
"\n",
"Source",
":",
"European",
"Commission",
",",
"2024",
".",
"Based",
"on",
"Eurostat",
",",
"S&P",
"Global",
",",
"and",
"ENTSO",
"-",
"E",
",",
"2024",
".",
"\n",
"A",
"lengthy",
"and",
"uncertain",
"permitting",
"process",
"for",
"new",
"power",
"supply",
"and",
"grids",
"is",
"a",
"major",
"obstacle",
"to",
"faster",
"\n",
"installation",
"of",
"new",
"capacity",
".",
"Investments",
"in",
"both",
"power",
"generation",
"and",
"grids",
"require",
"several",
"years",
"between",
"feasi",
"-",
"\n",
"bility",
"studies",
"and",
"project",
"completion",
".",
"However",
",",
"there",
"is",
"a",
"large",
"variation",
"in",
"permitting",
"times",
"between",
"Member",
"States",
".",
"\n",
"The",
"entire",
"permit",
"granting",
"process",
"for",
"onshore",
"wind",
"farms",
"can",
"take",
"up",
"to",
"9",
"years",
"in",
"some",
"Member",
"States",
",",
"compared",
"\n",
"with",
"under",
"3",
"years",
"in",
"the",
"most",
"efficient",
"ones",
".",
"Ground",
"-",
"mounted",
"solar",
"PV",
"systems",
"can",
"take",
"3",
"-",
"4",
"years",
"to",
"approve",
"in",
"\n",
"some",
"countries",
"but",
"1",
"year",
"in",
"others",
".",
"The",
"time",
"devoted",
"to",
"analyses",
"of",
"environmental",
"impacts",
"represents",
"a",
"significant",
"\n",
"share",
"of",
"the",
"difference",
"between",
"best",
"and",
"worst",
"performers",
".",
"The",
"EU",
"has",
"developed",
"initiatives",
"to",
"shorten",
"permitting",
"\n",
"(",
"such",
"as",
"the",
"Article",
"122",
"emergency",
"proposals",
")",
",",
"but",
"there",
"are",
"still",
"significant",
"hurdles",
"to",
"implementation",
",",
"in",
"particular",
"\n",
"lack",
"of",
"administrative",
"capacity",
"and",
"digitalisation",
".",
"69",
"%",
"of",
"municipalities",
"report",
"a",
"lack",
"of",
"skills",
"related",
"to",
"environmental",
"\n",
"and",
"climate",
"assessments",
".",
"\n",
"Finally",
",",
"over",
"time",
"energy",
"taxation",
"has",
"become",
"an",
"important",
"source",
"of",
"budget",
"revenues",
",",
"contributing",
"to",
"\n",
"higher",
"retail",
"prices",
".",
"While",
"taxation",
"can",
"be",
"a",
"policy",
"tool",
"to",
"encourage",
"decarbonisation",
",",
"significant",
"variation",
"exists",
"\n",
"among",
"Member",
"States",
"concerning",
"taxes",
"and",
"price",
"relief",
"schemes",
".",
"In",
"contrast",
"to",
"the",
"EU",
",",
"the",
"US",
"does",
"not",
"levy",
"any",
"\n",
"federal",
"taxes",
"on",
"electricity",
"or",
"natural",
"gas",
"consumption",
".",
"Moreover",
",",
"as",
"power",
"generation",
"falls",
"under",
"the",
"scope",
"of",
"\n",
"the",
"EU",
"’s",
"ETS",
",",
"its",
"carbon",
"intensity",
"is",
"priced",
"in",
"electricity",
"generation",
"costs",
".",
"This",
"cost",
"is",
"high",
"and",
"volatile",
"in",
"the",
"EU",
"\n",
"(",
"amounting",
"to",
"EUR",
"20",
"-",
"25",
"/",
"MWh",
"for",
"gas",
"-",
"fired",
"generation",
"in",
"EU",
")",
",",
"while",
"in",
"California",
"the",
"same",
"cost",
"stands",
"at",
"around",
"\n",
"EUR",
"10",
"-",
"15",
"/",
"MWh",
".",
"Excluding",
"the",
"CO₂",
"costs",
"paid",
"by",
"producers",
"(",
"which",
"are",
"estimated",
"to",
"lie",
"in",
"the",
"range",
"of",
"15",
"-",
"20",
"%",
"the",
"\n",
"commodity",
"costs",
"in",
"2022",
")",
",",
"generation",
"cost",
"is",
"in",
"the",
"range",
"of",
"45",
"%",
"for",
"households",
"and",
"65",
"%",
"of",
"industrial",
"retail",
"prices",
".",
"\n",
"The",
"residual",
"costs",
"were",
"approximately",
"equally",
"shared"
] |
[
{
"end": 298,
"label": "CITATION_REF",
"start": 287
},
{
"end": 494,
"label": "CITATION_REF",
"start": 469
}
] |
and the objectives to be optimized. Constraints may also be defined to restrict the values the decision variables can assume thereby influencing the objective value (output) that can be achieved. During an optimization process, an objective function's decision variables are often changed or manipulated within the bounds of the constraints to improve the objective function's values. In general, the difficulty in solving an objective function increases as the number of decision variables included in that objective function increases. The term “decision variable” refers to a variable that represents a decision to be made.
The term “optimization” at least in some examples refers to an act, process, or methodology of making something (e.g., a design, system, or decision) as fully perfect, functional, or effective as possible. Optimization usually includes mathematical procedures such as finding the maximum or minimum of a function. The term “optimal” at least in some examples refers to a most desirable or satisfactory end, outcome, or output. The term “optimum” at least in some examples refers to an amount or degree of something that is most favorable to some end. The term “optima” at least in some examples refers to a condition, degree, amount, or compromise that produces a best possible result. Additionally or alternatively, the term “optima” at least in some examples refers to a most favorable or advantageous outcome or result.
The term “probability” at least in some examples refers to a numerical description of how likely an event is to occur and/or how likely it is that a proposition is true. The term “probability distribution” at least in some examples refers to a mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment or event. Additionally or alternatively, the term “probability distribution” at least in some examples refers to a statistical function that describes all possible values and likelihoods that a random variable can take within a given range (e.g., a bound between minimum and maximum possible values). A probability distribution may have one or more factors or attributes such as, for example, a mean or average, mode, support, tail, head, median, variance, standard deviation, quantile, symmetry, skewness, kurtosis, and the like. A probability distribution may be a description of a random phenomenon in terms of a sample space and the probabilities of events (subsets of the sample space). Example probability distributions include discrete distributions (e.g., Bernoulli distribution, discrete uniform,
|
[
"and",
"the",
"objectives",
"to",
"be",
"optimized",
".",
"Constraints",
"may",
"also",
"be",
"defined",
"to",
"restrict",
"the",
"values",
"the",
"decision",
"variables",
"can",
"assume",
"thereby",
"influencing",
"the",
"objective",
"value",
"(",
"output",
")",
"that",
"can",
"be",
"achieved",
".",
"During",
"an",
"optimization",
"process",
",",
"an",
"objective",
"function",
"'s",
"decision",
"variables",
"are",
"often",
"changed",
"or",
"manipulated",
"within",
"the",
"bounds",
"of",
"the",
"constraints",
"to",
"improve",
"the",
"objective",
"function",
"'s",
"values",
".",
"In",
"general",
",",
"the",
"difficulty",
"in",
"solving",
"an",
"objective",
"function",
"increases",
"as",
"the",
"number",
"of",
"decision",
"variables",
"included",
"in",
"that",
"objective",
"function",
"increases",
".",
"The",
"term",
"“",
"decision",
"variable",
"”",
"refers",
"to",
"a",
"variable",
"that",
"represents",
"a",
"decision",
"to",
"be",
"made",
".",
"\n\n",
"The",
"term",
"“",
"optimization",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"an",
"act",
",",
"process",
",",
"or",
"methodology",
"of",
"making",
"something",
"(",
"e.g.",
",",
"a",
"design",
",",
"system",
",",
"or",
"decision",
")",
"as",
"fully",
"perfect",
",",
"functional",
",",
"or",
"effective",
"as",
"possible",
".",
"Optimization",
"usually",
"includes",
"mathematical",
"procedures",
"such",
"as",
"finding",
"the",
"maximum",
"or",
"minimum",
"of",
"a",
"function",
".",
"The",
"term",
"“",
"optimal",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"most",
"desirable",
"or",
"satisfactory",
"end",
",",
"outcome",
",",
"or",
"output",
".",
"The",
"term",
"“",
"optimum",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"an",
"amount",
"or",
"degree",
"of",
"something",
"that",
"is",
"most",
"favorable",
"to",
"some",
"end",
".",
"The",
"term",
"“",
"optima",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"condition",
",",
"degree",
",",
"amount",
",",
"or",
"compromise",
"that",
"produces",
"a",
"best",
"possible",
"result",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"term",
"“",
"optima",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"most",
"favorable",
"or",
"advantageous",
"outcome",
"or",
"result",
".",
"\n\n",
"The",
"term",
"“",
"probability",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"numerical",
"description",
"of",
"how",
"likely",
"an",
"event",
"is",
"to",
"occur",
"and/or",
"how",
"likely",
"it",
"is",
"that",
"a",
"proposition",
"is",
"true",
".",
"The",
"term",
"“",
"probability",
"distribution",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"mathematical",
"function",
"that",
"gives",
"the",
"probabilities",
"of",
"occurrence",
"of",
"different",
"possible",
"outcomes",
"for",
"an",
"experiment",
"or",
"event",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"term",
"“",
"probability",
"distribution",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"statistical",
"function",
"that",
"describes",
"all",
"possible",
"values",
"and",
"likelihoods",
"that",
"a",
"random",
"variable",
"can",
"take",
"within",
"a",
"given",
"range",
"(",
"e.g.",
",",
"a",
"bound",
"between",
"minimum",
"and",
"maximum",
"possible",
"values",
")",
".",
"A",
"probability",
"distribution",
"may",
"have",
"one",
"or",
"more",
"factors",
"or",
"attributes",
"such",
"as",
",",
"for",
"example",
",",
"a",
"mean",
"or",
"average",
",",
"mode",
",",
"support",
",",
"tail",
",",
"head",
",",
"median",
",",
"variance",
",",
"standard",
"deviation",
",",
"quantile",
",",
"symmetry",
",",
"skewness",
",",
"kurtosis",
",",
"and",
"the",
"like",
".",
"A",
"probability",
"distribution",
"may",
"be",
"a",
"description",
"of",
"a",
"random",
"phenomenon",
"in",
"terms",
"of",
"a",
"sample",
"space",
"and",
"the",
"probabilities",
"of",
"events",
"(",
"subsets",
"of",
"the",
"sample",
"space",
")",
".",
"Example",
"probability",
"distributions",
"include",
"discrete",
"distributions",
"(",
"e.g.",
",",
"Bernoulli",
"distribution",
",",
"discrete",
"uniform",
","
] |
[] |
present the most relevant
keywords for these highlighted S&T domains.
Figure 3.78. Keyword cloud for Health and wellbeing in Ukraine
Figure 3.80. Keyword cloud for Biotechnology in Ukraine
Figure 3.82. Keyword cloud for Mechanical engineering and
heavy machinery in Ukraine
Figure 3.79. Keyword cloud for Energy in Ukraine
Figure 3.81. Keyword cloud for Transportation in Ukraine
Figure 3.83. Keyword cloud for Nanotechnology and materials
in Ukraine
PART
4
230
Part 4 Identification of concordances between the economic, innovation, scientific and technological potentials
Part 4. Identification
of concordances
between the economic,
innovation, scientific and
technological potentials
1. Introduction
The aim of this analysis is to reconcile the find-
ings outlined in Part 2 – Analysis of economic
and innovation potential and Part 3 – Analysis of
scientific and technological potential of this doc-
ument, respectively. The analyses carried out in
Part 2 and Part 3 look at different dimensions of
the knowledge economy: the former focuses on
the economic and innovation indicators of the EaP
countries, while the latter analyses their scientific
and technological production. As such, these two
analyses look at different data (aggregate data
for the E&I analysis and granular data for the
S&T), categorised in most of the cases using dif-
ferent taxonomies. With the objective of identify-
ing a single list of EIST specialisation domains for
each country and the potential cooperation areas
for the whole region and with international part-
ners, the work carried out tries to align within a
common nomenclature the evidence put forward
in Part 2 and Part 3, whenever possible. The over-
arching aim of this exercise is to provide policy-
makers in the EaP countries with a coherent vision
of the economic, innovation and knowledge assets
they can leverage to foster a knowledge economy
in their respective Smart Specialisation Strategies.
Albeit looking at different variables and indica-
tors (in many cases with a high level of granular-
ity), Part 2 eventually presented its final results
in terms of NACE sectors. In light of the stated
aim of addressing policymakers with the current
study, the representation in terms of NACE sectors
is particularly useful because NACE is typically ap-
plied when measuring economic performance and evolution and thus is a taxonomy which the target
audiences and users of this analysis are familiar
with. Therefore, a good starting point for the cur-
rent exercise is that of using the NACE sector as
a
|
[
"present",
"the",
"most",
"relevant",
"\n",
"keywords",
"for",
"these",
"highlighted",
"S&T",
"domains",
".",
"\n",
"Figure",
"3.78",
".",
"Keyword",
"cloud",
"for",
"Health",
"and",
"wellbeing",
"in",
"Ukraine",
"\n",
"Figure",
"3.80",
".",
"Keyword",
"cloud",
"for",
"Biotechnology",
"in",
"Ukraine",
"\n",
"Figure",
"3.82",
".",
"Keyword",
"cloud",
"for",
"Mechanical",
"engineering",
"and",
"\n",
"heavy",
"machinery",
"in",
"Ukraine",
"\n",
"Figure",
"3.79",
".",
"Keyword",
"cloud",
"for",
"Energy",
"in",
"Ukraine",
"\n",
"Figure",
"3.81",
".",
"Keyword",
"cloud",
"for",
"Transportation",
"in",
"Ukraine",
"\n",
"Figure",
"3.83",
".",
"Keyword",
"cloud",
"for",
"Nanotechnology",
"and",
"materials",
" \n",
"in",
"Ukraine",
"\n",
"PART",
"\n",
"4",
"\n",
"230",
"\n ",
"Part",
"4",
"Identification",
"of",
"concordances",
"between",
"the",
"economic",
",",
"innovation",
",",
"scientific",
"and",
"technological",
"potentials",
"\n",
"Part",
"4",
".",
"Identification",
"\n",
"of",
"concordances",
"\n",
"between",
"the",
"economic",
",",
"\n",
"innovation",
",",
"scientific",
"and",
"\n",
"technological",
"potentials",
"\n",
"1",
".",
"Introduction",
"\n",
"The",
"aim",
"of",
"this",
"analysis",
"is",
"to",
"reconcile",
"the",
"find-",
"\n",
"ings",
"outlined",
"in",
"Part",
"2",
"–",
"Analysis",
"of",
"economic",
"\n",
"and",
"innovation",
"potential",
"and",
"Part",
"3",
"–",
"Analysis",
"of",
"\n",
"scientific",
"and",
"technological",
"potential",
"of",
"this",
"doc-",
"\n",
"ument",
",",
"respectively",
".",
"The",
"analyses",
"carried",
"out",
"in",
"\n",
"Part",
"2",
"and",
"Part",
"3",
"look",
"at",
"different",
"dimensions",
"of",
"\n",
"the",
"knowledge",
"economy",
":",
"the",
"former",
"focuses",
"on",
"\n",
"the",
"economic",
"and",
"innovation",
"indicators",
"of",
"the",
"EaP",
"\n",
"countries",
",",
"while",
"the",
"latter",
"analyses",
"their",
"scientific",
"\n",
"and",
"technological",
"production",
".",
"As",
"such",
",",
"these",
"two",
"\n",
"analyses",
"look",
"at",
"different",
"data",
"(",
"aggregate",
"data",
"\n",
"for",
"the",
"E&I",
"analysis",
"and",
"granular",
"data",
"for",
"the",
"\n",
"S&T",
")",
",",
"categorised",
"in",
"most",
"of",
"the",
"cases",
"using",
"dif-",
"\n",
"ferent",
"taxonomies",
".",
"With",
"the",
"objective",
"of",
"identify-",
"\n",
"ing",
"a",
"single",
"list",
"of",
"EIST",
"specialisation",
"domains",
"for",
"\n",
"each",
"country",
"and",
"the",
"potential",
"cooperation",
"areas",
"\n",
"for",
"the",
"whole",
"region",
"and",
"with",
"international",
"part-",
"\n",
"ners",
",",
"the",
"work",
"carried",
"out",
"tries",
"to",
"align",
"within",
"a",
"\n",
"common",
"nomenclature",
"the",
"evidence",
"put",
"forward",
"\n",
"in",
"Part",
"2",
"and",
"Part",
"3",
",",
"whenever",
"possible",
".",
"The",
"over-",
"\n",
"arching",
"aim",
"of",
"this",
"exercise",
"is",
"to",
"provide",
"policy-",
"\n",
"makers",
"in",
"the",
"EaP",
"countries",
"with",
"a",
"coherent",
"vision",
"\n",
"of",
"the",
"economic",
",",
"innovation",
"and",
"knowledge",
"assets",
"\n",
"they",
"can",
"leverage",
"to",
"foster",
"a",
"knowledge",
"economy",
"\n",
"in",
"their",
"respective",
"Smart",
"Specialisation",
"Strategies",
".",
"\n",
"Albeit",
"looking",
"at",
"different",
"variables",
"and",
"indica-",
"\n",
"tors",
"(",
"in",
"many",
"cases",
"with",
"a",
"high",
"level",
"of",
"granular-",
"\n",
"ity",
")",
",",
"Part",
"2",
"eventually",
"presented",
"its",
"final",
"results",
"\n",
"in",
"terms",
"of",
"NACE",
"sectors",
".",
"In",
"light",
"of",
"the",
"stated",
"\n",
"aim",
"of",
"addressing",
"policymakers",
"with",
"the",
"current",
"\n",
"study",
",",
"the",
"representation",
"in",
"terms",
"of",
"NACE",
"sectors",
"\n",
"is",
"particularly",
"useful",
"because",
"NACE",
"is",
"typically",
"ap-",
"\n",
"plied",
"when",
"measuring",
"economic",
"performance",
"and",
"evolution",
"and",
"thus",
"is",
"a",
"taxonomy",
"which",
"the",
"target",
"\n",
"audiences",
"and",
"users",
"of",
"this",
"analysis",
"are",
"familiar",
"\n",
"with",
".",
"Therefore",
",",
"a",
"good",
"starting",
"point",
"for",
"the",
"cur-",
"\n",
"rent",
"exercise",
"is",
"that",
"of",
"using",
"the",
"NACE",
"sector",
"as",
"\n",
"a"
] |
[] |
Europe
At the root of Europe’s weak position in digital tech is a static industrial structure which produces a vicious
circle of low investment and low innovation [see the chapter on innovation] . Over the past two decades, the
top-three US companies for spending on Research and Innovation (R&I) have shifted from the automotive and
pharma industries in the 2000s, to software and hardware companies in the 2010s, and then to the digital sector in
the 2020s. In contrast, Europe’s industrial structure has remained static, with automotive companies consistently
dominating the top 3 R&I spenders. In other words, the US economy has nurtured new, innovative technologies
and investment has followed, redirecting resources towards sectors with high potential for productivity growth; in
Europe investment has remained concentrated on mature technologies and in sectors where productivity growth
rates of frontier companies are slowing. In 2021, EU companies spent about half as much on R&I as share of GDP
as US companies – around EUR 270 billion – a gap driven by much higher investment rates in the US tech sector.
This innovation gap also translates into a gap in overall productive investment between the two economies, which
is driven mainly by lower investment in tangible ICT assets and in software, databases and intellectual property
[see Figure 5]vii. The resulting cycle of low industrial dynamism, low innovation, low investment and low productivity
growth in Europe has been termed “the middle technology trap”viii.
FIGURE 5
Productive investment
Real gross fixed capital formation excluding residential investment, % of GDP
Source: EIB, 2024.
Europe’s lack of industrial dynamism owes in large part to weaknesses along the “innovation lifecycle” that
prevent new sectors and challengers from emerging . These weaknesses begin with obstacles in the pipeline
from innovation to commercialisation. Public sector support for R&I is inefficient due to a lack of focus on disruptive
innovation and fragmented financing, limiting the EU’s potential to reach scale in high-risk breakthrough technol -
ogies. Once companies reach the growth stage, they encounter regulatory and jurisdictional hurdles that prevent
them from scaling-up into mature, profitable companies in Europe. As a result, many innovative companies end
up seeking out financing from US venture capitalists (VCs) and see expanding in the large US market as a more
rewarding option than tackling fragmented EU markets. Finally, the EU is falling behind in providing state-of-the-art
infrastructures necessary to enable the digitalisation of the economy.
|
[
"Europe",
"\n",
"At",
"the",
"root",
"of",
"Europe",
"’s",
"weak",
"position",
"in",
"digital",
"tech",
"is",
"a",
"static",
"industrial",
"structure",
"which",
"produces",
"a",
"vicious",
"\n",
"circle",
"of",
"low",
"investment",
"and",
"low",
"innovation",
" ",
"[",
"see",
"the",
"chapter",
"on",
"innovation",
"]",
".",
"Over",
"the",
"past",
"two",
"decades",
",",
"the",
"\n",
"top",
"-",
"three",
"US",
"companies",
"for",
"spending",
"on",
"Research",
"and",
"Innovation",
"(",
"R&I",
")",
"have",
"shifted",
"from",
"the",
"automotive",
"and",
"\n",
"pharma",
"industries",
"in",
"the",
"2000s",
",",
"to",
"software",
"and",
"hardware",
"companies",
"in",
"the",
"2010s",
",",
"and",
"then",
"to",
"the",
"digital",
"sector",
"in",
"\n",
"the",
"2020s",
".",
"In",
"contrast",
",",
"Europe",
"’s",
"industrial",
"structure",
"has",
"remained",
"static",
",",
"with",
"automotive",
"companies",
"consistently",
"\n",
"dominating",
"the",
"top",
"3",
"R&I",
"spenders",
".",
"In",
"other",
"words",
",",
"the",
"US",
"economy",
"has",
"nurtured",
"new",
",",
"innovative",
"technologies",
"\n",
"and",
"investment",
"has",
"followed",
",",
"redirecting",
"resources",
"towards",
"sectors",
"with",
"high",
"potential",
"for",
"productivity",
"growth",
";",
"in",
"\n",
"Europe",
"investment",
"has",
"remained",
"concentrated",
"on",
"mature",
"technologies",
"and",
"in",
"sectors",
"where",
"productivity",
"growth",
"\n",
"rates",
"of",
"frontier",
"companies",
"are",
"slowing",
".",
"In",
"2021",
",",
"EU",
"companies",
"spent",
"about",
"half",
"as",
"much",
"on",
"R&I",
"as",
"share",
"of",
"GDP",
"\n",
"as",
"US",
"companies",
"–",
"around",
"EUR",
"270",
"billion",
"–",
"a",
"gap",
"driven",
"by",
"much",
"higher",
"investment",
"rates",
"in",
"the",
"US",
"tech",
"sector",
".",
"\n",
"This",
"innovation",
"gap",
"also",
"translates",
"into",
"a",
"gap",
"in",
"overall",
"productive",
"investment",
"between",
"the",
"two",
"economies",
",",
"which",
"\n",
"is",
"driven",
"mainly",
"by",
"lower",
"investment",
"in",
"tangible",
"ICT",
"assets",
"and",
"in",
"software",
",",
"databases",
"and",
"intellectual",
"property",
"\n",
"[",
"see",
"Figure",
"5]vii",
".",
"The",
"resulting",
"cycle",
"of",
"low",
"industrial",
"dynamism",
",",
"low",
"innovation",
",",
"low",
"investment",
"and",
"low",
"productivity",
"\n",
"growth",
"in",
"Europe",
"has",
"been",
"termed",
"“",
"the",
"middle",
"technology",
"trap”viii",
".",
"\n",
"FIGURE",
"5",
"\n",
"Productive",
"investment",
" \n",
"Real",
"gross",
"fixed",
"capital",
"formation",
"excluding",
"residential",
"investment",
",",
"%",
"of",
"GDP",
"\n",
"Source",
":",
"EIB",
",",
"2024",
".",
"\n",
"Europe",
"’s",
"lack",
"of",
"industrial",
"dynamism",
"owes",
"in",
"large",
"part",
"to",
"weaknesses",
"along",
"the",
"“",
"innovation",
"lifecycle",
"”",
"that",
"\n",
"prevent",
"new",
"sectors",
"and",
"challengers",
"from",
"emerging",
".",
"These",
"weaknesses",
"begin",
"with",
"obstacles",
"in",
"the",
"pipeline",
"\n",
"from",
"innovation",
"to",
"commercialisation",
".",
"Public",
"sector",
"support",
"for",
"R&I",
"is",
"inefficient",
"due",
"to",
"a",
"lack",
"of",
"focus",
"on",
"disruptive",
"\n",
"innovation",
"and",
"fragmented",
"financing",
",",
"limiting",
"the",
"EU",
"’s",
"potential",
"to",
"reach",
"scale",
"in",
"high",
"-",
"risk",
"breakthrough",
"technol",
"-",
"\n",
"ogies",
".",
"Once",
"companies",
"reach",
"the",
"growth",
"stage",
",",
"they",
"encounter",
"regulatory",
"and",
"jurisdictional",
"hurdles",
"that",
"prevent",
"\n",
"them",
"from",
"scaling",
"-",
"up",
"into",
"mature",
",",
"profitable",
"companies",
"in",
"Europe",
".",
"As",
"a",
"result",
",",
"many",
"innovative",
"companies",
"end",
"\n",
"up",
"seeking",
"out",
"financing",
"from",
"US",
"venture",
"capitalists",
"(",
"VCs",
")",
"and",
"see",
"expanding",
"in",
"the",
"large",
"US",
"market",
"as",
"a",
"more",
"\n",
"rewarding",
"option",
"than",
"tackling",
"fragmented",
"EU",
"markets",
".",
"Finally",
",",
"the",
"EU",
"is",
"falling",
"behind",
"in",
"providing",
"state",
"-",
"of",
"-",
"the",
"-",
"art",
"\n",
"infrastructures",
"necessary",
"to",
"enable",
"the",
"digitalisation",
"of",
"the",
"economy",
".",
"\n"
] |
[
{
"end": 1372,
"label": "CITATION_REF",
"start": 1369
},
{
"end": 1540,
"label": "CITATION_REF",
"start": 1536
}
] |
an IC incorporating an AI system of one embodiment of the present invention.
- FIGS. 16 A to 16 F
Diagrams illustrating structure examples of electronic devices and a system of one embodiment of the present invention.
- FIGS. 17 A to 17 C
Diagrams illustrating configuration examples of a parallel computer, a computer, and a PC card of one embodiment of the present invention.
- FIGS. 18 A and 18 B
Diagrams illustrating configuration examples of a system of one embodiment of the present invention.
- FIGS. 19 A to 19 E
Diagrams illustrating electronic devices of one embodiment of the present invention.
- the size, the layer thickness, or the region
is exaggerated for clarity in some cases. Therefore, the size, the layer thickness, or the region is not limited to the illustrated scale.
- the drawings
are schematic views showing ideal examples, and shapes or values are not limited to those shown in the drawings.
- a layer, a resist mask, or the like
might be unintentionally reduced in size by treatment such as etching, which might not be reflected in the drawings for easy understanding.
- the same reference numerals
are used for the same portions or portions having similar functions in different drawings, and repeated description thereof is omitted in some cases.
- the same hatch pattern
is used for the portions having similar functions, and the portions are not especially denoted by reference numerals in some cases.
- a top view
also referred to as a plan view
- a perspective view
or the like
- the description of some components
might be omitted for easy understanding of the invention.
- the description of some hidden lines and the like
might be omitted.
- ordinal numbers such as first and second
are used for convenience and do not denote the order of steps or the stacking order of layers. Therefore, for example, description can be made when “first” is replaced with “second”, “third”, or the like as appropriate.
- the ordinal numbers in this specification and the like
are not necessarily the same as the ordinal numbers used to specify one embodiment of the present invention.
- X and Y
are connected, in this specification and the like, for example, the case where X and Y are directly connected, the case where X and Y are electrically connected, and the case where X and
|
[
"an",
"IC",
"incorporating",
"an",
"AI",
"system",
"of",
"one",
"embodiment",
"of",
"the",
"present",
"invention",
".",
"\n",
"-",
"FIGS",
".",
"16",
"A",
"to",
"16",
"F",
"\n",
"Diagrams",
"illustrating",
"structure",
"examples",
"of",
"electronic",
"devices",
"and",
"a",
"system",
"of",
"one",
"embodiment",
"of",
"the",
"present",
"invention",
".",
"\n",
"-",
"FIGS",
".",
"17",
"A",
"to",
"17",
"C",
"\n",
"Diagrams",
"illustrating",
"configuration",
"examples",
"of",
"a",
"parallel",
"computer",
",",
"a",
"computer",
",",
"and",
"a",
"PC",
"card",
"of",
"one",
"embodiment",
"of",
"the",
"present",
"invention",
".",
"\n",
"-",
"FIGS",
".",
"18",
"A",
"and",
"18",
"B",
"\n",
"Diagrams",
"illustrating",
"configuration",
"examples",
"of",
"a",
"system",
"of",
"one",
"embodiment",
"of",
"the",
"present",
"invention",
".",
"\n",
"-",
"FIGS",
".",
"19",
"A",
"to",
"19",
"E",
"\n",
"Diagrams",
"illustrating",
"electronic",
"devices",
"of",
"one",
"embodiment",
"of",
"the",
"present",
"invention",
".",
"\n",
"-",
"the",
"size",
",",
"the",
"layer",
"thickness",
",",
"or",
"the",
"region",
"\n",
"is",
"exaggerated",
"for",
"clarity",
"in",
"some",
"cases",
".",
"Therefore",
",",
"the",
"size",
",",
"the",
"layer",
"thickness",
",",
"or",
"the",
"region",
"is",
"not",
"limited",
"to",
"the",
"illustrated",
"scale",
".",
"\n",
"-",
"the",
"drawings",
"\n",
"are",
"schematic",
"views",
"showing",
"ideal",
"examples",
",",
"and",
"shapes",
"or",
"values",
"are",
"not",
"limited",
"to",
"those",
"shown",
"in",
"the",
"drawings",
".",
"\n",
"-",
"a",
"layer",
",",
"a",
"resist",
"mask",
",",
"or",
"the",
"like",
"\n",
"might",
"be",
"unintentionally",
"reduced",
"in",
"size",
"by",
"treatment",
"such",
"as",
"etching",
",",
"which",
"might",
"not",
"be",
"reflected",
"in",
"the",
"drawings",
"for",
"easy",
"understanding",
".",
"\n",
"-",
"the",
"same",
"reference",
"numerals",
"\n",
"are",
"used",
"for",
"the",
"same",
"portions",
"or",
"portions",
"having",
"similar",
"functions",
"in",
"different",
"drawings",
",",
"and",
"repeated",
"description",
"thereof",
"is",
"omitted",
"in",
"some",
"cases",
".",
"\n",
"-",
"the",
"same",
"hatch",
"pattern",
"\n",
"is",
"used",
"for",
"the",
"portions",
"having",
"similar",
"functions",
",",
"and",
"the",
"portions",
"are",
"not",
"especially",
"denoted",
"by",
"reference",
"numerals",
"in",
"some",
"cases",
".",
"\n",
"-",
"a",
"top",
"view",
"\n",
"also",
"referred",
"to",
"as",
"a",
"plan",
"view",
"\n",
"-",
"a",
"perspective",
"view",
"\n",
"or",
"the",
"like",
"\n",
"-",
"the",
"description",
"of",
"some",
"components",
"\n",
"might",
"be",
"omitted",
"for",
"easy",
"understanding",
"of",
"the",
"invention",
".",
"\n",
"-",
"the",
"description",
"of",
"some",
"hidden",
"lines",
"and",
"the",
"like",
"\n",
"might",
"be",
"omitted",
".",
"\n",
"-",
"ordinal",
"numbers",
"such",
"as",
"first",
"and",
"second",
"\n",
"are",
"used",
"for",
"convenience",
"and",
"do",
"not",
"denote",
"the",
"order",
"of",
"steps",
"or",
"the",
"stacking",
"order",
"of",
"layers",
".",
"Therefore",
",",
"for",
"example",
",",
"description",
"can",
"be",
"made",
"when",
"“",
"first",
"”",
"is",
"replaced",
"with",
"“",
"second",
"”",
",",
"“",
"third",
"”",
",",
"or",
"the",
"like",
"as",
"appropriate",
".",
"\n",
"-",
"the",
"ordinal",
"numbers",
"in",
"this",
"specification",
"and",
"the",
"like",
"\n",
"are",
"not",
"necessarily",
"the",
"same",
"as",
"the",
"ordinal",
"numbers",
"used",
"to",
"specify",
"one",
"embodiment",
"of",
"the",
"present",
"invention",
".",
"\n",
"-",
"X",
"and",
"Y",
"\n",
"are",
"connected",
",",
"in",
"this",
"specification",
"and",
"the",
"like",
",",
"for",
"example",
",",
"the",
"case",
"where",
"X",
"and",
"Y",
"are",
"directly",
"connected",
",",
"the",
"case",
"where",
"X",
"and",
"Y",
"are",
"electrically",
"connected",
",",
"and",
"the",
"case",
"where",
"X",
"and"
] |
[] |
and upgrade slums’.
The UN (UN-Habitat, 2003 ; 2005 ) defines a slum household as “one in which
the inhabitants suffer one or more of the following household deprivations”: (1)
lack of access to housing durability (a permanent structure providing protec -
tion from extreme climatic conditions); (2) lack of sufficient living area (no
more than three people sharing a room); (3) lack of access to improved water
sources (water that is sufficient, affordable and can be obtained without extreme
effort); (4) lack of access to improved sanitation facilities (a private toilet or a
public one shared with a reasonable number of people); and (5) lack of security
of tenure (de facto or de jure secure tenure status and protection against forced
eviction). However, individual countries may use different definitions for their
own policy and planning purposes. Legal designation is central to the govern -
ment’s recognition of slums in India. Indeed, estimates suggest that half of the
slums in India are not recognised by the government and have ‘non-notified
status’ (Subbaraman et al., 2012 ). No new slum has been notified in Delhi since
1994 ( Bhan, 2016 ).
Our book is responding to the challenge of how generally slums are perceived as
homogeneous places and spaces that require governments to eradicate, evict, dis -
place and relocate those residents who are living lives on the edge. This challenge
requires a renewed effort to understand what kind of institutional arrangements and
governance systems facilitate or undermine community cohesion and empower
spaces and networks to engender life’s purpose and meaning. Different slum types
are under-researched regarding the influence living in different environments has
on life’s meaning and purpose. The book presents the opportunity to compare the
adaptiveness of individuals living in different slum types, with different levels of
institutions and governance structures. The problem that is investigated is the effect
neighbourhood choices and decisions have on enterprise, empowerment, resilience,
trust, dignity and engaging in life that has inherent value.
Delhi, officially the National Capital Territory of Delhi (NCT), is the name of
India’s capital city, with New Delhi being a district within it, housing important
institutions including Parliament House and the Supreme Court. The NCT includes
New Delhi and 18 other districts. The NCT, a union territory with a fixed bound -
ary, has a population according to the 2011 census of 16.8 million; a more recent
estimate is over
|
[
"and",
"upgrade",
"slums",
"’",
".",
"\n",
"The",
"UN",
"(",
"UN",
"-",
"Habitat",
",",
"2003",
";",
"2005",
")",
"defines",
"a",
"slum",
"household",
"as",
"“",
"one",
"in",
"which",
"\n",
"the",
"inhabitants",
"suffer",
"one",
"or",
"more",
"of",
"the",
"following",
"household",
"deprivations",
"”",
":",
"(",
"1",
")",
"\n",
"lack",
"of",
"access",
"to",
"housing",
"durability",
"(",
"a",
"permanent",
"structure",
"providing",
"protec",
"-",
"\n",
"tion",
"from",
"extreme",
"climatic",
"conditions",
")",
";",
"(",
"2",
")",
"lack",
"of",
"sufficient",
"living",
"area",
"(",
"no",
"\n",
"more",
"than",
"three",
"people",
"sharing",
"a",
"room",
")",
";",
"(",
"3",
")",
"lack",
"of",
"access",
"to",
"improved",
"water",
"\n",
"sources",
"(",
"water",
"that",
"is",
"sufficient",
",",
"affordable",
"and",
"can",
"be",
"obtained",
"without",
"extreme",
"\n",
"effort",
")",
";",
"(",
"4",
")",
"lack",
"of",
"access",
"to",
"improved",
"sanitation",
"facilities",
"(",
"a",
"private",
"toilet",
"or",
"a",
"\n",
"public",
"one",
"shared",
"with",
"a",
"reasonable",
"number",
"of",
"people",
")",
";",
"and",
"(",
"5",
")",
"lack",
"of",
"security",
"\n",
"of",
"tenure",
"(",
"de",
"facto",
"or",
"de",
"jure",
"secure",
"tenure",
"status",
"and",
"protection",
"against",
"forced",
"\n",
"eviction",
")",
".",
"However",
",",
"individual",
"countries",
"may",
"use",
"different",
"definitions",
"for",
"their",
"\n",
"own",
"policy",
"and",
"planning",
"purposes",
".",
"Legal",
"designation",
"is",
"central",
"to",
"the",
"govern",
"-",
"\n",
"ment",
"’s",
"recognition",
"of",
"slums",
"in",
"India",
".",
"Indeed",
",",
"estimates",
"suggest",
"that",
"half",
"of",
"the",
"\n",
"slums",
"in",
"India",
"are",
"not",
"recognised",
"by",
"the",
"government",
"and",
"have",
"‘",
"non",
"-",
"notified",
"\n",
"status",
"’",
"(",
"Subbaraman",
"et",
"al",
".",
",",
"2012",
")",
".",
"No",
"new",
"slum",
"has",
"been",
"notified",
"in",
"Delhi",
"since",
"\n",
"1994",
"(",
"Bhan",
",",
"2016",
")",
".",
"\n",
"Our",
"book",
"is",
"responding",
"to",
"the",
"challenge",
"of",
"how",
"generally",
"slums",
"are",
"perceived",
"as",
"\n",
"homogeneous",
"places",
"and",
"spaces",
"that",
"require",
"governments",
"to",
"eradicate",
",",
"evict",
",",
"dis",
"-",
"\n",
"place",
"and",
"relocate",
"those",
"residents",
"who",
"are",
"living",
"lives",
"on",
"the",
"edge",
".",
"This",
"challenge",
"\n",
"requires",
"a",
"renewed",
"effort",
"to",
"understand",
"what",
"kind",
"of",
"institutional",
"arrangements",
"and",
"\n",
"governance",
"systems",
"facilitate",
"or",
"undermine",
"community",
"cohesion",
"and",
"empower",
"\n",
"spaces",
"and",
"networks",
"to",
"engender",
"life",
"’s",
"purpose",
"and",
"meaning",
".",
"Different",
"slum",
"types",
"\n",
"are",
"under",
"-",
"researched",
"regarding",
"the",
"influence",
"living",
"in",
"different",
"environments",
"has",
"\n",
"on",
"life",
"’s",
"meaning",
"and",
"purpose",
".",
"The",
"book",
"presents",
"the",
"opportunity",
"to",
"compare",
"the",
"\n",
"adaptiveness",
"of",
"individuals",
"living",
"in",
"different",
"slum",
"types",
",",
"with",
"different",
"levels",
"of",
"\n",
"institutions",
"and",
"governance",
"structures",
".",
"The",
"problem",
"that",
"is",
"investigated",
"is",
"the",
"effect",
"\n",
"neighbourhood",
"choices",
"and",
"decisions",
"have",
"on",
"enterprise",
",",
"empowerment",
",",
"resilience",
",",
"\n",
"trust",
",",
"dignity",
"and",
"engaging",
"in",
"life",
"that",
"has",
"inherent",
"value",
".",
"\n",
"Delhi",
",",
"officially",
"the",
"National",
"Capital",
"Territory",
"of",
"Delhi",
"(",
"NCT",
")",
",",
"is",
"the",
"name",
"of",
"\n",
"India",
"’s",
"capital",
"city",
",",
"with",
"New",
"Delhi",
"being",
"a",
"district",
"within",
"it",
",",
"housing",
"important",
"\n",
"institutions",
"including",
"Parliament",
"House",
"and",
"the",
"Supreme",
"Court",
".",
"The",
"NCT",
"includes",
"\n",
"New",
"Delhi",
"and",
"18",
"other",
"districts",
".",
"The",
"NCT",
",",
"a",
"union",
"territory",
"with",
"a",
"fixed",
"bound",
"-",
"\n",
"ary",
",",
"has",
"a",
"population",
"according",
"to",
"the",
"2011",
"census",
"of",
"16.8",
"million",
";",
"a",
"more",
"recent",
"\n",
"estimate",
"is",
"over"
] |
[
{
"end": 1100,
"label": "CITATION_REF",
"start": 1077
},
{
"end": 1167,
"label": "CITATION_REF",
"start": 1157
},
{
"end": 38,
"label": "AUTHOR",
"start": 28
},
{
"end": 1094,
"label": "AUTHOR",
"start": 1077
},
{
"end": 1161,
"label": "AUTHOR",
"start": 1157
},
{
"end": 1100,
"label": "YEAR",
"start": 1096
},
{
"end": 44,
"label": "YEAR",
"start": 40
},
{
"end": 51,
"label": "YEAR",
"start": 47
},
{
"end": 1167,
"label": "YEAR",
"start": 1163
},
{
"end": 51,
"label": "CITATION_REF",
"start": 28
}
] |
inpractice, but it makes no sense to choose the best one: every approach works underwith different conditions like various text generation strategies, different datasetcapacity, quality of data and other. Thus, before choosing which method to use, one
needs to determine the features of arti ficial content generating method. Anyway, each
approach involves trade off that requires further evaluation.
In future, we plan to compare all the presented approaches on standardized datasets
and to do a robustness analysis across different datasets.
References
1. Grechnikov, E.A., Gusev, G.G., Kustarev, A.A., Raigorodsky, A.M.: Detection of arti ficial
texts, digital libraries: advanced methods and technologies, digital collections. In: Proceedings
of XI All-Russian Research Conference RCDL 2009, KRC RAS, Petrozavodsk, pp. 306 –308
(2009)Table 1. Summing up the methods
The method Dataset/Language The best result
Frequency counting method [ 1] 2000 original texts, 250
artificial; Russian90.61 % accuracy
The method of linguistic features [ 2] 2 k, 5 k, 10 k of generated
words; Spanish-English100 % F-measure
for world stuf fing
Phrase analysis method [ 6] 2 k, 5 k, 10 k of generated
words100 % F-measure
for word stuf fing
Lexicographic features method [ 14] 2 k, 5 k, 10 k of generated
words99 % F-measure for
patchwork
Perplexity-based filtering [ 14] English-Japanese parallel
documents97 % F-measure for
2ndMarkov model
A fake content detector based on
relative entropy [ 14]English and French
parallel corpora99 % F-measure for
2ndMarkov model
Hidden Style Similarity method [ 3] A corpus of 5 million html
pages100 % accuracy at
certain threshold
SciDetect method [ 19] 1600 arti ficial
documents + 8200original; English100 % accuracyComputer-Generated Text Detection Using Machine Learning 425
2. Corston-Oliver, S., Gamon, M., Brockett, C.: A machine learning approach to the automatic
evaluation of machine translation. In: Proceeding of 39th Annual Meeting on Association for
Computational Linguistics, ACL 2001, pp. 148 –155 (2001)
3. Urvoy, T., Lavergne, T., Filoche, P.: Tracking web spam with hidden style similarity. In:
AIRWEB 2006, Seattle, Washington, USA, 10 August 2006
4. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann Publishers, Burlington (2011)
5. Arase, Y., Zhou, M.: Machine translation detection from monolingual web-text. In:
Proceedings of 51st Annual Meeting of the Association for Computational Linguistics,Sofia, Bulgaria, pp. 1597 –1607, 4 –9 August 2013
6. Baayen, R.H.: Word Frequency Distributions. Kluwer Academic Publishers, Amsterdam
(2001)
7. Clarkson, P., Rosenfeld, R.: Statistical language modeling using the CMU-Cambridge
toolkit. In: Proceedings of Eurospeech 1997, pp. 2707 –2710 (1997)
|
[
"inpractice",
",",
"but",
"it",
"makes",
"no",
"sense",
"to",
"choose",
"the",
"best",
"one",
":",
"every",
"approach",
"works",
"underwith",
"different",
"conditions",
"like",
"various",
"text",
"generation",
"strategies",
",",
"different",
"datasetcapacity",
",",
"quality",
"of",
"data",
"and",
"other",
".",
"Thus",
",",
"before",
"choosing",
"which",
"method",
"to",
"use",
",",
"one",
"\n",
"needs",
"to",
"determine",
"the",
"features",
"of",
"arti",
"ficial",
"content",
"generating",
"method",
".",
"Anyway",
",",
"each",
"\n",
"approach",
"involves",
"trade",
"off",
"that",
"requires",
"further",
"evaluation",
".",
"\n",
"In",
"future",
",",
"we",
"plan",
"to",
"compare",
"all",
"the",
"presented",
"approaches",
"on",
"standardized",
"datasets",
"\n",
"and",
"to",
"do",
"a",
"robustness",
"analysis",
"across",
"different",
"datasets",
".",
"\n",
"References",
"\n",
"1",
".",
"Grechnikov",
",",
"E.A.",
",",
"Gusev",
",",
"G.G.",
",",
"Kustarev",
",",
"A.A.",
",",
"Raigorodsky",
",",
"A.M.",
":",
"Detection",
"of",
"arti",
"ficial",
"\n",
"texts",
",",
"digital",
"libraries",
":",
"advanced",
"methods",
"and",
"technologies",
",",
"digital",
"collections",
".",
"In",
":",
"Proceedings",
"\n",
"of",
"XI",
"All",
"-",
"Russian",
"Research",
"Conference",
"RCDL",
"2009",
",",
"KRC",
"RAS",
",",
"Petrozavodsk",
",",
"pp",
".",
"306",
"–",
"308",
"\n",
"(",
"2009)Table",
"1",
".",
"Summing",
"up",
"the",
"methods",
"\n",
"The",
"method",
"Dataset",
"/",
"Language",
"The",
"best",
"result",
"\n",
"Frequency",
"counting",
"method",
"[",
"1",
"]",
"2000",
"original",
"texts",
",",
"250",
"\n",
"artificial",
";",
"Russian90.61",
"%",
"accuracy",
"\n",
"The",
"method",
"of",
"linguistic",
"features",
"[",
"2",
"]",
"2",
"k",
",",
"5",
"k",
",",
"10",
"k",
"of",
"generated",
"\n",
"words",
";",
"Spanish",
"-",
"English100",
"%",
"F",
"-",
"measure",
"\n",
"for",
"world",
"stuf",
"fing",
"\n",
"Phrase",
"analysis",
"method",
"[",
"6",
"]",
"2",
"k",
",",
"5",
"k",
",",
"10",
"k",
"of",
"generated",
"\n",
"words100",
"%",
"F",
"-",
"measure",
"\n",
"for",
"word",
"stuf",
"fing",
"\n",
"Lexicographic",
"features",
"method",
"[",
"14",
"]",
"2",
"k",
",",
"5",
"k",
",",
"10",
"k",
"of",
"generated",
"\n",
"words99",
"%",
"F",
"-",
"measure",
"for",
"\n",
"patchwork",
"\n",
"Perplexity",
"-",
"based",
"filtering",
"[",
"14",
"]",
"English",
"-",
"Japanese",
"parallel",
"\n",
"documents97",
"%",
"F",
"-",
"measure",
"for",
"\n",
"2ndMarkov",
"model",
"\n",
"A",
"fake",
"content",
"detector",
"based",
"on",
"\n",
"relative",
"entropy",
"[",
"14]English",
"and",
"French",
"\n",
"parallel",
"corpora99",
"%",
"F",
"-",
"measure",
"for",
"\n",
"2ndMarkov",
"model",
"\n",
"Hidden",
"Style",
"Similarity",
"method",
"[",
"3",
"]",
"A",
"corpus",
"of",
"5",
"million",
"html",
"\n",
"pages100",
"%",
"accuracy",
"at",
"\n",
"certain",
"threshold",
"\n",
"SciDetect",
"method",
"[",
"19",
"]",
"1600",
"arti",
"ficial",
"\n",
"documents",
"+",
"8200original",
";",
"English100",
"%",
"accuracyComputer",
"-",
"Generated",
"Text",
"Detection",
"Using",
"Machine",
"Learning",
"425",
"\n",
"2",
".",
"Corston",
"-",
"Oliver",
",",
"S.",
",",
"Gamon",
",",
"M.",
",",
"Brockett",
",",
"C.",
":",
"A",
"machine",
"learning",
"approach",
"to",
"the",
"automatic",
"\n",
"evaluation",
"of",
"machine",
"translation",
".",
"In",
":",
"Proceeding",
"of",
"39th",
"Annual",
"Meeting",
"on",
"Association",
"for",
"\n",
"Computational",
"Linguistics",
",",
"ACL",
"2001",
",",
"pp",
".",
"148",
"–",
"155",
"(",
"2001",
")",
"\n",
"3",
".",
"Urvoy",
",",
"T.",
",",
"Lavergne",
",",
"T.",
",",
"Filoche",
",",
"P.",
":",
"Tracking",
"web",
"spam",
"with",
"hidden",
"style",
"similarity",
".",
"In",
":",
"\n",
"AIRWEB",
"2006",
",",
"Seattle",
",",
"Washington",
",",
"USA",
",",
"10",
"August",
"2006",
"\n",
"4",
".",
"Witten",
",",
"I.H.",
",",
"Frank",
",",
"E.",
":",
"Data",
"Mining",
":",
"Practical",
"Machine",
"Learning",
"Tools",
"and",
"Techniques",
"\n",
"with",
"Java",
"Implementations",
".",
"Morgan",
"Kaufmann",
"Publishers",
",",
"Burlington",
"(",
"2011",
")",
"\n",
"5",
".",
"Arase",
",",
"Y.",
",",
"Zhou",
",",
"M.",
":",
"Machine",
"translation",
"detection",
"from",
"monolingual",
"web",
"-",
"text",
".",
"In",
":",
"\n",
"Proceedings",
"of",
"51st",
"Annual",
"Meeting",
"of",
"the",
"Association",
"for",
"Computational",
"Linguistics",
",",
"Sofia",
",",
"Bulgaria",
",",
"pp",
".",
"1597",
"–",
"1607",
",",
"4",
"–",
"9",
"August",
"2013",
"\n",
"6",
".",
"Baayen",
",",
"R.H.",
":",
"Word",
"Frequency",
"Distributions",
".",
"Kluwer",
"Academic",
"Publishers",
",",
"Amsterdam",
"\n",
"(",
"2001",
")",
"\n",
"7",
".",
"Clarkson",
",",
"P.",
",",
"Rosenfeld",
",",
"R.",
":",
"Statistical",
"language",
"modeling",
"using",
"the",
"CMU",
"-",
"Cambridge",
"\n",
"toolkit",
".",
"In",
":",
"Proceedings",
"of",
"Eurospeech",
"1997",
",",
"pp",
".",
"2707",
"–",
"2710",
"(",
"1997",
")",
"\n"
] |
[
{
"end": 2660,
"label": "CITATION_ID",
"start": 2659
},
{
"end": 2568,
"label": "CITATION_ID",
"start": 2567
},
{
"end": 2350,
"label": "CITATION_ID",
"start": 2349
},
{
"end": 2188,
"label": "CITATION_ID",
"start": 2187
},
{
"end": 2041,
"label": "CITATION_ID",
"start": 2040
},
{
"end": 1799,
"label": "CITATION_ID",
"start": 1798
},
{
"end": 555,
"label": "CITATION_ID",
"start": 554
},
{
"end": 2811,
"label": "CITATION_SPAN",
"start": 2662
},
{
"end": 2658,
"label": "CITATION_SPAN",
"start": 2570
},
{
"end": 2566,
"label": "CITATION_SPAN",
"start": 2352
},
{
"end": 2348,
"label": "CITATION_SPAN",
"start": 2190
},
{
"end": 2186,
"label": "CITATION_SPAN",
"start": 2043
},
{
"end": 2039,
"label": "CITATION_SPAN",
"start": 1801
},
{
"end": 836,
"label": "CITATION_SPAN",
"start": 557
}
] |
y comunicaciones para que sus reformas se hagan realidad. La formación de coaliciones y el fortalecimiento de las relaciones puede compensar la falta de tiempo y de buenos datos, así como la existencia de opiniones divergentes.
- La brevedad de los mandatos dificulta las reformas. El análisis de los proyectos educativos llevados a cabo por el Banco Mundial entre 2000 y 2017 en 114 países reveló una correlación negativa sustancial entre la rotación ministerial y el rendimiento de los proyectos.
## Aumentar el número de mujeres en puestos de liderazgo puede dar lugar a resultados positivos en la educación.
- Las líderes políticas han dado más prioridad a la educación que sus homólogos masculinos. Las parlamentarias han contribuido a aumentar el gasto en educación primaria en todo el mundo. Sin embargo, el porcentaje de ministras solo ha aumentado del 23 % en 2010-13 al 30 % en 2020-23.
- Algunos estudios sugieren que las mujeres obtienen mejores resultados de aprendizaje que los hombres como directoras de escuelas. En el África francófona, los alumnos de las escuelas de educación primaria dirigidas por directoras superan en matemáticas y lectura en el equivalente a al menos seis meses a los de las escuelas dirigidas por dirigentes varones.
- Aunque muchas mujeres enseñan, son muchas menos las que dirigen centros escolares. La proporción de directoras en los centros de educación primaria y educación secundaria es, por término medio, inferior en al menos 20 puntos porcentuales a la proporción media de profesoras. Solo el 11 % de los países del mundo ha adoptado medidas para abordar la diversidad de género en la contratación de directores.
## Muchos actores ejercen el liderazgo influyendo en la dirección de los sistemas educativos.
- Los sindicatos de profesores y de estudiantes, líderes empresariales, académicos y la sociedad civil exigen responsabilidades a los gobiernos, ejercen presión y sensibilizan. La influencia importa: en Estados Unidos, algunos laboratorios de ideas obtienen una puntuación baja en conocimientos técnicos pero alta en debates sobre educación en el Congreso, mientras que en otros ocurre lo contrario.
- Las organizaciones internacionales contribuyen a enmarcar e informar el debate mundial sobre la educación, así como a financiar los sistemas educativos de los países. Sin embargo, la competencia por la autonomía y la influencia puede desviarles del objetivo de mejorar la educación, y su legitimidad puede verse cuestionada por la falta de
|
[
"y",
"comunicaciones",
"para",
"que",
"sus",
"reformas",
"se",
"hagan",
"realidad",
".",
"La",
"formación",
"de",
"coaliciones",
"y",
"el",
"fortalecimiento",
"de",
"las",
"relaciones",
"puede",
"compensar",
"la",
"falta",
"de",
"tiempo",
"y",
"de",
"buenos",
"datos",
",",
"así",
"como",
"la",
"existencia",
"de",
"opiniones",
"divergentes",
".",
"\n",
"-",
"",
"La",
"brevedad",
"de",
"los",
"mandatos",
"dificulta",
"las",
"reformas",
".",
"El",
"análisis",
"de",
"los",
"proyectos",
"educativos",
"llevados",
"a",
"cabo",
"por",
"el",
"Banco",
"Mundial",
"entre",
"2000",
"y",
"2017",
"en",
"114",
"países",
"reveló",
"una",
"correlación",
"negativa",
"sustancial",
"entre",
"la",
"rotación",
"ministerial",
"y",
"el",
"rendimiento",
"de",
"los",
"proyectos",
".",
"\n\n",
"#",
"#",
"Aumentar",
"el",
"número",
"de",
"mujeres",
"en",
"puestos",
"de",
"liderazgo",
"puede",
"dar",
"lugar",
"a",
"resultados",
"positivos",
"en",
"la",
"educación",
".",
"\n\n",
"-",
"",
"Las",
"líderes",
"políticas",
"han",
"dado",
"más",
"prioridad",
"a",
"la",
"educación",
"que",
"sus",
"homólogos",
"masculinos",
".",
"Las",
"parlamentarias",
"han",
"contribuido",
"a",
"aumentar",
"el",
"gasto",
"en",
"educación",
"primaria",
"en",
"todo",
"el",
"mundo",
".",
"Sin",
"embargo",
",",
"el",
"porcentaje",
"de",
"ministras",
"solo",
"ha",
"aumentado",
"del",
"23",
"%",
"en",
"2010",
"-",
"13",
"al",
"30",
"%",
"en",
"2020",
"-",
"23",
".",
"\n",
"-",
"",
"Algunos",
"estudios",
"sugieren",
"que",
"las",
"mujeres",
"obtienen",
"mejores",
"resultados",
"de",
"aprendizaje",
"que",
"los",
"hombres",
"como",
"directoras",
"de",
"escuelas",
".",
"En",
"el",
"África",
"francófona",
",",
"los",
"alumnos",
"de",
"las",
"escuelas",
"de",
"educación",
"primaria",
"dirigidas",
"por",
"directoras",
"superan",
"en",
"matemáticas",
"y",
"lectura",
"en",
"el",
"equivalente",
"a",
"al",
"menos",
"seis",
"meses",
"a",
"los",
"de",
"las",
"escuelas",
"dirigidas",
"por",
"dirigentes",
"varones",
".",
"\n",
"-",
"",
"Aunque",
"muchas",
"mujeres",
"enseñan",
",",
"son",
"muchas",
"menos",
"las",
"que",
"dirigen",
"centros",
"escolares",
".",
"La",
"proporción",
"de",
"directoras",
"en",
"los",
"centros",
"de",
"educación",
"primaria",
"y",
"educación",
"secundaria",
"es",
",",
"por",
"término",
"medio",
",",
"inferior",
"en",
"al",
"menos",
"20",
"puntos",
"porcentuales",
"a",
"la",
"proporción",
"media",
"de",
"profesoras",
".",
"Solo",
"el",
"11",
"%",
"de",
"los",
"países",
"del",
"mundo",
"ha",
"adoptado",
"medidas",
"para",
"abordar",
"la",
"diversidad",
"de",
"género",
"en",
"la",
"contratación",
"de",
"directores",
".",
"\n\n",
"#",
"#",
"Muchos",
"actores",
"ejercen",
"el",
"liderazgo",
"influyendo",
"en",
"la",
"dirección",
"de",
"los",
"sistemas",
"educativos",
".",
"\n\n",
"-",
"",
"Los",
"sindicatos",
"de",
"profesores",
"y",
"de",
"estudiantes",
",",
"líderes",
"empresariales",
",",
"académicos",
"y",
"la",
"sociedad",
"civil",
"exigen",
"responsabilidades",
"a",
"los",
"gobiernos",
",",
"ejercen",
"presión",
"y",
"sensibilizan",
".",
"La",
"influencia",
"importa",
":",
"en",
"Estados",
"Unidos",
",",
"algunos",
"laboratorios",
"de",
"ideas",
"obtienen",
"una",
"puntuación",
"baja",
"en",
"conocimientos",
"técnicos",
"pero",
"alta",
"en",
"debates",
"sobre",
"educación",
"en",
"el",
"Congreso",
",",
"mientras",
"que",
"en",
"otros",
"ocurre",
"lo",
"contrario",
".",
"\n",
"-",
"",
"Las",
"organizaciones",
"internacionales",
"contribuyen",
"a",
"enmarcar",
"e",
"informar",
"el",
"debate",
"mundial",
"sobre",
"la",
"educación",
",",
"así",
"como",
"a",
"financiar",
"los",
"sistemas",
"educativos",
"de",
"los",
"países",
".",
"Sin",
"embargo",
",",
"la",
"competencia",
"por",
"la",
"autonomía",
"y",
"la",
"influencia",
"puede",
"desviarles",
"del",
"objetivo",
"de",
"mejorar",
"la",
"educación",
",",
"y",
"su",
"legitimidad",
"puede",
"verse",
"cuestionada",
"por",
"la",
"falta",
"de"
] |
[] |
business support
activities
82.1 Office administrative and support activities
82.2 Activities of call centres X X
82.3 Organisation of conventions and trade shows
82.9 Business support service activities n.e.c. X X X X X
OPUBLIC ADMINISTRATION AND DEFENCE; COMPULSORY SOCIAL
SECURITY
84 Public administration and defence; compulsory social security
84.1Administration of the State and the economic and social policy of
the community X X
84.2 Provision of services to the community as a whole
84.3 Compulsory social security activities
P EDUCATION
85 Education
85.1 Pre-primary education X X X
85.2 Primary education
85.3 Secondary education X X X X X
85.4 Higher education X X X X X
85.5 Other education X X X X X
85.6 Educational support activities
Q HUMAN HEALTH AND SOCIAL WORK ACTIVITIES
86 Human health activities
86.1 Hospital activities X X X X X X
86.2 Medical and dental practice activities X X X X X
86.9 Other human health activities X X X
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation293 294
Annexes
GEORGIA MOLDOVA UKRAINEEmploy-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
NACE Industry name Current Current CurrentEmerg-
ingEmerg-
ingEmerg-
ingCurrent Current CurrentEmerg-
ingEmerg-
ingEmerg-
ingCurrent Current CurrentEmerg-
ingEmerg-
ingEmerg-
ing
34 52 28 61 64 40 31 29 15 50 47 21 55 40 35 83 57 34
87 Residential care activities
87.1 Residential nursing care activities
87.2Residential care activities for mental retardation, mental health and
substance abuse
87.3 Residential care activities for the elderly and disabled
87.9 Other residential care activities
88 Social work activities without accommodation
88.1Social work activities without accommodation for the elderly and
disabledX X X
88.9 Other social work activities without accommodation X X X
R ARTS, ENTERTAINMENT AND RECREATION
90 Creative, arts and entertainment activities X X X X X
91 Libraries, archives, museums and other cultural activities X X X
92 Gambling and betting activities X X X X X X
93 Sports activities and amusement and recreation activities
93.1 Sports activities X X X X X
93.2 Amusement and recreation activities X X X X
S OTHER SERVICE ACTIVITIES
94 Activities of membership organisations
94.1Activities of business, employers and professional membership
organisationsX X X
94.2
|
[
"business",
"support",
"\n",
"activities",
" \n",
"82.1",
"Office",
"administrative",
"and",
"support",
"activities",
" \n",
"82.2",
"Activities",
"of",
"call",
"centres",
" ",
"X",
" ",
"X",
" \n",
"82.3",
"Organisation",
"of",
"conventions",
"and",
"trade",
"shows",
" \n",
"82.9",
"Business",
"support",
"service",
"activities",
"n.e.c",
".",
" ",
"X",
"X",
"X",
"X",
" ",
"X",
" \n",
"OPUBLIC",
"ADMINISTRATION",
"AND",
"DEFENCE",
";",
"COMPULSORY",
"SOCIAL",
"\n",
"SECURITY",
" \n",
"84",
"Public",
"administration",
"and",
"defence",
";",
"compulsory",
"social",
"security",
" \n",
"84.1Administration",
"of",
"the",
"State",
"and",
"the",
"economic",
"and",
"social",
"policy",
"of",
"\n",
"the",
"community",
"X",
" ",
"X",
" \n",
"84.2",
"Provision",
"of",
"services",
"to",
"the",
"community",
"as",
"a",
"whole",
" \n",
"84.3",
"Compulsory",
"social",
"security",
"activities",
" \n",
"P",
"EDUCATION",
" \n",
"85",
"Education",
" \n",
"85.1",
"Pre",
"-",
"primary",
"education",
"X",
"X",
"X",
" \n",
"85.2",
"Primary",
"education",
" \n",
"85.3",
"Secondary",
"education",
"X",
"X",
"X",
" ",
"X",
" ",
"X",
" \n",
"85.4",
"Higher",
"education",
" ",
"X",
" ",
"X",
" ",
"X",
"X",
"X",
" \n",
"85.5",
"Other",
"education",
"X",
"X",
"X",
"X",
" ",
"X",
" \n",
"85.6",
"Educational",
"support",
"activities",
" \n",
"Q",
"HUMAN",
"HEALTH",
"AND",
"SOCIAL",
"WORK",
"ACTIVITIES",
" \n",
"86",
"Human",
"health",
"activities",
" \n",
"86.1",
"Hospital",
"activities",
" ",
"X",
" ",
"X",
"X",
"X",
" ",
"X",
" ",
"X",
" \n",
"86.2",
"Medical",
"and",
"dental",
"practice",
"activities",
" ",
"X",
" ",
"X",
" ",
"X",
"X",
"X",
"\n",
"86.9",
"Other",
"human",
"health",
"activities",
" ",
"X",
" ",
"X",
" ",
"X",
" \n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation293",
"294",
"\n",
"Annexes",
"\n",
"GEORGIA",
"MOLDOVA",
"UKRAINEEmploy-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"NACE",
"Industry",
"name",
"Current",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingCurrent",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingCurrent",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ing",
"\n",
"34",
"52",
"28",
"61",
"64",
"40",
"31",
"29",
"15",
"50",
"47",
"21",
"55",
"40",
"35",
"83",
"57",
"34",
"\n",
"87",
"Residential",
"care",
"activities",
" \n",
"87.1",
"Residential",
"nursing",
"care",
"activities",
" \n",
"87.2Residential",
"care",
"activities",
"for",
"mental",
"retardation",
",",
"mental",
"health",
"and",
"\n",
"substance",
"abuse",
" \n",
"87.3",
"Residential",
"care",
"activities",
"for",
"the",
"elderly",
"and",
"disabled",
" \n",
"87.9",
"Other",
"residential",
"care",
"activities",
" \n",
"88",
"Social",
"work",
"activities",
"without",
"accommodation",
" \n",
"88.1Social",
"work",
"activities",
"without",
"accommodation",
"for",
"the",
"elderly",
"and",
"\n",
"disabledX",
"X",
"X",
" \n",
"88.9",
"Other",
"social",
"work",
"activities",
"without",
"accommodation",
"X",
"X",
"X",
" \n",
"R",
"ARTS",
",",
"ENTERTAINMENT",
"AND",
"RECREATION",
" \n",
"90",
"Creative",
",",
"arts",
"and",
"entertainment",
"activities",
"X",
"X",
"X",
" ",
"X",
" ",
"X",
" \n",
"91",
"Libraries",
",",
"archives",
",",
"museums",
"and",
"other",
"cultural",
"activities",
"X",
"X",
"X",
" \n",
"92",
"Gambling",
"and",
"betting",
"activities",
"X",
"X",
"X",
"X",
"X",
"X",
" \n",
"93",
"Sports",
"activities",
"and",
"amusement",
"and",
"recreation",
"activities",
" \n",
"93.1",
"Sports",
"activities",
"X",
"X",
"X",
" ",
"X",
" ",
"X",
" \n",
"93.2",
"Amusement",
"and",
"recreation",
"activities",
"X",
"X",
"X",
" ",
"X",
" \n",
"S",
"OTHER",
"SERVICE",
"ACTIVITIES",
" \n",
"94",
"Activities",
"of",
"membership",
"organisations",
" \n",
"94.1Activities",
"of",
"business",
",",
"employers",
"and",
"professional",
"membership",
"\n",
"organisationsX",
"X",
"X",
" \n",
"94.2"
] |
[] |
Head Hydrometeorological Service ('Glavgidromet') of Uzbekistan revealed a steady degradation of mountain glaciation in the zones of flow formation of main rivers in the Aral Sea basin . In the recent four decades the area of glaciation in mountains has 2 become nearly 40% less. At the same time studies on mathematical models developed by specialists of 'Glavgidromet' enabled evaluation of the effect of climatic changes on river basins and an integral evaluation of the runoff. The obtained results have indicated that none of the tried climatic scenarios reflecting climate warming contributes to the increase rivers flow of the Amudarya basin. At the same time an essential reduction of flow in a vegetation period may be expected. In this case the increased intensity of rainfall in combination with higher temperatures will lead to a greater number of floods and mudflows and their greater intensity.
Investigations on mathematical models for evaluation of the flow of major rivers in the Aral Sea basin for perspective taking into account changing climatic conditions have made it possible to formulate the following conclusions:
- -with the increase of the mean annual air temperature by 1-2 C the seasonal accumulation of o snow in mountains will decrease and further shrinking of the area of mountain glaciation will be observed;
- -the river flow in the Amudarya basin will become 20 to 30% less;
- -rise of the mean annual air temperature by 3-4 C will destroy mountain glaciation in the region o and this will cause reduction of water availability in rivers by 30-40%.
Severe droughts in 2000 and 2001 can be viewed as an analog of a hydrological situation after climate warming in the future.
1 The basins of Morghab and Tejen (Harirud) are not included in this territory. It should be said that their inclusion will make the irrigated areas in the foreign part of basins Panj and Amudarya up to 2,2 mln. ha.
2 Chub V.E. (2002). The consequences of climate changes for water resources of the Aral Sea Basin. Report to International Conference 'Aral Sea and Circum Aral Problems - Imperative for International Cooperation'. Tashkent.
An area of lands suitable for irrigation in this region of the country exceeds 1.5 mln ha, of which 466 thou ha were irrigated (with various degree of water supply) beginning from 1965 . 1
The sources for irrigation here are local rivers Kokcha, Konduz, Hulm, Balkh,
|
[
"Head",
"Hydrometeorological",
"Service",
"(",
"'",
"Glavgidromet",
"'",
")",
"of",
"Uzbekistan",
"revealed",
"a",
"steady",
"degradation",
"of",
"mountain",
"glaciation",
"in",
"the",
"zones",
"of",
"flow",
"formation",
"of",
"main",
"rivers",
"in",
"the",
"Aral",
"Sea",
"basin",
".",
"In",
"the",
"recent",
"four",
"decades",
"the",
"area",
"of",
"glaciation",
"in",
"mountains",
"has",
"2",
"become",
"nearly",
"40",
"%",
"less",
".",
"At",
"the",
"same",
"time",
"studies",
"on",
"mathematical",
"models",
"developed",
"by",
"specialists",
"of",
"'",
"Glavgidromet",
"'",
"enabled",
"evaluation",
"of",
"the",
"effect",
"of",
"climatic",
"changes",
"on",
"river",
"basins",
"and",
"an",
"integral",
"evaluation",
"of",
"the",
"runoff",
".",
"The",
"obtained",
"results",
"have",
"indicated",
"that",
"none",
"of",
"the",
"tried",
"climatic",
"scenarios",
"reflecting",
"climate",
"warming",
"contributes",
"to",
"the",
"increase",
"rivers",
"flow",
"of",
"the",
"Amudarya",
"basin",
".",
"At",
"the",
"same",
"time",
"an",
"essential",
"reduction",
"of",
"flow",
"in",
"a",
"vegetation",
"period",
"may",
"be",
"expected",
".",
"In",
"this",
"case",
"the",
"increased",
"intensity",
"of",
"rainfall",
"in",
"combination",
"with",
"higher",
"temperatures",
"will",
"lead",
"to",
"a",
"greater",
"number",
"of",
"floods",
"and",
"mudflows",
"and",
"their",
"greater",
"intensity",
".",
"\n\n",
"Investigations",
"on",
"mathematical",
"models",
"for",
"evaluation",
"of",
"the",
"flow",
"of",
"major",
"rivers",
"in",
"the",
"Aral",
"Sea",
"basin",
"for",
"perspective",
"taking",
"into",
"account",
"changing",
"climatic",
"conditions",
"have",
"made",
"it",
"possible",
"to",
"formulate",
"the",
"following",
"conclusions",
":",
"\n\n",
"-",
"-with",
"the",
"increase",
"of",
"the",
"mean",
"annual",
"air",
"temperature",
"by",
"1",
"-",
"2",
"C",
"the",
"seasonal",
"accumulation",
"of",
"o",
"snow",
"in",
"mountains",
"will",
"decrease",
"and",
"further",
"shrinking",
"of",
"the",
"area",
"of",
"mountain",
"glaciation",
"will",
"be",
"observed",
";",
"\n",
"-",
"-the",
"river",
"flow",
"in",
"the",
"Amudarya",
"basin",
"will",
"become",
"20",
"to",
"30",
"%",
"less",
";",
"\n",
"-",
"-rise",
"of",
"the",
"mean",
"annual",
"air",
"temperature",
"by",
"3",
"-",
"4",
"C",
"will",
"destroy",
"mountain",
"glaciation",
"in",
"the",
"region",
"o",
"and",
"this",
"will",
"cause",
"reduction",
"of",
"water",
"availability",
"in",
"rivers",
"by",
"30",
"-",
"40",
"%",
".",
"\n\n",
"Severe",
"droughts",
"in",
"2000",
"and",
"2001",
"can",
"be",
"viewed",
"as",
"an",
"analog",
"of",
"a",
"hydrological",
"situation",
"after",
"climate",
"warming",
"in",
"the",
"future",
".",
"\n\n",
"1",
"The",
"basins",
"of",
"Morghab",
"and",
"Tejen",
"(",
"Harirud",
")",
"are",
"not",
"included",
"in",
"this",
"territory",
".",
"It",
"should",
"be",
"said",
"that",
"their",
"inclusion",
"will",
"make",
"the",
"irrigated",
"areas",
"in",
"the",
"foreign",
"part",
"of",
"basins",
"Panj",
"and",
"Amudarya",
"up",
"to",
"2,2",
"mln",
".",
"ha",
".",
"\n\n",
"2",
"Chub",
"V.E.",
"(",
"2002",
")",
".",
"The",
"consequences",
"of",
"climate",
"changes",
"for",
"water",
"resources",
"of",
"the",
"Aral",
"Sea",
"Basin",
".",
"Report",
"to",
"International",
"Conference",
"'",
"Aral",
"Sea",
"and",
"Circum",
"Aral",
"Problems",
"-",
"Imperative",
"for",
"International",
"Cooperation",
"'",
".",
"Tashkent",
".",
"\n\n",
"An",
"area",
"of",
"lands",
"suitable",
"for",
"irrigation",
"in",
"this",
"region",
"of",
"the",
"country",
"exceeds",
"1.5",
"mln",
"ha",
",",
"of",
"which",
"466",
"thou",
"ha",
"were",
"irrigated",
"(",
"with",
"various",
"degree",
"of",
"water",
"supply",
")",
"beginning",
"from",
"1965",
".",
"1",
"\n\n",
"The",
"sources",
"for",
"irrigation",
"here",
"are",
"local",
"rivers",
"Kokcha",
",",
"Konduz",
",",
"Hulm",
",",
"Balkh",
","
] |
[
{
"end": 1948,
"label": "CITATION_REF",
"start": 1932
},
{
"end": 1941,
"label": "AUTHOR",
"start": 1932
},
{
"end": 1947,
"label": "YEAR",
"start": 1943
}
] |
In 1922, Evelyn Simpson became the first woman to
be awarded a PhD in literature at Oxford; three years later, Sylva Thurlow
became the first woman to be awarded a PhD at Cambridge (in chemistry).11
After earning her degree, she moved to the US and appears to have worked
for the Women’s Medical College in Pennsylvania.
The University of London went on to produce more male and female PhD
holders than any other university in Britain. Before 1920, the University of
London awarded a specific degree called a London Doctorate, which was
an advanced research degree that was almost equivalent to the later PhD.
Martha Annie Whiteley and Ida Smedley obtained their London Doctorates
in 1902 and 1905, respectively. Apart from university degrees, which began
at Oxford in 1920 and Cambridge in 1948,12 the most prestigious universi -
ties in the UK were also open to women who wanted to pursue doctoral
studies. Overall, it is fair to conclude that the twentieth century was a time
xxv
xxv
Foreword
of struggle for women’s postgraduate education and the right to study for
a PhD degree.
Higher education in Japan
In Japan, Tohoku Imperial University admitted its first three women stu -
dents, two in chemistry and one in mathematics, in 1913; even before
1913, some women had travelled to Europe and the US in search of higher
education.13 Table 0.1 shows that Japanese women earned PhDs in sci -
ence, agriculture and pharmacy before 1940. As several contributors to
this volume also discuss (e.g., Corbi, Edgerton- T arpley and Zavarache),
medicine was an important field of activity for women. Japan was no
exception to this, but MDs (other than Tada Urata) have been excluded
from
Table 0.1
because of their large number. The figure also records
women who obtained PhDs abroad in fields other than the sciences.
Japan’s Imperial Universities were not enthusiastic about accepting women
in humanities and social sciences.
Japanese universities first awarded a PhD in science to Kono Yasui in
1927 and a PhD in medicine to Kanaeko Miyagawa in 1931. As
Table 0.1
shows, except for Urata (1905), Ōhashi (1926) and Tange (1927), who
obtained PhDs abroad, almost all women in the sciences received their doc
-
toral degrees (in science, agriculture, pharmacy and medicine) from Japanese
universities after 1927, although universities were hardly open to women.
The medical faculties of all imperial universities did not admit
|
[
"In",
"1922",
",",
"Evelyn",
"Simpson",
"became",
"the",
"first",
"woman",
"to",
"\n",
"be",
"awarded",
"a",
"PhD",
"in",
"literature",
"at",
"Oxford",
";",
"three",
"years",
"later",
",",
"Sylva",
"Thurlow",
"\n",
"became",
"the",
"first",
"woman",
"to",
"be",
"awarded",
"a",
"PhD",
"at",
"Cambridge",
"(",
"in",
"chemistry).11",
"\n",
"After",
"earning",
"her",
"degree",
",",
"she",
"moved",
"to",
"the",
"US",
"and",
"appears",
"to",
"have",
"worked",
"\n",
"for",
"the",
"Women",
"’s",
"Medical",
"College",
"in",
"Pennsylvania",
".",
"\n",
"The",
"University",
"of",
"London",
"went",
"on",
"to",
"produce",
"more",
"male",
"and",
"female",
"PhD",
"\n",
"holders",
"than",
"any",
"other",
"university",
"in",
"Britain",
".",
"Before",
"1920",
",",
"the",
"University",
"of",
"\n",
"London",
"awarded",
"a",
"specific",
"degree",
"called",
"a",
"London",
"Doctorate",
",",
"which",
"was",
"\n",
"an",
"advanced",
"research",
"degree",
"that",
"was",
"almost",
"equivalent",
"to",
"the",
"later",
"PhD.",
"\n",
"Martha",
"Annie",
"Whiteley",
"and",
"Ida",
"Smedley",
"obtained",
"their",
"London",
"Doctorates",
"\n",
"in",
"1902",
"and",
"1905",
",",
"respectively",
".",
"Apart",
"from",
"university",
"degrees",
",",
"which",
"began",
"\n",
"at",
"Oxford",
"in",
"1920",
"and",
"Cambridge",
"in",
"1948,12",
"the",
"most",
"prestigious",
"universi",
"-",
"\n",
"ties",
"in",
"the",
"UK",
"were",
"also",
"open",
"to",
"women",
"who",
"wanted",
"to",
"pursue",
"doctoral",
"\n",
"studies",
".",
"Overall",
",",
"it",
"is",
"fair",
"to",
"conclude",
"that",
"the",
"twentieth",
"century",
"was",
"a",
"time",
" \n \n \n \n \n \n",
"xxv",
"\n",
"xxv",
"\n",
"Foreword",
"\n",
"of",
"struggle",
"for",
"women",
"’s",
"postgraduate",
"education",
"and",
"the",
"right",
"to",
"study",
"for",
"\n",
"a",
"PhD",
"degree",
".",
"\n",
"Higher",
"education",
"in",
"Japan",
"\n",
"In",
"Japan",
",",
"Tohoku",
"Imperial",
"University",
"admitted",
"its",
"first",
"three",
"women",
"stu",
"-",
"\n",
"dents",
",",
"two",
"in",
"chemistry",
"and",
"one",
"in",
"mathematics",
",",
"in",
"1913",
";",
"even",
"before",
"\n",
"1913",
",",
"some",
"women",
"had",
"travelled",
"to",
"Europe",
"and",
"the",
"US",
"in",
"search",
"of",
"higher",
"\n",
"education.13",
"Table",
"0.1",
" ",
"shows",
"that",
"Japanese",
"women",
"earned",
"PhDs",
"in",
"sci",
"-",
"\n",
"ence",
",",
"agriculture",
"and",
"pharmacy",
"before",
"1940",
".",
"As",
"several",
"contributors",
"to",
"\n",
"this",
"volume",
"also",
"discuss",
"(",
"e.g.",
",",
"Corbi",
",",
"Edgerton-",
" ",
"T",
"arpley",
"and",
"Zavarache",
")",
",",
"\n",
"medicine",
"was",
"an",
"important",
"field",
"of",
"activity",
"for",
"women",
".",
"Japan",
"was",
"no",
"\n",
"exception",
"to",
"this",
",",
"but",
"MDs",
"(",
"other",
"than",
"Tada",
"Urata",
")",
"have",
"been",
"excluded",
"\n",
"from",
"\n",
"Table",
"0.1",
"\n ",
"because",
"of",
"their",
"large",
"number",
".",
"The",
"figure",
"also",
"records",
"\n",
"women",
"who",
"obtained",
"PhDs",
"abroad",
"in",
"fields",
"other",
"than",
"the",
"sciences",
".",
"\n",
"Japan",
"’s",
"Imperial",
"Universities",
"were",
"not",
"enthusiastic",
"about",
"accepting",
"women",
"\n",
"in",
"humanities",
"and",
"social",
"sciences",
".",
"\n",
"Japanese",
"universities",
"first",
"awarded",
"a",
"PhD",
"in",
"science",
"to",
"Kono",
"Yasui",
"in",
"\n",
"1927",
"and",
"a",
"PhD",
"in",
"medicine",
"to",
"Kanaeko",
"Miyagawa",
"in",
"1931",
".",
"As",
"\n",
"Table",
"0.1",
"\n \n",
"shows",
",",
"except",
"for",
"Urata",
"(",
"1905",
")",
",",
"Ōhashi",
"(",
"1926",
")",
"and",
"Tange",
"(",
"1927",
")",
",",
"who",
"\n",
"obtained",
"PhDs",
"abroad",
",",
"almost",
"all",
"women",
"in",
"the",
"sciences",
"received",
"their",
"doc",
"\n",
"-",
"\n",
"toral",
"degrees",
"(",
"in",
"science",
",",
"agriculture",
",",
"pharmacy",
"and",
"medicine",
")",
"from",
"Japanese",
"\n",
"universities",
"after",
"1927",
",",
"although",
"universities",
"were",
"hardly",
"open",
"to",
"women",
".",
"\n",
"The",
"medical",
"faculties",
"of",
"all",
"imperial",
"universities",
"did",
"not",
"admit"
] |
[
{
"end": 200,
"label": "CITATION_REF",
"start": 198
},
{
"end": 808,
"label": "CITATION_REF",
"start": 806
},
{
"end": 1365,
"label": "CITATION_REF",
"start": 1363
}
] |
Home… Horizon Europe Democratising and making sense out of heterogeneous scholarly content
Democratising and making sense out of
heterogeneous scholarly content
Reporting
SciLake
Grant agreement ID: 101058573
DOI
10.3030/101058573
EC signature date
28 November 2022Funded under
Research infrastructures
Coordinated byProject Information
Start date
1 January 2023End date
31 December 2025Total cost
€ 4 809 450,00
EU contribution
€ 4 809 449,00
ATHINA-EREVNITIKO KENTRO
KAINOTOMIAS STIS
TECHNOLOGIES TIS
PLIROFORIAS, TON
EPIKOINONION KAI TIS GNOSIS
Greece
Periodic Reporting for period 1 - SciLake (Democratising
and making sense out of heterogeneous scholarly
content)
SciLake is a 3-year project that aims to leverage Science Knowledge Graphs (SKGs) as the
foundation to establish the concept of the Scientific Lake: a research ecosystem designed to facilitate
the creation, integration, and querying of SKGs. This ecosystem includes tools capable of extracting
knowledge from unstructured data, enhancing SKG interoperability, supporting knowledgeReporting period: 2023-01-01 to 2024-06-30
Summary of the context and overall objectives of the project ⌄
1 of 4
transformation, unifying and simplifying SKGs querying, and accelerating graph processing and
analysis.
SciLake sets the following objectives:
- Overcome the underlying heterogeneity of scholarly content and address domain-specific and cross-
disciplinary information needs
- Democratize scholarly content facilitating the content acquisition and the creation, interlinking, and
management of community-based SKGs and related services
- Facilitate the identification of research trends and of valuable research objects of different types
considering various aspects of research impact
- Facilitate the assessment of the reproducibility and replicability/repeatability of research works.
- Customize, test, and demonstrate the developed services in real-world pilots
- Leverage & further enrich EOSC services landscape
The progress towards these objectives during the RP1 is elaborated in the Technical Report (Part B).
SciLake’s key results include:
- A customisable Scientific Lake service, built on SKG technologies, which includes a suite of
components designed to streamline the process of scientific knowledge acquisition, management,
and navigation
- An SKG Interoperability Framework, built upon and extending existing standards, to standardize the
way SKG contents are exposed to the developers of added-value services
- A customisable Smart Impact-driven Knowledge Discovery service, which leverages the Scientific
Lake service to significantly enhance the ability of researchers to navigate the vast landscape of
scientific outputs in the domains of interest
- A customisable Smart Reproducibility Assistance service, which leverages the Scientific Lake
service to enrich the contained SKGs with valuable information for the relationships between research
|
[
"Home",
"…",
"Horizon",
"Europe",
"Democratising",
"and",
"making",
"sense",
"out",
"of",
"heterogeneous",
"scholarly",
"content",
"\n",
"Democratising",
"and",
"making",
"sense",
"out",
"of",
"\n",
"heterogeneous",
"scholarly",
"content",
"\n",
"Reporting",
"\n",
"SciLake",
"\n",
"Grant",
"agreement",
"ID",
":",
"101058573",
"\n",
"DOI",
"\n",
"10.3030/101058573",
"",
"\n",
"EC",
"signature",
"date",
"\n",
"28",
"November",
"2022Funded",
"under",
"\n",
"Research",
"infrastructures",
"\n",
"Coordinated",
"byProject",
"Information",
"\n",
"Start",
"date",
"\n",
"1",
"January",
"2023End",
"date",
"\n",
"31",
"December",
"2025Total",
"cost",
"\n",
"€",
"4",
"809",
"450,00",
"\n",
"EU",
"contribution",
"\n",
"€",
"4",
"809",
"449,00",
"\n",
"ATHINA",
"-",
"EREVNITIKO",
"KENTRO",
"\n",
"KAINOTOMIAS",
"STIS",
"\n",
"TECHNOLOGIES",
"TIS",
"\n",
"PLIROFORIAS",
",",
"TON",
"\n",
"EPIKOINONION",
"KAI",
"TIS",
"GNOSIS",
"\n ",
"Greece",
" \n",
"Periodic",
"Reporting",
"for",
"period",
"1",
"-",
"SciLake",
"(",
"Democratising",
"\n",
"and",
"making",
"sense",
"out",
"of",
"heterogeneous",
"scholarly",
"\n",
"content",
")",
"\n",
"SciLake",
"is",
"a",
"3",
"-",
"year",
"project",
"that",
"aims",
"to",
"leverage",
"Science",
"Knowledge",
"Graphs",
"(",
"SKGs",
")",
"as",
"the",
"\n",
"foundation",
"to",
"establish",
"the",
"concept",
"of",
"the",
"Scientific",
"Lake",
":",
"a",
"research",
"ecosystem",
"designed",
"to",
"facilitate",
"\n",
"the",
"creation",
",",
"integration",
",",
"and",
"querying",
"of",
"SKGs",
".",
"This",
"ecosystem",
"includes",
"tools",
"capable",
"of",
"extracting",
"\n",
"knowledge",
"from",
"unstructured",
"data",
",",
"enhancing",
"SKG",
"interoperability",
",",
"supporting",
"knowledgeReporting",
"period",
":",
"2023",
"-",
"01",
"-",
"01",
"to",
"2024",
"-",
"06",
"-",
"30",
"\n",
"Summary",
"of",
"the",
"context",
"and",
"overall",
"objectives",
"of",
"the",
"project",
"⌄",
"\n",
"1",
"of",
"4",
"\n",
"transformation",
",",
"unifying",
"and",
"simplifying",
"SKGs",
"querying",
",",
"and",
"accelerating",
"graph",
"processing",
"and",
"\n",
"analysis",
".",
"\n",
"SciLake",
"sets",
"the",
"following",
"objectives",
":",
"\n",
"-",
"Overcome",
"the",
"underlying",
"heterogeneity",
"of",
"scholarly",
"content",
"and",
"address",
"domain",
"-",
"specific",
"and",
"cross-",
"\n",
"disciplinary",
"information",
"needs",
"\n",
"-",
"Democratize",
"scholarly",
"content",
"facilitating",
"the",
"content",
"acquisition",
"and",
"the",
"creation",
",",
"interlinking",
",",
"and",
"\n",
"management",
"of",
"community",
"-",
"based",
"SKGs",
"and",
"related",
"services",
"\n",
"-",
"Facilitate",
"the",
"identification",
"of",
"research",
"trends",
"and",
"of",
"valuable",
"research",
"objects",
"of",
"different",
"types",
"\n",
"considering",
"various",
"aspects",
"of",
"research",
"impact",
"\n",
"-",
"Facilitate",
"the",
"assessment",
"of",
"the",
"reproducibility",
"and",
"replicability",
"/",
"repeatability",
"of",
"research",
"works",
".",
"\n",
"-",
"Customize",
",",
"test",
",",
"and",
"demonstrate",
"the",
"developed",
"services",
"in",
"real",
"-",
"world",
"pilots",
"\n",
"-",
"Leverage",
"&",
"further",
"enrich",
"EOSC",
"services",
"landscape",
"\n",
"The",
"progress",
"towards",
"these",
"objectives",
"during",
"the",
"RP1",
"is",
"elaborated",
"in",
"the",
"Technical",
"Report",
"(",
"Part",
"B",
")",
".",
"\n",
"SciLake",
"’s",
"key",
"results",
"include",
":",
"\n",
"-",
"A",
"customisable",
"Scientific",
"Lake",
"service",
",",
"built",
"on",
"SKG",
"technologies",
",",
"which",
"includes",
"a",
"suite",
"of",
"\n",
"components",
"designed",
"to",
"streamline",
"the",
"process",
"of",
"scientific",
"knowledge",
"acquisition",
",",
"management",
",",
"\n",
"and",
"navigation",
"\n",
"-",
"An",
"SKG",
"Interoperability",
"Framework",
",",
"built",
"upon",
"and",
"extending",
"existing",
"standards",
",",
"to",
"standardize",
"the",
"\n",
"way",
"SKG",
"contents",
"are",
"exposed",
"to",
"the",
"developers",
"of",
"added",
"-",
"value",
"services",
"\n",
"-",
"A",
"customisable",
"Smart",
"Impact",
"-",
"driven",
"Knowledge",
"Discovery",
"service",
",",
"which",
"leverages",
"the",
"Scientific",
"\n",
"Lake",
"service",
"to",
"significantly",
"enhance",
"the",
"ability",
"of",
"researchers",
"to",
"navigate",
"the",
"vast",
"landscape",
"of",
"\n",
"scientific",
"outputs",
"in",
"the",
"domains",
"of",
"interest",
"\n",
"-",
"A",
"customisable",
"Smart",
"Reproducibility",
"Assistance",
"service",
",",
"which",
"leverages",
"the",
"Scientific",
"Lake",
"\n",
"service",
"to",
"enrich",
"the",
"contained",
"SKGs",
"with",
"valuable",
"information",
"for",
"the",
"relationships",
"between",
"research",
"\n"
] |
[] |
lation and institutional transformations generated by World War I, while
also following the biographies of these female physicians, I have been able
to show that the intersection of education and medicine opened new career
paths for women.
School medicine in interwar Romania was an important development
that helped authorities to expose young generations to medical discourse
and ensure they would willingly subject themselves to medical examination.
These developments were the outcome of changes in social assistance pol -
icy after the war. The human body was no longer considered private, since
it was destined to be examined, measured and evaluated on a regular basis
to be healthy, so that it could be productive and capable of reproduction.
In the end, what was really at stake for school authorities was the need to
determine students to obey the rules and be accountable for their own health
and well- being, as a necessary condition for becoming responsible citizens.
At the same time, the obligation of secondary girls’ schools to hire female
doctors represented a major opportunity for women. Despite the initial ten -
sions and hostility they faced in replacing men, they ended up occupying
the positions they were entitled to.
|
[
"lation",
"and",
"institutional",
"transformations",
"generated",
"by",
"World",
"War",
"I",
",",
"while",
"\n",
"also",
"following",
"the",
"biographies",
"of",
"these",
"female",
"physicians",
",",
"I",
"have",
"been",
"able",
"\n",
"to",
"show",
"that",
"the",
"intersection",
"of",
"education",
"and",
"medicine",
"opened",
"new",
"career",
"\n",
"paths",
"for",
"women",
".",
"\n",
"School",
"medicine",
"in",
"interwar",
"Romania",
"was",
"an",
"important",
"development",
"\n",
"that",
"helped",
"authorities",
"to",
"expose",
"young",
"generations",
"to",
"medical",
"discourse",
"\n",
"and",
"ensure",
"they",
"would",
"willingly",
"subject",
"themselves",
"to",
"medical",
"examination",
".",
"\n",
"These",
"developments",
"were",
"the",
"outcome",
"of",
"changes",
"in",
"social",
"assistance",
"pol",
"-",
"\n",
"icy",
"after",
"the",
"war",
".",
"The",
"human",
"body",
"was",
"no",
"longer",
"considered",
"private",
",",
"since",
"\n",
"it",
"was",
"destined",
"to",
"be",
"examined",
",",
"measured",
"and",
"evaluated",
"on",
"a",
"regular",
"basis",
"\n",
"to",
"be",
"healthy",
",",
"so",
"that",
"it",
"could",
"be",
"productive",
"and",
"capable",
"of",
"reproduction",
".",
"\n",
"In",
"the",
"end",
",",
"what",
"was",
"really",
"at",
"stake",
"for",
"school",
"authorities",
"was",
"the",
"need",
"to",
"\n",
"determine",
"students",
"to",
"obey",
"the",
"rules",
"and",
"be",
"accountable",
"for",
"their",
"own",
"health",
"\n",
"and",
"well-",
" ",
"being",
",",
"as",
"a",
"necessary",
"condition",
"for",
"becoming",
"responsible",
"citizens",
".",
"\n",
"At",
"the",
"same",
"time",
",",
"the",
"obligation",
"of",
"secondary",
"girls",
"’",
"schools",
"to",
"hire",
"female",
"\n",
"doctors",
"represented",
"a",
"major",
"opportunity",
"for",
"women",
".",
"Despite",
"the",
"initial",
"ten",
"-",
"\n",
"sions",
"and",
"hostility",
"they",
"faced",
"in",
"replacing",
"men",
",",
"they",
"ended",
"up",
"occupying",
"\n",
"the",
"positions",
"they",
"were",
"entitled",
"to",
"."
] |
[] |
# Gender pay gap underestimated in official statistics
26 August 2025
A new study reveals that the UK’s gender pay gap is larger than official estimates because the data used to calculate it is not weighted properly to account for jobs in small, young, private sector organisations.
<!-- image -->
Researchers at UCL, Bayes Business School, the University of the West of England and the University of Stirling reviewed the Office for National Statistics’ (ONS) Annual Survey of Hours and Earnings (ASHE), which is used to calculate the UK gender pay gap.
Published in the British Journal of Industrial Relations, the study found that despite efforts to weight the sample to be representative of the breadth of the UK workforce, it had not accounted for higher survey non-responses rate from some types of employers.
Having developed and applied a more representative revised weighting scheme, the researchers re-estimated the size of the UK gender pay gap. They found the gap has been consistently under-estimated over the past 20 years by a small but noteworthy margin of around one percentage point.
This happened because the original weighting under-represented smaller private sector firms, especially for women, and over-represented larger and public sector employers, where pay is generally higher and the differences between men and women within jobs are generally smaller. This underrepresentation was due to smaller private firms being less likely to respond to the ONS’s survey.
Despite being a mandatory requirement, on average only 63% of employers responded to the survey between 1997-2019, dropping to just 46% since 2020. The response rate among the largest firms was around 50 percentage points higher than among the smallest firms, and around 15 percentage points higher among public sector employers than private sector.
Co-author Professor Alex Bryson (UCL Social Research Institute) explained: “When we saw the higher non-response rate among some firms, we questioned whether this could be skewing the sample and, therefore, distorting its findings.
The study also used the revised weighting to review the mechanisms used to set the National Minimum Wage (NMW) and National Living Wage (NLW).
The researchers found that the government had inadvertently achieved its target of setting a NLW of 2/3rds of median hourly earnings one year ahead of schedule, in 2023. This was because non-response to the survey meant they had over-estimated median hourly earnings. The researchers recommend a review of the ONS’s Annual Survey of Hours and
|
[
"#",
"Gender",
"pay",
"gap",
"underestimated",
"in",
"official",
"statistics",
"\n\n",
"26",
"August",
"2025",
"\n\n",
"A",
"new",
"study",
"reveals",
"that",
"the",
"UK",
"’s",
"gender",
"pay",
"gap",
"is",
"larger",
"than",
"official",
"estimates",
"because",
"the",
"data",
"used",
"to",
"calculate",
"it",
"is",
"not",
"weighted",
"properly",
"to",
"account",
"for",
"jobs",
"in",
"small",
",",
"young",
",",
"private",
"sector",
"organisations",
".",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Researchers",
"at",
"UCL",
",",
"Bayes",
"Business",
"School",
",",
"the",
"University",
"of",
"the",
"West",
"of",
"England",
"and",
"the",
"University",
"of",
"Stirling",
"reviewed",
"the",
"Office",
"for",
"National",
"Statistics",
"’",
"(",
"ONS",
")",
"Annual",
"Survey",
"of",
"Hours",
"and",
"Earnings",
"(",
"ASHE",
")",
",",
"which",
"is",
"used",
"to",
"calculate",
"the",
"UK",
"gender",
"pay",
"gap",
".",
"\n\n",
"Published",
"in",
"the",
"British",
"Journal",
"of",
"Industrial",
"Relations",
",",
"the",
"study",
"found",
"that",
"despite",
"efforts",
"to",
"weight",
"the",
"sample",
"to",
"be",
"representative",
"of",
"the",
"breadth",
"of",
"the",
"UK",
"workforce",
",",
"it",
"had",
"not",
"accounted",
"for",
"higher",
"survey",
"non",
"-",
"responses",
"rate",
"from",
"some",
"types",
"of",
"employers",
".",
"\n\n",
"Having",
"developed",
"and",
"applied",
"a",
"more",
"representative",
"revised",
"weighting",
"scheme",
",",
"the",
"researchers",
"re",
"-",
"estimated",
"the",
"size",
"of",
"the",
"UK",
"gender",
"pay",
"gap",
".",
"They",
"found",
"the",
"gap",
"has",
"been",
"consistently",
"under",
"-",
"estimated",
"over",
"the",
"past",
"20",
"years",
"by",
"a",
"small",
"but",
"noteworthy",
"margin",
"of",
"around",
"one",
"percentage",
"point",
".",
"\n\n",
"This",
"happened",
"because",
"the",
"original",
"weighting",
"under",
"-",
"represented",
"smaller",
"private",
"sector",
"firms",
",",
"especially",
"for",
"women",
",",
"and",
"over",
"-",
"represented",
"larger",
"and",
"public",
"sector",
"employers",
",",
"where",
"pay",
"is",
"generally",
"higher",
"and",
"the",
"differences",
"between",
"men",
"and",
"women",
"within",
"jobs",
"are",
"generally",
"smaller",
".",
"This",
"underrepresentation",
"was",
"due",
"to",
"smaller",
"private",
"firms",
"being",
"less",
"likely",
"to",
"respond",
"to",
"the",
"ONS",
"’s",
"survey",
".",
"\n\n",
"Despite",
"being",
"a",
"mandatory",
"requirement",
",",
"on",
"average",
"only",
"63",
"%",
"of",
"employers",
"responded",
"to",
"the",
"survey",
"between",
"1997",
"-",
"2019",
",",
"dropping",
"to",
"just",
"46",
"%",
"since",
"2020",
".",
"The",
"response",
"rate",
"among",
"the",
"largest",
"firms",
"was",
"around",
"50",
"percentage",
"points",
"higher",
"than",
"among",
"the",
"smallest",
"firms",
",",
"and",
"around",
"15",
"percentage",
"points",
"higher",
"among",
"public",
"sector",
"employers",
"than",
"private",
"sector",
".",
"\n",
"Co",
"-",
"author",
"Professor",
"Alex",
"Bryson",
"(",
"UCL",
"Social",
"Research",
"Institute",
")",
"explained",
":",
" ",
"“",
"When",
"we",
"saw",
"the",
"higher",
"non",
"-",
"response",
"rate",
"among",
"some",
"firms",
",",
"we",
"questioned",
"whether",
"this",
"could",
"be",
"skewing",
"the",
"sample",
"and",
",",
"therefore",
",",
"distorting",
"its",
"findings",
".",
"\n\n",
"The",
"study",
"also",
"used",
"the",
"revised",
"weighting",
"to",
"review",
"the",
"mechanisms",
"used",
"to",
"set",
"the",
"National",
"Minimum",
"Wage",
"(",
"NMW",
")",
"and",
"National",
"Living",
"Wage",
"(",
"NLW",
")",
".",
"\n\n",
"The",
"researchers",
"found",
"that",
"the",
"government",
"had",
"inadvertently",
"achieved",
"its",
"target",
"of",
"setting",
"a",
"NLW",
"of",
"2/3rds",
"of",
"median",
"hourly",
"earnings",
"one",
"year",
"ahead",
"of",
"schedule",
",",
"in",
"2023",
".",
"This",
"was",
"because",
"non",
"-",
"response",
"to",
"the",
"survey",
"meant",
"they",
"had",
"over",
"-",
"estimated",
"median",
"hourly",
"earnings",
".",
"The",
"researchers",
"recommend",
"a",
"review",
"of",
"the",
"ONS",
"’s",
"Annual",
"Survey",
"of",
"Hours",
"and"
] |
[] |
Dr Ansari's clinic is housed in a 12-foot by 8-foot space cooled by a ceiling fan on the lower ground floor of a threestorey home. Behind his desk, Ansari wears a well-ironed yellow shirt with earphones slung around his shoulders. He is welcoming, giving an air of assurance and professionalism. There seems to be no shortage of medical supplies. Two glassfronted cabinets are stacked and overflowing with packages. The fridge, stand -ing on a pallet and away from the wall, has a poster of Ganesha, one of the most well-known and worshipped deities in the Hindu religion. He has the head of an elephant, symbolising wisdom and intellect. Ganesha is seen as a remover of obstacles, thus clearing the way to allow one to move forward in life. He is the bringer of good luck and the patron of arts and sciences, and the deva of intellect and wisdom. No wonder he has pride of place in Ansari's practice. A calendar is pinned up on the opposite wall, assumably provided free by a pharmaceutical rep, as it features illustrations of babies dressed as medics - stethoscope, glasses and white coats prevail. Two benches, either side of the desk, run from the door to halfway down the room. One has a pillow and a red plastic chair adjacent. It would seem that this bench is for patients who are about to be examined to lie on comfortably. The other bench provides space for about three people to sit to talk confidentially to the doc -tor at his desk. Ansari's clinic is typical of those we visited. He's been taking care of this community from the same small one-room clinic since 1997.
While we talk, he tells us all about his journey from dreaming of being a doctor as a child to setting up his first practice and how things are now. His clinic is busy, so our conversation gets interrupted by patients quite a bit. They come in without hesitation, trusting Dr Ansari completely. 'He's a great doctor', they tell us, 'He's healed many of our family members'. He charges anywhere from 10 to 20 rupees per visit, depending on the patient's illness. Patients are happy to see Dr Ansari; they talk freely with him and listen closely and intently to his advice.
Dr Ansari lives with his wife and three grown-up children - two daughters, 24 and 22, and a
|
[
"Dr",
"Ansari",
"'s",
"clinic",
"is",
"housed",
"in",
"a",
"12",
"-",
"foot",
"by",
"8",
"-",
"foot",
"space",
"cooled",
"by",
"a",
"ceiling",
"fan",
"on",
"the",
"lower",
"ground",
"floor",
"of",
"a",
"threestorey",
"home",
".",
"Behind",
"his",
"desk",
",",
"Ansari",
"wears",
"a",
"well",
"-",
"ironed",
"yellow",
"shirt",
"with",
"earphones",
"slung",
"around",
"his",
"shoulders",
".",
"He",
"is",
"welcoming",
",",
"giving",
"an",
"air",
"of",
"assurance",
"and",
"professionalism",
".",
"There",
"seems",
"to",
"be",
"no",
"shortage",
"of",
"medical",
"supplies",
".",
"Two",
"glassfronted",
" ",
"cabinets",
" ",
"are",
" ",
"stacked",
" ",
"and",
" ",
"overflowing",
" ",
"with",
" ",
"packages",
".",
" ",
"The",
" ",
"fridge",
",",
" ",
"stand",
"-ing",
"on",
"a",
"pallet",
"and",
"away",
"from",
"the",
"wall",
",",
"has",
"a",
"poster",
"of",
"Ganesha",
",",
"one",
"of",
"the",
"most",
"well",
"-",
"known",
"and",
"worshipped",
"deities",
"in",
"the",
"Hindu",
"religion",
".",
"He",
"has",
"the",
"head",
"of",
"an",
"elephant",
",",
"symbolising",
"wisdom",
"and",
"intellect",
".",
"Ganesha",
"is",
"seen",
"as",
"a",
"remover",
"of",
"obstacles",
",",
"thus",
"clearing",
"the",
"way",
"to",
"allow",
"one",
"to",
"move",
"forward",
"in",
"life",
".",
"He",
"is",
"the",
"bringer",
"of",
"good",
"luck",
"and",
"the",
"patron",
"of",
"arts",
"and",
"sciences",
",",
"and",
"the",
"deva",
"of",
"intellect",
"and",
"wisdom",
".",
"No",
"wonder",
"he",
"has",
"pride",
"of",
"place",
"in",
"Ansari",
"'s",
"practice",
".",
"A",
"calendar",
"is",
"pinned",
"up",
"on",
"the",
"opposite",
"wall",
",",
"assumably",
"provided",
"free",
"by",
"a",
"pharmaceutical",
"rep",
",",
"as",
"it",
"features",
"illustrations",
" ",
"of",
" ",
"babies",
" ",
"dressed",
" ",
"as",
" ",
"medics",
" ",
"-",
" ",
"stethoscope",
",",
" ",
"glasses",
" ",
"and",
" ",
"white",
" ",
"coats",
"prevail",
".",
"Two",
"benches",
",",
"either",
"side",
"of",
"the",
"desk",
",",
"run",
"from",
"the",
"door",
"to",
"halfway",
"down",
"the",
"room",
".",
"One",
"has",
"a",
"pillow",
"and",
"a",
"red",
"plastic",
"chair",
"adjacent",
".",
"It",
"would",
"seem",
"that",
"this",
"bench",
"is",
"for",
"patients",
"who",
"are",
"about",
"to",
"be",
"examined",
"to",
"lie",
"on",
"comfortably",
".",
"The",
"other",
"bench",
"provides",
"space",
"for",
"about",
"three",
"people",
"to",
"sit",
"to",
"talk",
"confidentially",
"to",
"the",
"doc",
"-tor",
"at",
"his",
"desk",
".",
"Ansari",
"'s",
"clinic",
"is",
"typical",
"of",
"those",
"we",
"visited",
".",
"He",
"'s",
"been",
"taking",
"care",
"of",
"this",
"community",
"from",
"the",
"same",
"small",
"one",
"-",
"room",
"clinic",
"since",
"1997",
".",
"\n\n",
"While",
"we",
"talk",
",",
"he",
"tells",
"us",
"all",
"about",
"his",
"journey",
"from",
"dreaming",
"of",
"being",
"a",
"doctor",
"as",
"a",
"child",
"to",
"setting",
"up",
"his",
"first",
"practice",
"and",
"how",
"things",
"are",
"now",
".",
"His",
"clinic",
"is",
"busy",
",",
"so",
"our",
"conversation",
"gets",
"interrupted",
"by",
"patients",
"quite",
"a",
"bit",
".",
"They",
"come",
"in",
"without",
"hesitation",
",",
"trusting",
"Dr",
"Ansari",
"completely",
".",
"'",
"He",
"'s",
"a",
"great",
"doctor",
"'",
",",
"they",
"tell",
"us",
",",
"'",
"He",
"'s",
"healed",
"many",
"of",
"our",
"family",
"members",
"'",
".",
"He",
"charges",
"anywhere",
"from",
"10",
"to",
"20",
"rupees",
"per",
"visit",
",",
"depending",
"on",
"the",
"patient",
"'s",
"illness",
".",
"Patients",
"are",
"happy",
"to",
"see",
"Dr",
"Ansari",
";",
"they",
"talk",
"freely",
"with",
"him",
"and",
"listen",
"closely",
"and",
"intently",
"to",
"his",
"advice",
".",
"\n\n",
"Dr",
"Ansari",
"lives",
"with",
"his",
"wife",
"and",
"three",
"grown",
"-",
"up",
"children",
"-",
"two",
"daughters",
",",
"24",
"and",
"22",
",",
"and",
"a"
] |
[] |
OFFICE
2, rue André Pascal
75775 Paris Cedex 16
France
OECD.org
X @OECD
|
[
"OFFICE",
"\n",
"2",
",",
"rue",
"André",
"Pascal",
" \n",
"75775",
"Paris",
"Cedex",
"16",
" \n",
"France",
"\n",
"OECD.org",
" \n",
"X",
"@OECD"
] |
[] |
the great majority of households in all three areas agree with these attributes/statements (SC1 - 89.3%; 70.9%; 77.3%) (SC4 - 95.5%; 78.8%; 87.1%).
There are two statements where there is a statistically significant difference for the answers provided by the households in the different bastis. Carrying out
Table 3.2 Auerbach's social capital scale
| Variables | Sanjay colony N = 311 | Bhalswa N = 328 | Ajit Vihar N = 365 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|----------------------|
| (SC1) If a family here is short of money, or has a member who is sick or dies, will people here in the settlement help that family in need? [No = 0; Yes = 1] | 89.3% | 70.9% | 77.3% |
| (SC2) If you were short of money and needed Rs 1,000, would your neighbours in the settlement lend you the money? [No = 0; Yes = 1] | 75.8% | 62.1% | 73.4% |
| (SC3) In your opinion, would your neighbours in the settlement give time or money to improve the development of the settlement? [No = 0; Yes = 1] | 74.6% | 50.3% | 79.2% |
| (SC4) If there were a big problem in the settlement, like no water or electricity for several days, would people in this settlement unite to solve the problem? [No = 0; Yes = 1] | 95.5% | 78.8% | 87.1% |
| (SC5) When people here are free, do they mostly socialise and spend time with their own social group or do they mix with other social groups? [own group = 0; other group = 1] | 41.7% | 42.0% | 51.20% |
| (SC6) People in this settlement only really care about their own household and don't care about the welfare of the settlement as a whole. [false = 0; true = 1] | 57.1% | 51.4% | 66.6% |
| (SC7) Generally speaking, how much do you (mainly) trust people in this settlement? [a little = 0; a lot = 1] | 47.6% | 29.1% | 54.5% |
Note: Cronbach Alpha is 0.8.
a Scheffe test illustrates that Bhalswa is significantly different from the two other settlement types regarding SC3 and SC7. With regards to improving the neigh -bourhood, the statement (SC3) 'would your neighbours in the settlement give time or money to improve the development of the settlement?' shows a statistically significant difference for residents' responses in Bhalswa (p<0.05)
|
[
"the",
"great",
" ",
"majority",
" ",
"of",
" ",
"households",
" ",
"in",
" ",
"all",
" ",
"three",
" ",
"areas",
" ",
"agree",
" ",
"with",
" ",
"these",
" ",
"attributes",
"/",
"statements",
"(",
"SC1",
"-",
"89.3",
"%",
";",
"70.9",
"%",
";",
"77.3",
"%",
")",
"(",
"SC4",
"-",
"95.5",
"%",
";",
"78.8",
"%",
";",
"87.1",
"%",
")",
".",
"\n\n",
"There",
" ",
"are",
" ",
"two",
" ",
"statements",
" ",
"where",
" ",
"there",
" ",
"is",
" ",
"a",
" ",
"statistically",
" ",
"significant",
" ",
"difference",
"for",
"the",
"answers",
"provided",
"by",
"the",
"households",
"in",
"the",
"different",
"bastis",
".",
"Carrying",
"out",
"\n\n",
"Table",
"3.2",
"Auerbach",
"'s",
"social",
"capital",
"scale",
"\n\n",
"|",
"Variables",
" ",
"|",
"Sanjay",
"colony",
"N",
"=",
"311",
" ",
"|",
"Bhalswa",
"N",
"=",
"328",
" ",
"|",
"Ajit",
"Vihar",
"N",
"=",
"365",
" ",
"|",
"\n",
"|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|----------------------|",
"\n",
"|",
"(",
"SC1",
")",
"If",
"a",
"family",
"here",
"is",
"short",
"of",
"money",
",",
"or",
"has",
"a",
"member",
"who",
"is",
"sick",
"or",
"dies",
",",
"will",
"people",
"here",
"in",
"the",
"settlement",
"help",
"that",
"family",
"in",
"need",
"?",
"[",
"No",
"=",
"0",
";",
"Yes",
"=",
"1",
"]",
" ",
"|",
"89.3",
"%",
" ",
"|",
"70.9",
"%",
" ",
"|",
"77.3",
"%",
" ",
"|",
"\n",
"|",
"(",
"SC2",
")",
"If",
"you",
"were",
"short",
"of",
"money",
"and",
"needed",
"Rs",
"1,000",
",",
"would",
"your",
"neighbours",
"in",
"the",
"settlement",
"lend",
"you",
"the",
"money",
"?",
"[",
"No",
"=",
"0",
";",
"Yes",
"=",
"1",
"]",
" ",
"|",
"75.8",
"%",
" ",
"|",
"62.1",
"%",
" ",
"|",
"73.4",
"%",
" ",
"|",
"\n",
"|",
"(",
"SC3",
")",
"In",
"your",
"opinion",
",",
"would",
"your",
"neighbours",
"in",
"the",
"settlement",
"give",
"time",
"or",
"money",
"to",
"improve",
"the",
"development",
"of",
"the",
"settlement",
"?",
"[",
"No",
"=",
"0",
";",
"Yes",
"=",
"1",
"]",
" ",
"|",
"74.6",
"%",
" ",
"|",
"50.3",
"%",
" ",
"|",
"79.2",
"%",
" ",
"|",
"\n",
"|",
"(",
"SC4",
")",
"If",
"there",
"were",
"a",
"big",
"problem",
"in",
"the",
"settlement",
",",
"like",
"no",
"water",
"or",
"electricity",
"for",
"several",
"days",
",",
"would",
"people",
"in",
"this",
"settlement",
"unite",
"to",
"solve",
"the",
"problem",
"?",
"[",
"No",
"=",
"0",
";",
"Yes",
"=",
"1",
"]",
"|",
"95.5",
"%",
" ",
"|",
"78.8",
"%",
" ",
"|",
"87.1",
"%",
" ",
"|",
"\n",
"|",
"(",
"SC5",
")",
"When",
"people",
"here",
"are",
"free",
",",
"do",
"they",
"mostly",
"socialise",
"and",
"spend",
"time",
"with",
"their",
"own",
"social",
"group",
"or",
"do",
"they",
"mix",
"with",
"other",
"social",
"groups",
"?",
"[",
"own",
"group",
"=",
"0",
";",
"other",
"group",
"=",
"1",
"]",
" ",
"|",
"41.7",
"%",
" ",
"|",
"42.0",
"%",
" ",
"|",
"51.20",
"%",
" ",
"|",
"\n",
"|",
"(",
"SC6",
")",
"People",
"in",
"this",
"settlement",
"only",
"really",
"care",
"about",
"their",
"own",
"household",
"and",
"do",
"n't",
"care",
"about",
"the",
"welfare",
"of",
"the",
"settlement",
"as",
"a",
"whole",
".",
"[",
"false",
"=",
"0",
";",
"true",
"=",
"1",
"]",
" ",
"|",
"57.1",
"%",
" ",
"|",
"51.4",
"%",
" ",
"|",
"66.6",
"%",
" ",
"|",
"\n",
"|",
"(",
"SC7",
")",
"Generally",
"speaking",
",",
"how",
"much",
"do",
"you",
"(",
"mainly",
")",
"trust",
"people",
"in",
"this",
"settlement",
"?",
"[",
"a",
"little",
"=",
"0",
";",
"a",
"lot",
"=",
"1",
"]",
" ",
"|",
"47.6",
"%",
" ",
"|",
"29.1",
"%",
" ",
"|",
"54.5",
"%",
" ",
"|",
"\n\n",
"Note",
":",
"Cronbach",
"Alpha",
"is",
"0.8",
".",
"\n\n",
"a",
"Scheffe",
"test",
"illustrates",
"that",
"Bhalswa",
"is",
"significantly",
"different",
"from",
"the",
"two",
"other",
"settlement",
"types",
"regarding",
"SC3",
"and",
"SC7",
".",
"With",
"regards",
"to",
"improving",
"the",
"neigh",
"-bourhood",
",",
"the",
"statement",
"(",
"SC3",
")",
"'",
"would",
"your",
"neighbours",
"in",
"the",
"settlement",
"give",
"time",
"or",
" ",
"money",
" ",
"to",
" ",
"improve",
" ",
"the",
" ",
"development",
" ",
"of",
" ",
"the",
" ",
"settlement",
"?",
"'",
" ",
"shows",
" ",
"a",
" ",
"statistically",
"significant",
" ",
"difference",
" ",
"for",
" ",
"residents",
"'",
" ",
"responses",
" ",
"in",
" ",
"Bhalswa",
" ",
"(",
"p<0.05",
")",
" "
] |
[] |
Poison Into Golden Crystals
- Ancient Oxygen Flood Changed Life Forever
- Bumble Bees Balance Their Diets With Precision
- Spacetime Crystals Made of Knotted Light
- Tiny Hologram for Ultraprecise Light Control
- High-Performance Iron Catalyst for Fuel Cells
- Sharks’ Teeth Are Crumbling in Acid Seas
- “Molten Rock Raindrops” Reveal ...
- Capturing Sunshine in a Molecule for Clean Fuel
## Trending Topics
this week
## Strange & Offbeat
<!-- image -->
<!-- image -->
Report Ad
- SD
- Home Page
- Top Science News
- Latest News
- Home /dropdown-menu
- Home Page
- Top Science News
- Latest News
- Health /dropdown-menu
- View all the latest top news in the health sciences, or browse the topics below: Health & Medicine /menu-topics /col-xs-4 Mind & Brain /menu-topics /col-xs-4 Living Well /menu-topics /col-xs-4 /row /yamm-content
- View all the latest in the health sciences, or browse the topics below:
- Allergy
- Cancer
- Cold and Flu
- Diabetes
- Heart Disease
- ... more topics
- ADD and ADHD
- Alzheimer's
- Headaches
- Intelligence
- Psychology
- ... more topics
- Parenting
- Child Development
- Stress
- Nutrition
- Fitness
- ... more topics
- Tech /dropdown-menu
- View all the latest top news in the physical sciences & technology, or browse the topics below: Matter & Energy /menu-topics /col-xs-4 Space & Time /menu-topics /col-xs-4 Computers & Math /menu-topics /col-xs-4 /row /yamm-content
- View all the latest in the physical sciences & technology, or browse the topics below:
- Chemistry
- Fossil Fuels
- Nanotechnology
- Physics
- Solar Energy
- ... more topics
- Black Holes
- Dark Matter
- Extrasolar Planets
- Solar System
- Space Telescopes
- ... more topics
- Artificial Intelligence
- Mathematics
- Quantum Computers
- Robotics
- Virtual Reality
- ... more topics
- Enviro /dropdown-menu
- View all the latest top news in the environmental sciences, or browse the topics below: Plants & Animals /menu-topics /col-xs-4 Earth & Climate /menu-topics /col-xs-4 Fossils & Ruins /menu-topics /col-xs-4 /row /yamm-content
- View all the latest in the environmental sciences, or browse the topics below:
- Agriculture and Food
- Biology
- Biotechnology
- Extinction
- Microbes and More
- ... more topics
- Climate
- Earthquakes
- Geology
- Global Warming
- Pollution
- ... more topics
- Anthropology
- Archaeology
- Dinosaurs
- Evolution
-
|
[
"Poison",
"Into",
"Golden",
"Crystals",
"\n",
"-",
"Ancient",
"Oxygen",
"Flood",
"Changed",
"Life",
"Forever",
"\n",
"-",
"Bumble",
"Bees",
"Balance",
"Their",
"Diets",
"With",
"Precision",
"\n",
"-",
"Spacetime",
"Crystals",
"Made",
"of",
"Knotted",
"Light",
"\n",
"-",
"Tiny",
"Hologram",
"for",
"Ultraprecise",
"Light",
"Control",
"\n",
"-",
"High",
"-",
"Performance",
"Iron",
"Catalyst",
"for",
"Fuel",
"Cells",
"\n",
"-",
"Sharks",
"’",
"Teeth",
"Are",
"Crumbling",
"in",
"Acid",
"Seas",
"\n",
"-",
"“",
"Molten",
"Rock",
"Raindrops",
"”",
"Reveal",
"...",
"\n",
"-",
"Capturing",
"Sunshine",
"in",
"a",
"Molecule",
"for",
"Clean",
"Fuel",
"\n\n",
"#",
"#",
"Trending",
"Topics",
"\n\n",
"this",
"week",
"\n\n",
"#",
"#",
"Strange",
"&",
"amp",
";",
"Offbeat",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Report",
"Ad",
"\n\n",
"-",
"SD",
"\n ",
"-",
"Home",
"Page",
"\n ",
"-",
"Top",
"Science",
"News",
"\n ",
"-",
"Latest",
"News",
"\n\n",
"-",
"Home",
"/dropdown",
"-",
"menu",
"\n ",
"-",
"Home",
"Page",
"\n ",
"-",
"Top",
"Science",
"News",
"\n ",
"-",
"Latest",
"News",
"\n",
"-",
"Health",
"/dropdown",
"-",
"menu",
"\n ",
"-",
"View",
"all",
"the",
"latest",
"top",
"news",
"in",
"the",
"health",
"sciences",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"Health",
"&",
"amp",
";",
"Medicine",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Mind",
"&",
"amp",
";",
"Brain",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Living",
"Well",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"/row",
"/yamm",
"-",
"content",
"\n ",
"-",
"View",
"all",
"the",
"latest",
" ",
"in",
"the",
"health",
"sciences",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"\n ",
"-",
"Allergy",
"\n ",
"-",
"Cancer",
"\n ",
"-",
"Cold",
"and",
"Flu",
"\n ",
"-",
"Diabetes",
"\n ",
"-",
"Heart",
"Disease",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"ADD",
"and",
"ADHD",
"\n ",
"-",
"Alzheimer",
"'s",
"\n ",
"-",
"Headaches",
"\n ",
"-",
"Intelligence",
"\n ",
"-",
"Psychology",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Parenting",
"\n ",
"-",
"Child",
"Development",
"\n ",
"-",
"Stress",
"\n ",
"-",
"Nutrition",
"\n ",
"-",
"Fitness",
"\n ",
"-",
"...",
"more",
"topics",
"\n",
"-",
"Tech",
"/dropdown",
"-",
"menu",
"\n ",
"-",
"View",
"all",
"the",
"latest",
"top",
"news",
"in",
"the",
"physical",
"sciences",
"&",
"amp",
";",
"technology",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"Matter",
"&",
"amp",
";",
"Energy",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Space",
"&",
"amp",
";",
"Time",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Computers",
"&",
"amp",
";",
"Math",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"/row",
"/yamm",
"-",
"content",
"\n ",
"-",
"View",
"all",
"the",
"latest",
" ",
"in",
"the",
"physical",
"sciences",
"&",
"amp",
";",
"technology",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"\n ",
"-",
"Chemistry",
"\n ",
"-",
"Fossil",
"Fuels",
"\n ",
"-",
"Nanotechnology",
"\n ",
"-",
"Physics",
"\n ",
"-",
"Solar",
"Energy",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Black",
"Holes",
"\n ",
"-",
"Dark",
"Matter",
"\n ",
"-",
"Extrasolar",
"Planets",
"\n ",
"-",
"Solar",
"System",
"\n ",
"-",
"Space",
"Telescopes",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Artificial",
"Intelligence",
"\n ",
"-",
"Mathematics",
"\n ",
"-",
"Quantum",
"Computers",
"\n ",
"-",
"Robotics",
"\n ",
"-",
"Virtual",
"Reality",
"\n ",
"-",
"...",
"more",
"topics",
"\n",
"-",
"Enviro",
"/dropdown",
"-",
"menu",
"\n ",
"-",
"View",
"all",
"the",
"latest",
"top",
"news",
"in",
"the",
"environmental",
"sciences",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"Plants",
"&",
"amp",
";",
"Animals",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Earth",
"&",
"amp",
";",
"Climate",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Fossils",
"&",
"amp",
";",
"Ruins",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"/row",
"/yamm",
"-",
"content",
"\n ",
"-",
"View",
"all",
"the",
"latest",
" ",
"in",
"the",
"environmental",
"sciences",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"\n ",
"-",
"Agriculture",
"and",
"Food",
"\n ",
"-",
"Biology",
"\n ",
"-",
"Biotechnology",
"\n ",
"-",
"Extinction",
"\n ",
"-",
"Microbes",
"and",
"More",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Climate",
"\n ",
"-",
"Earthquakes",
"\n ",
"-",
"Geology",
"\n ",
"-",
"Global",
"Warming",
"\n ",
"-",
"Pollution",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Anthropology",
"\n ",
"-",
"Archaeology",
"\n ",
"-",
"Dinosaurs",
"\n ",
"-",
"Evolution",
"\n ",
"-"
] |
[] |
Activities of trade unions X X X
94.9 Activities of other membership organisations X X X
95 Repair of computers and personal and household goods
95.1 Repair of computers and communication equipment X X
95.2 Repair of personal and household goods
96 Other personal service activities X X X X
TACTIVITIES OF HOUSEHOLDS AS EMPLOYERS; UNDIFFERENTIATED
GOODS- AND SERVICES-PRODUCING ACTIVITIES OF HOUSEHOLDS
FOR OWN USE
97 Activities of households as employers of domestic personnel
98Undifferentiated goods- and services-producing activities of private
households for own use
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation295 296
Annexes
GEORGIA MOLDOVA UKRAINEEmploy-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
NACE Industry name Current Current CurrentEmerg-
ingEmerg-
ingEmerg-
ingCurrent Current CurrentEmerg-
ingEmerg-
ingEmerg-
ingCurrent Current CurrentEmerg-
ingEmerg-
ingEmerg-
ing
34 52 28 61 64 40 31 29 15 50 47 21 55 40 35 83 57 34
98.1Undifferentiated goods-producing activities of private households for
own use
98.2Undifferentiated service-producing activities of private households
for own use
U ACTIVITIES OF EXTRATERRITORIAL ORGANISATIONS AND BODIES
99 Activities of extraterritorial organisations and bodies
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation297 298
Annexes
Annex 2. Results of
the partial economic
mapping analysis for
Manufacturing for five
EaP countriesAn ‘X’ in a yellow-coloured cell shows whether an
industry passed an individual criterion, either for
the number of employees (or employment) and
turnover. An ‘X’ in a green-coloured cell shows
whether an industry passed the criteria for both
the number of employees (or employment) and
turnover.
ARMENIA AZERBAIJAN GEORGIA MOLDOVA UKRAINEEmploy-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
NACE Industry name Current Emerging Current Emerging Current Emerging Current Emerging Current Emerging
5 5 3 10 8 5 6 5 2 6 11 4 5 8 4 11 5 4 7 10 5 1 7 1
|
[
"Activities",
"of",
"trade",
"unions",
"X",
"X",
"X",
" \n",
"94.9",
"Activities",
"of",
"other",
"membership",
"organisations",
"X",
"X",
"X",
" \n",
"95",
"Repair",
"of",
"computers",
"and",
"personal",
"and",
"household",
"goods",
" \n",
"95.1",
"Repair",
"of",
"computers",
"and",
"communication",
"equipment",
" ",
"X",
" ",
"X",
" \n",
"95.2",
"Repair",
"of",
"personal",
"and",
"household",
"goods",
" \n",
"96",
"Other",
"personal",
"service",
"activities",
" ",
"X",
" ",
"X",
"X",
"X",
" \n",
"TACTIVITIES",
"OF",
"HOUSEHOLDS",
"AS",
"EMPLOYERS",
";",
"UNDIFFERENTIATED",
"\n",
"GOODS-",
"AND",
"SERVICES",
"-",
"PRODUCING",
"ACTIVITIES",
"OF",
"HOUSEHOLDS",
"\n",
"FOR",
"OWN",
"USE",
" \n",
"97",
"Activities",
"of",
"households",
"as",
"employers",
"of",
"domestic",
"personnel",
" \n",
"98Undifferentiated",
"goods-",
"and",
"services",
"-",
"producing",
"activities",
"of",
"private",
"\n",
"households",
"for",
"own",
"use",
" \n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation295",
"296",
"\n",
"Annexes",
"\n",
"GEORGIA",
"MOLDOVA",
"UKRAINEEmploy-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"NACE",
"Industry",
"name",
"Current",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingCurrent",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingCurrent",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ing",
"\n",
"34",
"52",
"28",
"61",
"64",
"40",
"31",
"29",
"15",
"50",
"47",
"21",
"55",
"40",
"35",
"83",
"57",
"34",
"\n",
"98.1Undifferentiated",
"goods",
"-",
"producing",
"activities",
"of",
"private",
"households",
"for",
"\n",
"own",
"use",
" \n",
"98.2Undifferentiated",
"service",
"-",
"producing",
"activities",
"of",
"private",
"households",
"\n",
"for",
"own",
"use",
" \n",
"U",
"ACTIVITIES",
"OF",
"EXTRATERRITORIAL",
"ORGANISATIONS",
"AND",
"BODIES",
" \n",
"99",
"Activities",
"of",
"extraterritorial",
"organisations",
"and",
"bodies",
" \n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation297",
"298",
"\n",
"Annexes",
"\n",
"Annex",
"2",
".",
"Results",
"of",
"\n",
"the",
"partial",
"economic",
"\n",
"mapping",
"analysis",
"for",
"\n",
"Manufacturing",
"for",
"five",
"\n",
"EaP",
"countriesAn",
"‘",
"X",
"’",
"in",
"a",
"yellow",
"-",
"coloured",
"cell",
"shows",
"whether",
"an",
"\n",
"industry",
"passed",
"an",
"individual",
"criterion",
",",
"either",
"for",
"\n",
"the",
"number",
"of",
"employees",
"(",
"or",
"employment",
")",
"and",
"\n",
"turnover",
".",
"An",
"‘",
"X",
"’",
"in",
"a",
"green",
"-",
"coloured",
"cell",
"shows",
"\n",
"whether",
"an",
"industry",
"passed",
"the",
"criteria",
"for",
"both",
"\n",
"the",
"number",
"of",
"employees",
"(",
"or",
"employment",
")",
"and",
"\n",
"turnover",
".",
"\n",
"ARMENIA",
"AZERBAIJAN",
"GEORGIA",
"MOLDOVA",
"UKRAINEEmploy-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"NACE",
"Industry",
"name",
"Current",
"Emerging",
"Current",
"Emerging",
"Current",
"Emerging",
"Current",
"Emerging",
"Current",
"Emerging",
"\n",
"5",
"5",
"3",
"10",
"8",
"5",
"6",
"5",
"2",
"6",
"11",
"4",
"5",
"8",
"4",
"11",
"5",
"4",
"7",
"10",
"5",
"1",
"7",
"1"
] |
[] |
how much a certain entity of interest (either a
specific institution or a geographical aggregation) is spe-
cialised in a given domain with respect to a given base-
line. The specialisation is computed by normalising the
share of output produced in the domain of interest by the
entity over the share of baseline output (usually a larger
geography).
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation29
The above dimensions of EIST potential are meas-
ured for the EaP region as a whole and for each
EaP country by means of data retrieved from
well-established international sources (listed in
the following subsection). This allows us to draw
educated comparisons between the analysed
countries so that, eventually, the current meth-
odology yields region-wide and country-specific
overviews.
2.4 Economic and innovation (E&I)
potential and relative data sources
For the case of economic & innovation potential,
specialisation is measured by quantifying the rel-
ative specialisation within the economic sectors of
each EaP country with respect to the whole region.
This is done by looking at data on the number of
employees and turnover, as well as industrial sta-
tistics on manufacturing.
In parallel, export and innovation data is also
considered, complementing the insight on the eco-
nomic sectors, in particular: exports from goods
and services, an enterprise survey, patent count
and intensity, the number of start-ups and ven-
ture capital-backed companies and the presence
of formal cluster organisations supporting indus-
trial collaboration and innovation.
To succeed in mapping the economic and innova-
tion potential of the EaP countries, the following
data sources are employed:
■Orbis database, provided by Bureau van
Dijk15. Orbis comprises statistics on the num-
ber of employees and turnover in individual
enterprises at NACE16 four-digit industry level;
15 https://www.bvdinfo.com/en-gb/our-products/data/in-
ternational/orbis.
16 NACE is a four-digit classification providing the frame-
work for collecting and presenting a large range of sta-
tistical data according to economic activity in the fields
of economic statistics (e.g. production, employment and
national accounts) and in other statistical domains devel-
oped within the European Statistical System (ESS). ■Industrial Statistics Database (INDSTAT4),
offered by UNIDO17, for partial mapping of the
manufacturing sector at NACE four-digit level;
■The UN’s Comtrade Database18 for exports
of goods (up to five-digit export data accord-
ing to the SITC product classification) and
exports of services (according to the EBOPS
2002 classification);
■the World Bank Enterprise Survey19 for re-
sults
|
[
"how",
"much",
"a",
"certain",
"entity",
"of",
"interest",
"(",
"either",
"a",
"\n",
"specific",
"institution",
"or",
"a",
"geographical",
"aggregation",
")",
"is",
"spe-",
"\n",
"cialised",
"in",
"a",
"given",
"domain",
"with",
"respect",
"to",
"a",
"given",
"base-",
"\n",
"line",
".",
"The",
"specialisation",
"is",
"computed",
"by",
"normalising",
"the",
"\n",
"share",
"of",
"output",
"produced",
"in",
"the",
"domain",
"of",
"interest",
"by",
"the",
"\n",
"entity",
"over",
"the",
"share",
"of",
"baseline",
"output",
"(",
"usually",
"a",
"larger",
"\n",
"geography",
")",
".",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation29",
"\n",
"The",
"above",
"dimensions",
"of",
"EIST",
"potential",
"are",
"meas-",
"\n",
"ured",
"for",
"the",
"EaP",
"region",
"as",
"a",
"whole",
"and",
"for",
"each",
"\n",
"EaP",
"country",
"by",
"means",
"of",
"data",
"retrieved",
"from",
"\n",
"well",
"-",
"established",
"international",
"sources",
"(",
"listed",
"in",
"\n",
"the",
"following",
"subsection",
")",
".",
"This",
"allows",
"us",
"to",
"draw",
"\n",
"educated",
"comparisons",
"between",
"the",
"analysed",
"\n",
"countries",
"so",
"that",
",",
"eventually",
",",
"the",
"current",
"meth-",
"\n",
"odology",
"yields",
"region",
"-",
"wide",
"and",
"country",
"-",
"specific",
"\n",
"overviews",
".",
"\n",
"2.4",
"Economic",
"and",
"innovation",
"(",
"E&I",
")",
"\n",
"potential",
"and",
"relative",
"data",
"sources",
"\n",
"For",
"the",
"case",
"of",
"economic",
"&",
"innovation",
"potential",
",",
"\n",
"specialisation",
"is",
"measured",
"by",
"quantifying",
"the",
"rel-",
"\n",
"ative",
"specialisation",
"within",
"the",
"economic",
"sectors",
"of",
"\n",
"each",
"EaP",
"country",
"with",
"respect",
"to",
"the",
"whole",
"region",
".",
"\n",
"This",
"is",
"done",
"by",
"looking",
"at",
"data",
"on",
"the",
"number",
"of",
"\n",
"employees",
"and",
"turnover",
",",
"as",
"well",
"as",
"industrial",
"sta-",
"\n",
"tistics",
"on",
"manufacturing",
".",
"\n",
"In",
"parallel",
",",
"export",
"and",
"innovation",
"data",
"is",
"also",
"\n",
"considered",
",",
"complementing",
"the",
"insight",
"on",
"the",
"eco-",
"\n",
"nomic",
"sectors",
",",
"in",
"particular",
":",
"exports",
"from",
"goods",
"\n",
"and",
"services",
",",
"an",
"enterprise",
"survey",
",",
"patent",
"count",
"\n",
"and",
"intensity",
",",
"the",
"number",
"of",
"start",
"-",
"ups",
"and",
"ven-",
"\n",
"ture",
"capital",
"-",
"backed",
"companies",
"and",
"the",
"presence",
"\n",
"of",
"formal",
"cluster",
"organisations",
"supporting",
"indus-",
"\n",
"trial",
"collaboration",
"and",
"innovation",
".",
"\n",
"To",
"succeed",
"in",
"mapping",
"the",
"economic",
"and",
"innova-",
"\n",
"tion",
"potential",
"of",
"the",
"EaP",
"countries",
",",
"the",
"following",
"\n",
"data",
"sources",
"are",
"employed",
":",
"\n ",
"■",
"Orbis",
"database",
",",
"provided",
"by",
"Bureau",
"van",
"\n",
"Dijk15",
".",
"Orbis",
"comprises",
"statistics",
"on",
"the",
"num-",
"\n",
"ber",
"of",
"employees",
"and",
"turnover",
"in",
"individual",
"\n",
"enterprises",
"at",
"NACE16",
"four",
"-",
"digit",
"industry",
"level",
";",
"\n",
"15",
"https://www.bvdinfo.com/en-gb/our-products/data/in-",
"\n",
"ternational",
"/",
"orbis",
".",
"\n",
"16",
"NACE",
"is",
"a",
"four",
"-",
"digit",
"classification",
"providing",
"the",
"frame-",
"\n",
"work",
"for",
"collecting",
"and",
"presenting",
"a",
"large",
"range",
"of",
"sta-",
"\n",
"tistical",
"data",
"according",
"to",
"economic",
"activity",
"in",
"the",
"fields",
"\n",
"of",
"economic",
"statistics",
"(",
"e.g.",
"production",
",",
"employment",
"and",
"\n",
"national",
"accounts",
")",
"and",
"in",
"other",
"statistical",
"domains",
"devel-",
"\n",
"oped",
"within",
"the",
"European",
"Statistical",
"System",
"(",
"ESS",
")",
".",
"■",
"Industrial",
"Statistics",
"Database",
"(",
"INDSTAT4",
")",
",",
"\n",
"offered",
"by",
"UNIDO17",
",",
"for",
"partial",
"mapping",
"of",
"the",
"\n",
"manufacturing",
"sector",
"at",
"NACE",
"four",
"-",
"digit",
"level",
";",
"\n ",
"■",
"The",
"UN",
"’s",
"Comtrade",
"Database18",
"for",
"exports",
"\n",
"of",
"goods",
"(",
"up",
"to",
"five",
"-",
"digit",
"export",
"data",
"accord-",
"\n",
"ing",
"to",
"the",
"SITC",
"product",
"classification",
")",
"and",
"\n",
"exports",
"of",
"services",
"(",
"according",
"to",
"the",
"EBOPS",
"\n",
"2002",
"classification",
")",
";",
"\n ",
"■",
"the",
"World",
"Bank",
"Enterprise",
"Survey19",
"for",
"re-",
"\n",
"sults"
] |
[
{
"end": 1960,
"label": "CITATION_ID",
"start": 1958
},
{
"end": 2034,
"label": "CITATION_ID",
"start": 2032
},
{
"end": 1823,
"label": "CITATION_REF",
"start": 1821
},
{
"end": 1930,
"label": "CITATION_REF",
"start": 1928
},
{
"end": 2031,
"label": "CITATION_SPAN",
"start": 1961
},
{
"end": 2755,
"label": "CITATION_REF",
"start": 2753
},
{
"end": 2546,
"label": "CITATION_REF",
"start": 2544
},
{
"end": 2439,
"label": "CITATION_REF",
"start": 2437
}
] |
flawed law, which relied heavily on the collaboration of doctors who
were also engaged elsewhere, as it lacked the funds to finance all special -
ists who obtained tenure. Another important reason for this situation was
Constantin Angelescu ʼs long- term vision regarding the creation of new
schools and school services. In his opinion, what mattered most was passing
the law and initiating the project; once this stage had been completed, finan -
cial means would be found more easily.40 In fact, in the case of school medi -
cal services this way of thinking generated massive pressure on the School
Committees’ budget, as they were the ones covering the doctors’ salaries
until they received tenure.
Male versus female doctors
The new legislation generated inequity and frustration between male and
female doctors. If women fared better in larger cities, since the number
of secondary schools was higher, in smaller towns they faced numerous
problems. Smaller towns meant fewer opportunities not only for women,
but also for men; however, men were still better integrated into the pub -
lic administration, as underdeveloped as it was, and they tried to protect
their monopoly. One extraordinary example from Curtea de Argeș, a small
town in the southern part of the country, shows that male doctors went to
extreme lengths to preserve their privileges. In September 1929, shortly after
being appointed doctor at the theological seminary boarding school by the
Ministry of Instruction, George Ivancianu wrote to the school authorities
asking for the same position at the town’s girls’ school. Since the authorities
were reluctant to appoint a male doctor at a girls’ school, the resolution
clearly stating that he could not get tenure in such an institution, he asked
the mayor of the town to issue a certificate testifying that no female doctors
resided in the small urban community. The head doctor in this rural region
happened to be a woman, married to the Commissioner of Argeș County,
but lived in the town of Pitești. As the Ministry of Instruction was about
to find out, Ivancianu had already been a doctor in the girls’ middle school
since January 1929, having been hired by the School Committee without
its approval.41 Apparently, the doctor wanted to cumulate as many school
positions as possible to get better pay; however, in doing so he willingly
denied female doctors their right to work in girls’ schools, even though
|
[
"flawed",
"law",
",",
"which",
"relied",
"heavily",
"on",
"the",
"collaboration",
"of",
"doctors",
"who",
"\n",
"were",
"also",
"engaged",
"elsewhere",
",",
"as",
"it",
"lacked",
"the",
"funds",
"to",
"finance",
"all",
"special",
"-",
"\n",
"ists",
"who",
"obtained",
"tenure",
".",
"Another",
"important",
"reason",
"for",
"this",
"situation",
"was",
"\n",
"Constantin",
"Angelescu",
"ʼs",
"long-",
" ",
"term",
"vision",
"regarding",
"the",
"creation",
"of",
"new",
"\n",
"schools",
"and",
"school",
"services",
".",
"In",
"his",
"opinion",
",",
"what",
"mattered",
"most",
"was",
"passing",
"\n",
"the",
"law",
"and",
"initiating",
"the",
"project",
";",
"once",
"this",
"stage",
"had",
"been",
"completed",
",",
"finan",
"-",
"\n",
"cial",
"means",
"would",
"be",
"found",
"more",
"easily.40",
"In",
"fact",
",",
"in",
"the",
"case",
"of",
"school",
"medi",
"-",
"\n",
"cal",
"services",
"this",
"way",
"of",
"thinking",
"generated",
"massive",
"pressure",
"on",
"the",
"School",
"\n",
"Committees",
"’",
"budget",
",",
"as",
"they",
"were",
"the",
"ones",
"covering",
"the",
"doctors",
"’",
"salaries",
"\n",
"until",
"they",
"received",
"tenure",
".",
"\n",
"Male",
"versus",
"female",
"doctors",
"\n",
"The",
"new",
"legislation",
"generated",
"inequity",
"and",
"frustration",
"between",
"male",
"and",
"\n",
"female",
"doctors",
".",
"If",
"women",
"fared",
"better",
"in",
"larger",
"cities",
",",
"since",
"the",
"number",
"\n",
"of",
"secondary",
"schools",
"was",
"higher",
",",
"in",
"smaller",
"towns",
"they",
"faced",
"numerous",
"\n",
"problems",
".",
"Smaller",
"towns",
"meant",
"fewer",
"opportunities",
"not",
"only",
"for",
"women",
",",
"\n",
"but",
"also",
"for",
"men",
";",
"however",
",",
"men",
"were",
"still",
"better",
"integrated",
"into",
"the",
"pub",
"-",
"\n",
"lic",
"administration",
",",
"as",
"underdeveloped",
"as",
"it",
"was",
",",
"and",
"they",
"tried",
"to",
"protect",
"\n",
"their",
"monopoly",
".",
"One",
"extraordinary",
"example",
"from",
"Curtea",
"de",
"Argeș",
",",
"a",
"small",
"\n",
"town",
"in",
"the",
"southern",
"part",
"of",
"the",
"country",
",",
"shows",
"that",
"male",
"doctors",
"went",
"to",
"\n",
"extreme",
"lengths",
"to",
"preserve",
"their",
"privileges",
".",
"In",
"September",
"1929",
",",
"shortly",
"after",
"\n",
"being",
"appointed",
"doctor",
"at",
"the",
"theological",
"seminary",
"boarding",
"school",
"by",
"the",
"\n",
"Ministry",
"of",
"Instruction",
",",
"George",
"Ivancianu",
"wrote",
"to",
"the",
"school",
"authorities",
"\n",
"asking",
"for",
"the",
"same",
"position",
"at",
"the",
"town",
"’s",
"girls",
"’",
"school",
".",
"Since",
"the",
"authorities",
"\n",
"were",
"reluctant",
"to",
"appoint",
"a",
"male",
"doctor",
"at",
"a",
"girls",
"’",
"school",
",",
"the",
"resolution",
"\n",
"clearly",
"stating",
"that",
"he",
"could",
"not",
"get",
"tenure",
"in",
"such",
"an",
"institution",
",",
"he",
"asked",
"\n",
"the",
"mayor",
"of",
"the",
"town",
"to",
"issue",
"a",
"certificate",
"testifying",
"that",
"no",
"female",
"doctors",
"\n",
"resided",
"in",
"the",
"small",
"urban",
"community",
".",
"The",
"head",
"doctor",
"in",
"this",
"rural",
"region",
"\n",
"happened",
"to",
"be",
"a",
"woman",
",",
"married",
"to",
"the",
"Commissioner",
"of",
"Argeș",
"County",
",",
"\n",
"but",
"lived",
"in",
"the",
"town",
"of",
"Pitești",
".",
"As",
"the",
"Ministry",
"of",
"Instruction",
"was",
"about",
"\n",
"to",
"find",
"out",
",",
"Ivancianu",
"had",
"already",
"been",
"a",
"doctor",
"in",
"the",
"girls",
"’",
"middle",
"school",
"\n",
"since",
"January",
"1929",
",",
"having",
"been",
"hired",
"by",
"the",
"School",
"Committee",
"without",
"\n",
"its",
"approval.41",
"Apparently",
",",
"the",
"doctor",
"wanted",
"to",
"cumulate",
"as",
"many",
"school",
"\n",
"positions",
"as",
"possible",
"to",
"get",
"better",
"pay",
";",
"however",
",",
"in",
"doing",
"so",
"he",
"willingly",
"\n",
"denied",
"female",
"doctors",
"their",
"right",
"to",
"work",
"in",
"girls",
"’",
"schools",
",",
"even",
"though"
] |
[
{
"end": 493,
"label": "CITATION_REF",
"start": 491
},
{
"end": 2257,
"label": "CITATION_REF",
"start": 2255
}
] |
this approach is that taxpayers avoid the potential difficulty of having to accurately attribute the revenues and costs of the shared processing facility to each mining licence area. There are, however, three challenges that may arise when this approach is adopted:
- · It may defer government revenues if the mines are at different stages of their development, as it defeats the main objective of ring-fencing based on the mining licence area.
- · It may be difficult to determine which mines are linked to a specific processing facility, especially if there is more than one shared processing facility. This may be further complicated where the processing facility receives ore from related and third-party mines (i.e., tolling arrangements). To address this challenge, governments should require taxpayers to clearly identify and justify which of their mines use a shared processing facility. They should also require a detailed breakdown of the quantities and qualities of materials received per mine, supported by contractual agreements.
- · It may encourage taking advantage of smelters that are often located in export processing zones (EPZs), which are commonly subject to preferred tax regimes. While not advisable due to the negative spillovers, EPZ status is sometimes granted to a company's mineral processing operations. An EPZ would often grant tax holidays, lower tax rates, or duty-free export and import. The producing mine outside the EPZ would often be required to pay tax on profits, as well as mineral royalties. Therefore, there is an incentive for the company to shift profits from the mine to the processing facility to reduce its overall tax bill. Ring-fencing rules, which are not based on licence area but are instead based on the shared processing facility, will exacerbate the incentive for companies to shift profits from different mines to the shared processing facility.
## 1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
3.0 THE BENEFITS AND RISKS OF RING-FENCING
## 4.0 DESIGNING RING-FENCING RULES
5.0 THE IMPLEMENTATION OF RING-FENCING RULES
6.0 CONCLUSION
Where ring-fencing around the processing facility is not suitable for countries due to the listed challenges, tax authorities could opt to
- · ring-fence the mining licence area, treating the activities related to the processing facility as a non-mining activity and ring-fencing it from mining activities; or
- · ring-fence the mining licence area and allocate the CapEx and OpEx from the processing facility to the relevant mines covered by the mining
|
[
"this",
"approach",
"is",
"that",
"taxpayers",
"avoid",
"the",
"potential",
"difficulty",
"of",
"having",
"to",
"accurately",
"attribute",
"the",
"revenues",
"and",
"costs",
"of",
"the",
"shared",
"processing",
"facility",
"to",
"each",
"mining",
"licence",
"area",
".",
"There",
"are",
",",
"however",
",",
"three",
"challenges",
"that",
"may",
"arise",
"when",
"this",
"approach",
"is",
"adopted",
":",
"\n\n",
"-",
"·",
"It",
"may",
"defer",
"government",
"revenues",
"if",
"the",
"mines",
"are",
"at",
"different",
"stages",
"of",
"their",
"development",
",",
"as",
"it",
"defeats",
"the",
"main",
"objective",
"of",
"ring",
"-",
"fencing",
"based",
"on",
"the",
"mining",
"licence",
"area",
".",
"\n",
"-",
"·",
"It",
"may",
"be",
"difficult",
"to",
"determine",
"which",
"mines",
"are",
"linked",
"to",
"a",
"specific",
"processing",
"facility",
",",
"especially",
"if",
"there",
"is",
"more",
"than",
"one",
"shared",
"processing",
"facility",
".",
"This",
"may",
"be",
"further",
"complicated",
"where",
"the",
"processing",
"facility",
"receives",
"ore",
"from",
"related",
"and",
"third",
"-",
"party",
"mines",
"(",
"i.e.",
",",
"tolling",
"arrangements",
")",
".",
"To",
"address",
"this",
"challenge",
",",
"governments",
"should",
"require",
"taxpayers",
"to",
"clearly",
"identify",
"and",
"justify",
"which",
"of",
"their",
"mines",
"use",
"a",
"shared",
"processing",
"facility",
".",
"They",
"should",
"also",
"require",
"a",
"detailed",
"breakdown",
"of",
"the",
"quantities",
"and",
"qualities",
"of",
"materials",
"received",
"per",
"mine",
",",
"supported",
"by",
"contractual",
"agreements",
".",
"\n",
"-",
"·",
"It",
"may",
"encourage",
"taking",
"advantage",
"of",
"smelters",
"that",
"are",
"often",
"located",
"in",
"export",
"processing",
"zones",
"(",
"EPZs",
")",
",",
"which",
"are",
"commonly",
"subject",
"to",
"preferred",
"tax",
"regimes",
".",
"While",
"not",
"advisable",
"due",
"to",
"the",
"negative",
"spillovers",
",",
"EPZ",
"status",
"is",
"sometimes",
"granted",
"to",
"a",
"company",
"'s",
"mineral",
"processing",
"operations",
".",
"An",
"EPZ",
"would",
"often",
"grant",
"tax",
"holidays",
",",
"lower",
"tax",
"rates",
",",
"or",
"duty",
"-",
"free",
"export",
"and",
"import",
".",
"The",
"producing",
"mine",
"outside",
"the",
"EPZ",
"would",
"often",
"be",
"required",
"to",
"pay",
"tax",
"on",
"profits",
",",
"as",
"well",
"as",
"mineral",
"royalties",
".",
"Therefore",
",",
"there",
"is",
"an",
"incentive",
"for",
"the",
"company",
"to",
"shift",
"profits",
"from",
"the",
"mine",
"to",
"the",
"processing",
"facility",
"to",
"reduce",
"its",
"overall",
"tax",
"bill",
".",
"Ring",
"-",
"fencing",
"rules",
",",
"which",
"are",
"not",
"based",
"on",
"licence",
"area",
"but",
"are",
"instead",
"based",
"on",
"the",
"shared",
"processing",
"facility",
",",
"will",
"exacerbate",
"the",
"incentive",
"for",
"companies",
"to",
"shift",
"profits",
"from",
"different",
"mines",
"to",
"the",
"shared",
"processing",
"facility",
".",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"#",
"#",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"5.0",
"THE",
"IMPLEMENTATION",
"OF",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"6.0",
"CONCLUSION",
"\n\n",
"Where",
"ring",
"-",
"fencing",
"around",
"the",
"processing",
"facility",
"is",
"not",
"suitable",
"for",
"countries",
"due",
"to",
"the",
"listed",
"challenges",
",",
"tax",
"authorities",
"could",
"opt",
"to",
"\n\n",
"-",
"·",
"ring",
"-",
"fence",
"the",
"mining",
"licence",
"area",
",",
"treating",
"the",
"activities",
"related",
"to",
"the",
"processing",
"facility",
"as",
"a",
"non",
"-",
"mining",
"activity",
"and",
"ring",
"-",
"fencing",
"it",
"from",
"mining",
"activities",
";",
"or",
"\n",
"-",
"·",
"ring",
"-",
"fence",
"the",
"mining",
"licence",
"area",
"and",
"allocate",
"the",
"CapEx",
"and",
"OpEx",
"from",
"the",
"processing",
"facility",
"to",
"the",
"relevant",
"mines",
"covered",
"by",
"the",
"mining"
] |
[] |
Amadon, S., Lin, Y.-C., and Padilla, C. M. (2023). Turnover in the Center-based Child Care and Early Education Workforce: Findings from the 2019 National Survey of Early Care and Education . United States Department of Health and Human Services. https://acf.gov/sites/default/files/documents/opre/workforce\_turnover\_snapshot\_apr2023.pdf
Bendini, M. and Devercelli, A. E. (Eds.). (2022). Quality Early Learning: Nurturing Children's Potential . World Bank. https:// openknowledge.worldbank.org/server/api/core/bitstreams/44eaa523-faca-5760-9abc-569cfddcaea2/content
Black, M. M., Walker, S. P., Fernald, L. C. H., Andersen, C. T., DiGirolamo, A. M., Lu, C., McCoy, D. C., Fink, G., Shawar, Y. R., Shiffman, J., Devercelli, A. E., Wodon, Q. T., Vargas-Barón, E., and Grantham-McGregor, S. (2017). Early childhood development coming of age: Science through the life course. The Lancet , 389 (10064), 77-90.
Britto, P. R., Ponguta, L. A., Reyes, C., and Karnati, R. (2015). A Systematic Review of Parenting Programmes for Young Children . UNICEF. https://www.unicef.org/sites/default/files/press-releases/media-P\_Shanker\_final\_\_Systematic\_ Review\_of\_Parenting\_ECD\_Dec\_15\_copy.pdf
Brossard, M., Cardoso, M., Kamei, A., Mishra, S., Mizunoya, S., and Reuge, N. (2020). Parental Involvement in Children's Learning . UNICEF. (Innocenti Research Brief 2020/09.) https://www.un-ilibrary.org/content/ papers/26642166/70
Camilletti, E., Banati, P., and Cook, S. (2018). Children's roles in social reproduction: Re-examining the discourse on care through a child lens. Journal of Law, Social Justice and Global Development , 21 , 33-48.
Campbell, F. A., Pungello, E. P., Kainz, K., Burchinal, M., Pan, Y., Wasik, B. H., Barbarin, O., Sparling, J. J., and Ramey, C. T. (2012). Adult outcomes as a function of an early childhood educational program: An Abecedarian project follow-up. Developmental Psychology 48 , (4), 1033-1043.
Cárdenas, S., Evans, D. K., and Holland, P. (2024). Parent training and child development at low cost? Evidence from a randomized field experiment in Mexico. Journal of Research in Childhood Education , 38 (sup1), S130-S160.
Carneiro, P. M., Galasso, E., Lopez Garcia, I. X., Bedregal, P., and Cordero, M. (2019). Parental Beliefs, Investments, and Child Development: Evidence from a Large-scale Experiment . World Bank. (Policy Research Working Paper 8743.) https://documents.worldbank.org/en/publication/documents-reports/documentdetail/191061550167761091/ parental-beliefs-investments-and-child-development-evidence-from-a-large-scale-experiment
- Cascio, E. U. (2021). Early Childhood Education in the United States: What, When, Where, Who, How, and Why . National Bureau of Economic Research. (Working Paper 28722.) https://doi.org/10.3386/w28722
Chandra, J. (2022). Decline in pre-primary enrolments continued in 2021-22, says government report. The Hindu . https://www.thehindu.com/education/schools/pre-primary-enrolments-drop-to-30-of-pre-pandemic-levels/ article66092014.ece
Cheung, A. C. K., Keung, C. P. C., Kwan, P. Y. K., and Cheung, L. Y. S. (2019). Teachers' perceptions of the effect of selected leadership practices on pre-primary children's learning in Hong Kong. Early Child Development and Care , 189 (14), 2265-2283.
|
[
"Amadon",
",",
"S.",
",",
"Lin",
",",
"Y.-C.",
",",
"and",
"Padilla",
",",
"C.",
"M.",
"(",
"2023",
")",
".",
"Turnover",
"in",
"the",
"Center",
"-",
"based",
"Child",
"Care",
"and",
"Early",
"Education",
"Workforce",
":",
"Findings",
"from",
"the",
"2019",
"National",
"Survey",
"of",
"Early",
"Care",
"and",
"Education",
".",
"United",
"States",
"Department",
"of",
"Health",
"and",
"Human",
"Services",
".",
"https://acf.gov/sites/default/files/documents/opre/workforce\\_turnover\\_snapshot\\_apr2023.pdf",
"\n\n",
"Bendini",
",",
"M.",
"and",
"Devercelli",
",",
"A.",
"E.",
"(",
"Eds",
".",
")",
".",
"(",
"2022",
")",
".",
"Quality",
"Early",
"Learning",
":",
"Nurturing",
"Children",
"'s",
"Potential",
".",
"World",
"Bank",
".",
"https://",
"openknowledge.worldbank.org/server/api/core/bitstreams/44eaa523-faca-5760-9abc-569cfddcaea2/content",
"\n\n",
"Black",
",",
"M.",
"M.",
",",
"Walker",
",",
"S.",
"P.",
",",
"Fernald",
",",
"L.",
"C.",
"H.",
",",
"Andersen",
",",
"C.",
"T.",
",",
"DiGirolamo",
",",
"A.",
"M.",
",",
"Lu",
",",
"C.",
",",
"McCoy",
",",
"D.",
"C.",
",",
"Fink",
",",
"G.",
",",
"Shawar",
",",
"Y.",
"R.",
",",
"Shiffman",
",",
"J.",
",",
"Devercelli",
",",
"A.",
"E.",
",",
"Wodon",
",",
"Q.",
"T.",
",",
"Vargas",
"-",
"Barón",
",",
"E.",
",",
"and",
"Grantham",
"-",
"McGregor",
",",
"S.",
"(",
"2017",
")",
".",
"Early",
"childhood",
"development",
"coming",
"of",
"age",
":",
"Science",
"through",
"the",
"life",
"course",
".",
"The",
"Lancet",
",",
"389",
"(",
"10064",
")",
",",
"77",
"-",
"90",
".",
"\n\n",
"Britto",
",",
"P.",
"R.",
",",
"Ponguta",
",",
"L.",
"A.",
",",
"Reyes",
",",
"C.",
",",
"and",
"Karnati",
",",
"R.",
"(",
"2015",
")",
".",
"A",
"Systematic",
"Review",
"of",
"Parenting",
"Programmes",
"for",
"Young",
"Children",
".",
"UNICEF",
".",
"https://www.unicef.org/sites/default/files/press-releases/media-P\\_Shanker\\_final\\_\\_Systematic\\",
"_",
"Review\\_of\\_Parenting\\_ECD\\_Dec\\_15\\_copy.pdf",
"\n\n",
"Brossard",
",",
"M.",
",",
"Cardoso",
",",
"M.",
",",
"Kamei",
",",
"A.",
",",
"Mishra",
",",
"S.",
",",
"Mizunoya",
",",
"S.",
",",
"and",
"Reuge",
",",
"N.",
"(",
"2020",
")",
".",
"Parental",
"Involvement",
"in",
"Children",
"'s",
"Learning",
".",
"UNICEF",
".",
"(",
"Innocenti",
"Research",
"Brief",
"2020/09",
".",
")",
"https://www.un-ilibrary.org/content/",
"papers/26642166/70",
"\n\n",
"Camilletti",
",",
"E.",
",",
"Banati",
",",
"P.",
",",
"and",
"Cook",
",",
"S.",
"(",
"2018",
")",
".",
"Children",
"'s",
"roles",
"in",
"social",
"reproduction",
":",
"Re",
"-",
"examining",
"the",
"discourse",
"on",
"care",
"through",
"a",
"child",
"lens",
".",
"Journal",
"of",
"Law",
",",
"Social",
"Justice",
"and",
"Global",
"Development",
",",
"21",
",",
"33",
"-",
"48",
".",
"\n\n",
"Campbell",
",",
"F.",
"A.",
",",
"Pungello",
",",
"E.",
"P.",
",",
"Kainz",
",",
"K.",
",",
"Burchinal",
",",
"M.",
",",
"Pan",
",",
"Y.",
",",
"Wasik",
",",
"B.",
"H.",
",",
"Barbarin",
",",
"O.",
",",
"Sparling",
",",
"J.",
"J.",
",",
"and",
"Ramey",
",",
"C.",
"T.",
"(",
"2012",
")",
".",
"Adult",
"outcomes",
"as",
"a",
"function",
"of",
"an",
"early",
"childhood",
"educational",
"program",
":",
"An",
"Abecedarian",
"project",
"follow",
"-",
"up",
".",
"Developmental",
"Psychology",
"48",
",",
"(",
"4",
")",
",",
"1033",
"-",
"1043",
".",
"\n\n",
"Cárdenas",
",",
"S.",
",",
"Evans",
",",
"D.",
"K.",
",",
"and",
"Holland",
",",
"P.",
"(",
"2024",
")",
".",
"Parent",
"training",
"and",
"child",
"development",
"at",
"low",
"cost",
"?",
"Evidence",
"from",
"a",
"randomized",
"field",
"experiment",
"in",
"Mexico",
".",
"Journal",
"of",
"Research",
"in",
"Childhood",
"Education",
",",
"38",
"(",
"sup1",
")",
",",
"S130",
"-",
"S160",
".",
"\n\n",
"Carneiro",
",",
"P.",
"M.",
",",
"Galasso",
",",
"E.",
",",
"Lopez",
"Garcia",
",",
"I.",
"X.",
",",
"Bedregal",
",",
"P.",
",",
"and",
"Cordero",
",",
"M.",
"(",
"2019",
")",
".",
"Parental",
"Beliefs",
",",
"Investments",
",",
"and",
"Child",
"Development",
":",
"Evidence",
"from",
"a",
"Large",
"-",
"scale",
"Experiment",
".",
"World",
"Bank",
".",
"(",
"Policy",
"Research",
"Working",
"Paper",
"8743",
".",
")",
"https://documents.worldbank.org/en/publication/documents-reports/documentdetail/191061550167761091/",
"parental",
"-",
"beliefs",
"-",
"investments",
"-",
"and",
"-",
"child",
"-",
"development",
"-",
"evidence",
"-",
"from",
"-",
"a",
"-",
"large",
"-",
"scale",
"-",
"experiment",
"\n\n",
"-",
"Cascio",
",",
"E.",
"U.",
"(",
"2021",
")",
".",
"Early",
"Childhood",
"Education",
"in",
"the",
"United",
"States",
":",
"What",
",",
"When",
",",
"Where",
",",
"Who",
",",
"How",
",",
"and",
"Why",
".",
"National",
"Bureau",
"of",
"Economic",
"Research",
".",
"(",
"Working",
"Paper",
"28722",
".",
")",
"https://doi.org/10.3386/w28722",
"\n\n",
"Chandra",
",",
"J.",
"(",
"2022",
")",
".",
"Decline",
"in",
"pre",
"-",
"primary",
"enrolments",
"continued",
"in",
"2021",
"-",
"22",
",",
"says",
"government",
"report",
".",
"The",
"Hindu",
".",
"https://www.thehindu.com/education/schools/pre-primary-enrolments-drop-to-30-of-pre-pandemic-levels/",
"article66092014.ece",
"\n\n",
"Cheung",
",",
"A.",
"C.",
"K.",
",",
"Keung",
",",
"C.",
"P.",
"C.",
",",
"Kwan",
",",
"P.",
"Y.",
"K.",
",",
"and",
"Cheung",
",",
"L.",
"Y.",
"S.",
"(",
"2019",
")",
".",
"Teachers",
"'",
"perceptions",
"of",
"the",
"effect",
"of",
"selected",
"leadership",
"practices",
"on",
"pre",
"-",
"primary",
"children",
"'s",
"learning",
"in",
"Hong",
"Kong",
".",
"Early",
"Child",
"Development",
"and",
"Care",
",",
"189",
"(",
"14",
")",
",",
"2265",
"-",
"2283",
".",
"\n\n"
] |
[
{
"end": 339,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 568,
"label": "CITATION_SPAN",
"start": 341
},
{
"end": 908,
"label": "CITATION_SPAN",
"start": 570
},
{
"end": 1192,
"label": "CITATION_SPAN",
"start": 910
},
{
"end": 1425,
"label": "CITATION_SPAN",
"start": 1194
},
{
"end": 1642,
"label": "CITATION_SPAN",
"start": 1427
},
{
"end": 1933,
"label": "CITATION_SPAN",
"start": 1643
},
{
"end": 2160,
"label": "CITATION_SPAN",
"start": 1935
},
{
"end": 2584,
"label": "CITATION_SPAN",
"start": 2161
},
{
"end": 2788,
"label": "CITATION_SPAN",
"start": 2588
},
{
"end": 3022,
"label": "CITATION_SPAN",
"start": 2790
},
{
"end": 3277,
"label": "CITATION_SPAN",
"start": 3024
}
] |
attention and/or equipment due to the nature of the contaminants. For example, the focus of the additional equipment would be to remove the contamination and refine the paper fiber. The primary sources of contamination are brown OCC, fiber board, plastic film, flattened containers and wet paper (e.g., diapers, napkins, tissue paper, and so forth). Depending on the level of contaminants, they can first be separated by size (e.g., by removing or otherwise separating materials that are smaller than 4 inches in any two dimensions). Other implementations may separate out materials of different dimensions, depending upon a given implementation and specifications for a desired output product. If necessary, in some implementations a second mechanical sort can employ near infra-red light to optically sort the material to purify the fiber. This can be done by removing the paper to create a clean stream or removing the plastic contaminant. These components can be changed on demand or removed from the system design depending on the type and volume of contaminant. This material can be handled in several implementations, including but not limited to conveyor transfer or pneumatic transfer.
Regardless of whether the level of contaminant requires mechanical or optical sorters, in some implementations human sorters may still be employed to inspect the resulting stream, to further refine the materials by removing any browns or missed plastic materials. In other implementations, automation can take the place of this operation. As discussed in more detail infra, by utilizing machine learning (ML) and/or artificial intelligence (AI) mechanisms (see e.g., of ), various sensors (e.g., vision sensors, cameras, and the like), and various sorters (e.g., optical sorters, robotic sorters, and so forth), the cardboard prohibitives or out-throws or plastic contaminants can be removed without human intervention.
depicts an for autonomous data collection and control of an MRF. The includes a , which manages, commands, directs, and/or regulates actions and/or behaviors of various components, devices, and/or systems of an MRF using, for example, one or more control loops or other like mechanisms. In particular, the receives data from a variety of sources and uses these inputs to control various components, devices, and/or systems of the MRF. The various sources can include a set of sensors - to -N (where N is a number), a set of material handling units (MHUs) - to -M (where M is a number), and/or one or more AI/ .
The receives inputs (e.g.,
|
[
"attention",
"and/or",
"equipment",
"due",
"to",
"the",
"nature",
"of",
"the",
"contaminants",
".",
"For",
"example",
",",
"the",
"focus",
"of",
"the",
"additional",
"equipment",
"would",
"be",
"to",
"remove",
"the",
"contamination",
"and",
"refine",
"the",
"paper",
"fiber",
".",
"The",
"primary",
"sources",
"of",
"contamination",
"are",
"brown",
"OCC",
",",
"fiber",
"board",
",",
"plastic",
"film",
",",
"flattened",
"containers",
"and",
"wet",
"paper",
"(",
"e.g.",
",",
"diapers",
",",
"napkins",
",",
"tissue",
"paper",
",",
"and",
"so",
"forth",
")",
".",
"Depending",
"on",
"the",
"level",
"of",
"contaminants",
",",
"they",
"can",
"first",
"be",
"separated",
"by",
"size",
"(",
"e.g.",
",",
"by",
"removing",
"or",
"otherwise",
"separating",
"materials",
"that",
"are",
"smaller",
"than",
"4",
"inches",
"in",
"any",
"two",
"dimensions",
")",
".",
"Other",
"implementations",
"may",
"separate",
"out",
"materials",
"of",
"different",
"dimensions",
",",
"depending",
"upon",
"a",
"given",
"implementation",
"and",
"specifications",
"for",
"a",
"desired",
"output",
"product",
".",
"If",
"necessary",
",",
"in",
"some",
"implementations",
"a",
"second",
"mechanical",
"sort",
"can",
"employ",
"near",
"infra",
"-",
"red",
"light",
"to",
"optically",
"sort",
"the",
"material",
"to",
"purify",
"the",
"fiber",
".",
"This",
"can",
"be",
"done",
"by",
"removing",
"the",
"paper",
"to",
"create",
"a",
"clean",
"stream",
"or",
"removing",
"the",
"plastic",
"contaminant",
".",
"These",
"components",
"can",
"be",
"changed",
"on",
"demand",
"or",
"removed",
"from",
"the",
"system",
"design",
"depending",
"on",
"the",
"type",
"and",
"volume",
"of",
"contaminant",
".",
"This",
"material",
"can",
"be",
"handled",
"in",
"several",
"implementations",
",",
"including",
"but",
"not",
"limited",
"to",
"conveyor",
"transfer",
"or",
"pneumatic",
"transfer",
".",
"\n\n",
"Regardless",
"of",
"whether",
"the",
"level",
"of",
"contaminant",
"requires",
"mechanical",
"or",
"optical",
"sorters",
",",
"in",
"some",
"implementations",
"human",
"sorters",
"may",
"still",
"be",
"employed",
"to",
"inspect",
"the",
"resulting",
"stream",
",",
"to",
"further",
"refine",
"the",
"materials",
"by",
"removing",
"any",
"browns",
"or",
"missed",
"plastic",
"materials",
".",
"In",
"other",
"implementations",
",",
"automation",
"can",
"take",
"the",
"place",
"of",
"this",
"operation",
".",
"As",
"discussed",
"in",
"more",
"detail",
"infra",
",",
"by",
"utilizing",
"machine",
"learning",
"(",
"ML",
")",
"and/or",
"artificial",
"intelligence",
"(",
"AI",
")",
"mechanisms",
"(",
"see",
"e.g.",
",",
" ",
"of",
")",
",",
"various",
"sensors",
"(",
"e.g.",
",",
"vision",
"sensors",
",",
"cameras",
",",
"and",
"the",
"like",
")",
",",
"and",
"various",
"sorters",
"(",
"e.g.",
",",
"optical",
"sorters",
",",
"robotic",
"sorters",
",",
"and",
"so",
"forth",
")",
",",
"the",
"cardboard",
"prohibitives",
"or",
"out",
"-",
"throws",
"or",
"plastic",
"contaminants",
"can",
"be",
"removed",
"without",
"human",
"intervention",
".",
"\n\n",
"depicts",
"an",
" ",
"for",
"autonomous",
"data",
"collection",
"and",
"control",
"of",
"an",
"MRF",
".",
"The",
" ",
"includes",
"a",
" ",
",",
"which",
"manages",
",",
"commands",
",",
"directs",
",",
"and/or",
"regulates",
"actions",
"and/or",
"behaviors",
"of",
"various",
"components",
",",
"devices",
",",
"and/or",
"systems",
"of",
"an",
"MRF",
"using",
",",
"for",
"example",
",",
"one",
"or",
"more",
"control",
"loops",
"or",
"other",
"like",
"mechanisms",
".",
"In",
"particular",
",",
"the",
" ",
"receives",
"data",
"from",
"a",
"variety",
"of",
"sources",
"and",
"uses",
"these",
"inputs",
"to",
"control",
"various",
"components",
",",
"devices",
",",
"and/or",
"systems",
"of",
"the",
"MRF",
".",
"The",
"various",
"sources",
"can",
"include",
"a",
"set",
"of",
"sensors",
"-",
"to",
"-N",
"(",
"where",
"N",
"is",
"a",
"number",
")",
",",
"a",
"set",
"of",
"material",
"handling",
"units",
"(",
"MHUs",
")",
"-",
"to",
"-M",
"(",
"where",
"M",
"is",
"a",
"number",
")",
",",
"and/or",
"one",
"or",
"more",
"AI/",
".",
"\n\n",
"The",
" ",
"receives",
"inputs",
"(",
"e.g.",
","
] |
[] |
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics , pages 5185–5198
July 5 - 10, 2020. c
2020 Association for Computational Linguistics5185Climbing towards NLU:
On Meaning, Form, and Understanding in the Age of Data
Emily M. Bender
University of Washington
Department of Linguistics
[email protected] Koller
Saarland University
Dept. of Language Science and Technology
[email protected]
Abstract
The success of the large neural language mod-
els on many NLP tasks is exciting. However,
we find that these successes sometimes lead
to hype in which these models are being de-
scribed as “understanding” language or captur-
ing “meaning”. In this position paper, we ar-
gue that a system trained only on form has a
priori no way to learn meaning. In keeping
with the ACL 2020 theme of “Taking Stock of
Where We’ve Been and Where We’re Going”,
we argue that a clear understanding of the dis-
tinction between form and meaning will help
guide the field towards better science around
natural language understanding.
1 Introduction
The current state of affairs in NLP is that the large
neural language models (LMs), such as BERT (De-
vlin et al., 2019) or GPT-2 (Radford et al., 2019),
are making great progress on a wide range of
tasks, including those that are ostensibly meaning-
sensitive. This has led to claims, in both academic
and popular publications, that such models “under-
stand” or “comprehend” natural language or learn
its “meaning”. From our perspective, these are
overclaims caused by a misunderstanding of the
relationship between linguistic form and meaning.
We argue that the language modeling task, be-
cause it only uses form as training data, cannot in
principle lead to learning of meaning . We take the
term language model to refer to any system trained
only on the task of string prediction, whether it
operates over characters, words or sentences, and
sequentially or not. We take (linguistic) meaning
to be the relation between a linguistic form and
communicative intent.
Our aim is to advocate for an alignment of claims
and methodology: Human-analogous natural lan-
guage understanding (NLU) is a grand challenge
of artificial intelligence, which involves mastery ofthe structure and use of language and the ability
to ground it in the world. While large neural LMs
may well end up being important components of
an eventual full-scale solution to human-analogous
NLU, they are not nearly-there solutions to this
grand challenge. We argue in
|
[
"Proceedings",
"of",
"the",
"58th",
"Annual",
"Meeting",
"of",
"the",
"Association",
"for",
"Computational",
"Linguistics",
",",
"pages",
"5185–5198",
"\n",
"July",
"5",
"-",
"10",
",",
"2020",
".",
"c",
"\n",
"2020",
"Association",
"for",
"Computational",
"Linguistics5185Climbing",
"towards",
"NLU",
":",
"\n",
"On",
"Meaning",
",",
"Form",
",",
"and",
"Understanding",
"in",
"the",
"Age",
"of",
"Data",
"\n",
"Emily",
"M.",
"Bender",
"\n",
"University",
"of",
"Washington",
"\n",
"Department",
"of",
"Linguistics",
"\n",
"[email protected]",
"Koller",
"\n",
"Saarland",
"University",
"\n",
"Dept",
".",
"of",
"Language",
"Science",
"and",
"Technology",
"\n",
"[email protected]",
"\n",
"Abstract",
"\n",
"The",
"success",
"of",
"the",
"large",
"neural",
"language",
"mod-",
"\n",
"els",
"on",
"many",
"NLP",
"tasks",
"is",
"exciting",
".",
"However",
",",
"\n",
"we",
"find",
"that",
"these",
"successes",
"sometimes",
"lead",
"\n",
"to",
"hype",
"in",
"which",
"these",
"models",
"are",
"being",
"de-",
"\n",
"scribed",
"as",
"“",
"understanding",
"”",
"language",
"or",
"captur-",
"\n",
"ing",
"“",
"meaning",
"”",
".",
"In",
"this",
"position",
"paper",
",",
"we",
"ar-",
"\n",
"gue",
"that",
"a",
"system",
"trained",
"only",
"on",
"form",
"has",
"a",
"\n",
"priori",
"no",
"way",
"to",
"learn",
"meaning",
".",
"In",
"keeping",
"\n",
"with",
"the",
"ACL",
"2020",
"theme",
"of",
"“",
"Taking",
"Stock",
"of",
"\n",
"Where",
"We",
"’ve",
"Been",
"and",
"Where",
"We",
"’re",
"Going",
"”",
",",
"\n",
"we",
"argue",
"that",
"a",
"clear",
"understanding",
"of",
"the",
"dis-",
"\n",
"tinction",
"between",
"form",
"and",
"meaning",
"will",
"help",
"\n",
"guide",
"the",
"field",
"towards",
"better",
"science",
"around",
"\n",
"natural",
"language",
"understanding",
".",
"\n",
"1",
"Introduction",
"\n",
"The",
"current",
"state",
"of",
"affairs",
"in",
"NLP",
"is",
"that",
"the",
"large",
"\n",
"neural",
"language",
"models",
"(",
"LMs",
")",
",",
"such",
"as",
"BERT",
"(",
"De-",
"\n",
"vlin",
"et",
"al",
".",
",",
"2019",
")",
"or",
"GPT-2",
"(",
"Radford",
"et",
"al",
".",
",",
"2019",
")",
",",
"\n",
"are",
"making",
"great",
"progress",
"on",
"a",
"wide",
"range",
"of",
"\n",
"tasks",
",",
"including",
"those",
"that",
"are",
"ostensibly",
"meaning-",
"\n",
"sensitive",
".",
"This",
"has",
"led",
"to",
"claims",
",",
"in",
"both",
"academic",
"\n",
"and",
"popular",
"publications",
",",
"that",
"such",
"models",
"“",
"under-",
"\n",
"stand",
"”",
"or",
"“",
"comprehend",
"”",
"natural",
"language",
"or",
"learn",
"\n",
"its",
"“",
"meaning",
"”",
".",
"From",
"our",
"perspective",
",",
"these",
"are",
"\n",
"overclaims",
"caused",
"by",
"a",
"misunderstanding",
"of",
"the",
"\n",
"relationship",
"between",
"linguistic",
"form",
"and",
"meaning",
".",
"\n",
"We",
"argue",
"that",
"the",
"language",
"modeling",
"task",
",",
"be-",
"\n",
"cause",
"it",
"only",
"uses",
"form",
"as",
"training",
"data",
",",
"can",
"not",
"in",
"\n",
"principle",
"lead",
"to",
"learning",
"of",
"meaning",
".",
"We",
"take",
"the",
"\n",
"term",
"language",
"model",
"to",
"refer",
"to",
"any",
"system",
"trained",
"\n",
"only",
"on",
"the",
"task",
"of",
"string",
"prediction",
",",
"whether",
"it",
"\n",
"operates",
"over",
"characters",
",",
"words",
"or",
"sentences",
",",
"and",
"\n",
"sequentially",
"or",
"not",
".",
"We",
"take",
"(",
"linguistic",
")",
"meaning",
"\n",
"to",
"be",
"the",
"relation",
"between",
"a",
"linguistic",
"form",
"and",
"\n",
"communicative",
"intent",
".",
"\n",
"Our",
"aim",
"is",
"to",
"advocate",
"for",
"an",
"alignment",
"of",
"claims",
"\n",
"and",
"methodology",
":",
"Human",
"-",
"analogous",
"natural",
"lan-",
"\n",
"guage",
"understanding",
"(",
"NLU",
")",
"is",
"a",
"grand",
"challenge",
"\n",
"of",
"artificial",
"intelligence",
",",
"which",
"involves",
"mastery",
"ofthe",
"structure",
"and",
"use",
"of",
"language",
"and",
"the",
"ability",
"\n",
"to",
"ground",
"it",
"in",
"the",
"world",
".",
"While",
"large",
"neural",
"LMs",
"\n",
"may",
"well",
"end",
"up",
"being",
"important",
"components",
"of",
"\n",
"an",
"eventual",
"full",
"-",
"scale",
"solution",
"to",
"human",
"-",
"analogous",
"\n",
"NLU",
",",
"they",
"are",
"not",
"nearly",
"-",
"there",
"solutions",
"to",
"this",
"\n",
"grand",
"challenge",
".",
"We",
"argue",
"in"
] |
[
{
"end": 1196,
"label": "CITATION_REF",
"start": 1175
},
{
"end": 1190,
"label": "AUTHOR",
"start": 1175
},
{
"end": 1196,
"label": "YEAR",
"start": 1192
},
{
"end": 1228,
"label": "CITATION_REF",
"start": 1208
},
{
"end": 1222,
"label": "AUTHOR",
"start": 1208
},
{
"end": 1228,
"label": "YEAR",
"start": 1224
}
] |
| 23.3 ₊₁ | MAR OMN | MAR OMN | MAR OMN | MAR OMN | MAR OMN | MAR OMN |
| 59 ₊₁ | 41 ₋₂ | 16 32 | … | … | … | 23 | … | 100 ₊₁ | 100 | … | 100 ᵢ | … | 100 ᵢ | … | 93 ᵢ | 4.4 ₋₂ | 4.2 ₋₁ | 11.1 | 14.2 ₋₁ 9.3 ₋₃ | ₋₂ | ₋₂ | ₋₂ | ₋₂ | ₋₂ | ₋₂ |
| 66 ₊₁ | 62 ₋₂ 80 ₋₂ | 36 | … | 48 | 53 ₋₁ | 36 | 44 ₋₁ | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 3.6 ₋₁ | 3.2 ₋₃ | 12.7 ₋₁ | | PSE | PSE | PSE | PSE | PSE | PSE |
| 63 ₊₁ | 71 ₋₂ | 16 | … | … | 37 ₋₁ | … | 30 ₋₁ | ₊₁ 100 ₊₁ | 100 ₋₁ | 100 | 100 ₋₁ | 100 | 100 ₋₁ | 100 | 100 ₋₁ | … | 5.1 | … | … … | QAT | QAT | QAT | QAT | QAT | QAT |
| … | … | … | … | … | 23 ₋₁ | … | 20 ₋₁ | 90 ₊₁ | 99 | 100 | 100 | 100 | 100 | | 100 | 100 | 4.7 | 5.4 ₋₂ | | … | … | … | … | … | … |
| | | … | | | … | … | … | | | … | … | … | … | 66 | … | … | … | … | … | | | | | | |
| … | … | … | … … | … | … | … | … | … | … | | 43 | … | … | 92 ₋₂ | 44 | … | … | | … | … | … | … | … | … | … |
| … | … | | | … | | | … | … | 13 | … | | | 100 ₋₁ | … | 100 ₋₁ | | 6.7 | 22.7 | 17.8 ₊₁ | SYR TUN
|
[
"|",
"23.3",
"₊₁",
" ",
"|",
"MAR",
"OMN",
" ",
"|",
"MAR",
"OMN",
" ",
"|",
"MAR",
"OMN",
" ",
"|",
"MAR",
"OMN",
" ",
"|",
"MAR",
"OMN",
" ",
"|",
"MAR",
"OMN",
" ",
"|",
"\n",
"|",
"59",
"₊₁",
" ",
"|",
"41",
"₋₂",
" ",
"|",
"16",
"32",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"23",
" ",
"|",
"…",
" ",
"|",
"100",
"₊₁",
" ",
"|",
"100",
" ",
"|",
"…",
" ",
"|",
"100",
"ᵢ",
" ",
"|",
"…",
" ",
"|",
"100",
"ᵢ",
" ",
"|",
"…",
" ",
"|",
"93",
"ᵢ",
" ",
"|",
"4.4",
"₋₂",
" ",
"|",
"4.2",
"₋₁",
" ",
"|",
"11.1",
" ",
"|",
"14.2",
"₋₁",
"9.3",
"₋₃",
" ",
"|",
"₋₂",
" ",
"|",
"₋₂",
" ",
"|",
"₋₂",
" ",
"|",
"₋₂",
" ",
"|",
"₋₂",
" ",
"|",
"₋₂",
" ",
"|",
"\n",
"|",
"66",
"₊₁",
" ",
"|",
"62",
"₋₂",
"80",
"₋₂",
" ",
"|",
"36",
" ",
"|",
"…",
" ",
"|",
"48",
" ",
"|",
"53",
"₋₁",
" ",
"|",
"36",
" ",
"|",
"44",
"₋₁",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"3.6",
"₋₁",
" ",
"|",
"3.2",
"₋₃",
" ",
"|",
"12.7",
"₋₁",
" ",
"|",
" ",
"|",
"PSE",
" ",
"|",
"PSE",
" ",
"|",
"PSE",
" ",
"|",
"PSE",
" ",
"|",
"PSE",
" ",
"|",
"PSE",
" ",
"|",
"\n",
"|",
"63",
"₊₁",
" ",
"|",
"71",
"₋₂",
" ",
"|",
"16",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"37",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"30",
"₋₁",
" ",
"|",
"₊₁",
"100",
"₊₁",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"100",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"100",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"100",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"5.1",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"QAT",
" ",
"|",
"QAT",
" ",
"|",
"QAT",
" ",
"|",
"QAT",
" ",
"|",
"QAT",
" ",
"|",
"QAT",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"23",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"20",
"₋₁",
" ",
"|",
"90",
"₊₁",
" ",
"|",
"99",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"4.7",
" ",
"|",
"5.4",
"₋₂",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"66",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"43",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"92",
"₋₂",
" ",
"|",
"44",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"13",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"100",
"₋₁",
" ",
"|",
" ",
"|",
"6.7",
" ",
"|",
"22.7",
" ",
"|",
"17.8",
"₊₁",
" ",
"|",
"SYR",
"TUN",
" "
] |
[] |
- Zhu, Z. Zhu zi qing san wen ji [ Collection of Zhu Ziqing's Prose ]. Nanjing: Nanjing chuban she, 2018.
## Index
| Adegbohungbe, Ebun 132 Adler, Saul 113 adultery 227 affirmative action 27, 329, 330 Ajakaiye, Deborah 132 alcohol block therapy 204, 206 All India Vaidya Sammelan 219 All India Women's Conference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (AIWC) 237, 240 |
| All-China Women's Federation (ACWF) 198, 199 |
| American College, Istanbul 105 American Orthopsychiatric Association 271 |
| American Rose Society 83 Amour, Anna 134 Anarchist Informational Bulletin 290 |
| Andics, Erzsébet 325 Angelescu, Constantin 150, 152, 156 anti-nepotism rules xxx, 259, 315 Anti-Rightist Campaign 194-95, 197, |
| 200, 208 Asperger, Hans 261 |
| Association for Women in Science (USA) 304 |
| Association of Child Care Workers (USA) 270 Association of Greek Women |
| Scientists 289 Association of Hungarian Women Graduates of University |
| College 323 |
| Association of Scientific Workers |
| and (A.Sc.W.) (UK) 50 |
| Associazione Italiana Donne Ingegneri |
| e |
| Architetti (AIDIA) 133 |
| authoritarian regimes 9, 27 autism 24, 25, 205, 258, 260-63, 265, 266, 268-69, 271-73 autobiography 49, 246 Ayrton, Hertha 46 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ayurveda 23-24, 194, 202, 217-27, 229 Baghdadi Jews 109, 112, 246 Bama (writer) 246 George 13 Jiří 104 |
| Basalla, Baum, Baur, Erwin 79 behavioural conditioning 266 Beit Railway Trust Rhodesian Fellowship 14, 39 Bernal, John Desmond 48, 50 Bettelheim, Bruno 261-62, 266 |
| biographical dictionaries 5, 6, |
| 164 birth control 26, 282, 284-85, 288, |
| 289, 291-93 Blanchard, Frieda 88, 93, 96 Bobula, Ida 323-24, 326-28 |
| John 261-62 |
| (celibacy) 222, |
| Brahmacharya 224-25 Brahmo Samaj 241 Braniște, Valeriu 152 |
| British Association for the Advancement of |
| British Communist Party 50 British Medical Journal 217 Brooks, Harriet 42 |
| Broom 290 Bulletin of the Association of Greek Women Scientists 291 |
| Bulletin of the Democratic Women's |
| Bowlby, |
| Science 50 |
Movement
291
|
[
"-",
"Zhu",
",",
"Z.",
"Zhu",
"zi",
"qing",
"san",
"wen",
"ji",
"[",
"Collection",
"of",
"Zhu",
"Ziqing",
"'s",
"Prose",
"]",
".",
"Nanjing",
":",
"Nanjing",
"chuban",
"she",
",",
"2018",
".",
"\n\n",
"#",
"#",
"Index",
"\n\n",
"|",
"Adegbohungbe",
",",
"Ebun",
"132",
"Adler",
",",
"Saul",
"113",
"adultery",
"227",
"affirmative",
"action",
"27",
",",
"329",
",",
"330",
"Ajakaiye",
",",
"Deborah",
"132",
"alcohol",
"block",
"therapy",
"204",
",",
"206",
"All",
"India",
"Vaidya",
"Sammelan",
"219",
"All",
"India",
"Women",
"'s",
"Conference",
" ",
"|",
"\n",
"|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|",
"\n",
"|",
"(",
"AIWC",
")",
"237",
",",
"240",
" ",
"|",
"\n",
"|",
"All",
"-",
"China",
"Women",
"'s",
"Federation",
"(",
"ACWF",
")",
"198",
",",
"199",
" ",
"|",
"\n",
"|",
"American",
"College",
",",
"Istanbul",
"105",
"American",
"Orthopsychiatric",
"Association",
"271",
" ",
"|",
"\n",
"|",
"American",
"Rose",
"Society",
"83",
"Amour",
",",
"Anna",
"134",
"Anarchist",
"Informational",
"Bulletin",
"290",
" ",
"|",
"\n",
"|",
"Andics",
",",
"Erzsébet",
"325",
"Angelescu",
",",
"Constantin",
"150",
",",
"152",
",",
"156",
"anti",
"-",
"nepotism",
"rules",
"xxx",
",",
"259",
",",
"315",
"Anti",
"-",
"Rightist",
"Campaign",
"194",
"-",
"95",
",",
"197",
",",
" ",
"|",
"\n",
"|",
"200",
",",
"208",
"Asperger",
",",
"Hans",
"261",
" ",
"|",
"\n",
"|",
"Association",
"for",
"Women",
"in",
"Science",
"(",
"USA",
")",
"304",
" ",
"|",
"\n",
"|",
"Association",
"of",
"Child",
"Care",
"Workers",
"(",
"USA",
")",
"270",
"Association",
"of",
"Greek",
"Women",
" ",
"|",
"\n",
"|",
"Scientists",
"289",
"Association",
"of",
"Hungarian",
"Women",
"Graduates",
"of",
"University",
" ",
"|",
"\n",
"|",
"College",
"323",
" ",
"|",
"\n",
"|",
"Association",
"of",
"Scientific",
"Workers",
" ",
"|",
"\n",
"|",
"and",
"(",
"A.Sc",
".",
"W.",
")",
"(",
"UK",
")",
"50",
" ",
"|",
"\n",
"|",
"Associazione",
"Italiana",
"Donne",
"Ingegneri",
" ",
"|",
"\n",
"|",
"e",
" ",
"|",
"\n",
"|",
"Architetti",
"(",
"AIDIA",
")",
"133",
" ",
"|",
"\n\n",
"|",
"authoritarian",
"regimes",
"9",
",",
"27",
"autism",
"24",
",",
"25",
",",
"205",
",",
"258",
",",
"260",
"-",
"63",
",",
"265",
",",
"266",
",",
"268",
"-",
"69",
",",
"271",
"-",
"73",
"autobiography",
"49",
",",
"246",
"Ayrton",
",",
"Hertha",
"46",
" ",
"|",
"\n",
"|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|",
"\n",
"|",
"Ayurveda",
"23",
"-",
"24",
",",
"194",
",",
"202",
",",
"217",
"-",
"27",
",",
"229",
"Baghdadi",
"Jews",
"109",
",",
"112",
",",
"246",
"Bama",
"(",
"writer",
")",
"246",
"George",
"13",
"Jiří",
"104",
" ",
"|",
"\n",
"|",
"Basalla",
",",
"Baum",
",",
"Baur",
",",
"Erwin",
"79",
"behavioural",
"conditioning",
"266",
"Beit",
"Railway",
"Trust",
"Rhodesian",
"Fellowship",
"14",
",",
"39",
"Bernal",
",",
"John",
"Desmond",
"48",
",",
"50",
"Bettelheim",
",",
"Bruno",
"261",
"-",
"62",
",",
"266",
"|",
"\n",
"|",
"biographical",
"dictionaries",
"5",
",",
"6",
",",
" ",
"|",
"\n",
"|",
"164",
"birth",
"control",
"26",
",",
"282",
",",
"284",
"-",
"85",
",",
"288",
",",
" ",
"|",
"\n",
"|",
"289",
",",
"291",
"-",
"93",
"Blanchard",
",",
"Frieda",
"88",
",",
"93",
",",
"96",
"Bobula",
",",
"Ida",
"323",
"-",
"24",
",",
"326",
"-",
"28",
" ",
"|",
"\n",
"|",
"John",
"261",
"-",
"62",
" ",
"|",
"\n",
"|",
"(",
"celibacy",
")",
"222",
",",
" ",
"|",
"\n",
"|",
"Brahmacharya",
"224",
"-",
"25",
"Brahmo",
"Samaj",
"241",
"Braniște",
",",
"Valeriu",
"152",
" ",
"|",
"\n",
"|",
"British",
"Association",
"for",
"the",
"Advancement",
"of",
" ",
"|",
"\n",
"|",
"British",
"Communist",
"Party",
"50",
"British",
"Medical",
"Journal",
"217",
"Brooks",
",",
"Harriet",
"42",
" ",
"|",
"\n",
"|",
"Broom",
"290",
"Bulletin",
"of",
"the",
"Association",
"of",
"Greek",
"Women",
"Scientists",
"291",
" ",
"|",
"\n",
"|",
"Bulletin",
"of",
"the",
"Democratic",
"Women",
"'s",
" ",
"|",
"\n",
"|",
"Bowlby",
",",
" ",
"|",
"\n",
"|",
"Science",
"50",
" ",
"|",
"\n\n",
"Movement",
"\n\n",
"291"
] |
[
{
"end": 105,
"label": "CITATION_SPAN",
"start": 2
}
] |
entered into by a licensee or contractor to manage commodity price risk.
Source: Schedule 9 - Hedging transactions, Kenya Income Tax Act .
## South Africa
The capital expenditure determined 'in relation to any mine or mines shall not exceed the taxable income (as determined before the deduction of any amount allowable under section 15(a), but after the set-off of any balance of assessed loss incurred by the taxpayer in relation to such mine or mines in any previous year which has been carried forward from the preceding year of assessment) derived by the taxpayer from mining.'
Source: Section 36 (7E) of the Income Tax Act.
In some cases, it may be difficult to distinguish between mining and non-mining activities. Distinguishing between the mining operations and manufacturing activities that can be connected or interrelated with mining operations is one such example. Countries may have different rules and even incentives in place, which may apply depending on whether the activities are considered mining versus manufacturing activities.
On the one hand, mining involves the recovery of minerals that are already in the earth, whereas manufacturing produces a new element different from the materials or components that went into its making. On the other hand, the process of refining raw materials into a finished product, significantly different from the ore, could be considered manufacturing, and such activities may be subject to different tax treatments. Such distinctions and relevant definitions should be very carefully considered due to the potential implications for tax base determination. In South Africa, the courts have formulated judicial interpretations on what activities would constitute a mining activity, and what activities will be considered a manufacturing activity, given the different tax treatment. In the case of CSAR v Foskor, the South African Court of Appeal concluded that mining operations end when the ore is extracted from the soil, and any processing beyond extraction constitutes manufacturing (see Box 12).
## 1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
3.0 THE BENEFITS AND RISKS OF RING-FENCING
## 4.0 DESIGNING RING-FENCING RULES
5.0 THE IMPLEMENTATION OF RING-FENCING RULES
6.0 CONCLUSION
## BOX 12. MINING VERSUS MANUFACTURING
In the CSAR v. Foskor case, the Supreme Court of Appeal (SCA) of South Africa had to decide whether Foskor's activities were manufacturing or mining in nature. As part of Foskor's business operations, phosphatebearing ore was initially crushed and then milled before the minerals of economic importance were separated
|
[
"entered",
"into",
"by",
"a",
"licensee",
"or",
"contractor",
"to",
"manage",
"commodity",
"price",
"risk",
".",
"\n\n",
"Source",
":",
"Schedule",
"9",
"-",
"Hedging",
"transactions",
",",
"Kenya",
"Income",
"Tax",
"Act",
".",
"\n\n",
"#",
"#",
"South",
"Africa",
"\n\n",
"The",
"capital",
"expenditure",
"determined",
"'",
"in",
"relation",
"to",
"any",
"mine",
"or",
"mines",
"shall",
"not",
"exceed",
"the",
"taxable",
"income",
"(",
"as",
"determined",
"before",
"the",
"deduction",
"of",
"any",
"amount",
"allowable",
"under",
"section",
"15(a",
")",
",",
"but",
"after",
"the",
"set",
"-",
"off",
"of",
"any",
"balance",
"of",
"assessed",
"loss",
"incurred",
"by",
"the",
"taxpayer",
"in",
"relation",
"to",
"such",
"mine",
"or",
"mines",
"in",
"any",
"previous",
"year",
"which",
"has",
"been",
"carried",
"forward",
"from",
"the",
"preceding",
"year",
"of",
"assessment",
")",
"derived",
"by",
"the",
"taxpayer",
"from",
"mining",
".",
"'",
"\n\n",
"Source",
":",
"Section",
"36",
"(",
"7E",
")",
"of",
"the",
"Income",
"Tax",
"Act",
".",
"\n\n",
"In",
"some",
"cases",
",",
"it",
"may",
"be",
"difficult",
"to",
"distinguish",
"between",
"mining",
"and",
"non",
"-",
"mining",
"activities",
".",
"Distinguishing",
"between",
"the",
"mining",
"operations",
"and",
"manufacturing",
"activities",
"that",
"can",
"be",
"connected",
"or",
"interrelated",
"with",
"mining",
"operations",
"is",
"one",
"such",
"example",
".",
"Countries",
"may",
"have",
"different",
"rules",
"and",
"even",
"incentives",
"in",
"place",
",",
"which",
"may",
"apply",
"depending",
"on",
"whether",
"the",
"activities",
"are",
"considered",
"mining",
"versus",
"manufacturing",
"activities",
".",
"\n\n",
"On",
"the",
"one",
"hand",
",",
"mining",
"involves",
"the",
"recovery",
"of",
"minerals",
"that",
"are",
"already",
"in",
"the",
"earth",
",",
"whereas",
"manufacturing",
"produces",
"a",
"new",
"element",
"different",
"from",
"the",
"materials",
"or",
"components",
"that",
"went",
"into",
"its",
"making",
".",
"On",
"the",
"other",
"hand",
",",
"the",
"process",
"of",
"refining",
"raw",
"materials",
"into",
"a",
"finished",
"product",
",",
"significantly",
"different",
"from",
"the",
"ore",
",",
"could",
"be",
"considered",
"manufacturing",
",",
"and",
"such",
"activities",
"may",
"be",
"subject",
"to",
"different",
"tax",
"treatments",
".",
"Such",
"distinctions",
"and",
"relevant",
"definitions",
"should",
"be",
"very",
"carefully",
"considered",
"due",
"to",
"the",
"potential",
"implications",
"for",
"tax",
"base",
"determination",
".",
"In",
"South",
"Africa",
",",
"the",
"courts",
"have",
"formulated",
"judicial",
"interpretations",
"on",
"what",
"activities",
"would",
"constitute",
"a",
"mining",
"activity",
",",
"and",
"what",
"activities",
"will",
"be",
"considered",
"a",
"manufacturing",
"activity",
",",
"given",
"the",
"different",
"tax",
"treatment",
".",
"In",
"the",
"case",
"of",
"CSAR",
"v",
"Foskor",
",",
"the",
"South",
"African",
"Court",
"of",
"Appeal",
"concluded",
"that",
"mining",
"operations",
"end",
"when",
"the",
"ore",
"is",
"extracted",
"from",
"the",
"soil",
",",
"and",
"any",
"processing",
"beyond",
"extraction",
"constitutes",
"manufacturing",
"(",
"see",
"Box",
"12",
")",
".",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"#",
"#",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"5.0",
"THE",
"IMPLEMENTATION",
"OF",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"6.0",
"CONCLUSION",
"\n\n",
"#",
"#",
"BOX",
"12",
".",
"MINING",
"VERSUS",
"MANUFACTURING",
"\n\n",
"In",
"the",
"CSAR",
"v.",
"Foskor",
"case",
",",
"the",
"Supreme",
"Court",
"of",
"Appeal",
"(",
"SCA",
")",
"of",
"South",
"Africa",
"had",
"to",
"decide",
"whether",
"Foskor",
"'s",
"activities",
"were",
"manufacturing",
"or",
"mining",
"in",
"nature",
".",
"As",
"part",
"of",
"Foskor",
"'s",
"business",
"operations",
",",
"phosphatebearing",
"ore",
"was",
"initially",
"crushed",
"and",
"then",
"milled",
"before",
"the",
"minerals",
"of",
"economic",
"importance",
"were",
"separated"
] |
[] |
The EU should also put in place a common trading rulebook applying to both
spot and derivatives markets and ensure integrated supervision of energy and energy derivatives markets. Finally,
the EU should review the “ancillary activities exemption” to ensure that all trading entities are subject to the same
supervision and requirements.
At the same time, transferring the benefits of decarbonisation requires policies to better decouple the price
of natural gas from clean energy . The EU should decouple the remuneration of renewable energy and nuclear
from fossil-fuel generation by building on the tools introduced under the new Electricity Market Design – such
as PPAs and two-way CfDs – and progressively extending PPAs and CFDs to all renewable and nuclear assets in
a harmonised way. The marginal pricing system should be used to ensure efficient balance in the energy system.
To increase the uptake of PPAs into the industrial sector, the report recommends developing market platforms
to contract resources and pool demand between generators and offtakers. This initiative can be combined with
schemes to provide guarantees to mitigate the financial counterparty risks engendered by using such platforms,
thereby enlarging market access to SMEs. For example, the EIB and National Promotional Banks could provide
counter guarantees and specific financial products for small consumers or suppliers that lack a proper credit rating.
In parallel, a fundamental component of lowering energy costs for end users is reducing energy taxation, which can
be achieved by adopting a common maximum level of surcharges across the EU (including taxes, levies and network
charges). Legislative reform in this area is subject to unanimity, but cooperation among a subset of Member States
or guidance on energy taxation can be considered.
The second key goal is to accelerate decarbonisation in a cost-efficient way, leveraging all available solu -
tions through a technology-neutral approach . This approach should include renewables, nuclear, hydrogen,
bioenergy and carbon capture, utilisation and storage, and should be backed by massive mobilisation of both public
and private finance (based on the proposals laid out in the chapter on investment. However, increasing the supply
of finance for clean energy deployment will not yield the desired results without increasing the pace of permitting
for installation. Different options are available to reduce permitting delays for new energy projects. Systematically
implementing existing legislation can make a major difference: for example, several Member States have experienced
double-digit increases in the volume of
|
[
"The",
"EU",
"should",
"also",
"put",
"in",
"place",
"a",
"common",
"trading",
"rulebook",
"applying",
"to",
"both",
"\n",
"spot",
"and",
"derivatives",
"markets",
"and",
"ensure",
"integrated",
"supervision",
"of",
"energy",
"and",
"energy",
"derivatives",
"markets",
".",
"Finally",
",",
"\n",
"the",
"EU",
"should",
"review",
"the",
"“",
"ancillary",
"activities",
"exemption",
"”",
"to",
"ensure",
"that",
"all",
"trading",
"entities",
"are",
"subject",
"to",
"the",
"same",
"\n",
"supervision",
"and",
"requirements",
".",
"\n",
"At",
"the",
"same",
"time",
",",
"transferring",
"the",
"benefits",
"of",
"decarbonisation",
"requires",
"policies",
"to",
"better",
"decouple",
"the",
"price",
"\n",
"of",
"natural",
"gas",
"from",
"clean",
"energy",
".",
"The",
"EU",
"should",
"decouple",
"the",
"remuneration",
"of",
"renewable",
"energy",
"and",
"nuclear",
"\n",
"from",
"fossil",
"-",
"fuel",
"generation",
"by",
"building",
"on",
"the",
"tools",
"introduced",
"under",
"the",
"new",
"Electricity",
"Market",
"Design",
"–",
"such",
"\n",
"as",
"PPAs",
"and",
"two",
"-",
"way",
"CfDs",
"–",
"and",
"progressively",
"extending",
"PPAs",
"and",
"CFDs",
"to",
"all",
"renewable",
"and",
"nuclear",
"assets",
"in",
"\n",
"a",
"harmonised",
"way",
".",
"The",
"marginal",
"pricing",
"system",
"should",
"be",
"used",
"to",
"ensure",
"efficient",
"balance",
"in",
"the",
"energy",
"system",
".",
"\n",
"To",
"increase",
"the",
"uptake",
"of",
"PPAs",
"into",
"the",
"industrial",
"sector",
",",
"the",
"report",
"recommends",
"developing",
"market",
"platforms",
"\n",
"to",
"contract",
"resources",
"and",
"pool",
"demand",
"between",
"generators",
"and",
"offtakers",
".",
"This",
"initiative",
"can",
"be",
"combined",
"with",
"\n",
"schemes",
"to",
"provide",
"guarantees",
"to",
"mitigate",
"the",
"financial",
"counterparty",
"risks",
"engendered",
"by",
"using",
"such",
"platforms",
",",
"\n",
"thereby",
"enlarging",
"market",
"access",
"to",
"SMEs",
".",
"For",
"example",
",",
"the",
"EIB",
"and",
"National",
"Promotional",
"Banks",
"could",
"provide",
"\n",
"counter",
"guarantees",
"and",
"specific",
"financial",
"products",
"for",
"small",
"consumers",
"or",
"suppliers",
"that",
"lack",
"a",
"proper",
"credit",
"rating",
".",
"\n",
"In",
"parallel",
",",
"a",
"fundamental",
"component",
"of",
"lowering",
"energy",
"costs",
"for",
"end",
"users",
"is",
"reducing",
"energy",
"taxation",
",",
"which",
"can",
"\n",
"be",
"achieved",
"by",
"adopting",
"a",
"common",
"maximum",
"level",
"of",
"surcharges",
"across",
"the",
"EU",
"(",
"including",
"taxes",
",",
"levies",
"and",
"network",
"\n",
"charges",
")",
".",
"Legislative",
"reform",
"in",
"this",
"area",
"is",
"subject",
"to",
"unanimity",
",",
"but",
"cooperation",
"among",
"a",
"subset",
"of",
"Member",
"States",
"\n",
"or",
"guidance",
"on",
"energy",
"taxation",
"can",
"be",
"considered",
".",
"\n",
"The",
"second",
"key",
"goal",
"is",
"to",
"accelerate",
"decarbonisation",
"in",
"a",
"cost",
"-",
"efficient",
"way",
",",
"leveraging",
"all",
"available",
"solu",
"-",
"\n",
"tions",
"through",
"a",
"technology",
"-",
"neutral",
"approach",
".",
"This",
"approach",
"should",
"include",
"renewables",
",",
"nuclear",
",",
"hydrogen",
",",
"\n",
"bioenergy",
"and",
"carbon",
"capture",
",",
"utilisation",
"and",
"storage",
",",
"and",
"should",
"be",
"backed",
"by",
"massive",
"mobilisation",
"of",
"both",
"public",
"\n",
"and",
"private",
"finance",
"(",
"based",
"on",
"the",
"proposals",
"laid",
"out",
"in",
"the",
"chapter",
"on",
"investment",
".",
"However",
",",
"increasing",
"the",
"supply",
"\n",
"of",
"finance",
"for",
"clean",
"energy",
"deployment",
"will",
"not",
"yield",
"the",
"desired",
"results",
"without",
"increasing",
"the",
"pace",
"of",
"permitting",
"\n",
"for",
"installation",
".",
"Different",
"options",
"are",
"available",
"to",
"reduce",
"permitting",
"delays",
"for",
"new",
"energy",
"projects",
".",
"Systematically",
"\n",
"implementing",
"existing",
"legislation",
"can",
"make",
"a",
"major",
"difference",
":",
"for",
"example",
",",
"several",
"Member",
"States",
"have",
"experienced",
"\n",
"double",
"-",
"digit",
"increases",
"in",
"the",
"volume",
"of"
] |
[] |
approaches to the concept of the public sphere not only reveal women's hidden, complex and often neglected relationship with science, but also draw attention to the political dimensions of the relationship between science and society and the steps required towards the prioritization of diversity and inclusion in science studies.
## Notes
- 1 The chapter is based on the author's dissertation 'Science communication in late twentieth- century Greece: Public intersections of gender and knowledge circulation in the feminist birth control movements'. Research was supported by the Hellenic Foundation for Research and Innovation under the HFRI PhD
Fellowship Grant (Fellowship No. 873) and is available online at: www.dida ktor ika.gr/ eadd/ han dle/ 10442/ 52660. Former versions of the paper were presented at the Thirteenth International Graduate Student Conference in Modern Greek Studies (Princeton University, Seeger Center for Hellenic Studies), the First Flying Colloquium of the History of Science in Central, Eastern and Southeastern Europe, and the virtual conference 'Hidden Histories: Women and Science in the Twentieth Century' (Heidelberg Centre for Transcultural Studies and the University of Bucharest). J. Östling, E. Sandmo, D. L. Heidenblad, A. N. Hammar, K. Nordberg (eds), Circulation of Knowledge: Explorations in the History of Knowledge (Lund: Nordic Academic Press, 2018), p. 12.
- 2 N. A. Papanikolaou, Μαιευτική [ Obstetrics ] (Thessaloniki: Library of the Hellenic Society of Obstetrics and Gynecology, 1987), pp. 11- 17.
- 3 OB/ GYN Clinic of the University of Patras, Greek Society for the Study of Reproduction, Greek Society of IVF and Fetus Transportation, '∏ ανελλήνιο συνέδριο για την ανθρώ π ινη ανα π αραγωγή . Ελληνική Εταιρεία Εξωσω ατικής μ Γονι μ π ο οίησης και Ε βρυο μ μ εταφοράς ' [Panhellenic Conference on Human Reproduction], 11- 13 March 1988 (Patras: Library of the Hellenic Society of Obstetrics and Gynecology, 1988), p. 201.
- 4 Anon., 'Trump's order on abortion policy: What does it mean?', BBC News (24 January 2017).
- 5 S. Andrikakis, ' Αφήστε μ ε να ζήσω ' [Let me live], Sportime (29 December 2019), www.sport ime.gr/ ent ypi- ekd osi/ diava ste- sim era- sto- sport ime- afi ste- mena- ziso/ (accessed 25 November 2022).
- 6 See also E. Chordaki and A. Lazopoulou, 'Reclaiming our health: Greek feminist birth control movements as a form of women's engagement with science', in C. C. Harry and G. N. Vlahakis (eds), Exploring the Contributions of Women in the History of Philosophy, Science, and Literature, Throughout Time: Women in the History of Philosophy and Sciences , vol. 20 (Cham: Springer, 2023), pp. 179- 98, https:// doi.org/ 10.1007/ 978- 3- 031- 39630- 4\_ 12.
|
[
"approaches",
"to",
"the",
"concept",
"of",
"the",
"public",
"sphere",
"not",
"only",
"reveal",
"women",
"'s",
"hidden",
",",
"complex",
"and",
"often",
"neglected",
"relationship",
"with",
"science",
",",
"but",
"also",
"draw",
"attention",
"to",
"the",
"political",
"dimensions",
"of",
"the",
"relationship",
"between",
"science",
"and",
"society",
"and",
"the",
"steps",
"required",
"towards",
"the",
"prioritization",
"of",
"diversity",
"and",
"inclusion",
"in",
"science",
"studies",
".",
"\n\n",
"#",
"#",
"Notes",
"\n\n",
"-",
"1",
" ",
"The",
"chapter",
"is",
"based",
"on",
"the",
"author",
"'s",
"dissertation",
"'",
"Science",
"communication",
"in",
"late",
" ",
"twentieth-",
" ",
"century",
" ",
"Greece",
":",
" ",
"Public",
" ",
"intersections",
" ",
"of",
" ",
"gender",
" ",
"and",
" ",
"knowledge",
"circulation",
"in",
"the",
"feminist",
"birth",
"control",
"movements",
"'",
".",
"Research",
"was",
"supported",
"by",
"the",
"Hellenic",
"Foundation",
"for",
"Research",
"and",
"Innovation",
"under",
"the",
"HFRI",
"PhD",
"\n\n",
"Fellowship",
"Grant",
"(",
"Fellowship",
"No",
".",
"873",
")",
"and",
"is",
"available",
"online",
"at",
":",
"www.dida",
"ktor",
" ",
"ika.gr/",
" ",
"eadd/",
" ",
"han",
" ",
"dle/",
" ",
"10442/",
" ",
"52660",
".",
"Former",
"versions",
"of",
"the",
"paper",
"were",
"presented",
"at",
"the",
"Thirteenth",
"International",
"Graduate",
"Student",
"Conference",
"in",
"Modern",
"Greek",
"Studies",
"(",
"Princeton",
"University",
",",
"Seeger",
"Center",
"for",
"Hellenic",
"Studies",
")",
",",
"the",
"First",
" ",
"Flying",
" ",
"Colloquium",
" ",
"of",
" ",
"the",
" ",
"History",
" ",
"of",
" ",
"Science",
" ",
"in",
" ",
"Central",
",",
" ",
"Eastern",
" ",
"and",
"Southeastern",
"Europe",
",",
"and",
"the",
"virtual",
"conference",
"'",
"Hidden",
"Histories",
":",
"Women",
"and",
"Science",
"in",
"the",
"Twentieth",
"Century",
"'",
"(",
"Heidelberg",
"Centre",
"for",
"Transcultural",
"Studies",
"and",
"the",
"University",
"of",
"Bucharest",
")",
".",
"J.",
"Östling",
",",
"E.",
"Sandmo",
",",
"D.",
"L.",
"Heidenblad",
",",
"A.",
"N.",
"Hammar",
",",
"K.",
"Nordberg",
"(",
"eds",
")",
",",
"Circulation",
"of",
"Knowledge",
":",
"Explorations",
"in",
"the",
"History",
"of",
"Knowledge",
"(",
"Lund",
":",
"Nordic",
"Academic",
"Press",
",",
"2018",
")",
",",
"p.",
"12",
".",
"\n\n",
"-",
"2",
" ",
"N.",
" ",
"A.",
" ",
"Papanikolaou",
",",
"Μαιευτική",
"[",
"Obstetrics",
"]",
"(",
"Thessaloniki",
":",
" ",
"Library",
" ",
"of",
" ",
"the",
"Hellenic",
"Society",
"of",
"Obstetrics",
"and",
"Gynecology",
",",
"1987",
")",
",",
"pp",
".",
"11-",
" ",
"17",
".",
"\n",
"-",
"3",
" ",
"OB/",
" ",
"GYN",
"Clinic",
" ",
"of",
" ",
"the",
" ",
"University",
" ",
"of",
" ",
"Patras",
",",
" ",
"Greek",
" ",
"Society",
" ",
"for",
" ",
"the",
" ",
"Study",
" ",
"of",
"Reproduction",
",",
" ",
"Greek",
" ",
"Society",
" ",
"of",
" ",
"IVF",
" ",
"and",
" ",
"Fetus",
" ",
"Transportation",
",",
" ",
"'",
"∏",
"ανελλήνιο",
"συνέδριο",
"για",
"την",
"ανθρώ",
"π",
"ινη",
"ανα",
"π",
"αραγωγή",
".",
"Ελληνική",
"Εταιρεία",
"Εξωσω",
"ατικής",
"μ",
"Γονι",
"μ",
"π",
"ο",
"οίησης",
"και",
"Ε",
"βρυο",
"μ",
"μ",
"εταφοράς",
"'",
"[",
"Panhellenic",
" ",
"Conference",
" ",
"on",
" ",
"Human",
"Reproduction",
"]",
",",
"11-",
" ",
"13",
"March",
"1988",
"(",
"Patras",
":",
"Library",
"of",
"the",
"Hellenic",
"Society",
"of",
"Obstetrics",
"and",
"Gynecology",
",",
"1988",
")",
",",
"p.",
"201",
".",
"\n",
"-",
"4",
" ",
"Anon",
".",
",",
"'",
"Trump",
"'s",
"order",
"on",
"abortion",
"policy",
":",
"What",
"does",
"it",
"mean",
"?",
"'",
",",
"BBC",
"News",
"(",
"24",
"January",
"2017",
")",
".",
"\n",
"-",
"5",
" ",
"S.",
" ",
"Andrikakis",
",",
" ",
"'",
"Αφήστε",
"μ",
"ε",
"να",
"ζήσω",
"'",
" ",
"[",
"Let",
" ",
"me",
" ",
"live",
"]",
",",
"Sportime",
"(",
"29",
" ",
"December",
"2019",
")",
",",
"www.sport",
" ",
"ime.gr/",
" ",
"ent",
" ",
"ypi-",
" ",
"ekd",
" ",
"osi/",
" ",
"diava",
" ",
"ste-",
" ",
"sim",
" ",
"era-",
" ",
"sto-",
" ",
"sport",
" ",
"ime-",
" ",
"afi",
" ",
"ste-",
" ",
"mena-",
" ",
"ziso/",
"(",
"accessed",
"25",
"November",
"2022",
")",
".",
"\n",
"-",
"6",
" ",
"See",
"also",
"E.",
"Chordaki",
"and",
"A.",
"Lazopoulou",
",",
"'",
"Reclaiming",
"our",
"health",
":",
"Greek",
"feminist",
"birth",
"control",
"movements",
"as",
"a",
"form",
"of",
"women",
"'s",
"engagement",
"with",
"science",
"'",
",",
"in",
"C.",
"C.",
"Harry",
"and",
"G.",
"N.",
"Vlahakis",
"(",
"eds",
")",
",",
"Exploring",
"the",
"Contributions",
"of",
"Women",
"in",
"the",
"History",
"of",
"Philosophy",
",",
"Science",
",",
"and",
"Literature",
",",
"Throughout",
"Time",
":",
"Women",
"in",
"the",
"History",
"of",
"Philosophy",
"and",
"Sciences",
",",
"vol",
".",
"20",
"(",
"Cham",
":",
"Springer",
",",
"2023",
")",
",",
"pp",
".",
"179-",
" ",
"98",
",",
"https://",
" ",
"doi.org/",
" ",
"10.1007/",
" ",
"978-",
" ",
"3-",
" ",
"031-",
" ",
"39630-",
" ",
"4\\",
"_",
" ",
"12",
".",
"\n"
] |
[
{
"end": 345,
"label": "CITATION_ID",
"start": 344
},
{
"end": 1440,
"label": "CITATION_ID",
"start": 1439
},
{
"end": 1588,
"label": "CITATION_SPAN",
"start": 1442
},
{
"end": 1592,
"label": "CITATION_ID",
"start": 1591
},
{
"end": 2044,
"label": "CITATION_ID",
"start": 2043
},
{
"end": 2136,
"label": "CITATION_SPAN",
"start": 2046
},
{
"end": 2140,
"label": "CITATION_ID",
"start": 2139
},
{
"end": 2367,
"label": "CITATION_SPAN",
"start": 2142
},
{
"end": 2371,
"label": "CITATION_ID",
"start": 2370
},
{
"end": 2831,
"label": "CITATION_SPAN",
"start": 2382
}
] |
… … | … … … | … … | … … | … … | … … 97 | 5 ₋₁ 69 ₋₁ 99 2 | … ₋₂ 85 | … 100 ₋₁ 91 66 | … … … | 100 ₋₁ | … … | 3.1 … 99 ₋₁ … 63 | 3.2 8.4 8.1 ₋₃ 3.7 5.3 ₋₁ | 23.1 18.0 | 20.3 | BDI | 17.5 | | | | 19.0 21.5 | ₋₃ | | 75 ₋₂ | | BEN BWA BFA | | 3.4 ₋₁ |
| 7 ₋₁ ₊₁ | … … | 40 ₋₁ … | | … | … | … | … | 7 ₊₁ | … 100 | … | | 100 | … 95 ₋₂ | 100 | … | 7.1 4.8 | 27.5 ᵢ | 15.7 | CPV | | | | | | | | | | | | 4.8 ₋₁ |
| … 24 ₋₁ … | … | 12 ₋₁ | … … | … … | … … | … … | … | 100 29 ₊₁ ᵢ | 100 ₋₂ 34 | 96 ₋₁ … | 93 ₋₂ 62 | 77 ₋₁ 50 | 100 ₋₁ 57 | | 96 ₋₂ 59 | 4.7 ₋₁ 2.7 ᵢ 2.6 ₋₁ | 16.7 13.2 ᵢ | 13.4 ₊₁ | CMR | | | | | 13.1 | | | | | | | |
| … … | … … | … 3 ₋₁ | … | … | … | … … | | … | … | … | 82 ₋₁ … | … | … | … | … | 1.9 2.3 | 8.4 12.5 ₋₂ | 10.0 16.5 | CAF TCD | | | | | | | | | | | | 2.1 ₋₁ |
| 3 ₋₁ … … | … | … | … … | … … | … … | … | … | … | 5 | 65 ₋₂ | 64 | 38 | 62 | 49 ₊₁ … | 60 | 2.5 ₋₁ 2.4 ₋₁ | 13.4 | 10.5 ₋₁ | COM | | | | | | | | | | | | |
| 17 ₋₁ | … | 6 ₋₁ | … | … | … | | … | | 25 ₋₂ … | 40 ₋₁ | 75 …
|
[
"…",
"…",
"|",
"…",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
"97",
" ",
"|",
"5",
"₋₁",
"69",
"₋₁",
"99",
"2",
" ",
"|",
"…",
"₋₂",
"85",
" ",
"|",
"…",
"100",
"₋₁",
"91",
"66",
" ",
"|",
"…",
"…",
"…",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"…",
"…",
" ",
"|",
"3.1",
"…",
"99",
"₋₁",
"…",
"63",
" ",
"|",
"3.2",
"8.4",
"8.1",
"₋₃",
"3.7",
"5.3",
"₋₁",
" ",
"|",
"23.1",
"18.0",
" ",
"|",
"20.3",
" ",
"|",
"BDI",
" ",
"|",
"17.5",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"19.0",
"21.5",
" ",
"|",
"₋₃",
"|",
" ",
"|",
"75",
"₋₂",
"|",
" ",
"|",
"BEN",
"BWA",
"BFA",
" ",
"|",
" ",
"|",
"3.4",
"₋₁",
"|",
"\n",
"|",
"7",
"₋₁",
"₊₁",
" ",
"|",
"…",
"…",
" ",
"|",
"40",
"₋₁",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"7",
"₊₁",
" ",
"|",
"…",
"100",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"100",
" ",
"|",
"…",
"95",
"₋₂",
" ",
"|",
"100",
" ",
"|",
"…",
" ",
"|",
"7.1",
"4.8",
" ",
"|",
"27.5",
"ᵢ",
" ",
"|",
"15.7",
" ",
"|",
"CPV",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"4.8",
"₋₁",
"|",
"\n",
"|",
"…",
"24",
"₋₁",
"…",
" ",
"|",
"…",
" ",
"|",
"12",
"₋₁",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
"29",
"₊₁",
"ᵢ",
" ",
"|",
"100",
"₋₂",
"34",
" ",
"|",
"96",
"₋₁",
"…",
" ",
"|",
"93",
"₋₂",
"62",
" ",
"|",
"77",
"₋₁",
"50",
" ",
"|",
"100",
"₋₁",
"57",
"|",
" ",
"|",
"96",
"₋₂",
"59",
" ",
"|",
"4.7",
"₋₁",
"2.7",
"ᵢ",
"2.6",
"₋₁",
" ",
"|",
"16.7",
"13.2",
"ᵢ",
" ",
"|",
"13.4",
"₊₁",
" ",
"|",
"CMR",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"13.1",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"3",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"82",
"₋₁",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"1.9",
"2.3",
" ",
"|",
"8.4",
"12.5",
"₋₂",
" ",
"|",
"10.0",
"16.5",
" ",
"|",
"CAF",
"TCD",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"2.1",
"₋₁",
"|",
"\n",
"|",
"3",
"₋₁",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"5",
" ",
"|",
"65",
"₋₂",
" ",
"|",
"64",
" ",
"|",
"38",
" ",
"|",
"62",
" ",
"|",
"49",
"₊₁",
"…",
" ",
"|",
"60",
" ",
"|",
"2.5",
"₋₁",
"2.4",
"₋₁",
" ",
"|",
"13.4",
" ",
"|",
"10.5",
"₋₁",
" ",
"|",
"COM",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"17",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"6",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"25",
"₋₂",
"…",
" ",
"|",
"40",
"₋₁",
" ",
"|",
"75",
"…",
" "
] |
[] |
invest -
ments and entail significant costs. Increasing CRM security requires investments in mining – both at home and in
resource-rich countries – processing, stockpiling and recycling. Strengthening the supply chain for semiconductors
will require hundreds of billions of new spending. In both cases, these investments will lead to Europe no longer
buying from the most efficient supplier and may therefore increase cost pressures for the economy in the short
term. However, the “option value” of such investments increases exponentially in extreme scenarios, as the cut-off
of Russian gas has shown. By becoming less vulnerable to external leverage, the EU will also benefit from increased
decision-making autonomy. But to avoid a potential trade-off between independence and costs, European coop -
eration will be essential. CRMs are a quintessential example of where it is most cost efficient for Member States
to collectively insure – including with non-EU allies – rather than to self-insure. Building up domestic capacity for
advanced technologies will be most effective if priorities and demand requirements are coordinated in advance.
Likewise for defence and space: all Member States will become more secure if the European defence industry can
meet new demands and develop new technologies, and if the EU retains autonomous access to space.
55THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 4Reducing external vulnerabilities
As outlined in the previous chapter, access to CRMs is critical for the clean tech and automotive industry, yet
supply is highly concentrated [see the chapter on critical raw materials] . The global market for critical minerals for
the energy transition has doubled during the past five years, reaching EUR 300 billion in 2022v. Accelerating deploy -
ment of clean energy technologies is driving unprecedented growth in demand. From 2017 to 2022, global demand
for lithium tripled, while demand for cobalt rose by 70% and 40% for nickel. According to IEA projections, mineral
demand for clean energy technologies is expected to grow by a factor of 4 to 6 by 2040. However, the supply of
CRMs is highly concentrated in a handful of providers, especially for processing and refining, which creates two main
risks for Europe. The first is price volatility, which hampers investment decisions. For example, although an extreme
case, the price of lithium increased twelvefold over two years before tumbling again more than 80%, preventing the
opening of competitive mines in the EU. While oil stocks and gas storage
|
[
"invest",
"-",
"\n",
"ments",
"and",
"entail",
"significant",
"costs",
".",
"Increasing",
"CRM",
"security",
"requires",
"investments",
"in",
"mining",
"–",
"both",
"at",
"home",
"and",
"in",
"\n",
"resource",
"-",
"rich",
"countries",
"–",
"processing",
",",
"stockpiling",
"and",
"recycling",
".",
"Strengthening",
"the",
"supply",
"chain",
"for",
"semiconductors",
"\n",
"will",
"require",
"hundreds",
"of",
"billions",
"of",
"new",
"spending",
".",
"In",
"both",
"cases",
",",
"these",
"investments",
"will",
"lead",
"to",
"Europe",
"no",
"longer",
"\n",
"buying",
"from",
"the",
"most",
"efficient",
"supplier",
"and",
"may",
"therefore",
"increase",
"cost",
"pressures",
"for",
"the",
"economy",
"in",
"the",
"short",
"\n",
"term",
".",
"However",
",",
"the",
"“",
"option",
"value",
"”",
"of",
"such",
"investments",
"increases",
"exponentially",
"in",
"extreme",
"scenarios",
",",
"as",
"the",
"cut",
"-",
"off",
" \n",
"of",
"Russian",
"gas",
"has",
"shown",
".",
"By",
"becoming",
"less",
"vulnerable",
"to",
"external",
"leverage",
",",
"the",
"EU",
"will",
"also",
"benefit",
"from",
"increased",
"\n",
"decision",
"-",
"making",
"autonomy",
".",
"But",
"to",
"avoid",
"a",
"potential",
"trade",
"-",
"off",
"between",
"independence",
"and",
"costs",
",",
"European",
"coop",
"-",
"\n",
"eration",
"will",
"be",
"essential",
".",
"CRMs",
"are",
"a",
"quintessential",
"example",
"of",
"where",
"it",
"is",
"most",
"cost",
"efficient",
"for",
"Member",
"States",
"\n",
"to",
"collectively",
"insure",
"–",
"including",
"with",
"non",
"-",
"EU",
"allies",
"–",
"rather",
"than",
"to",
"self",
"-",
"insure",
".",
"Building",
"up",
"domestic",
"capacity",
"for",
"\n",
"advanced",
"technologies",
"will",
"be",
"most",
"effective",
"if",
"priorities",
"and",
"demand",
"requirements",
"are",
"coordinated",
"in",
"advance",
".",
"\n",
"Likewise",
"for",
"defence",
"and",
"space",
":",
"all",
"Member",
"States",
"will",
"become",
"more",
"secure",
"if",
"the",
"European",
"defence",
"industry",
"can",
"\n",
"meet",
"new",
"demands",
"and",
"develop",
"new",
"technologies",
",",
"and",
"if",
"the",
"EU",
"retains",
"autonomous",
"access",
"to",
"space",
".",
"\n",
"55THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"4Reducing",
"external",
"vulnerabilities",
"\n",
"As",
"outlined",
"in",
"the",
"previous",
"chapter",
",",
"access",
"to",
"CRMs",
"is",
"critical",
"for",
"the",
"clean",
"tech",
"and",
"automotive",
"industry",
",",
"yet",
"\n",
"supply",
"is",
"highly",
"concentrated",
" ",
"[",
"see",
"the",
"chapter",
"on",
"critical",
"raw",
"materials",
"]",
".",
"The",
"global",
"market",
"for",
"critical",
"minerals",
"for",
"\n",
"the",
"energy",
"transition",
"has",
"doubled",
"during",
"the",
"past",
"five",
"years",
",",
"reaching",
"EUR",
"300",
"billion",
"in",
"2022v",
".",
"Accelerating",
"deploy",
"-",
"\n",
"ment",
"of",
"clean",
"energy",
"technologies",
"is",
"driving",
"unprecedented",
"growth",
"in",
"demand",
".",
"From",
"2017",
"to",
"2022",
",",
"global",
"demand",
"\n",
"for",
"lithium",
"tripled",
",",
"while",
"demand",
"for",
"cobalt",
"rose",
"by",
"70",
"%",
"and",
"40",
"%",
"for",
"nickel",
".",
"According",
"to",
"IEA",
"projections",
",",
"mineral",
"\n",
"demand",
"for",
"clean",
"energy",
"technologies",
"is",
"expected",
"to",
"grow",
"by",
"a",
"factor",
"of",
"4",
"to",
"6",
"by",
"2040",
".",
"However",
",",
"the",
"supply",
"of",
"\n",
"CRMs",
"is",
"highly",
"concentrated",
"in",
"a",
"handful",
"of",
"providers",
",",
"especially",
"for",
"processing",
"and",
"refining",
",",
"which",
"creates",
"two",
"main",
"\n",
"risks",
"for",
"Europe",
".",
"The",
"first",
"is",
"price",
"volatility",
",",
"which",
"hampers",
"investment",
"decisions",
".",
"For",
"example",
",",
"although",
"an",
"extreme",
"\n",
"case",
",",
"the",
"price",
"of",
"lithium",
"increased",
"twelvefold",
"over",
"two",
"years",
"before",
"tumbling",
"again",
"more",
"than",
"80",
"%",
",",
"preventing",
"the",
"\n",
"opening",
"of",
"competitive",
"mines",
"in",
"the",
"EU",
".",
"While",
"oil",
"stocks",
"and",
"gas",
"storage"
] |
[
{
"end": 1790,
"label": "CITATION_REF",
"start": 1789
}
] |
in Romanian historiography. Despite the different dictionaries and encyclopaedias highlighting important women's trajectories, their presence in public sectors and their contributions have been generally overlooked. This study has tried to remedy this situation by focusing on female doctors working in schools during the 1920s and 1930s and their impact on the Romanian society. By analysing the legislation and institutional transformations generated by World War I, while also following the biographies of these female physicians, I have been able to show that the intersection of education and medicine opened new career paths for women.
|
[
"in",
" ",
"Romanian",
" ",
"historiography",
".",
"Despite",
"the",
"different",
"dictionaries",
"and",
"encyclopaedias",
"highlighting",
"important",
"women",
"'s",
"trajectories",
",",
"their",
"presence",
"in",
"public",
"sectors",
"and",
"their",
"contributions",
"have",
"been",
"generally",
"overlooked",
".",
"This",
"study",
"has",
"tried",
"to",
"remedy",
"this",
"situation",
"by",
"focusing",
"on",
"female",
"doctors",
"working",
"in",
"schools",
"during",
"the",
"1920s",
"and",
"1930s",
"and",
"their",
"impact",
"on",
"the",
"Romanian",
"society",
".",
"By",
"analysing",
"the",
"legislation",
"and",
"institutional",
"transformations",
"generated",
"by",
"World",
"War",
"I",
",",
"while",
"also",
"following",
"the",
"biographies",
"of",
"these",
"female",
"physicians",
",",
"I",
"have",
"been",
"able",
"to",
"show",
"that",
"the",
"intersection",
"of",
"education",
"and",
"medicine",
"opened",
"new",
"career",
"paths",
"for",
"women",
"."
] |
[] |
adverse impacts to a given screen and/or other MHU components.
In one example, by utilizing one or more light sources located under a screen or over the screen, the screen can be scanned by an environmental sensor (e.g., a visible light camera, a near infrared (NIR) spectrometer, an ultraviolet light camera, another suitable light sensor, and/or the like) to determine the status of the screen, such as whether it is operating at efficiently or at optimal performance. The light source(s) and/or sensor(s) may either be in one or more fixed locations, or be positioned on a moveable assembly to allow flexible scanning of the screen. In either implementation, the light source(s) and/or sensor(s) may also be disposed on rotational mechanisms to change the orientation of the light source(s) and/or sensor(s) . In some examples, the light source(s) are coordinated to match the used for . Furthermore the continuously or periodically scans the screens, depending upon the needs and configuration of a given configuration or arrangement. Some implementations allow continuous monitoring of the screen health while in operation, while others may require periodic shutdown of the screen for scanning, such as where the presence of a material stream would hinder detection of screen condition. In some implementations, the light source may be located on one side of the screen, with the on the other, where the obstruction of the light source(s) through an IFO would indicate a possible jam.
If an adverse condition is detected, may either dispatch an automated means (e.g., one or more MHUs or the like) to clear the condition, such as a robotic manipulator and/or an air jet to remove or dislodge a jam. In another example, the automated means can adjust or alter the screen operation to clear the screen, such as by reversing the rotation of one or more discs or set of discs, or employ another suitable technique. Additionally or alternatively, if the jam cannot be automatically cleared or the adverse condition is not subject to automated correction, may notify an operator of the MRF of the adverse condition to dispatch manual correction. For example, detection of excessive screen wear may trigger a maintenance notification to the operator that the screen discs (or another component) needs replacing. In some implementations, the screen discs or other components may be configured to facilitate wear detection.
Depending on the MRF conditions and/or context, the health of the
|
[
"adverse",
"impacts",
"to",
"a",
"given",
"screen",
"and/or",
"other",
"MHU",
"components",
".",
"\n\n",
"In",
"one",
"example",
",",
"by",
"utilizing",
"one",
"or",
"more",
"light",
"sources",
"located",
"under",
"a",
"screen",
"or",
"over",
"the",
"screen",
",",
"the",
"screen",
"can",
"be",
"scanned",
"by",
"an",
"environmental",
"sensor",
" ",
"(",
"e.g.",
",",
"a",
"visible",
"light",
"camera",
",",
"a",
"near",
"infrared",
"(",
"NIR",
")",
"spectrometer",
",",
"an",
"ultraviolet",
"light",
"camera",
",",
"another",
"suitable",
"light",
"sensor",
",",
"and/or",
"the",
"like",
")",
"to",
"determine",
"the",
"status",
"of",
"the",
"screen",
",",
"such",
"as",
"whether",
"it",
"is",
"operating",
"at",
"efficiently",
"or",
"at",
"optimal",
"performance",
".",
"The",
"light",
"source(s",
")",
"and/or",
"sensor(s",
")",
" ",
"may",
"either",
"be",
"in",
"one",
"or",
"more",
"fixed",
"locations",
",",
"or",
"be",
"positioned",
"on",
"a",
"moveable",
"assembly",
"to",
"allow",
"flexible",
"scanning",
"of",
"the",
"screen",
".",
"In",
"either",
"implementation",
",",
"the",
"light",
"source(s",
")",
"and/or",
"sensor(s",
")",
" ",
"may",
"also",
"be",
"disposed",
"on",
"rotational",
"mechanisms",
"to",
"change",
"the",
"orientation",
"of",
"the",
"light",
"source(s",
")",
"and/or",
"sensor(s",
")",
".",
"In",
"some",
"examples",
",",
"the",
"light",
"source(s",
")",
"are",
"coordinated",
"to",
"match",
"the",
" ",
"used",
"for",
" ",
".",
"Furthermore",
"the",
" ",
"continuously",
"or",
"periodically",
"scans",
"the",
"screens",
",",
"depending",
"upon",
"the",
"needs",
"and",
"configuration",
"of",
"a",
"given",
"configuration",
"or",
"arrangement",
".",
"Some",
"implementations",
"allow",
"continuous",
"monitoring",
"of",
"the",
"screen",
"health",
"while",
"in",
"operation",
",",
"while",
"others",
"may",
"require",
"periodic",
"shutdown",
"of",
"the",
"screen",
"for",
"scanning",
",",
"such",
"as",
"where",
"the",
"presence",
"of",
"a",
"material",
"stream",
"would",
"hinder",
"detection",
"of",
"screen",
"condition",
".",
"In",
"some",
"implementations",
",",
"the",
"light",
"source",
"may",
"be",
"located",
"on",
"one",
"side",
"of",
"the",
"screen",
",",
"with",
"the",
" ",
"on",
"the",
"other",
",",
"where",
"the",
"obstruction",
"of",
"the",
"light",
"source(s",
")",
"through",
"an",
"IFO",
"would",
"indicate",
"a",
"possible",
"jam",
".",
"\n\n",
"If",
"an",
"adverse",
"condition",
"is",
"detected",
",",
" ",
"may",
"either",
"dispatch",
"an",
"automated",
"means",
"(",
"e.g.",
",",
"one",
"or",
"more",
"MHUs",
" ",
"or",
"the",
"like",
")",
"to",
"clear",
"the",
"condition",
",",
"such",
"as",
"a",
"robotic",
"manipulator",
"and/or",
"an",
"air",
"jet",
"to",
"remove",
"or",
"dislodge",
"a",
"jam",
".",
"In",
"another",
"example",
",",
"the",
"automated",
"means",
"can",
"adjust",
"or",
"alter",
"the",
"screen",
"operation",
"to",
"clear",
"the",
"screen",
",",
"such",
"as",
"by",
"reversing",
"the",
"rotation",
"of",
"one",
"or",
"more",
"discs",
"or",
"set",
"of",
"discs",
",",
"or",
"employ",
"another",
"suitable",
"technique",
".",
"Additionally",
"or",
"alternatively",
",",
"if",
"the",
"jam",
"can",
"not",
"be",
"automatically",
"cleared",
"or",
"the",
"adverse",
"condition",
"is",
"not",
"subject",
"to",
"automated",
"correction",
",",
" ",
"may",
"notify",
"an",
"operator",
"of",
"the",
"MRF",
"of",
"the",
"adverse",
"condition",
"to",
"dispatch",
"manual",
"correction",
".",
"For",
"example",
",",
"detection",
"of",
"excessive",
"screen",
"wear",
"may",
"trigger",
"a",
"maintenance",
"notification",
"to",
"the",
"operator",
"that",
"the",
"screen",
"discs",
"(",
"or",
"another",
"component",
")",
"needs",
"replacing",
".",
"In",
"some",
"implementations",
",",
"the",
"screen",
"discs",
"or",
"other",
"components",
"may",
"be",
"configured",
"to",
"facilitate",
"wear",
"detection",
".",
"\n\n",
"Depending",
"on",
"the",
"MRF",
"conditions",
"and/or",
"context",
",",
"the",
"health",
"of",
"the"
] |
[] |
Miura, I., Sato, M., Overton, E.T.N., Kunori, N., Nakai, J., Kawamata, T., Nakai, N., and Takumi, T. (2020). Encoding of social exploration by neural ensembles in the insular cortex. PLoS Biol. 18 , E3000584. https://doi.org/10.1371/journal. pbio.3000584.
Mossner, J.M., Batista-Brito, R., Pant, R., and Cardin, J.A. (2020). Developmental loss of Mecp2 from vip interneurons impairs cortical function and behavior. Elife 9 . https://doi.org/10.7554/elife.55639.
Mukamel, E.A., Nimmerjahn, A., and Schnitzer, M.J. (2009). Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63 , 747-760. https://doi.org/10.1016/j.neuron.2009.08.009.
Nadler, J.J., Moy, S.S., Dold, G., Trang, D., Simmons, N., Perez, A., Young, N.B., Barbaro, R.P., Piven, J., Magnuson, T.R., and Crawley, J.N. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 3 , 303-314. https://doi.org/10.1111/j.1601-183x.2004.00071.x.
Naskar, S., Qi, J., Pereira, F., Gerfen, C.R., and Lee, S. (2021). Cell-type-specific recruitment of gabaergic interneurons in the primary somatosensory cortex by long-range inputs. Cell Rep. 34 , 108774. https://doi.org/10.1016/j.celrep.2021.108774.
Nobre, A.C., and Van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19 , 34-48. https://doi.org/10.1038/nrn.2017. 141.
Odriozola, P., Uddin, L.Q., Lynch, C.J., Kochalka, J., Chen, T., and Menon, V. (2016). Insula response and connectivity during social and non-social attention in children with autism. Soc. Cogn. Affect Neurosci. 11 , 433-444. https://doi. org/10.1093/scan/nsv126.
Pakan, J.M., Lowe, S.C., Dylda, E., Keemink, S.W., Currie, S.P., Coutts, C.A., and Rochefort, N.L. (2016). Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. Elife 5 . https://doi.org/10.7554/elife.14985.
Pannekoek, J.N., Veer, I.M., Van Tol, M.J., Van Der Werff, S.J., Demenescu, L.R., Aleman, A., Veltman, D.J., Zitman, F.G., Rombouts, S.A., and Van Der Wee, N.J. (2013). Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity. Eur. Neuropsychopharmacol. 23 , 186-195. https://doi.org/10.1016/j.euroneuro. 2012.04.018.
<!-- image -->
Pi, H.J., Hangya, B., Kvitsiani, D., Sanders, J.I., Huang, Z.J., and Kepecs, A. (2013). Cortical interneurons that specialize in disinhibitory control. Nature 503 , 521-524. https://doi.org/10.1038/nature12676.
Porter, J.T., Cauli, B., Staiger, J.F., Lambolez, B., Rossier, J., and Audinat, E. (1998). Properties of bipolar vipergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10 , 3617-3628. https:// doi.org/10.1046/j.1460-9568.1998.00367.x.
Pro ¨ nneke, A., Scheuer, B., Wagener, R.J., Mo ¨ ck, M., Witte, M., and Staiger, J.F. (2015). Characterizing vip neurons in the barrel cortex of vipcre/tdtomato mice reveals layer-specific differences. Cereb. Cortex 25 , 4854-4868. https:// doi.org/10.1093/cercor/bhv202.
|
[
"Miura",
",",
"I.",
",",
"Sato",
",",
"M.",
",",
"Overton",
",",
"E.T.N.",
",",
"Kunori",
",",
"N.",
",",
"Nakai",
",",
"J.",
",",
"Kawamata",
",",
"T.",
",",
"Nakai",
",",
"N.",
",",
"and",
"Takumi",
",",
"T.",
"(",
"2020",
")",
".",
"Encoding",
"of",
"social",
"exploration",
"by",
"neural",
"ensembles",
"in",
"the",
"insular",
"cortex",
".",
"PLoS",
"Biol",
".",
"18",
",",
"E3000584",
".",
"https://doi.org/10.1371/journal",
".",
"pbio.3000584",
".",
"\n\n",
"Mossner",
",",
"J.M.",
",",
"Batista",
"-",
"Brito",
",",
"R.",
",",
"Pant",
",",
"R.",
",",
"and",
"Cardin",
",",
"J.A.",
"(",
"2020",
")",
".",
"Developmental",
"loss",
"of",
"Mecp2",
"from",
"vip",
"interneurons",
"impairs",
"cortical",
"function",
"and",
"behavior",
".",
"Elife",
"9",
".",
"https://doi.org/10.7554/elife.55639",
".",
"\n\n",
"Mukamel",
",",
"E.A.",
",",
"Nimmerjahn",
",",
"A.",
",",
"and",
"Schnitzer",
",",
"M.J.",
"(",
"2009",
")",
".",
"Automated",
"analysis",
"of",
"cellular",
"signals",
"from",
"large",
"-",
"scale",
"calcium",
"imaging",
"data",
".",
"Neuron",
"63",
",",
"747",
"-",
"760",
".",
"https://doi.org/10.1016/j.neuron.2009.08.009",
".",
"\n\n",
"Nadler",
",",
"J.J.",
",",
"Moy",
",",
"S.S.",
",",
"Dold",
",",
"G.",
",",
"Trang",
",",
"D.",
",",
"Simmons",
",",
"N.",
",",
"Perez",
",",
"A.",
",",
"Young",
",",
"N.B.",
",",
"Barbaro",
",",
"R.P.",
",",
"Piven",
",",
"J.",
",",
"Magnuson",
",",
"T.R.",
",",
"and",
"Crawley",
",",
"J.N.",
"(",
"2004",
")",
".",
"Automated",
"apparatus",
"for",
"quantitation",
"of",
"social",
"approach",
"behaviors",
"in",
"mice",
".",
"Genes",
"Brain",
"Behav",
".",
"3",
",",
"303",
"-",
"314",
".",
"https://doi.org/10.1111/j.1601-183x.2004.00071.x",
".",
"\n\n",
"Naskar",
",",
"S.",
",",
"Qi",
",",
"J.",
",",
"Pereira",
",",
"F.",
",",
"Gerfen",
",",
"C.R.",
",",
"and",
"Lee",
",",
"S.",
"(",
"2021",
")",
".",
"Cell",
"-",
"type",
"-",
"specific",
"recruitment",
"of",
"gabaergic",
"interneurons",
"in",
"the",
"primary",
"somatosensory",
"cortex",
"by",
"long",
"-",
"range",
"inputs",
".",
"Cell",
"Rep.",
"34",
",",
"108774",
".",
"https://doi.org/10.1016/j.celrep.2021.108774",
".",
"\n\n",
"Nobre",
",",
"A.C.",
",",
"and",
"Van",
"Ede",
",",
"F.",
"(",
"2018",
")",
".",
"Anticipated",
"moments",
":",
"temporal",
"structure",
"in",
"attention",
".",
"Nat",
".",
"Rev.",
"Neurosci",
".",
"19",
",",
"34",
"-",
"48",
".",
"https://doi.org/10.1038/nrn.2017",
".",
"141",
".",
"\n\n",
"Odriozola",
",",
"P.",
",",
"Uddin",
",",
"L.Q.",
",",
"Lynch",
",",
"C.J.",
",",
"Kochalka",
",",
"J.",
",",
"Chen",
",",
"T.",
",",
"and",
"Menon",
",",
"V.",
"(",
"2016",
")",
".",
"Insula",
"response",
"and",
"connectivity",
"during",
"social",
"and",
"non",
"-",
"social",
"attention",
"in",
"children",
"with",
"autism",
".",
"Soc",
".",
"Cogn",
".",
"Affect",
"Neurosci",
".",
"11",
",",
"433",
"-",
"444",
".",
"https://doi",
".",
"org/10.1093",
"/",
"scan",
"/",
"nsv126",
".",
"\n\n",
"Pakan",
",",
"J.M.",
",",
"Lowe",
",",
"S.C.",
",",
"Dylda",
",",
"E.",
",",
"Keemink",
",",
"S.W.",
",",
"Currie",
",",
"S.P.",
",",
"Coutts",
",",
"C.A.",
",",
"and",
"Rochefort",
",",
"N.L.",
"(",
"2016",
")",
".",
"Behavioral",
"-",
"state",
"modulation",
"of",
"inhibition",
"is",
"context",
"-",
"dependent",
"and",
"cell",
"type",
"specific",
"in",
"mouse",
"visual",
"cortex",
".",
"Elife",
"5",
".",
"https://doi.org/10.7554/elife.14985",
".",
"\n\n",
"Pannekoek",
",",
"J.N.",
",",
"Veer",
",",
"I.M.",
",",
"Van",
"Tol",
",",
"M.J.",
",",
"Van",
"Der",
"Werff",
",",
"S.J.",
",",
"Demenescu",
",",
"L.R.",
",",
"Aleman",
",",
"A.",
",",
"Veltman",
",",
"D.J.",
",",
"Zitman",
",",
"F.G.",
",",
"Rombouts",
",",
"S.A.",
",",
"and",
"Van",
"Der",
"Wee",
",",
"N.J.",
"(",
"2013",
")",
".",
"Resting",
"-",
"state",
"functional",
"connectivity",
"abnormalities",
"in",
"limbic",
"and",
"salience",
"networks",
"in",
"social",
"anxiety",
"disorder",
"without",
"comorbidity",
".",
"Eur",
".",
"Neuropsychopharmacol",
".",
"23",
",",
"186",
"-",
"195",
".",
"https://doi.org/10.1016/j.euroneuro",
".",
"2012.04.018",
".",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Pi",
",",
"H.J.",
",",
"Hangya",
",",
"B.",
",",
"Kvitsiani",
",",
"D.",
",",
"Sanders",
",",
"J.I.",
",",
"Huang",
",",
"Z.J.",
",",
"and",
"Kepecs",
",",
"A.",
"(",
"2013",
")",
".",
"Cortical",
"interneurons",
"that",
"specialize",
"in",
"disinhibitory",
"control",
".",
"Nature",
"503",
",",
"521",
"-",
"524",
".",
"https://doi.org/10.1038/nature12676",
".",
"\n\n",
"Porter",
",",
"J.T.",
",",
"Cauli",
",",
"B.",
",",
"Staiger",
",",
"J.F.",
",",
"Lambolez",
",",
"B.",
",",
"Rossier",
",",
"J.",
",",
"and",
"Audinat",
",",
"E.",
"(",
"1998",
")",
".",
"Properties",
"of",
"bipolar",
"vipergic",
"interneurons",
"and",
"their",
"excitation",
"by",
"pyramidal",
"neurons",
"in",
"the",
"rat",
"neocortex",
".",
"Eur",
".",
"J.",
"Neurosci",
".",
"10",
",",
"3617",
"-",
"3628",
".",
"https://",
"doi.org/10.1046/j.1460-9568.1998.00367.x",
".",
"\n\n",
"Pro",
"¨",
"nneke",
",",
"A.",
",",
"Scheuer",
",",
"B.",
",",
"Wagener",
",",
"R.J.",
",",
"Mo",
"¨",
"ck",
",",
"M.",
",",
"Witte",
",",
"M.",
",",
"and",
"Staiger",
",",
"J.F.",
"(",
"2015",
")",
".",
"Characterizing",
"vip",
"neurons",
"in",
"the",
"barrel",
"cortex",
"of",
"vipcre",
"/",
"tdtomato",
"mice",
"reveals",
"layer",
"-",
"specific",
"differences",
".",
"Cereb",
".",
"Cortex",
"25",
",",
"4854",
"-",
"4868",
".",
"https://",
"doi.org/10.1093/cercor/bhv202",
".",
"\n\n"
] |
[
{
"end": 255,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 462,
"label": "CITATION_SPAN",
"start": 257
},
{
"end": 667,
"label": "CITATION_SPAN",
"start": 464
},
{
"end": 976,
"label": "CITATION_SPAN",
"start": 669
},
{
"end": 1228,
"label": "CITATION_SPAN",
"start": 978
},
{
"end": 1391,
"label": "CITATION_SPAN",
"start": 1230
},
{
"end": 1656,
"label": "CITATION_SPAN",
"start": 1393
},
{
"end": 1921,
"label": "CITATION_SPAN",
"start": 1658
},
{
"end": 2314,
"label": "CITATION_SPAN",
"start": 1923
},
{
"end": 2542,
"label": "CITATION_SPAN",
"start": 2332
},
{
"end": 2827,
"label": "CITATION_SPAN",
"start": 2544
},
{
"end": 3101,
"label": "CITATION_SPAN",
"start": 2829
}
] |
diversify suppliers rather than re-shore or near-shore production on a significant scaleii. Neither China nor the
EU has an incentive to accelerate this process: as the previous chapter demonstrated, China is reliant on the EU to
absorb its excess capacity in clean technologies. The more immediate risk for Europe is that dependencies could be
used to create an opportunity for coercion, making it harder for the EU to maintain a united stance and undermining
its common policy objectives. A growing use of dependencies as a “geopolitical weapon” is in turn likely to increase
uncertainty and have a detrimental effect on business investmentiii.
Deteriorating geopolitical relations also create new needs for spending on defence and defence industrial
capacity . Europe now faces conventional warfare on its Eastern border and hybrid warfare everywhere, including
attacks on energy infrastructure and telecoms, interference in democratic processes and the weaponisation of
migrationiv. At the same time, US strategic doctrine is shifting away from Europe and towards the Pacific Rim – for
example in the format of AUKUS – driven by the perceived threat of China. As a result, a growing demand for defence
capability is being met by a shrinking supply – a gap which Europe itself must fill. However, thanks to a prolonged
period of peace in Europe and the US security umbrella, only ten Member States now spend more than or equal to
2% of GDP in line with NATO commitments, although defence expenditures are rising [see Figure 1] . The defence
industry requires massive investments to catch up. As a point of reference, if all EU Member States who are NATO
Members and who have not yet reached the 2% target were to do so in 2024, defence spending would rise by EUR 60
billion. Additional investments are also needed to restore lost capabilities owing to decades of underinvestment and
to replenish depleted stocks, including those donated to support the defence of Ukraine against Russian aggression.
In June 2024, the Commission estimated that additional defence investments of around EUR 500 billion are needed
over the next decade.
FIGURE 1
EU Member States’ defence expenditure
% of GDP
Source: SIPRI. Accessed 2024.
54THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 4Becoming more independent creates an “insurance cost” for Europe, but these costs can be mitigated by
cooperation . Reducing dependencies across the key areas where Europe is exposed will require significant
|
[
"diversify",
"suppliers",
"rather",
"than",
"re",
"-",
"shore",
"or",
"near",
"-",
"shore",
"production",
"on",
"a",
"significant",
"scaleii",
".",
"Neither",
"China",
"nor",
"the",
"\n",
"EU",
"has",
"an",
"incentive",
"to",
"accelerate",
"this",
"process",
":",
"as",
"the",
"previous",
"chapter",
"demonstrated",
",",
"China",
"is",
"reliant",
"on",
"the",
"EU",
"to",
"\n",
"absorb",
"its",
"excess",
"capacity",
"in",
"clean",
"technologies",
".",
"The",
"more",
"immediate",
"risk",
"for",
"Europe",
"is",
"that",
"dependencies",
"could",
"be",
"\n",
"used",
"to",
"create",
"an",
"opportunity",
"for",
"coercion",
",",
"making",
"it",
"harder",
"for",
"the",
"EU",
"to",
"maintain",
"a",
"united",
"stance",
"and",
"undermining",
"\n",
"its",
"common",
"policy",
"objectives",
".",
"A",
"growing",
"use",
"of",
"dependencies",
"as",
"a",
"“",
"geopolitical",
"weapon",
"”",
"is",
"in",
"turn",
"likely",
"to",
"increase",
"\n",
"uncertainty",
"and",
"have",
"a",
"detrimental",
"effect",
"on",
"business",
"investmentiii",
".",
"\n",
"Deteriorating",
"geopolitical",
"relations",
"also",
"create",
"new",
"needs",
"for",
"spending",
"on",
"defence",
"and",
"defence",
"industrial",
"\n",
"capacity",
".",
"Europe",
"now",
"faces",
"conventional",
"warfare",
"on",
"its",
"Eastern",
"border",
"and",
"hybrid",
"warfare",
"everywhere",
",",
"including",
"\n",
"attacks",
"on",
"energy",
"infrastructure",
"and",
"telecoms",
",",
"interference",
"in",
"democratic",
"processes",
"and",
"the",
"weaponisation",
"of",
"\n",
"migrationiv",
".",
"At",
"the",
"same",
"time",
",",
"US",
"strategic",
"doctrine",
"is",
"shifting",
"away",
"from",
"Europe",
"and",
"towards",
"the",
"Pacific",
"Rim",
"–",
"for",
"\n",
"example",
"in",
"the",
"format",
"of",
"AUKUS",
"–",
"driven",
"by",
"the",
"perceived",
"threat",
"of",
"China",
".",
"As",
"a",
"result",
",",
"a",
"growing",
"demand",
"for",
"defence",
"\n",
"capability",
"is",
"being",
"met",
"by",
"a",
"shrinking",
"supply",
"–",
"a",
"gap",
"which",
"Europe",
"itself",
"must",
"fill",
".",
"However",
",",
"thanks",
"to",
"a",
"prolonged",
"\n",
"period",
"of",
"peace",
"in",
"Europe",
"and",
"the",
"US",
"security",
"umbrella",
",",
"only",
"ten",
"Member",
"States",
"now",
"spend",
"more",
"than",
"or",
"equal",
"to",
"\n",
"2",
"%",
"of",
"GDP",
"in",
"line",
"with",
"NATO",
"commitments",
",",
"although",
"defence",
"expenditures",
"are",
"rising",
"[",
"see",
"Figure",
"1",
"]",
".",
"The",
"defence",
"\n",
"industry",
"requires",
"massive",
"investments",
"to",
"catch",
"up",
".",
"As",
"a",
"point",
"of",
"reference",
",",
"if",
"all",
"EU",
"Member",
"States",
"who",
"are",
"NATO",
"\n",
"Members",
"and",
"who",
"have",
"not",
"yet",
"reached",
"the",
"2",
"%",
"target",
"were",
"to",
"do",
"so",
"in",
"2024",
",",
"defence",
"spending",
"would",
"rise",
"by",
"EUR",
"60",
"\n",
"billion",
".",
"Additional",
"investments",
"are",
"also",
"needed",
"to",
"restore",
"lost",
"capabilities",
"owing",
"to",
"decades",
"of",
"underinvestment",
"and",
"\n",
"to",
"replenish",
"depleted",
"stocks",
",",
"including",
"those",
"donated",
"to",
"support",
"the",
"defence",
"of",
"Ukraine",
"against",
"Russian",
"aggression",
".",
"\n",
"In",
"June",
"2024",
",",
"the",
"Commission",
"estimated",
"that",
"additional",
"defence",
"investments",
"of",
"around",
"EUR",
"500",
"billion",
"are",
"needed",
"\n",
"over",
"the",
"next",
"decade",
".",
"\n",
"FIGURE",
"1",
"\n",
"EU",
"Member",
"States",
"’",
"defence",
"expenditure",
" \n",
"%",
"of",
"GDP",
"\n",
"Source",
":",
"SIPRI",
".",
"Accessed",
"2024",
".",
"\n",
"54THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"4Becoming",
"more",
"independent",
"creates",
"an",
"“",
"insurance",
"cost",
"”",
"for",
"Europe",
",",
"but",
"these",
"costs",
"can",
"be",
"mitigated",
"by",
"\n",
"cooperation",
".",
"Reducing",
"dependencies",
"across",
"the",
"key",
"areas",
"where",
"Europe",
"is",
"exposed",
"will",
"require",
"significant"
] |
[
{
"end": 90,
"label": "CITATION_REF",
"start": 88
},
{
"end": 650,
"label": "CITATION_REF",
"start": 647
},
{
"end": 993,
"label": "CITATION_REF",
"start": 991
}
] |
is standard for the most common types of cannabis available in London.
However, respondents who started using cannabis to help with their anxiety, depression, or in cases where they started due to others in their household who were already using cannabis, reported on average 248, 254.7, and 286.9 average weekly THC units respectively.
Professor Tom Freeman, Director of the Addiction and Mental Health Group at the University of Bath and one of the study’s authors said, “A key finding of our study is that people who first used cannabis to manage anxiety or depression, or because a family member was using it, showed higher levels of cannabis use overall.
“In future, standard THC units could be used in a similar way to alcohol units – for example, to help people to track their cannabis consumption and better manage its effects on their health.”
In a separate study, published in Psychological Medicine, researchers explored the relationship between childhood trauma, paranoia and cannabis use.
Researchers used the same data set from the Cannabis & Me survey, with just over half of respondents (52 per cent) reporting experience of some form of trauma.
Analysis established that respondents who had been exposed to trauma as children reported higher average levels of paranoia compared to those who hadn’t, with physical and emotional abuse emerging as the strongest predictors.
Researchers also explored the relationship between childhood trauma and weekly THC consumption. Respondents who reported experience of sexual abuse had a markedly higher weekly intake of THC, closely followed by those who reported experiencing emotional and physical abuse.
Finally, the researchers confirmed that the strong association between childhood trauma and paranoia is further exacerbated by cannabis use, but is affected by the different types of trauma experienced. Respondents who said they had experienced emotional abuse or household discord1 were strongly associated with increased THC consumption and paranoia scores. Respondents reporting bullying, physical abuse, sexual abuse, physical neglect and emotional neglect on the other hand did not show the same effects.
Dr Giulia Trotta, a Consultant Psychiatrist and Researcher at King’s IoPPN and the study’s first author said, “This comprehensive study is the first to explore the interplay between childhood trauma, paranoia, and cannabis use among cannabis users from the general population.
“We have not only established a clear association between trauma and future paranoia, but also that cannabis use can further exacerbate the effects of this, depending
|
[
"is",
"standard",
"for",
"the",
"most",
"common",
"types",
"of",
"cannabis",
"available",
"in",
"London",
".",
"\n\n",
"However",
",",
"respondents",
"who",
"started",
"using",
"cannabis",
"to",
"help",
"with",
"their",
"anxiety",
",",
"depression",
",",
"or",
"in",
"cases",
"where",
"they",
"started",
"due",
"to",
"others",
"in",
"their",
"household",
"who",
"were",
"already",
"using",
"cannabis",
",",
"reported",
"on",
"average",
"248",
",",
"254.7",
",",
"and",
"286.9",
"average",
"weekly",
"THC",
"units",
"respectively",
".",
"\n\n",
"Professor",
"Tom",
"Freeman",
",",
"Director",
"of",
"the",
"Addiction",
"and",
"Mental",
"Health",
"Group",
"at",
"the",
"University",
"of",
"Bath",
"and",
"one",
"of",
"the",
"study",
"’s",
"authors",
"said",
",",
"“",
"A",
"key",
"finding",
"of",
"our",
"study",
"is",
"that",
"people",
"who",
"first",
"used",
"cannabis",
"to",
"manage",
"anxiety",
"or",
"depression",
",",
"or",
"because",
"a",
"family",
"member",
"was",
"using",
"it",
",",
"showed",
"higher",
"levels",
"of",
"cannabis",
"use",
"overall",
".",
"\n\n",
"“",
"In",
"future",
",",
"standard",
"THC",
"units",
"could",
"be",
"used",
"in",
"a",
"similar",
"way",
"to",
"alcohol",
"units",
"–",
"for",
"example",
",",
"to",
"help",
"people",
"to",
"track",
"their",
"cannabis",
"consumption",
"and",
"better",
"manage",
"its",
"effects",
"on",
"their",
"health",
".",
"”",
"\n\n",
"In",
"a",
"separate",
"study",
",",
"published",
"in",
"Psychological",
"Medicine",
",",
"researchers",
"explored",
"the",
"relationship",
"between",
"childhood",
"trauma",
",",
"paranoia",
"and",
"cannabis",
"use",
".",
"\n\n",
"Researchers",
"used",
"the",
"same",
"data",
"set",
"from",
"the",
"Cannabis",
"&",
"amp",
";",
"Me",
"survey",
",",
"with",
"just",
"over",
"half",
"of",
"respondents",
"(",
"52",
"per",
"cent",
")",
"reporting",
"experience",
"of",
"some",
"form",
"of",
"trauma",
".",
"\n\n",
"Analysis",
"established",
"that",
"respondents",
"who",
"had",
"been",
"exposed",
"to",
"trauma",
"as",
"children",
"reported",
"higher",
"average",
"levels",
"of",
"paranoia",
"compared",
"to",
"those",
"who",
"had",
"n’t",
",",
"with",
"physical",
"and",
"emotional",
"abuse",
"emerging",
"as",
"the",
"strongest",
"predictors",
".",
"\n\n",
"Researchers",
"also",
"explored",
"the",
"relationship",
"between",
"childhood",
"trauma",
"and",
"weekly",
"THC",
"consumption",
".",
"Respondents",
"who",
"reported",
"experience",
"of",
"sexual",
"abuse",
"had",
"a",
"markedly",
"higher",
"weekly",
"intake",
"of",
"THC",
",",
"closely",
"followed",
"by",
"those",
"who",
"reported",
"experiencing",
"emotional",
"and",
"physical",
"abuse",
".",
"\n\n",
"Finally",
",",
"the",
"researchers",
"confirmed",
"that",
"the",
"strong",
"association",
"between",
"childhood",
"trauma",
"and",
"paranoia",
"is",
"further",
"exacerbated",
"by",
"cannabis",
"use",
",",
"but",
"is",
"affected",
"by",
"the",
"different",
"types",
"of",
"trauma",
"experienced",
".",
"Respondents",
"who",
"said",
"they",
"had",
"experienced",
"emotional",
"abuse",
"or",
"household",
"discord1",
"were",
"strongly",
"associated",
"with",
"increased",
"THC",
"consumption",
"and",
"paranoia",
"scores",
".",
"Respondents",
"reporting",
"bullying",
",",
"physical",
"abuse",
",",
"sexual",
"abuse",
",",
"physical",
"neglect",
"and",
"emotional",
"neglect",
"on",
"the",
"other",
"hand",
"did",
"not",
"show",
"the",
"same",
"effects",
".",
"\n\n",
"Dr",
"Giulia",
"Trotta",
",",
"a",
"Consultant",
"Psychiatrist",
"and",
"Researcher",
"at",
"King",
"’s",
"IoPPN",
"and",
"the",
"study",
"’s",
"first",
"author",
"said",
",",
"“",
"This",
"comprehensive",
"study",
"is",
"the",
"first",
"to",
"explore",
"the",
"interplay",
"between",
"childhood",
"trauma",
",",
"paranoia",
",",
"and",
"cannabis",
"use",
"among",
"cannabis",
"users",
"from",
"the",
"general",
"population",
".",
"\n\n",
"“",
"We",
"have",
"not",
"only",
"established",
"a",
"clear",
"association",
"between",
"trauma",
"and",
"future",
"paranoia",
",",
"but",
"also",
"that",
"cannabis",
"use",
"can",
"further",
"exacerbate",
"the",
"effects",
"of",
"this",
",",
"depending"
] |
[] |
<!-- image -->
<!-- image -->
<!-- image -->
This work is published under the responsibility of the Secretary-General of the OECD and the African Development Bank (AfDB). The opinions expressed and arguments employed herein do not necessarily reflect the official views of the member countries of the OECD or the AfDB.
## Please cite this publication as:
© OECD/AfDB (2025), The Development and Humanitarian Response to the COVID-19 Pandemic in Kenya (2020-2022) , OECD Publishing, Paris, https://doi.org/10.1787/21d3dca0-en
Photo credits: Cover © Wirestock / Getty Images. Kenyan women working outside the home. Somburu, Kenya, November 2020
Corrigenda to OECD publications may be found at: https://www.oecd.org/en/publications/support/corrigenda.html.
© OECD/AfDB 2025
<!-- image -->
<!-- image -->
Attribution 4.0 International (CC BY 4.0)
This work is made available under the Creative Commons Attribution 4.0 International licence. By using this work, you accept to be bound by the terms of this licence (https://creativecommons.org/licenses/by/4.0/).
Attribution
-you must cite the work.
Translations -you must cite the original work, identify changes to the original and add the following text: In the event of any discrepancy between the original work and the translation, only the text of original work should be considered valid.
Adaptations -you must cite the original work and add the following text: This is an adaptation of an original work by the OECD. The opinions expressed and arguments employed in this adaptation should not be reported as representing the official views of the OECD or of its Member countries.
Third-party material -the licence does not apply to third-party material in the work. If using such material, you are responsible for obtaining permission from the third party and for any claims of infringement.
You must not use the OECD logo, visual identity or cover image without express permission or suggest the OECD endorses your use of the work.
Any dispute arising under this licence shall be settled by arbitration in accordance with the Permanent Court of Arbitration (PCA) Arbitration Rules 2012. The seat of arbitration shall be Paris (France). The number of arbitrators shall be one.
## Foreword
The COVID19 pandemic presented an unprecedented test of the global community's ability to respond swiftly, adapt to evolving needs, reallocate resources and co-ordinate effectively across borders and sectors. As governments, organisations and development actors worked to mitigate both the immediate effects of the pandemic and the broader socio-economic repercussions, the role of international development co-operation and humanitarian assistance
|
[
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"This",
"work",
"is",
"published",
"under",
"the",
"responsibility",
"of",
"the",
" ",
"Secretary",
"-",
"General",
"of",
"the",
"OECD",
"and",
"the",
"African",
"Development",
"Bank",
"(",
"AfDB",
")",
".",
"The",
"opinions",
"expressed",
"and",
"arguments",
"employed",
"herein",
"do",
"not",
"necessarily",
"reflect",
"the",
"official",
"views",
"of",
"the",
"member",
"countries",
"of",
"the",
"OECD",
"or",
"the",
"AfDB",
".",
"\n\n",
"#",
"#",
"Please",
"cite",
"this",
"publication",
"as",
":",
"\n\n",
"©",
"OECD",
"/",
"AfDB",
"(",
"2025",
")",
",",
"The",
"Development",
"and",
"Humanitarian",
"Response",
"to",
"the",
"COVID-19",
"Pandemic",
"in",
"Kenya",
"(",
"2020",
"-",
"2022",
")",
",",
"OECD",
"Publishing",
",",
"Paris",
",",
"https://doi.org/10.1787/21d3dca0-en",
"\n\n",
"Photo",
"credits",
":",
"Cover",
"©",
"Wirestock",
"/",
"Getty",
"Images",
".",
"Kenyan",
"women",
"working",
"outside",
"the",
"home",
".",
"Somburu",
",",
"Kenya",
",",
"November",
"2020",
"\n\n",
"Corrigenda",
"to",
"OECD",
"publications",
"may",
"be",
"found",
"at",
":",
"https://www.oecd.org/en/publications/support/corrigenda.html",
".",
"\n\n",
"©",
"OECD",
"/",
"AfDB",
"2025",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Attribution",
"4.0",
"International",
"(",
"CC",
"BY",
"4.0",
")",
"\n\n",
"This",
" ",
"work",
" ",
"is",
" ",
"made",
" ",
"available",
" ",
"under",
" ",
"the",
" ",
"Creative",
" ",
"Commons",
" ",
"Attribution",
"4.0",
" ",
"International",
" ",
"licence",
".",
" ",
"By",
" ",
"using",
" ",
"this",
" ",
"work",
",",
" ",
"you",
" ",
"accept",
" ",
"to",
" ",
"be",
" ",
"bound",
" ",
"by",
" ",
"the",
" ",
"terms",
" ",
"of",
" ",
"this",
" ",
"licence",
"(",
"https://creativecommons.org/licenses/by/4.0/",
")",
".",
"\n\n",
"Attribution",
"\n\n",
"-you",
"must",
"cite",
"the",
"work",
".",
"\n\n",
"Translations",
"-you",
"must",
"cite",
"the",
"original",
"work",
",",
"identify",
"changes",
"to",
"the",
"original",
"and",
"add",
"the",
"following",
"text",
":",
"In",
"the",
"event",
"of",
"any",
"discrepancy",
"between",
"the",
"original",
"work",
"and",
"the",
"translation",
",",
"only",
"the",
"text",
"of",
"original",
"work",
"should",
"be",
"considered",
"valid",
".",
"\n\n",
"Adaptations",
"-you",
"must",
"cite",
"the",
"original",
"work",
"and",
"add",
"the",
"following",
"text",
":",
"This",
"is",
"an",
"adaptation",
"of",
"an",
"original",
"work",
"by",
"the",
"OECD",
".",
"The",
"opinions",
"expressed",
"and",
"arguments",
"employed",
"in",
"this",
"adaptation",
"should",
"not",
"be",
"reported",
"as",
"representing",
"the",
"official",
"views",
"of",
"the",
"OECD",
"or",
"of",
"its",
"Member",
"countries",
".",
"\n\n",
"Third",
"-",
"party",
"material",
"-the",
"licence",
"does",
"not",
"apply",
"to",
"third",
"-",
"party",
"material",
"in",
"the",
"work",
".",
"If",
"using",
"such",
"material",
",",
"you",
"are",
"responsible",
"for",
"obtaining",
"permission",
"from",
"the",
"third",
"party",
"and",
"for",
"any",
"claims",
"of",
"infringement",
".",
"\n\n",
"You",
"must",
"not",
"use",
"the",
"OECD",
"logo",
",",
"visual",
"identity",
"or",
"cover",
"image",
"without",
"express",
"permission",
"or",
"suggest",
"the",
"OECD",
"endorses",
"your",
"use",
"of",
"the",
"work",
".",
"\n\n",
"Any",
"dispute",
"arising",
"under",
"this",
"licence",
"shall",
"be",
"settled",
"by",
"arbitration",
"in",
"accordance",
"with",
"the",
"Permanent",
"Court",
"of",
"Arbitration",
"(",
"PCA",
")",
"Arbitration",
"Rules",
"2012",
".",
"The",
"seat",
"of",
"arbitration",
"shall",
"be",
"Paris",
"(",
"France",
")",
".",
"The",
"number",
"of",
"arbitrators",
"shall",
"be",
"one",
".",
"\n\n",
"#",
"#",
"Foreword",
"\n\n",
"The",
"COVID19",
"pandemic",
"presented",
"an",
"unprecedented",
"test",
"of",
"the",
"global",
"community",
"'s",
"ability",
"to",
"respond",
"swiftly",
",",
" ",
"adapt",
" ",
"to",
" ",
"evolving",
" ",
"needs",
",",
" ",
"reallocate",
" ",
"resources",
" ",
"and",
" ",
"co",
"-",
"ordinate",
" ",
"effectively",
" ",
"across",
" ",
"borders",
" ",
"and",
"sectors",
".",
"As",
"governments",
",",
"organisations",
"and",
"development",
"actors",
"worked",
"to",
"mitigate",
"both",
"the",
"immediate",
"effects",
" ",
"of",
" ",
"the",
" ",
"pandemic",
" ",
"and",
" ",
"the",
" ",
"broader",
" ",
"socio",
"-",
"economic",
" ",
"repercussions",
",",
" ",
"the",
" ",
"role",
" ",
"of",
" ",
"international",
"development",
"co",
"-",
"operation",
"and",
"humanitarian",
"assistance"
] |
[] |
in Ukraine were eligible for state-
supported housing. Approximately 3,000
people lost their housing as a result of these
changes; most were women with small
children, many of them Roma.
In June the CJEU imposed a ûne of EUR
200 million (approximately HUF 80 billion)
on Hungary for <deliberately evading the
application of the EU common policy= on
migration by not allowing people to claim
asylum at the border. Additionally, Hungary
faced a ûne of EUR 1 million (approximately
HUF 400 million) per day. This was to be
applied until Hungary amended legislation
allowing often violent pushbacks of asylum
seekers at the country9s borders.
Hungary made no attempt to implement the
recommendations of the European
Commission9s Rule of Law Report to address
systematic de ûciencies in judicial
independence, media freedom and the
country9s anti-corruption framework.
|
[
"in",
"Ukraine",
"were",
"eligible",
"for",
"state-",
"\n",
"supported",
"housing",
".",
"Approximately",
"3,000",
"\n",
"people",
"lost",
"their",
"housing",
"as",
"a",
"result",
"of",
"these",
"\n",
"changes",
";",
"most",
"were",
"women",
"with",
"small",
"\n",
"children",
",",
"many",
"of",
"them",
"Roma",
".",
"\n",
"In",
"June",
"the",
"CJEU",
"imposed",
"a",
"ûne",
"of",
"EUR",
"\n",
"200",
"million",
"(",
"approximately",
"HUF",
"80",
"billion",
")",
"\n",
"on",
"Hungary",
"for",
"<",
"deliberately",
"evading",
"the",
"\n",
"application",
"of",
"the",
"EU",
"common",
"policy=",
"on",
"\n",
"migration",
"by",
"not",
"allowing",
"people",
"to",
"claim",
"\n",
"asylum",
"at",
"the",
"border",
".",
"Additionally",
",",
"Hungary",
"\n",
"faced",
"a",
"ûne",
"of",
"EUR",
"1",
"million",
"(",
"approximately",
"\n",
"HUF",
"400",
"million",
")",
"per",
"day",
".",
"This",
"was",
"to",
"be",
"\n",
"applied",
"until",
"Hungary",
"amended",
"legislation",
"\n",
"allowing",
"often",
"violent",
"pushbacks",
"of",
"asylum",
"\n",
"seekers",
"at",
"the",
"country9s",
"borders",
".",
"\n",
"Hungary",
"made",
"no",
"attempt",
"to",
"implement",
"the",
"\n",
"recommendations",
"of",
"the",
"European",
"\n",
"Commission9s",
"Rule",
"of",
"Law",
"Report",
"to",
"address",
"\n",
"systematic",
"de",
"ûciencies",
"in",
"judicial",
"\n",
"independence",
",",
"media",
"freedom",
"and",
"the",
"\n",
"country9s",
"anti",
"-",
"corruption",
"framework",
"."
] |
[] |
1Deliverable 4.1
Completion of laboratory
analyses of microbiome
Ref. Ares(2024)1069561 - 13/02/2024
2Document info
Deliverable number 4.1.
Title Completion of laboratory analyses of microbiome
Type Demonstrator
Dissemination level Public
Planned date 31.12.2023
Actual date 13.2.2024
Delivered by Ond řej Cinek (Partner 10-CU, Charles University in Prague)
Authors Ond řej Cinek (10-CU), Shiraz Shah (20-COPSAC), Kate řina Chudá (10-CU), Lars
Stene (4-NIPH), Raivo Uibo (13-UTARTU), Aki Sinkkonen (22-Luke), Wisnu Adi
Wicaksono (12-TUG), Jutta Laiho and Heikki Hyöty (1-TAU)
3Contents
Contents ..................................................................................................................................................................... 3
1 The microbiome components investigated in HEDIMED ....................................................................................... 4
2 Virome metagenomic sequencing ........................................................................................................................ 4
2.1 Aims within the HEDIMED project ............................................................................................................... 4
2.2 Subjects, samples and methods .................................................................................................................. 4
2.2.1 Background newborn cohorts ................................................................................................................. 4
2.2.2 Disease-specific virome studies: celiac disease and type 1 diabetes ........................................................ 6
2.2.3 Wet lab processing ................................................................................................................................. 6
2.2.4 Bioinformatic processing ........................................................................................................................ 8
2.2.5 Deposition of raw data ........................................................................................................................... 8
2.3 Results of the faecal virome sequencing ..................................................................................................... 8
2.3.1 Libraries sequenced in the CD study ....................................................................................................... 8
2.3.2 Human viruses.......................................................................................................................................10
2.3.3 Known bacteriophages and novel viruses from the dark matter .............................................................10
2.3.4 Testing association with the two diseases ..............................................................................................10
3 Profiling the bacteriome using the 16S rDNA gene ..............................................................................................11
3.1 The study of skin microbiota in children with islet autoimmunity, and of pollutants and bacteriome profiles
from their home doormats .....................................................................................................................................13
3.2 Mothers with gestational diabetes and their children ................................................................................13
3.3 The food bacteriome profiling....................................................................................................................13
4 Metagenomic sequencing of total stool DNA and multiomic analyses..................................................................14
4.1 Metagenomes, metabolomes and volatilomes of stool samples from children with islet autoimmunity and
controls 14
4.2 Bacteria from food and the human gut ......................................................................................................14
5 Parasitome surveys and Blastocystis subtyping ...................................................................................................15
6 Fungal profiling using the ITS region of ribosomal gene complex .........................................................................16
7 Conclusions ........................................................................................................................................................16
8 References .........................................................................................................................................................17
41The microbiome components investigated in HEDIMED
The HEDIMED project investigates the microbiome of the stool, skin and environment of children; here we report on
metagenomic sequencing of the gut virome, massively parallel amplicon sequencing for bacteriome profiling using 16S
rDNA amplicons, for unicellular parasitome profiling using an analogous protocol for 18S rDNA amplicons, and for
mycobiome (fungal) profiling using a different set of primers for the ITS region of rDNA.
2Virome metagenomic sequencing
Viruses are suspected triggers of several autoimmune diseases. In the HEDIMED project, we studied gut viromes in
preclinical stages of celiac disease and type 1 diabetes.
Over two thousand stool samples were sequenced. The
|
[
"1Deliverable",
"4.1",
"\n",
"Completion",
"of",
"laboratory",
"\n",
"analyses",
"of",
"microbiome",
"\n",
"Ref",
".",
"Ares(2024)1069561",
"-",
"13/02/2024",
"\n\n",
"2Document",
"info",
"\n",
"Deliverable",
"number",
"4.1",
".",
"\n",
"Title",
"Completion",
"of",
"laboratory",
"analyses",
"of",
"microbiome",
"\n",
"Type",
"Demonstrator",
"\n",
"Dissemination",
"level",
"Public",
"\n",
"Planned",
"date",
"31.12.2023",
"\n",
"Actual",
"date",
"13.2.2024",
"\n",
"Delivered",
"by",
"Ond",
"řej",
"Cinek",
"(",
"Partner",
"10",
"-",
"CU",
",",
"Charles",
"University",
"in",
"Prague",
")",
"\n",
"Authors",
"Ond",
"řej",
"Cinek",
"(",
"10",
"-",
"CU",
")",
",",
"Shiraz",
"Shah",
"(",
"20",
"-",
"COPSAC",
")",
",",
"Kate",
"řina",
"Chudá",
"(",
"10",
"-",
"CU",
")",
",",
"Lars",
"\n",
"Stene",
"(",
"4",
"-",
"NIPH",
")",
",",
"Raivo",
"Uibo",
"(",
"13",
"-",
"UTARTU",
")",
",",
"Aki",
"Sinkkonen",
"(",
"22",
"-",
"Luke",
")",
",",
"Wisnu",
"Adi",
"\n",
"Wicaksono",
"(",
"12",
"-",
"TUG",
")",
",",
"Jutta",
"Laiho",
"and",
"Heikki",
"Hyöty",
"(",
"1",
"-",
"TAU",
")",
"\n",
"3Contents",
"\n",
"Contents",
".....................................................................................................................................................................",
"3",
"\n",
"1",
"The",
"microbiome",
"components",
"investigated",
"in",
"HEDIMED",
".......................................................................................",
"4",
"\n",
"2",
"Virome",
"metagenomic",
"sequencing",
"........................................................................................................................",
"4",
"\n",
"2.1",
"Aims",
"within",
"the",
"HEDIMED",
"project",
"...............................................................................................................",
"4",
"\n",
"2.2",
"Subjects",
",",
"samples",
"and",
"methods",
"..................................................................................................................",
"4",
"\n",
"2.2.1",
"Background",
"newborn",
"cohorts",
".................................................................................................................",
"4",
"\n",
"2.2.2",
"Disease",
"-",
"specific",
"virome",
"studies",
":",
"celiac",
"disease",
"and",
"type",
"1",
"diabetes",
"........................................................",
"6",
"\n",
"2.2.3",
"Wet",
"lab",
"processing",
".................................................................................................................................",
"6",
"\n",
"2.2.4",
"Bioinformatic",
"processing",
"........................................................................................................................",
"8",
"\n",
"2.2.5",
"Deposition",
"of",
"raw",
"data",
"...........................................................................................................................",
"8",
"\n",
"2.3",
"Results",
"of",
"the",
"faecal",
"virome",
"sequencing",
".....................................................................................................",
"8",
"\n",
"2.3.1",
"Libraries",
"sequenced",
"in",
"the",
"CD",
"study",
".......................................................................................................",
"8",
"\n",
"2.3.2",
"Human",
"viruses",
".......................................................................................................................................",
"10",
"\n",
"2.3.3",
"Known",
"bacteriophages",
"and",
"novel",
"viruses",
"from",
"the",
"dark",
"matter",
".............................................................",
"10",
"\n",
"2.3.4",
"Testing",
"association",
"with",
"the",
"two",
"diseases",
"..............................................................................................",
"10",
"\n",
"3",
"Profiling",
"the",
"bacteriome",
"using",
"the",
"16S",
"rDNA",
"gene",
"..............................................................................................",
"11",
"\n",
"3.1",
"The",
"study",
"of",
"skin",
"microbiota",
"in",
"children",
"with",
"islet",
"autoimmunity",
",",
"and",
"of",
"pollutants",
"and",
"bacteriome",
"profiles",
"\n",
"from",
"their",
"home",
"doormats",
".....................................................................................................................................",
"13",
"\n",
"3.2",
"Mothers",
"with",
"gestational",
"diabetes",
"and",
"their",
"children",
"................................................................................",
"13",
"\n",
"3.3",
"The",
"food",
"bacteriome",
"profiling",
"....................................................................................................................",
"13",
"\n",
"4",
"Metagenomic",
"sequencing",
"of",
"total",
"stool",
"DNA",
"and",
"multiomic",
"analyses",
"..................................................................",
"14",
"\n",
"4.1",
"Metagenomes",
",",
"metabolomes",
"and",
"volatilomes",
"of",
"stool",
"samples",
"from",
"children",
"with",
"islet",
"autoimmunity",
"and",
"\n",
"controls",
"14",
"\n",
"4.2",
"Bacteria",
"from",
"food",
"and",
"the",
"human",
"gut",
"......................................................................................................",
"14",
"\n",
"5",
"Parasitome",
"surveys",
"and",
"Blastocystis",
"subtyping",
"...................................................................................................",
"15",
"\n",
"6",
"Fungal",
"profiling",
"using",
"the",
"ITS",
"region",
"of",
"ribosomal",
"gene",
"complex",
".........................................................................",
"16",
"\n",
"7",
"Conclusions",
"........................................................................................................................................................",
"16",
"\n",
"8",
"References",
".........................................................................................................................................................",
"17",
"\n",
"41The",
"microbiome",
"components",
"investigated",
"in",
"HEDIMED",
"\n",
"The",
"HEDIMED",
"project",
"investigates",
"the",
"microbiome",
"of",
"the",
"stool",
",",
"skin",
"and",
"environment",
"of",
"children",
";",
"here",
"we",
"report",
"on",
"\n",
"metagenomic",
"sequencing",
"of",
"the",
"gut",
"virome",
",",
"massively",
"parallel",
"amplicon",
"sequencing",
"for",
"bacteriome",
"profiling",
"using",
"16S",
"\n",
"rDNA",
"amplicons",
",",
"for",
"unicellular",
"parasitome",
"profiling",
"using",
"an",
"analogous",
"protocol",
"for",
"18S",
"rDNA",
"amplicons",
",",
"and",
"for",
"\n",
"mycobiome",
"(",
"fungal",
")",
"profiling",
"using",
"a",
"different",
"set",
"of",
"primers",
"for",
"the",
"ITS",
"region",
"of",
"rDNA",
".",
"\n",
"2Virome",
"metagenomic",
"sequencing",
"\n",
"Viruses",
"are",
"suspected",
"triggers",
"of",
"several",
"autoimmune",
"diseases",
".",
" ",
"In",
"the",
"HEDIMED",
"project",
",",
"we",
"studied",
"gut",
"viromes",
"in",
"\n",
"preclinical",
"stages",
"of",
"celiac",
"disease",
"and",
"type",
"1",
"diabetes",
".",
"\n",
"Over",
"two",
"thousand",
"stool",
"samples",
"were",
"sequenced",
".",
"The"
] |
[] |
- income, r=0.165, p<0.01; regular employment, r=0.109, p<0.05).
Only in Bhalswa was there shown to be correlations with length of residency, SWB and trust. For subjective well-being, there was a negative modest correlation between the length of residency (r= -0.117, p<0.05); the longer the resident lived in the community, the lower their level of subjective well-being. For the level of trust, there was a significant positive modest correlation with length of residency. The longer a resident had lived in Bhalswa, the greater the level of trust (r=0.145, p<0.01). Interestingly, regarding trust, only in Bhalswa was there a statistically sig -nificant correlation between employment and trust (income, r=0.132, p<0.05; regu -lar employment, r= -0.161, p<0.01; working outside the community, r= -0.238, p<0.01). Neither age nor education was found to be statistically significantly cor -related with NCI, SWB or trust in Sanjay or Bhalswa.
## What do these findings show about well-being and neighbourhood cohesion in different community types?
This first hypothesis considered two different settlement types in Delhi, India, with one spontaneously developed by individual families (Sanjay - unauthorised, ille -gally built on public land) and the other 'planned' by the government to reallocate slum dwellers who have been evicted from their spontaneous neighbourhoods to the outskirts of the city (Bhalswa - legal and 'planned').
We found that in both settlements, residents' feelings around community cohesion were associated with their subjective well-being. That is, a greater sense of satisfaction, freedom, happiness and purpose was felt by those residents who had rated more highly their sense of community, attraction to their neighbourhood and neighbourliness. When a community trusted their neighbours, there was a greater feeling of cohesion. The longer a resident lived in the community, there was a greater sense of cohesion.
Those with higher incomes and those who undertook regular employment (employee) enjoyed higher levels of subjective well-being. We found that neither
age nor education influenced feelings around trust, neighbourhood cohesion or subjective well-being.
Those living in Sanjay (slum/JJ) reported higher subjective well-being and were more likely to feel a sense of belonging to a whole community where they would help and be helped by their neighbours in an emergency.
However, Sanjay residents were less likely to be neighbourly with fewer friendships and less of an attraction to live in the neighbourhood.
Part of the reason for this, which we cannot substantiate, may relate to the more cramped living conditions in
|
[
" ",
"-",
"income",
",",
"r=0.165",
",",
"p<0.01",
";",
"regular",
"employment",
",",
"r=0.109",
",",
"p<0.05",
")",
".",
"\n\n",
"Only",
"in",
"Bhalswa",
"was",
"there",
"shown",
"to",
"be",
"correlations",
"with",
"length",
"of",
"residency",
",",
"SWB",
"and",
"trust",
".",
"For",
"subjective",
"well",
"-",
"being",
",",
"there",
"was",
"a",
"negative",
"modest",
"correlation",
"between",
"the",
"length",
"of",
"residency",
"(",
"r=",
"-0.117",
",",
"p<0.05",
")",
";",
"the",
"longer",
"the",
"resident",
"lived",
"in",
"the",
"community",
",",
"the",
"lower",
"their",
"level",
"of",
"subjective",
"well",
"-",
"being",
".",
"For",
"the",
"level",
"of",
"trust",
",",
"there",
"was",
"a",
"significant",
"positive",
"modest",
"correlation",
"with",
"length",
"of",
"residency",
".",
"The",
"longer",
"a",
"resident",
"had",
"lived",
"in",
"Bhalswa",
",",
"the",
"greater",
"the",
"level",
"of",
"trust",
"(",
"r=0.145",
",",
"p<0.01",
")",
".",
"Interestingly",
",",
"regarding",
"trust",
",",
"only",
"in",
"Bhalswa",
"was",
"there",
"a",
"statistically",
"sig",
"-nificant",
"correlation",
"between",
"employment",
"and",
"trust",
"(",
"income",
",",
"r=0.132",
",",
"p<0.05",
";",
"regu",
"-lar",
"employment",
",",
"r=",
"-0.161",
",",
"p<0.01",
";",
"working",
"outside",
"the",
"community",
",",
"r=",
"-0.238",
",",
"p<0.01",
")",
".",
"Neither",
"age",
"nor",
"education",
"was",
"found",
"to",
"be",
"statistically",
"significantly",
"cor",
"-related",
"with",
"NCI",
",",
"SWB",
"or",
"trust",
"in",
"Sanjay",
"or",
"Bhalswa",
".",
"\n\n",
"#",
"#",
"What",
"do",
"these",
"findings",
"show",
"about",
"well",
"-",
"being",
"and",
"neighbourhood",
"cohesion",
"in",
"different",
"community",
"types",
"?",
"\n\n",
"This",
"first",
"hypothesis",
"considered",
"two",
"different",
"settlement",
"types",
"in",
"Delhi",
",",
"India",
",",
"with",
"one",
"spontaneously",
"developed",
"by",
"individual",
"families",
"(",
"Sanjay",
"-",
"unauthorised",
",",
"ille",
"-gally",
"built",
"on",
"public",
"land",
")",
"and",
"the",
"other",
"'",
"planned",
"'",
"by",
"the",
"government",
"to",
"reallocate",
"slum",
"dwellers",
"who",
"have",
"been",
"evicted",
"from",
"their",
"spontaneous",
"neighbourhoods",
"to",
"the",
"outskirts",
"of",
"the",
"city",
"(",
"Bhalswa",
"-",
"legal",
"and",
"'",
"planned",
"'",
")",
".",
"\n\n",
"We",
"found",
"that",
"in",
"both",
"settlements",
",",
"residents",
"'",
"feelings",
"around",
"community",
"cohesion",
"were",
"associated",
"with",
"their",
"subjective",
"well",
"-",
"being",
".",
"That",
"is",
",",
"a",
"greater",
"sense",
"of",
"satisfaction",
",",
"freedom",
",",
"happiness",
"and",
"purpose",
"was",
"felt",
"by",
"those",
"residents",
"who",
"had",
"rated",
"more",
"highly",
"their",
"sense",
"of",
"community",
",",
"attraction",
"to",
"their",
"neighbourhood",
"and",
"neighbourliness",
".",
"When",
"a",
"community",
"trusted",
"their",
"neighbours",
",",
"there",
"was",
"a",
"greater",
"feeling",
" ",
"of",
" ",
"cohesion",
".",
" ",
"The",
" ",
"longer",
" ",
"a",
" ",
"resident",
" ",
"lived",
" ",
"in",
" ",
"the",
" ",
"community",
",",
" ",
"there",
" ",
"was",
" ",
"a",
"greater",
"sense",
"of",
"cohesion",
".",
"\n\n",
"Those",
" ",
"with",
" ",
"higher",
" ",
"incomes",
" ",
"and",
" ",
"those",
" ",
"who",
" ",
"undertook",
" ",
"regular",
" ",
"employment",
"(",
"employee",
")",
"enjoyed",
"higher",
"levels",
"of",
"subjective",
"well",
"-",
"being",
".",
"We",
"found",
"that",
"neither",
"\n\n",
"age",
" ",
"nor",
" ",
"education",
" ",
"influenced",
" ",
"feelings",
" ",
"around",
" ",
"trust",
",",
" ",
"neighbourhood",
" ",
"cohesion",
" ",
"or",
"subjective",
"well",
"-",
"being",
".",
"\n\n",
"Those",
"living",
"in",
"Sanjay",
"(",
"slum",
"/",
"JJ",
")",
"reported",
"higher",
"subjective",
"well",
"-",
"being",
"and",
"were",
"more",
"likely",
"to",
"feel",
"a",
"sense",
"of",
"belonging",
"to",
"a",
"whole",
"community",
"where",
"they",
"would",
"help",
"and",
"be",
"helped",
"by",
"their",
"neighbours",
"in",
"an",
"emergency",
".",
"\n\n",
"However",
",",
"Sanjay",
"residents",
"were",
"less",
"likely",
"to",
"be",
"neighbourly",
"with",
"fewer",
"friendships",
"and",
"less",
"of",
"an",
"attraction",
"to",
"live",
"in",
"the",
"neighbourhood",
".",
"\n\n",
"Part",
"of",
"the",
"reason",
"for",
"this",
",",
"which",
"we",
"can",
"not",
"substantiate",
",",
"may",
"relate",
"to",
"the",
"more",
"cramped",
"living",
"conditions",
"in"
] |
[] |
In the simplified example below, a mining investor holds two successful producing mines. Row 1 in Table 1 shows the revenue the government would collect if the investor were allowed to consolidate the income and losses from the two mines. Row 2 shows the government's revenue where ring-fencing rules are applied. 14
Where ring-fencing rules are applied, the government receives its first revenue from CIT in year 8, as opposed to year 11, if the investor is allowed to consolidate the two mines.
## TABLE 1. Government revenues over the life of the mines (in USD millions)
| YEAR | 0-5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | TOTAL |
|---------------|-------|-----|-----|-----|-----|------|-------|-------|-------|-------|------|---------|
| Consolidation | 0 | 0 | 0 | 0 | 0 | 0 | 1,110 | 1,478 | 2,609 | 1,178 | 953 | 7,328 |
| Ring-fencing | 0 | 0 | 0 | 488 | 668 | 443 | 593 | 593 | 2,412 | 1,178 | 953 | 7,328 |
Source: Author's elaboration.
## FIGURE 4. Timing of government revenues
<!-- image -->
Source: Authors' elaboration.
14 Further details on the economics of the projects are available on request.
1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
## 3.0 THE BENEFITS AND RISKS OF RING-FENCING
4.0 DESIGNING RING-FENCING RULES
5.0 THE IMPLEMENTATION OF RING-FENCING RULES
6.0 CONCLUSION
## 3.1.2 Mining Tax Base Issues Addressed By Ring-Fencing
## 3.1.2.1 Permanent Losses Derived From Unsuccessful Projects
A mining investor holding two licences, one for exploration and one for mining, may offset costs from an unsuccessful exploration project against the profits of a producing mine. If the exploration project had been successful, the loss would have been temporary because once production starts, these costs will be recouped. An unsuccessful project may result in a permanent loss for governments as costs will not be recoverable except where ring-fencing rules exist (see Box 5). While this outcome of protecting the tax base from permanent losses is attractive from the tax revenue policy perspective, it may conflict with the intention of attracting investment into exploration activities. Unsuccessful projects are a reality of the extractives industry, given the risk involved. From an investor's point of view, if a project is unsuccessful, it is entirely reasonable to utilize these losses against other operations, as this is the true reflection of
|
[
"In",
"the",
"simplified",
"example",
"below",
",",
"a",
"mining",
"investor",
"holds",
"two",
"successful",
"producing",
"mines",
".",
"Row",
"1",
"in",
"Table",
"1",
"shows",
"the",
"revenue",
"the",
"government",
"would",
"collect",
"if",
"the",
"investor",
"were",
"allowed",
"to",
"consolidate",
"the",
"income",
"and",
"losses",
"from",
"the",
"two",
"mines",
".",
"Row",
"2",
"shows",
"the",
"government",
"'s",
"revenue",
"where",
"ring",
"-",
"fencing",
"rules",
"are",
"applied",
".",
"14",
"\n\n",
"Where",
"ring",
"-",
"fencing",
"rules",
"are",
"applied",
",",
"the",
"government",
"receives",
"its",
"first",
"revenue",
"from",
"CIT",
"in",
"year",
"8",
",",
"as",
"opposed",
"to",
"year",
"11",
",",
"if",
"the",
"investor",
"is",
"allowed",
"to",
"consolidate",
"the",
"two",
"mines",
".",
"\n\n",
"#",
"#",
"TABLE",
"1",
".",
"Government",
"revenues",
"over",
"the",
"life",
"of",
"the",
"mines",
"(",
"in",
"USD",
"millions",
")",
"\n\n",
"|",
"YEAR",
" ",
"|",
" ",
"0",
"-",
"5",
"|",
" ",
"6",
"|",
" ",
"7",
"|",
" ",
"8",
"|",
" ",
"9",
"|",
" ",
"10",
"|",
"11",
" ",
"|",
"12",
" ",
"|",
"13",
" ",
"|",
"14",
" ",
"|",
" ",
"15",
"|",
"TOTAL",
" ",
"|",
"\n",
"|---------------|-------|-----|-----|-----|-----|------|-------|-------|-------|-------|------|---------|",
"\n",
"|",
"Consolidation",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
"1,110",
"|",
"1,478",
"|",
"2,609",
"|",
"1,178",
"|",
" ",
"953",
"|",
"7,328",
" ",
"|",
"\n",
"|",
"Ring",
"-",
"fencing",
" ",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
" ",
"0",
"|",
"488",
"|",
"668",
"|",
" ",
"443",
"|",
"593",
" ",
"|",
"593",
" ",
"|",
"2,412",
"|",
"1,178",
"|",
" ",
"953",
"|",
"7,328",
" ",
"|",
"\n\n",
"Source",
":",
"Author",
"'s",
"elaboration",
".",
"\n\n",
"#",
"#",
"FIGURE",
"4",
".",
"Timing",
"of",
"government",
"revenues",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Source",
":",
"Authors",
"'",
"elaboration",
".",
"\n\n",
"14",
" ",
"Further",
"details",
"on",
"the",
"economics",
"of",
"the",
"projects",
"are",
"available",
"on",
"request",
".",
"\n\n",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"#",
"#",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"5.0",
"THE",
"IMPLEMENTATION",
"OF",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"6.0",
"CONCLUSION",
"\n\n",
"#",
"#",
"3.1.2",
"Mining",
"Tax",
"Base",
"Issues",
"Addressed",
"By",
"Ring",
"-",
"Fencing",
"\n\n",
"#",
"#",
"3.1.2.1",
"Permanent",
"Losses",
"Derived",
"From",
"Unsuccessful",
"Projects",
"\n\n",
"A",
"mining",
"investor",
"holding",
"two",
"licences",
",",
"one",
"for",
"exploration",
"and",
"one",
"for",
"mining",
",",
"may",
"offset",
"costs",
"from",
"an",
"unsuccessful",
"exploration",
"project",
"against",
"the",
"profits",
"of",
"a",
"producing",
"mine",
".",
"If",
"the",
"exploration",
"project",
"had",
"been",
"successful",
",",
"the",
"loss",
"would",
"have",
"been",
"temporary",
"because",
"once",
"production",
"starts",
",",
"these",
"costs",
"will",
"be",
"recouped",
".",
"An",
"unsuccessful",
"project",
"may",
"result",
"in",
"a",
"permanent",
"loss",
"for",
"governments",
"as",
"costs",
"will",
"not",
"be",
"recoverable",
"except",
"where",
"ring",
"-",
"fencing",
"rules",
"exist",
"(",
"see",
"Box",
"5",
")",
".",
"While",
"this",
"outcome",
"of",
"protecting",
"the",
"tax",
"base",
"from",
"permanent",
"losses",
"is",
"attractive",
"from",
"the",
"tax",
"revenue",
"policy",
"perspective",
",",
"it",
"may",
"conflict",
"with",
"the",
"intention",
"of",
"attracting",
"investment",
"into",
"exploration",
"activities",
".",
"Unsuccessful",
"projects",
"are",
"a",
"reality",
"of",
"the",
"extractives",
"industry",
",",
"given",
"the",
"risk",
"involved",
".",
"From",
"an",
"investor",
"'s",
"point",
"of",
"view",
",",
"if",
"a",
"project",
"is",
"unsuccessful",
",",
"it",
"is",
"entirely",
"reasonable",
"to",
"utilize",
"these",
"losses",
"against",
"other",
"operations",
",",
"as",
"this",
"is",
"the",
"true",
"reflection",
"of"
] |
[] |
the present invention will be described below with reference to FIG. 1 to FIG. 3 .
- FIG. 1 (A)
is a top view of a cell 600 constituting the memory device.
- FIG. 1 (B)
is a cross-sectional view of the cell 600 .
- FIG. 1 (B)
is a cross-sectional view of a portion indicated by a dashed-dotted line A 1 -A 2 in FIG. 1 (A) and also is a cross-sectional view of a transistor 200 (a transistor 200 A and a transistor 200 B) in the channel length direction.
- FIG. 2
is a diagram illustrating an equivalent circuit of the cell 600 shown in FIG. 1 . For clarity of the diagram, some components are not illustrated in the top view of FIG. 1 (A) .
- the cell 600 constituting the memory device
includes a transistor 300 A, a transistor 300 B, the transistor 200 A over the transistor 300 A, the transistor 200 B over the transistor 300 B, a capacitor 100 A, and a capacitor 100 B.
- the transistor 300 A, the transistor 200 A, and the capacitor 100 A
form one memory cell 600 A, and the transistor 300 B, the transistor 200 B, and the capacitor 100 B form one memory cell 600 B. That is, the cell 600 includes two memory cells. The configuration and operation of the memory cells will be described later in detail.
- the transistor 300 A and the transistor 300 B
include a common semiconductor layer 301 , and the transistor 200 A and the transistor 200 B include a common oxide 230 .
- the transistor 300 A
includes a conductor 316 A functioning as a gate, and the conductor 316 A is electrically connected to one of a source and a drain of the transistor 200 A.
- the transistor 300 B
includes a conductor 316 B functioning as a gate, and the conductor 316 B is electrically connected to one of a source and a drain of the transistor 200 B.
- a one-stage or multi-stage conductor 208 A
is provided over the conductor 316 A and is electrically connected to the conductor 316 A.
- a top surface of the conductor 208 A
is connected to a bottom surface of the one of the source and the drain of the transistor 200 A, whereby the conductor 316 A and
|
[
"the",
"present",
"invention",
"will",
"be",
"described",
"below",
"with",
"reference",
"to",
"FIG",
".",
"1",
"to",
"FIG",
".",
"3",
".",
"\n",
"-",
"FIG",
".",
"1",
"(",
"A",
")",
"\n",
"is",
"a",
"top",
"view",
"of",
"a",
"cell",
"600",
"constituting",
"the",
"memory",
"device",
".",
"\n",
"-",
"FIG",
".",
"1",
"(",
"B",
")",
"\n",
"is",
"a",
"cross",
"-",
"sectional",
"view",
"of",
"the",
"cell",
"600",
".",
"\n",
"-",
"FIG",
".",
"1",
"(",
"B",
")",
"\n",
"is",
"a",
"cross",
"-",
"sectional",
"view",
"of",
"a",
"portion",
"indicated",
"by",
"a",
"dashed",
"-",
"dotted",
"line",
"A",
"1",
"-A",
"2",
"in",
"FIG",
".",
"1",
"(",
"A",
")",
"and",
"also",
"is",
"a",
"cross",
"-",
"sectional",
"view",
"of",
"a",
"transistor",
"200",
"(",
"a",
"transistor",
"200",
"A",
"and",
"a",
"transistor",
"200",
"B",
")",
"in",
"the",
"channel",
"length",
"direction",
".",
"\n",
"-",
"FIG",
".",
"2",
"\n",
"is",
"a",
"diagram",
"illustrating",
"an",
"equivalent",
"circuit",
"of",
"the",
"cell",
"600",
"shown",
"in",
"FIG",
".",
"1",
".",
"For",
"clarity",
"of",
"the",
"diagram",
",",
"some",
"components",
"are",
"not",
"illustrated",
"in",
"the",
"top",
"view",
"of",
"FIG",
".",
"1",
"(",
"A",
")",
".",
"\n",
"-",
"the",
"cell",
"600",
"constituting",
"the",
"memory",
"device",
"\n",
"includes",
"a",
"transistor",
"300",
"A",
",",
"a",
"transistor",
"300",
"B",
",",
"the",
"transistor",
"200",
"A",
"over",
"the",
"transistor",
"300",
"A",
",",
"the",
"transistor",
"200",
"B",
"over",
"the",
"transistor",
"300",
"B",
",",
"a",
"capacitor",
"100",
"A",
",",
"and",
"a",
"capacitor",
"100",
"B.",
"\n",
"-",
"the",
"transistor",
"300",
"A",
",",
"the",
"transistor",
"200",
"A",
",",
"and",
"the",
"capacitor",
"100",
"A",
"\n",
"form",
"one",
"memory",
"cell",
"600",
"A",
",",
"and",
"the",
"transistor",
"300",
"B",
",",
"the",
"transistor",
"200",
"B",
",",
"and",
"the",
"capacitor",
"100",
"B",
"form",
"one",
"memory",
"cell",
"600",
"B.",
"That",
"is",
",",
"the",
"cell",
"600",
"includes",
"two",
"memory",
"cells",
".",
"The",
"configuration",
"and",
"operation",
"of",
"the",
"memory",
"cells",
"will",
"be",
"described",
"later",
"in",
"detail",
".",
"\n",
"-",
"the",
"transistor",
"300",
"A",
"and",
"the",
"transistor",
"300",
"B",
"\n",
"include",
"a",
"common",
"semiconductor",
"layer",
"301",
",",
"and",
"the",
"transistor",
"200",
"A",
"and",
"the",
"transistor",
"200",
"B",
"include",
"a",
"common",
"oxide",
"230",
".",
"\n",
"-",
"the",
"transistor",
"300",
"A",
"\n",
"includes",
"a",
"conductor",
"316",
"A",
"functioning",
"as",
"a",
"gate",
",",
"and",
"the",
"conductor",
"316",
"A",
"is",
"electrically",
"connected",
"to",
"one",
"of",
"a",
"source",
"and",
"a",
"drain",
"of",
"the",
"transistor",
"200",
"A.",
"\n",
"-",
"the",
"transistor",
"300",
"B",
"\n",
"includes",
"a",
"conductor",
"316",
"B",
"functioning",
"as",
"a",
"gate",
",",
"and",
"the",
"conductor",
"316",
"B",
"is",
"electrically",
"connected",
"to",
"one",
"of",
"a",
"source",
"and",
"a",
"drain",
"of",
"the",
"transistor",
"200",
"B.",
"\n",
"-",
"a",
"one",
"-",
"stage",
"or",
"multi",
"-",
"stage",
"conductor",
"208",
"A",
"\n",
"is",
"provided",
"over",
"the",
"conductor",
"316",
"A",
"and",
"is",
"electrically",
"connected",
"to",
"the",
"conductor",
"316",
"A.",
"\n",
"-",
"a",
"top",
"surface",
"of",
"the",
"conductor",
"208",
"A",
"\n",
"is",
"connected",
"to",
"a",
"bottom",
"surface",
"of",
"the",
"one",
"of",
"the",
"source",
"and",
"the",
"drain",
"of",
"the",
"transistor",
"200",
"A",
",",
"whereby",
"the",
"conductor",
"316",
"A",
"and"
] |
[] |
sense of national ownership over SDG 4 targets. Countries were first asked to provide national benchmarks on seven SDG 4 indicators that were deemed suitable, based on data availability, a clear target and policy relevance (UIS and GEM Report, 2023) (Chapter 7). In 2023, the proportion of schools with internet available for pedagogical purposes was added to the list as the eighth benchmark indicator in response to the priority assigned to digital technology at the UN Transforming Education Summit in 2022.
In total, 32% of countries had submitted national benchmarks by the end of 2023. Among countries with sufficient data, global progress is
close to the target. In primary and lower secondary education, the share of schools with internet access increased from about 69% to 79%, only 3 percentage points from the collective target of 82%. Progress was somewhat slower in the case of upper secondary education, where the percentage of schools with internet access increased from 76% to 81% (Figure 15.2a).
Some 69% of countries with data have achieved fast progress on this indicator in upper secondary education. However, progress is
uneven. Almost all high-income, two thirds of upper-middle-income, one half of lower-middle-income and one fifth of low-income countries have achieved fast progress (Figure 15.2b). No low-income country has achieved fast progress in primary and lower secondary education, although it should be noted that only three low-income countries report data (UIS and GEM Report, 2024).
FIGURE 15.2:
Progress on school internet connectivity has been fast but uneven
a. Proportion of upper secondary schools with internet available for pedagogical purposes, 2015–22 and average national targets for 2025 and 2030b. Share of countries with data that achieved fast progress,
by country income group
76
81
85
89
92
40
50
60
70
80
90
100
2015
2020
2022
2025
2030
%
Actual
Needed
Benchmarks
20
48
67
95
0
20
40
60
80
100
Low
High
Countries (%)
Lower
middle
Upper
middle
Note: ‘Fast progress’ means that a country has at least 75% probability of achieving its national target by 2025 (including when it has already achieved it) or
at least 95% of schools are already connected.
GEM StatLink: https:/ /bit.ly/GEM2024_fig15_2Source: UIS and GEM Report (2024).
In 2023, 77% of primary schools around the
world had access to basic drinking water
2024/5 • GLOBAL EDUCATION MONITORING REPORT
241 CHAPTER 15 • EDUCATION FACILITIES AND LEARNING ENVIRONMENTS
15
Fast progress is possible
|
[
"sense",
"of",
"national",
"ownership",
"over",
"SDG",
"4",
"targets",
".",
"Countries",
"were",
"first",
"asked",
"to",
"provide",
"national",
"benchmarks",
"on",
"seven",
"SDG",
"4",
"indicators",
"that",
"were",
"deemed",
"suitable",
",",
"based",
"on",
"data",
"availability",
",",
"a",
"clear",
"target",
"and",
"policy",
"relevance",
"(",
"UIS",
"and",
"GEM",
"Report",
",",
"2023",
")",
"(",
"Chapter",
"7",
")",
".",
"In",
"2023",
",",
"the",
"proportion",
"of",
"schools",
"with",
"internet",
"available",
"for",
"pedagogical",
"purposes",
"was",
"added",
"to",
"the",
"list",
"as",
"the",
"eighth",
"benchmark",
"indicator",
"in",
"response",
"to",
"the",
"priority",
"assigned",
"to",
"digital",
"technology",
"at",
"the",
"UN",
"Transforming",
"Education",
"Summit",
"in",
"2022",
".",
"\n",
"In",
"total",
",",
"32",
"%",
"of",
"countries",
"had",
"submitted",
"national",
"benchmarks",
"by",
"the",
"end",
"of",
"2023",
".",
"Among",
"countries",
"with",
"sufficient",
"data",
",",
"global",
"progress",
"is",
"\n",
"close",
"to",
"the",
"target",
".",
"In",
"primary",
"and",
"lower",
"secondary",
"education",
",",
"the",
"share",
"of",
"schools",
"with",
"internet",
"access",
"increased",
"from",
"about",
"69",
"%",
"to",
"79",
"%",
",",
"only",
"3",
"percentage",
"points",
"from",
"the",
"collective",
"target",
"of",
"82",
"%",
".",
"Progress",
"was",
"somewhat",
"slower",
"in",
"the",
"case",
"of",
"upper",
"secondary",
"education",
",",
"where",
"the",
"percentage",
"of",
"schools",
"with",
"internet",
"access",
"increased",
"from",
"76",
"%",
"to",
"81",
"%",
"(",
"Figure",
"15.2a",
")",
".",
"\n",
"Some",
"69",
"%",
"of",
"countries",
"with",
"data",
"have",
"achieved",
"fast",
"progress",
"on",
"this",
"indicator",
"in",
"upper",
"secondary",
"education",
".",
"However",
",",
"progress",
"is",
"\n",
"uneven",
".",
"Almost",
"all",
"high",
"-",
"income",
",",
"two",
"thirds",
"of",
"upper",
"-",
"middle",
"-",
"income",
",",
"one",
"half",
"of",
"lower",
"-",
"middle",
"-",
"income",
"and",
"one",
"fifth",
"of",
"low",
"-",
"income",
"countries",
"have",
"achieved",
"fast",
"progress",
"(",
"Figure",
"15.2b",
")",
".",
"No",
"low",
"-",
"income",
"country",
"has",
"achieved",
"fast",
"progress",
"in",
"primary",
"and",
"lower",
"secondary",
"education",
",",
"although",
"it",
"should",
"be",
"noted",
"that",
"only",
"three",
"low",
"-",
"income",
"countries",
"report",
"data",
"(",
"UIS",
"and",
"GEM",
"Report",
",",
"2024",
")",
".",
"\n",
"FIGURE",
"15.2",
":",
" \n",
"Progress",
"on",
"school",
"internet",
"connectivity",
"has",
"been",
"fast",
"but",
"uneven",
"\n",
"a.",
"Proportion",
"of",
"upper",
"secondary",
"schools",
"with",
"internet",
"available",
"for",
"pedagogical",
"purposes",
",",
"2015–22",
"and",
"average",
"national",
"targets",
"for",
"2025",
"and",
"2030b",
".",
"Share",
"of",
"countries",
"with",
"data",
"that",
"achieved",
"fast",
"progress",
",",
" \n",
"by",
"country",
"income",
"group",
"\n",
"76",
"\n",
"81",
"\n",
"85",
"\n",
"89",
"\n",
"92",
"\n",
"40",
"\n",
"50",
"\n",
"60",
"\n",
"70",
"\n",
"80",
"\n",
"90",
"\n",
"100",
"\n",
"2015",
"\n",
"2020",
"\n",
"2022",
"\n",
"2025",
"\n",
"2030",
"\n",
"%",
"\n",
"Actual",
"\n",
"Needed",
"\n",
"Benchmarks",
"\n",
"20",
"\n",
"48",
"\n",
"67",
"\n",
"95",
"\n",
"0",
"\n",
"20",
"\n",
"40",
"\n",
"60",
"\n",
"80",
"\n",
"100",
"\n",
"Low",
"\n",
"High",
"\n",
"Countries",
"(",
"%",
")",
"\n",
"Lower",
"\n",
"middle",
"\n",
"Upper",
"\n",
"middle",
"\n",
"Note",
":",
" ",
"‘",
"Fast",
"progress",
"’",
"means",
"that",
"a",
"country",
"has",
"at",
"least",
"75",
"%",
"probability",
"of",
"achieving",
"its",
"national",
"target",
"by",
"2025",
"(",
"including",
"when",
"it",
"has",
"already",
"achieved",
"it",
")",
"or",
"\n",
"at",
"least",
"95",
"%",
"of",
"schools",
"are",
"already",
"connected",
".",
"\n",
"GEM",
"StatLink",
":",
"https:/",
"/bit.ly",
"/",
"GEM2024_fig15_2Source",
":",
"UIS",
"and",
"GEM",
"Report",
"(",
"2024",
")",
".",
"\n \n",
"In",
"2023",
",",
"77",
"%",
"of",
"primary",
"schools",
"around",
"the",
"\n",
"world",
"had",
"access",
"to",
"basic",
"drinking",
"water",
"\n",
"2024/5",
"•",
"GLOBAL",
"EDUCATION",
"MONITORING",
"REPORT",
"\n",
"241",
"CHAPTER",
" ",
"15",
" ",
"•",
"EDUCATION",
" ",
"FACILITIES",
" ",
"AND",
" ",
"LEARNING",
" ",
"ENVIRONMENTS",
"\n",
"15",
"\n",
"Fast",
"progress",
"is",
"possible"
] |
[
{
"end": 248,
"label": "CITATION_REF",
"start": 224
},
{
"end": 242,
"label": "AUTHOR",
"start": 224
},
{
"end": 248,
"label": "YEAR",
"start": 244
},
{
"end": 1519,
"label": "CITATION_REF",
"start": 1495
},
{
"end": 1513,
"label": "AUTHOR",
"start": 1495
},
{
"end": 1519,
"label": "YEAR",
"start": 1515
},
{
"end": 2290,
"label": "CITATION_REF",
"start": 2265
},
{
"end": 2283,
"label": "AUTHOR",
"start": 2265
},
{
"end": 2289,
"label": "YEAR",
"start": 2285
}
] |
due in part to inefficiencies in plastic waste collection and
management systems or contamination/low quality of recyclables . While the capacity of plastic
recy cling facilities in the EU has increased more than fivefold since 1996, reaching a significant
milestone by 2021 (EEA, 2024a; Plastics Recyclers Europe, 2021), the rate of improvement in plastic
waste collection has not kept pace. To achieve a truly circular economy, secondary plastics need to
be used into new products. However, less than 10% of the total recycled plastics are being used in
new products or product elements (EEA, 2024 a; Plastics Europe, 202 4), although variations on the
result could be associated to specific polymers .
6 In response to the environmental challenges posed by plastics, the EU has introduced a set of policies
aimed at promoting sustainability and reducing environmental harm. These policies include the
European Green Deal (European Commission – EC, 2019a), the EU Plastics Strategy (EC, 2018), the
Single Use Plastic Directive (EC, 2019b), and the EU Regulation restricting intentionally added
microplastics (E C, 2023 b). The primary goals of such policies are to boost recycling rates, encourage
the development of su stainable alternatives, and mitigate the environmental impacts of plastic
waste and microplastics. Additionally, the EU is actively engaged in international efforts to combat
plastic pollution, including the high ambition coalition to set up a global plastics treaty aimed at
ending plastic pollution by 2040 ( Plastics Europe, 2024). This initiative aligns with the United Nations'
Sustainable Development Goal (SDG) 14, which seeks to conserve and sustainably use oceans, seas,
and marine resources (UNEP, 2024). To achieve true circularity in the plastics sector, it is essential to
adop t an integrated approach that includes the entire lifecycle of plastics, for example reformulating
materials' compositions (e.g., additives, fillers, coatings), extending the lifespan of plastic products,
or enhancing collection and sorting efficiencies .
1.2 Objectives and novelty of the study
To support the implementation of the cited policies and strategies, this report aims to unveil the
European plastics materials flows for the key economic sectors and polymers, analysing the total
emissions of the EU plastic value chain from raw materials to e nd of life of products. Ensuring the
competitiveness of the EU and achieving its ambitious policy targets, require a comprehensive
analysis of the EU value chain. Numerous studies have highlighted the potential of Material Flow
Analysis (MFA) and Life C
|
[
" ",
"due",
"in",
"part",
"to",
"inefficiencies",
"in",
"plastic",
"waste",
"collection",
"and",
"\n",
"management",
"systems",
" ",
"or",
"contamination",
"/",
"low",
"quality",
"of",
"recyclables",
".",
"While",
"the",
"capacity",
"of",
"plastic",
" \n",
"recy",
"cling",
"facilities",
"in",
"the",
"EU",
"has",
"increased",
"more",
"than",
"fivefold",
"since",
"1996",
",",
"reaching",
"a",
"significant",
"\n",
"milestone",
"by",
"2021",
"(",
"EEA",
",",
"2024a",
";",
"Plastics",
" ",
"Recyclers",
" ",
"Europe",
",",
"2021",
")",
",",
"the",
"rate",
"of",
"improvement",
"in",
"plastic",
"\n",
"waste",
"collection",
"has",
"not",
"kept",
"pace",
".",
"To",
"achieve",
"a",
"truly",
"circular",
"economy",
",",
"secondary",
"plastics",
"need",
"to",
"\n",
"be",
"used",
"into",
"new",
"products",
".",
"However",
",",
"less",
"than",
"10",
"%",
"of",
"the",
"total",
" ",
"recycled",
"plastics",
" ",
"are",
"being",
"used",
"in",
"\n",
"new",
"products",
"or",
"product",
"elements",
"(",
"EEA",
",",
"2024",
"a",
";",
"Plastics",
" ",
"Europe",
",",
"202",
"4",
")",
",",
"although",
"variations",
"on",
"the",
"\n",
"result",
"could",
"be",
"associated",
"to",
"specific",
"polymers",
".",
"\n \n",
"6",
"In",
"response",
"to",
"the",
"environmental",
"challenges",
"posed",
"by",
"plastics",
",",
"the",
"EU",
"has",
"introduced",
"a",
"set",
"of",
"policies",
"\n",
"aimed",
"at",
"promoting",
"sustainability",
"and",
"reducing",
"environmental",
"harm",
".",
"These",
"policies",
"include",
"the",
"\n",
"European",
"Green",
"Deal",
"(",
"European",
"Commission",
"–",
"EC",
",",
"2019a",
")",
",",
"the",
"EU",
"Plastics",
"Strategy",
"(",
"EC",
",",
"2018",
")",
",",
"the",
"\n",
"Single",
"Use",
"Plastic",
"Directive",
"(",
"EC",
",",
"2019b",
")",
",",
"and",
"the",
"EU",
"Regulation",
"restricting",
"intentionally",
"added",
"\n",
"microplastics",
"(",
"E",
"C",
",",
"2023",
"b",
")",
".",
"The",
"primary",
"goals",
" ",
"of",
"such",
" ",
"policies",
"are",
"to",
"boost",
"recycling",
"rates",
",",
"encourage",
"\n",
"the",
"development",
"of",
"su",
"stainable",
"alternatives",
",",
"and",
"mitigate",
"the",
"environmental",
"impacts",
"of",
"plastic",
"\n",
"waste",
"and",
"microplastics",
".",
"Additionally",
",",
"the",
"EU",
"is",
"actively",
"engaged",
"in",
"international",
"efforts",
"to",
"combat",
"\n",
"plastic",
"pollution",
",",
"including",
"the",
"high",
"ambition",
"coalition",
"to",
"set",
"up",
" ",
"a",
"global",
"plastics",
"treaty",
"aimed",
"at",
"\n",
"ending",
"plastic",
"pollution",
"by",
"2040",
"(",
"Plastics",
" ",
"Europe",
",",
"2024",
")",
".",
" ",
"This",
"initiative",
"aligns",
"with",
"the",
"United",
"Nations",
"'",
"\n",
"Sustainable",
"Development",
"Goal",
"(",
"SDG",
")",
"14",
",",
"which",
"seeks",
"to",
"conserve",
"and",
"sustainably",
"use",
"oceans",
",",
"seas",
",",
"\n",
"and",
"marine",
"resources",
"(",
"UNEP",
",",
"2024",
")",
".",
"To",
"achieve",
"true",
"circularity",
"in",
"the",
"plastics",
"sector",
",",
"it",
"is",
"essential",
"to",
"\n",
"adop",
"t",
"an",
"integrated",
" ",
"approach",
"that",
"includes",
"the",
"entire",
"lifecycle",
"of",
"plastics",
",",
"for",
"example",
" ",
"reformulating",
"\n",
"materials",
"'",
"compositions",
"(",
"e.g.",
",",
"additives",
",",
"fillers",
",",
"coatings",
")",
",",
"extending",
"the",
"lifespan",
"of",
"plastic",
"products",
",",
"\n",
"or",
"enhancing",
"collection",
"and",
"sorting",
"efficiencies",
".",
"\n",
"1.2",
"Objectives",
"and",
"novelty",
" ",
"of",
"the",
"study",
" \n",
"To",
"support",
"the",
"implementation",
"of",
"the",
"cited",
"policies",
"and",
"strategies",
",",
"this",
"report",
"aims",
"to",
"unveil",
"the",
"\n",
"European",
"plastics",
"materials",
"flows",
"for",
"the",
"key",
"economic",
"sectors",
"and",
"polymers",
",",
"analysing",
"the",
"total",
"\n",
"emissions",
"of",
"the",
"EU",
"plastic",
"value",
"chain",
"from",
"raw",
"materials",
"to",
"e",
"nd",
"of",
"life",
"of",
"products",
".",
"Ensuring",
"the",
"\n",
"competitiveness",
"of",
"the",
"EU",
"and",
"achieving",
" ",
"its",
"ambitious",
"policy",
"targets",
",",
"require",
"a",
"comprehensive",
"\n",
"analysis",
"of",
"the",
"EU",
"value",
"chain",
".",
"Numerous",
" ",
"studies",
"have",
"highlighted",
"the",
"potential",
"of",
"Material",
"Flow",
"\n",
"Analysis",
"(",
"MFA",
")",
"and",
"Life",
"C"
] |
[
{
"end": 292,
"label": "CITATION_REF",
"start": 282
},
{
"end": 327,
"label": "CITATION_REF",
"start": 294
},
{
"end": 285,
"label": "AUTHOR",
"start": 282
},
{
"end": 292,
"label": "YEAR",
"start": 287
},
{
"end": 321,
"label": "AUTHOR",
"start": 294
},
{
"end": 327,
"label": "YEAR",
"start": 323
},
{
"end": 614,
"label": "CITATION_REF",
"start": 603
},
{
"end": 639,
"label": "CITATION_REF",
"start": 616
},
{
"end": 606,
"label": "AUTHOR",
"start": 603
},
{
"end": 614,
"label": "YEAR",
"start": 608
},
{
"end": 632,
"label": "AUTHOR",
"start": 616
},
{
"end": 639,
"label": "YEAR",
"start": 634
},
{
"end": 976,
"label": "CITATION_REF",
"start": 945
},
{
"end": 969,
"label": "AUTHOR",
"start": 945
},
{
"end": 976,
"label": "YEAR",
"start": 971
},
{
"end": 1013,
"label": "CITATION_REF",
"start": 1005
},
{
"end": 1007,
"label": "AUTHOR",
"start": 1005
},
{
"end": 1013,
"label": "YEAR",
"start": 1009
},
{
"end": 1144,
"label": "CITATION_REF",
"start": 1133
},
{
"end": 1060,
"label": "CITATION_REF",
"start": 1051
},
{
"end": 1053,
"label": "AUTHOR",
"start": 1051
},
{
"end": 1060,
"label": "YEAR",
"start": 1055
},
{
"end": 1136,
"label": "AUTHOR",
"start": 1133
},
{
"end": 1144,
"label": "YEAR",
"start": 1138
},
{
"end": 1584,
"label": "CITATION_REF",
"start": 1562
},
{
"end": 1578,
"label": "AUTHOR",
"start": 1562
},
{
"end": 1584,
"label": "YEAR",
"start": 1580
},
{
"end": 1767,
"label": "CITATION_REF",
"start": 1757
},
{
"end": 1761,
"label": "AUTHOR",
"start": 1757
},
{
"end": 1767,
"label": "YEAR",
"start": 1763
}
] |
laboration of the whole EaP region with external
countries, for each domain, is provided. The tables
are presented in the form of heatmaps, where the
colour denotes the distribution of records comput-
ed row-wise (i.e. colours mark the distribution of
documents of the country on the left-hand side of
each table).Results
The following tables present aggregate collabo-
rations in publications and EC projects which are
useful to gauge the overall intensity of cooper-
ation in science and innovation between the EaP
countries.
EaP regional collaboration
In publications, Armenia and Georgia present con-
sistent bilateral scientific collaboration with one
another. Ukraine also presents a high level of col-
laboration with these two countries. Conversely,
Azerbaijan and Moldova are currently minor sci-
entific partners of EaP countries, only presenting a
moderate collaboration with Ukraine.
In EC-funded projects, Ukraine collaborates most
intensively with Georgia and Moldova. Armenia
and Moldova also have a high level of collabora-
tion. Azerbaijan remains a bit more isolated, also
due to the lower number of projects overall. This
collaboration intensity is certainly a positive re-
sult of the EaP countries’ participation in H2020,
particularly since a significant number of these
collaborations are concentrated in the domain
Governance, culture, education and the economy
(see following section).Armenia
Azerbaijan
Belarus
Georgia
Moldova
Ukraine
Armenia 130 1 471 1 756 42 980
Azerbaijan 130 49 73 26 138
Belarus 1 471 49 1 440 83 1 268
Georgia 1 756 73 1 440 58 1 058
Moldova 42 26 83 58 202
Ukraine 980 138 1 268 1 058 202
Publications
Armenia
Azerbaijan
Belarus
Georgia
Moldova
Ukraine
Armenia 10 21 26 19 21
Azerbaijan 10 8 11 8 11
Belarus 21 8 20 17 33
Georgia 26 11 20 23 32
Moldova 19 8 17 23 25
Ukraine 21 11 33 32 25
EC projectsFigure 3.45. Number of publications and EC projects in collaboration between EaP actors in different countries
Colour indicates the relative distribution of documents, computed row-wise.
208
Part 3 Analysis of scientific and technological potential
It must be noted, however, that scientific collabo-
ration between EaP countries is mainly driven by
very intense collaboration in physics (within the
Fundamental physics and mathematics domain)
– which concentrates by far the largest number
of co-publications – due to the countries’ co-par-
ticipation in large high-energy and astronomy en-
deavours.
At a great distance, Health and wellbeing; Govern-
ance, culture, education and
|
[
"laboration",
"of",
"the",
"whole",
"EaP",
"region",
"with",
"external",
"\n",
"countries",
",",
"for",
"each",
"domain",
",",
"is",
"provided",
".",
"The",
"tables",
"\n",
"are",
"presented",
"in",
"the",
"form",
"of",
"heatmaps",
",",
"where",
"the",
"\n",
"colour",
"denotes",
"the",
"distribution",
"of",
"records",
"comput-",
"\n",
"ed",
"row",
"-",
"wise",
"(",
"i.e.",
"colours",
"mark",
"the",
"distribution",
"of",
"\n",
"documents",
"of",
"the",
"country",
"on",
"the",
"left",
"-",
"hand",
"side",
"of",
"\n",
"each",
"table).Results",
"\n",
"The",
"following",
"tables",
"present",
"aggregate",
"collabo-",
"\n",
"rations",
"in",
"publications",
"and",
"EC",
"projects",
"which",
"are",
"\n",
"useful",
"to",
"gauge",
"the",
"overall",
"intensity",
"of",
"cooper-",
"\n",
"ation",
"in",
"science",
"and",
"innovation",
"between",
"the",
"EaP",
"\n",
"countries",
".",
"\n",
"EaP",
"regional",
"collaboration",
"\n",
"In",
"publications",
",",
"Armenia",
"and",
"Georgia",
"present",
"con-",
"\n",
"sistent",
"bilateral",
"scientific",
"collaboration",
"with",
"one",
"\n",
"another",
".",
"Ukraine",
"also",
"presents",
"a",
"high",
"level",
"of",
"col-",
"\n",
"laboration",
"with",
"these",
"two",
"countries",
".",
"Conversely",
",",
"\n",
"Azerbaijan",
"and",
"Moldova",
"are",
"currently",
"minor",
"sci-",
"\n",
"entific",
"partners",
"of",
"EaP",
"countries",
",",
"only",
"presenting",
"a",
"\n",
"moderate",
"collaboration",
"with",
"Ukraine",
".",
"\n",
"In",
"EC",
"-",
"funded",
"projects",
",",
"Ukraine",
"collaborates",
"most",
"\n",
"intensively",
"with",
"Georgia",
"and",
"Moldova",
".",
"Armenia",
"\n",
"and",
"Moldova",
"also",
"have",
"a",
"high",
"level",
"of",
"collabora-",
"\n",
"tion",
".",
"Azerbaijan",
"remains",
"a",
"bit",
"more",
"isolated",
",",
"also",
"\n",
"due",
"to",
"the",
"lower",
"number",
"of",
"projects",
"overall",
".",
"This",
"\n",
"collaboration",
"intensity",
"is",
"certainly",
"a",
"positive",
"re-",
"\n",
"sult",
"of",
"the",
"EaP",
"countries",
"’",
"participation",
"in",
"H2020",
",",
"\n",
"particularly",
"since",
"a",
"significant",
"number",
"of",
"these",
"\n",
"collaborations",
"are",
"concentrated",
"in",
"the",
"domain",
"\n",
"Governance",
",",
"culture",
",",
"education",
"and",
"the",
"economy",
"\n",
"(",
"see",
"following",
"section).Armenia",
"\n",
"Azerbaijan",
"\n",
"Belarus",
"\n",
"Georgia",
"\n",
"Moldova",
"\n",
"Ukraine",
"\n",
"Armenia",
"130",
"1",
"471",
"1",
"756",
"42",
"980",
"\n",
"Azerbaijan",
"130",
"49",
"73",
"26",
"138",
"\n",
"Belarus",
"1",
"471",
"49",
"1",
"440",
"83",
"1",
"268",
"\n",
"Georgia",
"1",
"756",
"73",
"1",
"440",
"58",
"1",
"058",
"\n",
"Moldova",
"42",
"26",
"83",
"58",
"202",
"\n",
"Ukraine",
"980",
"138",
"1",
"268",
"1",
"058",
"202",
"\n",
"Publications",
"\n",
"Armenia",
"\n",
"Azerbaijan",
"\n",
"Belarus",
"\n",
"Georgia",
"\n",
"Moldova",
"\n",
"Ukraine",
"\n",
"Armenia",
"10",
"21",
"26",
"19",
"21",
"\n",
"Azerbaijan",
"10",
"8",
"11",
"8",
"11",
"\n",
"Belarus",
"21",
"8",
"20",
"17",
"33",
"\n",
"Georgia",
"26",
"11",
"20",
"23",
"32",
"\n",
"Moldova",
"19",
"8",
"17",
"23",
"25",
"\n",
"Ukraine",
"21",
"11",
"33",
"32",
"25",
"\n",
"EC",
"projectsFigure",
"3.45",
".",
"Number",
"of",
"publications",
"and",
"EC",
"projects",
"in",
"collaboration",
"between",
"EaP",
"actors",
"in",
"different",
"countries",
"\n",
"Colour",
"indicates",
"the",
"relative",
"distribution",
"of",
"documents",
",",
"computed",
"row",
"-",
"wise",
".",
"\n",
"208",
"\n ",
"Part",
"3",
"Analysis",
"of",
"scientific",
"and",
"technological",
"potential",
"\n",
"It",
"must",
"be",
"noted",
",",
"however",
",",
"that",
"scientific",
"collabo-",
"\n",
"ration",
"between",
"EaP",
"countries",
"is",
"mainly",
"driven",
"by",
"\n",
"very",
"intense",
"collaboration",
"in",
"physics",
"(",
"within",
"the",
"\n",
"Fundamental",
"physics",
"and",
"mathematics",
"domain",
")",
"\n",
"–",
"which",
"concentrates",
"by",
"far",
"the",
"largest",
"number",
"\n",
"of",
"co",
"-",
"publications",
"–",
"due",
"to",
"the",
"countries",
"’",
"co",
"-",
"par-",
"\n",
"ticipation",
"in",
"large",
"high",
"-",
"energy",
"and",
"astronomy",
"en-",
"\n",
"deavours",
".",
"\n",
"At",
"a",
"great",
"distance",
",",
"Health",
"and",
"wellbeing",
";",
"Govern-",
"\n",
"ance",
",",
"culture",
",",
"education",
"and"
] |
[] |
global approach, albeit one heavily dominated by the Global North (about three- quarters of the case studies), with separate sections dedicated to scientists from Russia, Turkey and India. Japanese chemist Reiko Kuroda and Chinese American physicist Chien-Shiung Wu are also included. 12 Since the collection is based primarily on interviews, recollections and photographs from Hargittai and her husband Istvan's personal archives, we can assume it reflects the scientific networks forged by this academic couple over the years. At the same time, their collection underscores the significance of international collaborations to the making and memorialization of science and of the different importance attached to the act of orienting oneself towards the wider world by scientists based in academic establishments in the 'Western' world and those outside of it. While for scientists in Eastern and Central Europe, the 'West' has been an important point of reference - more so after the collapse of the communist regimes in the region - the opposite has not necessarily been the case (the former Soviet Union represents perhaps an interesting exception, as some of the chapters in this volume also discuss).
Research on women, gender and science in Japan and South Korea documents a similar scenario in which comparisons with the US and Western Europe feature prominently in a scholarly agenda intimately connected to efforts to shape government policies around the dismal representation of women in science. 13 However, as Jaehwan Hyun points out, in the 1980s, female scientists in South Korea also drew on Eastern European models of women's participation in science to demand more inclusive science policies and increased government support for women in science in the context of the Cold War. This history is yet to be told. 14 The point to remember is one that scholars of science and European imperialism and, to some extent, scholars of Cold War science have long been making, namely that networks of science- making and communication have often been 'polycentric'. Attending to other types of relationships than those between the 'West' and its 'Others' - for example, intra- Asian scientific exchanges, or those between Eastern European and East Asian and African countries - is essential if we are to move beyond an understanding of 'modern' science as something that was exported from a metropolitan centre to its peripheries. 15
Biographical dictionaries are, of course, only one genre of writing about women in science. As the next
|
[
"global",
"approach",
",",
"albeit",
"one",
"heavily",
"dominated",
"by",
"the",
"Global",
"North",
"(",
"about",
"three-",
" ",
"quarters",
"of",
"the",
"case",
"studies",
")",
",",
"with",
"separate",
"sections",
"dedicated",
"to",
"scientists",
"from",
"Russia",
",",
"Turkey",
"and",
"India",
".",
"Japanese",
"chemist",
"Reiko",
"Kuroda",
"and",
"Chinese",
"American",
"physicist",
"Chien",
"-",
"Shiung",
"Wu",
"are",
"also",
"included",
".",
"12",
" ",
"Since",
"the",
"collection",
"is",
"based",
"primarily",
"on",
"interviews",
",",
"recollections",
"and",
"photographs",
"from",
"Hargittai",
"and",
"her",
"husband",
"Istvan",
"'s",
"personal",
"archives",
",",
"we",
"can",
"assume",
"it",
"reflects",
"the",
"scientific",
"networks",
"forged",
"by",
"this",
"academic",
"couple",
"over",
"the",
"years",
".",
"At",
"the",
"same",
"time",
",",
"their",
"collection",
"underscores",
"the",
"significance",
"of",
"international",
"collaborations",
"to",
"the",
"making",
"and",
"memorialization",
"of",
"science",
"and",
"of",
"the",
"different",
"importance",
"attached",
"to",
"the",
"act",
"of",
"orienting",
"oneself",
"towards",
"the",
"wider",
"world",
"by",
"scientists",
"based",
"in",
"academic",
"establishments",
"in",
"the",
"'",
"Western",
"'",
"world",
"and",
"those",
"outside",
"of",
"it",
".",
"While",
"for",
"scientists",
"in",
"Eastern",
"and",
"Central",
"Europe",
",",
"the",
"'",
"West",
"'",
"has",
"been",
"an",
"important",
"point",
"of",
"reference",
"-",
"more",
"so",
"after",
"the",
"collapse",
"of",
"the",
"communist",
"regimes",
"in",
"the",
"region",
"-",
"the",
"opposite",
"has",
"not",
"necessarily",
"been",
"the",
"case",
"(",
"the",
"former",
"Soviet",
"Union",
"represents",
"perhaps",
"an",
"interesting",
"exception",
",",
"as",
"some",
"of",
"the",
"chapters",
"in",
"this",
"volume",
"also",
"discuss",
")",
".",
"\n\n",
"Research",
"on",
"women",
",",
"gender",
"and",
"science",
"in",
"Japan",
"and",
"South",
"Korea",
"documents",
"a",
"similar",
"scenario",
"in",
"which",
"comparisons",
"with",
"the",
"US",
"and",
"Western",
"Europe",
"feature",
"prominently",
"in",
"a",
"scholarly",
"agenda",
"intimately",
"connected",
"to",
"efforts",
" ",
"to",
" ",
"shape",
" ",
"government",
"policies",
"around",
"the",
"dismal",
"representation",
"of",
"women",
"in",
"science",
".",
"13",
" ",
"However",
",",
"as",
"Jaehwan",
"Hyun",
"points",
"out",
",",
"in",
"the",
"1980s",
",",
"female",
"scientists",
"in",
"South",
"Korea",
"also",
"drew",
"on",
"Eastern",
"European",
"models",
"of",
"women",
"'s",
"participation",
"in",
"science",
"to",
"demand",
"more",
"inclusive",
"science",
"policies",
"and",
"increased",
"government",
"support",
"for",
"women",
"in",
"science",
"in",
"the",
"context",
"of",
"the",
"Cold",
"War",
".",
"This",
"history",
"is",
"yet",
"to",
"be",
"told",
".",
"14",
" ",
"The",
"point",
"to",
"remember",
"is",
"one",
"that",
"scholars",
"of",
"science",
"and",
"European",
"imperialism",
"and",
",",
"to",
"some",
"extent",
",",
"scholars",
" ",
"of",
" ",
"Cold",
" ",
"War",
" ",
"science",
" ",
"have",
" ",
"long",
" ",
"been",
" ",
"making",
",",
" ",
"namely",
" ",
"that",
" ",
"networks",
"of",
"science-",
" ",
"making",
"and",
"communication",
"have",
"often",
"been",
"'",
"polycentric",
"'",
".",
"Attending",
"to",
"other",
"types",
"of",
"relationships",
"than",
"those",
"between",
"the",
"'",
"West",
"'",
"and",
"its",
"'",
"Others",
"'",
"-",
"for",
"example",
",",
"intra-",
" ",
"Asian",
"scientific",
"exchanges",
",",
"or",
"those",
"between",
"Eastern",
"European",
"and",
"East",
"Asian",
"and",
"African",
"countries",
"-",
"is",
"essential",
"if",
"we",
"are",
"to",
"move",
"beyond",
"an",
"understanding",
"of",
"'",
"modern",
"'",
"science",
"as",
"something",
"that",
"was",
"exported",
"from",
"a",
"metropolitan",
"centre",
"to",
"its",
"peripheries",
".",
"15",
"\n\n",
"Biographical",
"dictionaries",
"are",
",",
"of",
"course",
",",
"only",
"one",
"genre",
"of",
"writing",
"about",
"women",
"in",
"science",
".",
"As",
"the",
"next"
] |
[
{
"end": 2460,
"label": "CITATION_REF",
"start": 2458
},
{
"end": 288,
"label": "CITATION_REF",
"start": 286
},
{
"end": 1516,
"label": "CITATION_REF",
"start": 1514
},
{
"end": 1837,
"label": "CITATION_REF",
"start": 1835
}
] |
ship countries, data on export values are available
up until 2019, except for Ukraine where 2019 data
are not available. For Ukraine, 2019 data have
been substituted with 2018 data.
32 https://comtrade.un.org/
33 https://unstats.un.org/unsd/trade/sitcrev4.htmEight years have been used (2012-2019) for the
mapping analysis data, divided into three periods
for measuring changes over time similar to the
economic mapping using Orbis data, i.e. 2012-
2015, 2014-2017 and 2016-2019. Countries do
not have exports for all goods categories. Ukraine
has the largest number of goods categories with
exports; Azerbaijan has the lowest number, which
has been increasing over time. For several goods
categories for the EaP, averages will thus not be
calculated using data for all countries but only for
countries for which there are exports.
Goods exports are available for 10 one-digit SITC
Rev. 4 classes: 0 Food and live animals; 1 Beverag-
es and tobacco; 2 Crude materials, inedible, except
fuels; 3 Mineral fuels, lubricants and related mate-
rials; 4 Animal and vegetable oils, fats and waxes;
5 Chemicals and related products, n.e.s34.; 6 Man-
ufactured goods classified chiefly by material; 7
Machinery and transport equipment; 8 Miscellane-
ous manufactured articles; and 9 Commodities and
transactions not classified elsewhere in the SITC.
34 ‘n.e.s. stands for ‘not elsewhere specified’.
64
Part 2 Analysis of economic and innovation potential
There are large differences in the share of these
export classes throughout the EaP countries. More
than 90% of goods exports in Azerbaijan are in
Mineral fuels, lubricants and related materials,
a share which is much higher than in any of the
other countries. For Amenia, the largest export
classes include Crude materials, inedible, except
fuels (25%); Manufactured goods classified chief-ly by material (21%); and Beverages and tobac-
co (20%). For Georgia, the largest export class is
Machinery and transport equipment (21%). For
Moldova, the largest export classes include Food
and live animals (23.5%) and Miscellaneous man-
ufactured articles (22%). For Ukraine, the largest
export class is Mineral fuels, lubricants and relat-
ed materials (22%).
2012 2013 2014 2015 2016 2017 2018 2019
Armenia 204 212 204 227 219 219 227 228
Azerbaijan 196 192 192 197 217 223 220 220
Georgia 231 231 231 230 235 235 239 243
Moldova 221 226 221 225 229 226 222 219
Ukraine 255 253 254 251 252 254 249 --Table 2.14. Available three-digit goods export data (number of goods categories)
Sources: UN Comtrade Database.
|
[
"ship",
"countries",
",",
"data",
"on",
"export",
"values",
"are",
"available",
"\n",
"up",
"until",
"2019",
",",
"except",
"for",
"Ukraine",
"where",
"2019",
"data",
"\n",
"are",
"not",
"available",
".",
"For",
"Ukraine",
",",
"2019",
"data",
"have",
"\n",
"been",
"substituted",
"with",
"2018",
"data",
".",
"\n",
"32",
"https://comtrade.un.org/",
"\n",
"33",
"https://unstats.un.org/unsd/trade/sitcrev4.htmEight",
"years",
"have",
"been",
"used",
"(",
"2012",
"-",
"2019",
")",
"for",
"the",
"\n",
"mapping",
"analysis",
"data",
",",
"divided",
"into",
"three",
"periods",
"\n",
"for",
"measuring",
"changes",
"over",
"time",
"similar",
"to",
"the",
"\n",
"economic",
"mapping",
"using",
"Orbis",
"data",
",",
"i.e.",
"2012-",
"\n",
"2015",
",",
"2014",
"-",
"2017",
"and",
"2016",
"-",
"2019",
".",
"Countries",
"do",
"\n",
"not",
"have",
"exports",
"for",
"all",
"goods",
"categories",
".",
"Ukraine",
"\n",
"has",
"the",
"largest",
"number",
"of",
"goods",
"categories",
"with",
"\n",
"exports",
";",
"Azerbaijan",
"has",
"the",
"lowest",
"number",
",",
"which",
"\n",
"has",
"been",
"increasing",
"over",
"time",
".",
"For",
"several",
"goods",
"\n",
"categories",
"for",
"the",
"EaP",
",",
"averages",
"will",
"thus",
"not",
"be",
"\n",
"calculated",
"using",
"data",
"for",
"all",
"countries",
"but",
"only",
"for",
"\n",
"countries",
"for",
"which",
"there",
"are",
"exports",
".",
"\n",
"Goods",
"exports",
"are",
"available",
"for",
"10",
"one",
"-",
"digit",
"SITC",
"\n",
"Rev.",
"4",
"classes",
":",
"0",
"Food",
"and",
"live",
"animals",
";",
"1",
"Beverag-",
"\n",
"es",
"and",
"tobacco",
";",
"2",
"Crude",
"materials",
",",
"inedible",
",",
"except",
"\n",
"fuels",
";",
"3",
"Mineral",
"fuels",
",",
"lubricants",
"and",
"related",
"mate-",
"\n",
"rials",
";",
"4",
"Animal",
"and",
"vegetable",
"oils",
",",
"fats",
"and",
"waxes",
";",
"\n",
"5",
"Chemicals",
"and",
"related",
"products",
",",
"n.e.s34",
".",
";",
"6",
"Man-",
"\n",
"ufactured",
"goods",
"classified",
"chiefly",
"by",
"material",
";",
"7",
"\n",
"Machinery",
"and",
"transport",
"equipment",
";",
"8",
"Miscellane-",
"\n",
"ous",
"manufactured",
"articles",
";",
"and",
"9",
"Commodities",
"and",
"\n",
"transactions",
"not",
"classified",
"elsewhere",
"in",
"the",
"SITC",
".",
"\n",
"34",
"‘",
"n.e.s",
".",
"stands",
"for",
"‘",
"not",
"elsewhere",
"specified",
"’",
".",
"\n",
"64",
"\n ",
"Part",
"2",
"Analysis",
"of",
"economic",
"and",
"innovation",
"potential",
"\n",
"There",
"are",
"large",
"differences",
"in",
"the",
"share",
"of",
"these",
"\n",
"export",
"classes",
"throughout",
"the",
"EaP",
"countries",
".",
"More",
"\n",
"than",
"90",
"%",
"of",
"goods",
"exports",
"in",
"Azerbaijan",
"are",
"in",
"\n",
"Mineral",
"fuels",
",",
"lubricants",
"and",
"related",
"materials",
",",
"\n",
"a",
"share",
"which",
"is",
"much",
"higher",
"than",
"in",
"any",
"of",
"the",
"\n",
"other",
"countries",
".",
"For",
"Amenia",
",",
"the",
"largest",
"export",
"\n",
"classes",
"include",
"Crude",
"materials",
",",
"inedible",
",",
"except",
"\n",
"fuels",
"(",
"25",
"%",
")",
";",
"Manufactured",
"goods",
"classified",
"chief",
"-",
"ly",
"by",
"material",
"(",
"21",
"%",
")",
";",
"and",
"Beverages",
"and",
"tobac-",
"\n",
"co",
"(",
"20",
"%",
")",
".",
"For",
"Georgia",
",",
"the",
"largest",
"export",
"class",
"is",
"\n",
"Machinery",
"and",
"transport",
"equipment",
"(",
"21",
"%",
")",
".",
"For",
"\n",
"Moldova",
",",
"the",
"largest",
"export",
"classes",
"include",
"Food",
"\n",
"and",
"live",
"animals",
"(",
"23.5",
"%",
")",
"and",
"Miscellaneous",
"man-",
"\n",
"ufactured",
"articles",
"(",
"22",
"%",
")",
".",
"For",
"Ukraine",
",",
"the",
"largest",
"\n",
"export",
"class",
"is",
"Mineral",
"fuels",
",",
"lubricants",
"and",
"relat-",
"\n",
"ed",
"materials",
"(",
"22",
"%",
")",
".",
"\n",
"2012",
"2013",
"2014",
"2015",
"2016",
"2017",
"2018",
"2019",
"\n",
"Armenia",
"204",
"212",
"204",
"227",
"219",
"219",
"227",
"228",
"\n",
"Azerbaijan",
"196",
"192",
"192",
"197",
"217",
"223",
"220",
"220",
"\n",
"Georgia",
"231",
"231",
"231",
"230",
"235",
"235",
"239",
"243",
"\n",
"Moldova",
"221",
"226",
"221",
"225",
"229",
"226",
"222",
"219",
"\n",
"Ukraine",
"255",
"253",
"254",
"251",
"252",
"254",
"249",
"--Table",
"2.14",
".",
"Available",
"three",
"-",
"digit",
"goods",
"export",
"data",
"(",
"number",
"of",
"goods",
"categories",
")",
"\n",
"Sources",
":",
"UN",
"Comtrade",
"Database",
".",
"\n"
] |
[
{
"end": 187,
"label": "CITATION_ID",
"start": 185
},
{
"end": 215,
"label": "CITATION_ID",
"start": 213
},
{
"end": 212,
"label": "CITATION_SPAN",
"start": 188
},
{
"end": 262,
"label": "CITATION_SPAN",
"start": 216
},
{
"end": 1361,
"label": "CITATION_ID",
"start": 1359
},
{
"end": 1148,
"label": "CITATION_REF",
"start": 1146
}
] |
a new entity, rather than
through mergers, acquisitions or spinoffs from established firms.
24THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 2FIGURE 3
Venture capital investment by development stage
USD billion, 2023
Source: Pitchbook data. Accessed 20 November, 2023.
Integrating AI ‘vertically’ into European industry will be a critical factor in unlocking higher productivity [see
the Boxes on AI use cases in the thematic chapters] . Quantitative estimates of the effects of AI on aggregate produc -
tivity are still uncertainii. However, there are already clear signs that AI will revolutionise several industries in which
Europe specialises and will be crucial for EU companies ’ ability to remain leaders in their sector. For example, AI will
radically change the pharma sector via so-called “combination products” – therapeutic and diagnostic products
combining drugs, devices and biological components – which integrate medicine delivery systems with AI algo -
rithms and process feedback data in real time. Gains of USD 60-110 billion per year are estimated from the use cases
of AI in the pharma and medical device industries. AI will likewise transform the automotive sector, as AI-powered
(generative) algorithms enhance vehicle design by optimising structures and components, improve performance
and reduce material use, and optimise supply chains by predicting demand and streamlining logistics operations.
AI is expected to reduce inventories in the automotive sector, accelerate the time to market from R&I and increase
labour productivity. AI uptake in freight and passenger transport will enable increasingly automated functions to
deliver safety and quality, navigation and route optimisation, predictive maintenance and fuel or power reduction.
The energy sector is already heavily deploying AI, with more than 50 use cases today ranging from grid maintenance
to load forecasting. Large gains are however still available: estimates of the market value for future AI applications in
the sector reach USD 13 billion.
Although technology is crucial to protect Europe’s social model, AI could also undermine it without a strong
focus on skills . AI is already a source of anxiety for European workers: almost 70% of respondents in a recent survey
favoured government restrictions on AI to protect jobsiii. The impact of AI in Europe has so far been labour-enhancing
rather than labour-replacing: there is a positive association between AI exposure and the sector-occupation employ -
ment shareiv. However, this association may be transitory as businesses are still in the early stage of understanding
how
|
[
"a",
"new",
"entity",
",",
"rather",
"than",
"\n",
"through",
"mergers",
",",
"acquisitions",
"or",
"spinoffs",
"from",
"established",
"firms",
".",
"\n ",
"24THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"2FIGURE",
"3",
"\n",
"Venture",
"capital",
"investment",
"by",
"development",
"stage",
" \n",
"USD",
"billion",
",",
"2023",
"\n",
"Source",
":",
"Pitchbook",
"data",
".",
"Accessed",
"20",
"November",
",",
"2023",
".",
"\n",
"Integrating",
"AI",
"‘",
"vertically",
"’",
"into",
"European",
"industry",
"will",
"be",
"a",
"critical",
"factor",
"in",
"unlocking",
"higher",
"productivity",
"[",
"see",
"\n",
"the",
"Boxes",
"on",
"AI",
"use",
"cases",
"in",
"the",
"thematic",
"chapters",
"]",
".",
"Quantitative",
"estimates",
"of",
"the",
"effects",
"of",
"AI",
"on",
"aggregate",
"produc",
"-",
"\n",
"tivity",
"are",
"still",
"uncertainii",
".",
"However",
",",
"there",
"are",
"already",
"clear",
"signs",
"that",
"AI",
"will",
"revolutionise",
"several",
"industries",
"in",
"which",
"\n",
"Europe",
"specialises",
"and",
"will",
"be",
"crucial",
"for",
"EU",
"companies",
"’",
"ability",
"to",
"remain",
"leaders",
"in",
"their",
"sector",
".",
"For",
"example",
",",
"AI",
"will",
"\n",
"radically",
"change",
"the",
"pharma",
"sector",
"via",
"so",
"-",
"called",
"“",
"combination",
"products",
"”",
"–",
"therapeutic",
"and",
"diagnostic",
"products",
"\n",
"combining",
"drugs",
",",
"devices",
"and",
"biological",
"components",
"–",
"which",
"integrate",
"medicine",
"delivery",
"systems",
"with",
"AI",
"algo",
"-",
"\n",
"rithms",
"and",
"process",
"feedback",
"data",
"in",
"real",
"time",
".",
"Gains",
"of",
"USD",
"60",
"-",
"110",
"billion",
"per",
"year",
"are",
"estimated",
"from",
"the",
"use",
"cases",
"\n",
"of",
"AI",
"in",
"the",
"pharma",
"and",
"medical",
"device",
"industries",
".",
"AI",
"will",
"likewise",
"transform",
"the",
"automotive",
"sector",
",",
"as",
"AI",
"-",
"powered",
"\n",
"(",
"generative",
")",
"algorithms",
"enhance",
"vehicle",
"design",
"by",
"optimising",
"structures",
"and",
"components",
",",
"improve",
"performance",
"\n",
"and",
"reduce",
"material",
"use",
",",
"and",
"optimise",
"supply",
"chains",
"by",
"predicting",
"demand",
"and",
"streamlining",
"logistics",
"operations",
".",
"\n",
"AI",
"is",
"expected",
"to",
"reduce",
"inventories",
"in",
"the",
"automotive",
"sector",
",",
"accelerate",
"the",
"time",
"to",
"market",
"from",
"R&I",
"and",
"increase",
"\n",
"labour",
"productivity",
".",
"AI",
"uptake",
"in",
"freight",
"and",
"passenger",
"transport",
"will",
"enable",
"increasingly",
"automated",
"functions",
"to",
"\n",
"deliver",
"safety",
"and",
"quality",
",",
"navigation",
"and",
"route",
"optimisation",
",",
"predictive",
"maintenance",
"and",
"fuel",
"or",
"power",
"reduction",
".",
"\n",
"The",
"energy",
"sector",
"is",
"already",
"heavily",
"deploying",
"AI",
",",
"with",
"more",
"than",
"50",
"use",
"cases",
"today",
"ranging",
"from",
"grid",
"maintenance",
"\n",
"to",
"load",
"forecasting",
".",
"Large",
"gains",
"are",
"however",
"still",
"available",
":",
"estimates",
"of",
"the",
"market",
"value",
"for",
"future",
"AI",
"applications",
"in",
"\n",
"the",
"sector",
"reach",
"USD",
"13",
"billion",
".",
"\n",
"Although",
"technology",
"is",
"crucial",
"to",
"protect",
"Europe",
"’s",
"social",
"model",
",",
"AI",
"could",
"also",
"undermine",
"it",
"without",
"a",
"strong",
"\n",
"focus",
"on",
"skills",
".",
"AI",
"is",
"already",
"a",
"source",
"of",
"anxiety",
"for",
"European",
"workers",
":",
"almost",
"70",
"%",
"of",
"respondents",
"in",
"a",
"recent",
"survey",
"\n",
"favoured",
"government",
"restrictions",
"on",
"AI",
"to",
"protect",
"jobsiii",
".",
"The",
"impact",
"of",
"AI",
"in",
"Europe",
"has",
"so",
"far",
"been",
"labour",
"-",
"enhancing",
"\n",
"rather",
"than",
"labour",
"-",
"replacing",
":",
"there",
"is",
"a",
"positive",
"association",
"between",
"AI",
"exposure",
"and",
"the",
"sector",
"-",
"occupation",
"employ",
"-",
"\n",
"ment",
"shareiv",
".",
"However",
",",
"this",
"association",
"may",
"be",
"transitory",
"as",
"businesses",
"are",
"still",
"in",
"the",
"early",
"stage",
"of",
"understanding",
"\n",
"how"
] |
[
{
"end": 2352,
"label": "CITATION_REF",
"start": 2349
},
{
"end": 2544,
"label": "CITATION_REF",
"start": 2542
}
] |
or imagined, are used to justify the exclusion of marginalized groups from historical accounts and the public imagination of science because low numbers are equated with insignificant, unrepresentative contributions. Documenting diversity in science - and the lack thereof - thus becomes a dangerous fad rather than a crucial step towards understanding how knowledge was produced and circulated.
This volume suggests that arguments about the low number of women in science are particularly problematic with regard to the twentieth century. As we discussed above, the last century brought increased opportunities for women's participation in science, but those developments did not necessarily translate into higher visibility for them as historical actors of science- making, education, institutionalization and communication. On the contrary, with the possible exception of Russia, regions of the world with the highest proportions of women in STEMM - such as Central Asia, Latin America and the Caribbean, the Arab States, and Central and Eastern Europe - remain poorly documented in the history and historiography of science. At the other end of the spectrum, countries like Japan and India, with notoriously low numbers of women in STEMM, often feature in relevant literature in tokenistic ways that remind us of Abha Sur's cogent point that 'The twinning [ sic ] of exclusion and exoticism continues to be a staple of the recent historiography of science.' 11
Biographical dictionaries are emblematic of these trends. The Biographical Dictionary of Women in Science features primarily scientists from North America, the UK and Western Europe, and only seventeen (out of a total of 2,500) from India, China and Japan. The first volume contains one entry each for Romania and Bulgaria and ten for Hungary, which also points to significant regional differences in representation. A similar trend can be observed in The Palgrave Handbook of Women and Science since 1660 , which includes one chapter each on Japan and India (out of twenty- nine) and no contributions on Central and Eastern Europe. International Women in Science: A Biographical Dictionary to 1950 features short biographies of more than 350 women in science, a field defined broadly to include artistic endeavours connected to science. All except eight of the scientists hail
from the US and Western Europe, while the Japanese and Chinese scientists included were educated or worked there.
Magdolna Hargittai's collection of portraits of women scientists makes for an interesting contrast, aiming as it does for a more
|
[
"or",
"imagined",
",",
"are",
"used",
"to",
"justify",
"the",
"exclusion",
"of",
"marginalized",
"groups",
"from",
"historical",
"accounts",
"and",
"the",
"public",
"imagination",
"of",
"science",
"because",
"low",
"numbers",
"are",
"equated",
" ",
"with",
" ",
"insignificant",
",",
" ",
"unrepresentative",
" ",
"contributions",
".",
" ",
"Documenting",
"diversity",
"in",
"science",
"-",
"and",
"the",
"lack",
"thereof",
"-",
"thus",
"becomes",
"a",
"dangerous",
"fad",
"rather",
"than",
"a",
"crucial",
"step",
"towards",
"understanding",
"how",
"knowledge",
"was",
"produced",
"and",
"circulated",
".",
"\n\n",
"This",
"volume",
"suggests",
"that",
"arguments",
"about",
"the",
"low",
"number",
"of",
"women",
"in",
" ",
"science",
" ",
"are",
" ",
"particularly",
" ",
"problematic",
" ",
"with",
" ",
"regard",
" ",
"to",
" ",
"the",
" ",
"twentieth",
" ",
"century",
".",
"As",
"we",
"discussed",
"above",
",",
"the",
"last",
"century",
"brought",
"increased",
"opportunities",
"for",
"women",
"'s",
"participation",
"in",
"science",
",",
"but",
"those",
"developments",
"did",
"not",
"necessarily",
"translate",
"into",
"higher",
"visibility",
"for",
"them",
"as",
"historical",
"actors",
"of",
"science-",
" ",
"making",
",",
" ",
"education",
",",
" ",
"institutionalization",
" ",
"and",
" ",
"communication",
".",
" ",
"On",
"the",
"contrary",
",",
"with",
"the",
"possible",
"exception",
"of",
"Russia",
",",
"regions",
"of",
"the",
"world",
"with",
"the",
"highest",
"proportions",
"of",
"women",
"in",
"STEMM",
"-",
"such",
"as",
"Central",
"Asia",
",",
"Latin",
"America",
"and",
"the",
"Caribbean",
",",
"the",
"Arab",
"States",
",",
"and",
"Central",
"and",
"Eastern",
"Europe",
"-",
"remain",
"poorly",
"documented",
"in",
"the",
"history",
"and",
"historiography",
"of",
"science",
".",
"At",
"the",
"other",
"end",
"of",
"the",
"spectrum",
",",
"countries",
"like",
"Japan",
"and",
"India",
",",
"with",
"notoriously",
"low",
"numbers",
"of",
"women",
"in",
"STEMM",
",",
"often",
"feature",
"in",
"relevant",
"literature",
"in",
"tokenistic",
"ways",
"that",
"remind",
"us",
"of",
"Abha",
"Sur",
"'s",
"cogent",
"point",
"that",
"'",
"The",
"twinning",
"[",
"sic",
"]",
"of",
"exclusion",
"and",
"exoticism",
"continues",
"to",
"be",
"a",
"staple",
"of",
"the",
"recent",
"historiography",
"of",
"science",
".",
"'",
"11",
"\n\n",
"Biographical",
"dictionaries",
"are",
"emblematic",
"of",
"these",
"trends",
".",
"The",
"Biographical",
"Dictionary",
"of",
"Women",
"in",
"Science",
"features",
"primarily",
"scientists",
"from",
"North",
"America",
",",
"the",
"UK",
"and",
"Western",
"Europe",
",",
"and",
"only",
"seventeen",
"(",
"out",
"of",
"a",
"total",
"of",
"2,500",
")",
"from",
"India",
",",
"China",
"and",
"Japan",
".",
"The",
"first",
"volume",
"contains",
"one",
"entry",
"each",
" ",
"for",
" ",
"Romania",
" ",
"and",
" ",
"Bulgaria",
" ",
"and",
" ",
"ten",
" ",
"for",
" ",
"Hungary",
",",
" ",
"which",
" ",
"also",
" ",
"points",
"to",
"significant",
"regional",
"differences",
"in",
"representation",
".",
"A",
"similar",
"trend",
"can",
"be",
"observed",
"in",
"The",
"Palgrave",
"Handbook",
"of",
"Women",
"and",
"Science",
"since",
"1660",
",",
"which",
"includes",
"one",
"chapter",
"each",
"on",
"Japan",
"and",
"India",
"(",
"out",
"of",
"twenty-",
" ",
"nine",
")",
"and",
"no",
"contributions",
"on",
"Central",
"and",
"Eastern",
"Europe",
".",
"International",
"Women",
"in",
"Science",
":",
"A",
"Biographical",
"Dictionary",
"to",
"1950",
"features",
"short",
"biographies",
"of",
"more",
"than",
"350",
"women",
"in",
"science",
",",
"a",
"field",
"defined",
"broadly",
"to",
"include",
"artistic",
"endeavours",
"connected",
"to",
"science",
".",
"All",
"except",
"eight",
"of",
"the",
"scientists",
"hail",
"\n\n",
"from",
"the",
"US",
"and",
"Western",
"Europe",
",",
"while",
"the",
"Japanese",
"and",
"Chinese",
"scientists",
"included",
"were",
"educated",
"or",
"worked",
"there",
".",
"\n\n",
"Magdolna",
"Hargittai",
"'s",
"collection",
"of",
"portraits",
"of",
"women",
"scientists",
"makes",
"for",
"an",
"interesting",
"contrast",
",",
"aiming",
"as",
"it",
"does",
"for",
"a",
"more"
] |
[
{
"end": 1486,
"label": "CITATION_REF",
"start": 1484
}
] |
object's size, color, shape, relationship to other objects, and/or any region or portion of an image, such as edges, ridges, corners, blobs, some defined regions of interest (ROI), parts (geons) and/or components, and/or the like. The features used may be implementation specific, and may be based on, for example, the objects to be detected and the model(s) to be developed and/or used. The evaluation phase involves identifying or classifying objects by comparing obtained sensor data with existing object models created during the enrollment phase. During the evaluation phase, features extracted from the sensor data are compared to the object identification models using a suitable pattern recognition technique. The object models may be qualitative or functional descriptions, geometric surface information, and/or abstract feature vectors, and may be stored in a suitable database that is organized using some type of indexing scheme to facilitate elimination of unlikely object candidates from consideration.
Additionally or alternatively, the ML/ can include one or more data fusion or data integration technique(s) to generate composite information based on, for example, from of different types and/or disposed at different locations (e.g., within and/or attached to and/or placed in different area/locations of an MFR). The data fusion techniques can include direct fusion techniques and/or indirect fusion techniques. Direct fusion combines data acquired directly from multiple components (e.g., and/or sensors ), which may be the same or similar (e.g., some or all components or perform the same type of measurement) or different (e.g., different components or sensor types, historical data, and/or the like). Indirect fusion utilizes historical data and/or known properties of the environment and/or human inputs to produce a refined data set. Additionally, the data fusion technique(s) may include one or more fusion algorithms, such as a smoothing algorithm (e.g., estimating a value using multiple measurements in real-time or not in real-time), a filtering algorithm (e.g., estimating an entity's state with current and past measurements in real-time), and/or a prediction state estimation algorithm (e.g., analyzing historical data (e.g., geolocation, speed, direction, and signal measurements) in real-time to predict a state (e.g., a future signal strength/quality at a particular geolocation coordinate)). As examples, the data fusion algorithm(s) may be or include a structured-based algorithm (e.g., tree-based (e.g., Minimum Spanning Tree (MST)), cluster-based, grid and/or centralized-based), a structure-free data fusion algorithm, a Kalman filter algorithm and/or Extended Kalman Filtering, a fuzzy-based data fusion algorithm, an Ant Colony Optimization (ACO) algorithm, a
|
[
"object",
"'s",
"size",
",",
"color",
",",
"shape",
",",
"relationship",
"to",
"other",
"objects",
",",
"and/or",
"any",
"region",
"or",
"portion",
"of",
"an",
"image",
",",
"such",
"as",
"edges",
",",
"ridges",
",",
"corners",
",",
"blobs",
",",
"some",
"defined",
"regions",
"of",
"interest",
"(",
"ROI",
")",
",",
"parts",
"(",
"geons",
")",
"and/or",
"components",
",",
"and/or",
"the",
"like",
".",
"The",
"features",
"used",
"may",
"be",
"implementation",
"specific",
",",
"and",
"may",
"be",
"based",
"on",
",",
"for",
"example",
",",
"the",
"objects",
"to",
"be",
"detected",
"and",
"the",
"model(s",
")",
"to",
"be",
"developed",
"and/or",
"used",
".",
"The",
"evaluation",
"phase",
"involves",
"identifying",
"or",
"classifying",
"objects",
"by",
"comparing",
"obtained",
"sensor",
"data",
"with",
"existing",
"object",
"models",
"created",
"during",
"the",
"enrollment",
"phase",
".",
"During",
"the",
"evaluation",
"phase",
",",
"features",
"extracted",
"from",
"the",
"sensor",
"data",
"are",
"compared",
"to",
"the",
"object",
"identification",
"models",
"using",
"a",
"suitable",
"pattern",
"recognition",
"technique",
".",
"The",
"object",
"models",
"may",
"be",
"qualitative",
"or",
"functional",
"descriptions",
",",
"geometric",
"surface",
"information",
",",
"and/or",
"abstract",
"feature",
"vectors",
",",
"and",
"may",
"be",
"stored",
"in",
"a",
"suitable",
"database",
"that",
"is",
"organized",
"using",
"some",
"type",
"of",
"indexing",
"scheme",
"to",
"facilitate",
"elimination",
"of",
"unlikely",
"object",
"candidates",
"from",
"consideration",
".",
"\n\n",
"Additionally",
"or",
"alternatively",
",",
"the",
"ML/",
" ",
"can",
"include",
"one",
"or",
"more",
"data",
"fusion",
"or",
"data",
"integration",
"technique(s",
")",
"to",
"generate",
"composite",
"information",
"based",
"on",
",",
"for",
"example",
",",
" ",
"from",
" ",
"of",
"different",
"types",
"and/or",
"disposed",
"at",
"different",
"locations",
"(",
"e.g.",
",",
"within",
"and/or",
"attached",
"to",
" ",
"and/or",
"placed",
"in",
"different",
"area",
"/",
"locations",
"of",
"an",
"MFR",
")",
".",
"The",
"data",
"fusion",
"techniques",
"can",
"include",
"direct",
"fusion",
"techniques",
"and/or",
"indirect",
"fusion",
"techniques",
".",
"Direct",
"fusion",
"combines",
"data",
"acquired",
"directly",
"from",
"multiple",
"components",
"(",
"e.g.",
",",
" ",
"and/or",
"sensors",
")",
",",
"which",
"may",
"be",
"the",
"same",
"or",
"similar",
"(",
"e.g.",
",",
"some",
"or",
"all",
"components",
"or",
" ",
"perform",
"the",
"same",
"type",
"of",
"measurement",
")",
"or",
"different",
"(",
"e.g.",
",",
"different",
"components",
"or",
"sensor",
"types",
",",
"historical",
"data",
",",
"and/or",
"the",
"like",
")",
".",
"Indirect",
"fusion",
"utilizes",
"historical",
"data",
"and/or",
"known",
"properties",
"of",
"the",
"environment",
"and/or",
"human",
"inputs",
"to",
"produce",
"a",
"refined",
"data",
"set",
".",
"Additionally",
",",
"the",
"data",
"fusion",
"technique(s",
")",
"may",
"include",
"one",
"or",
"more",
"fusion",
"algorithms",
",",
"such",
"as",
"a",
"smoothing",
"algorithm",
"(",
"e.g.",
",",
"estimating",
"a",
"value",
"using",
"multiple",
"measurements",
"in",
"real",
"-",
"time",
"or",
"not",
"in",
"real",
"-",
"time",
")",
",",
"a",
"filtering",
"algorithm",
"(",
"e.g.",
",",
"estimating",
"an",
"entity",
"'s",
"state",
"with",
"current",
"and",
"past",
"measurements",
"in",
"real",
"-",
"time",
")",
",",
"and/or",
"a",
"prediction",
"state",
"estimation",
"algorithm",
"(",
"e.g.",
",",
"analyzing",
"historical",
"data",
"(",
"e.g.",
",",
"geolocation",
",",
"speed",
",",
"direction",
",",
"and",
"signal",
"measurements",
")",
"in",
"real",
"-",
"time",
"to",
"predict",
"a",
"state",
"(",
"e.g.",
",",
"a",
"future",
"signal",
"strength",
"/",
"quality",
"at",
"a",
"particular",
"geolocation",
"coordinate",
")",
")",
".",
"As",
"examples",
",",
"the",
"data",
"fusion",
"algorithm(s",
")",
"may",
"be",
"or",
"include",
"a",
"structured",
"-",
"based",
"algorithm",
"(",
"e.g.",
",",
"tree",
"-",
"based",
"(",
"e.g.",
",",
"Minimum",
"Spanning",
"Tree",
"(",
"MST",
")",
")",
",",
"cluster",
"-",
"based",
",",
"grid",
"and/or",
"centralized",
"-",
"based",
")",
",",
"a",
"structure",
"-",
"free",
"data",
"fusion",
"algorithm",
",",
"a",
"Kalman",
"filter",
"algorithm",
"and/or",
"Extended",
"Kalman",
"Filtering",
",",
"a",
"fuzzy",
"-",
"based",
"data",
"fusion",
"algorithm",
",",
"an",
"Ant",
"Colony",
"Optimization",
"(",
"ACO",
")",
"algorithm",
",",
"a"
] |
[] |
Joyce, Patrick. 'The End of Social History.' Social History 95, 20, no. 1 (1995): 73-91. Joyce, Patrick. 'What is the Social in Social History?' Past and Present 206 (2010): 213-248. Katzir, Shaul. 'Time Standards for the Twentieth Century.' The Journal of Modern History 89, no. 1 (2017): 119-150.
Kaul, Shonaleeka. 'Temporality and its Discontents or Why Time needs to be Retold.' In Retelling Time : Alternative Temporalties from Premodern South Asia , edited by Shonaleeka Kaul. London and New York: Routledge India, 2022.
Kern, Stephen. The Culture of Time and Space, 1880-1918 . Cambridge, Mass.: Harvard University Press, 1983.
Kocha, Juergen. 'Losses, Gains and Opportunities: Social History Today.' Journal of Social History 37, no. 1 (2003): 21-28.
Koselleck, Reinhart. Futures Past: On the Semantics of Historical Time . Translated by Keith Tribe. New York: Columbia University Press, 2004.
Koselleck, Reinhart. Sediments of Time: On Possible Histories . Translated and edited by Sean Franzel and Stefan-Ludwif Hoffman. California: Stanford University Press, 2018.
Koslofsky, Craig. Evening's Empire: A History of the Night in Early Modern Europe . Cambridge: Cambridge University Press, 2011.
Krishnan, Shekhar. 'Empire's Metropolis. Money Time & Space in Colonial Bombay, 1870-1930.' Ph.D. diss., Massachusetts Institute of Technology, 2013.
Kuchenbuch, David. 'Histories in and of the Anthropocene: Commentary.' Geschichte und Gesellschaft 46, no. 4 (2020): 736-749.
Kumar, Prabhat. 'Sociotechnical Imaginations and Railway Experience.' Delhi: CSDS Digipapers , 2021. Last accessed June 12, 2024. https://www.csds.in/uploads/custom\_files/1620295631\_DigiPaper% 2004%20Prabaht%20Kumar.pdf.
Lal, Vinay. 'Subaltern Studies and its Critics: Debates over Indian History.' History and Theory 40 (2001): 135-148.
Landes, Davis S. Revolution in Time: Clocks and the Making of the Modern World . Cambridge, Mass.: Harvard University Press, 1983.
Le Goff, Jacques.
Time, Work, and Culture in the Middle Ages
. Translated by Arthur Goldhammer.
Chicago: University of Chicago Press, 1980.
Lebovic, Nitzan. 'The Sovereignty of Modern Times: Different Concepts of Time and the Modernist Perspective.' History and Theory 49 (2010): 281-82.
Leech, John. 'Not a Doubtful Race.' Accessed December 13, 2024. https://www.mediastorehouse. com/fine-art-finder/artists/english-school/doubtful-race-engraving-23230992.html.
Lefebvre, Henri. Rhythmanalysis: Space, Time and Everyday Life . Paris, 2002. Translated by Stuart Elden and Gerald Moore. London: Continuum, 2004.
Lewis, J. David, and Andrew J. Weigart. 'The Structures and Meanings of Social-Time.' In The Sociology of Time , edited by John Hassard. New York: Macmillan, 1990.
Liu, Andrew. 'Incense and Industry: Labour and Capital in the Tea Districts of Huizhou China.' Past and Present 230 (2016): 161-195.
Look and Lern. 'Railway Travelling.' Accessed December 13. 2024. https://www.lookandlearn.com/his tory-images/M063069/Railway-Travelling?t=1&q=railway+india&n=19.
Breaking up Time: Negotiating the Borders Between Present,
Lorenz, Chris, and Berber Bevernage, eds. Past and Future . Göttingen: Vandenhoeck & Ruprecht, 2013.
|
[
"Joyce",
",",
"Patrick",
".",
"'",
"The",
"End",
"of",
"Social",
"History",
".",
"'",
"Social",
"History",
"95",
",",
"20",
",",
"no",
".",
"1",
"(",
"1995",
"):",
"73",
"-",
"91",
".",
"Joyce",
",",
"Patrick",
".",
"'",
"What",
"is",
"the",
"Social",
"in",
"Social",
"History",
"?",
"'",
"Past",
"and",
"Present",
"206",
"(",
"2010",
"):",
"213",
"-",
"248",
".",
"Katzir",
",",
"Shaul",
".",
"'",
"Time",
"Standards",
"for",
"the",
"Twentieth",
"Century",
".",
"'",
"The",
"Journal",
"of",
"Modern",
"History",
"89",
",",
"no",
".",
"1",
"(",
"2017",
"):",
"119",
"-",
"150",
".",
"\n\n",
"Kaul",
",",
"Shonaleeka",
".",
"'",
"Temporality",
"and",
"its",
"Discontents",
"or",
"Why",
"Time",
"needs",
"to",
"be",
"Retold",
".",
"'",
"In",
"Retelling",
"Time",
":",
"Alternative",
"Temporalties",
"from",
"Premodern",
"South",
"Asia",
",",
"edited",
"by",
"Shonaleeka",
"Kaul",
".",
"London",
"and",
"New",
"York",
":",
"Routledge",
"India",
",",
"2022",
".",
"\n\n",
"Kern",
",",
"Stephen",
".",
"The",
"Culture",
"of",
"Time",
"and",
"Space",
",",
"1880",
"-",
"1918",
".",
"Cambridge",
",",
"Mass.",
":",
"Harvard",
"University",
"Press",
",",
"1983",
".",
"\n\n",
"Kocha",
",",
"Juergen",
".",
"'",
"Losses",
",",
"Gains",
"and",
"Opportunities",
":",
"Social",
"History",
"Today",
".",
"'",
"Journal",
"of",
"Social",
"History",
"37",
",",
"no",
".",
"1",
"(",
"2003",
"):",
"21",
"-",
"28",
".",
"\n\n",
"Koselleck",
",",
"Reinhart",
".",
"Futures",
"Past",
":",
"On",
"the",
"Semantics",
"of",
"Historical",
"Time",
".",
"Translated",
"by",
"Keith",
"Tribe",
".",
"New",
"York",
":",
"Columbia",
"University",
"Press",
",",
"2004",
".",
"\n\n",
"Koselleck",
",",
"Reinhart",
".",
"Sediments",
"of",
"Time",
":",
"On",
"Possible",
"Histories",
".",
"Translated",
"and",
"edited",
"by",
"Sean",
"Franzel",
"and",
"Stefan",
"-",
"Ludwif",
"Hoffman",
".",
"California",
":",
"Stanford",
"University",
"Press",
",",
"2018",
".",
"\n\n",
"Koslofsky",
",",
"Craig",
".",
"Evening",
"'s",
"Empire",
":",
"A",
"History",
"of",
"the",
"Night",
"in",
"Early",
"Modern",
"Europe",
".",
"Cambridge",
":",
"Cambridge",
"University",
"Press",
",",
"2011",
".",
"\n\n",
"Krishnan",
",",
"Shekhar",
".",
"'",
"Empire",
"'s",
"Metropolis",
".",
"Money",
"Time",
"&",
"amp",
";",
"Space",
"in",
"Colonial",
"Bombay",
",",
"1870",
"-",
"1930",
".",
"'",
"Ph.D.",
"diss",
".",
",",
"Massachusetts",
"Institute",
"of",
"Technology",
",",
"2013",
".",
"\n\n",
"Kuchenbuch",
",",
"David",
".",
"'",
"Histories",
"in",
"and",
"of",
"the",
"Anthropocene",
":",
"Commentary",
".",
"'",
"Geschichte",
"und",
"Gesellschaft",
"46",
",",
"no",
".",
"4",
"(",
"2020",
"):",
"736",
"-",
"749",
".",
"\n\n",
"Kumar",
",",
"Prabhat",
".",
"'",
"Sociotechnical",
"Imaginations",
"and",
"Railway",
"Experience",
".",
"'",
"Delhi",
":",
"CSDS",
"Digipapers",
",",
"2021",
".",
"Last",
"accessed",
"June",
"12",
",",
"2024",
".",
"https://www.csds.in/uploads/custom\\_files/1620295631\\_DigiPaper%",
"2004%20Prabaht%20Kumar.pdf",
".",
"\n\n",
"Lal",
",",
"Vinay",
".",
"'",
"Subaltern",
"Studies",
"and",
"its",
"Critics",
":",
"Debates",
"over",
"Indian",
"History",
".",
"'",
"History",
"and",
"Theory",
"40",
"(",
"2001",
"):",
"135",
"-",
"148",
".",
"\n\n",
"Landes",
",",
"Davis",
"S.",
"Revolution",
"in",
"Time",
":",
"Clocks",
"and",
"the",
"Making",
"of",
"the",
"Modern",
"World",
".",
"Cambridge",
",",
"Mass.",
":",
"Harvard",
"University",
"Press",
",",
"1983",
".",
"\n\n",
"Le",
"Goff",
",",
"Jacques",
".",
"\n\n",
"Time",
",",
"Work",
",",
"and",
"Culture",
"in",
"the",
"Middle",
"Ages",
"\n\n",
".",
"Translated",
"by",
"Arthur",
"Goldhammer",
".",
"\n\n",
"Chicago",
":",
"University",
"of",
"Chicago",
"Press",
",",
"1980",
".",
"\n\n",
"Lebovic",
",",
"Nitzan",
".",
"'",
"The",
"Sovereignty",
"of",
"Modern",
"Times",
":",
"Different",
"Concepts",
"of",
"Time",
"and",
"the",
"Modernist",
"Perspective",
".",
"'",
"History",
"and",
"Theory",
"49",
"(",
"2010",
"):",
"281",
"-",
"82",
".",
"\n\n",
"Leech",
",",
"John",
".",
"'",
"Not",
"a",
"Doubtful",
"Race",
".",
"'",
"Accessed",
"December",
"13",
",",
"2024",
".",
"https://www.mediastorehouse",
".",
"com",
"/",
"fine",
"-",
"art",
"-",
"finder",
"/",
"artists",
"/",
"english",
"-",
"school",
"/",
"doubtful",
"-",
"race",
"-",
"engraving-23230992.html",
".",
"\n\n",
"Lefebvre",
",",
"Henri",
".",
"Rhythmanalysis",
":",
"Space",
",",
"Time",
"and",
"Everyday",
"Life",
".",
"Paris",
",",
"2002",
".",
"Translated",
"by",
"Stuart",
"Elden",
"and",
"Gerald",
"Moore",
".",
"London",
":",
"Continuum",
",",
"2004",
".",
"\n\n",
"Lewis",
",",
"J.",
"David",
",",
"and",
"Andrew",
"J.",
"Weigart",
".",
"'",
"The",
"Structures",
"and",
"Meanings",
"of",
"Social",
"-",
"Time",
".",
"'",
"In",
"The",
"Sociology",
"of",
"Time",
",",
"edited",
"by",
"John",
"Hassard",
".",
"New",
"York",
":",
"Macmillan",
",",
"1990",
".",
"\n\n",
"Liu",
",",
"Andrew",
".",
"'",
"Incense",
"and",
"Industry",
":",
"Labour",
"and",
"Capital",
"in",
"the",
"Tea",
"Districts",
"of",
"Huizhou",
"China",
".",
"'",
"Past",
"and",
"Present",
"230",
"(",
"2016",
"):",
"161",
"-",
"195",
".",
"\n\n",
"Look",
"and",
"Lern",
".",
"'",
"Railway",
"Travelling",
".",
"'",
"Accessed",
"December",
"13",
".",
"2024",
".",
"https://www.lookandlearn.com/his",
"tory",
"-",
"images",
"/",
"M063069",
"/",
"Railway",
"-",
"Travelling?t=1&q",
"=",
"railway+india&n=19",
".",
"\n\n",
"Breaking",
"up",
"Time",
":",
"Negotiating",
"the",
"Borders",
"Between",
"Present",
",",
"\n\n",
"Lorenz",
",",
"Chris",
",",
"and",
"Berber",
"Bevernage",
",",
"eds",
".",
"Past",
"and",
"Future",
".",
"Göttingen",
":",
"Vandenhoeck",
"&",
"amp",
";",
"Ruprecht",
",",
"2013",
".",
"\n\n"
] |
[
{
"end": 298,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 527,
"label": "CITATION_SPAN",
"start": 300
},
{
"end": 636,
"label": "CITATION_SPAN",
"start": 529
},
{
"end": 761,
"label": "CITATION_SPAN",
"start": 638
},
{
"end": 905,
"label": "CITATION_SPAN",
"start": 763
},
{
"end": 1080,
"label": "CITATION_SPAN",
"start": 907
},
{
"end": 1210,
"label": "CITATION_SPAN",
"start": 1082
},
{
"end": 1365,
"label": "CITATION_SPAN",
"start": 1212
},
{
"end": 1492,
"label": "CITATION_SPAN",
"start": 1367
},
{
"end": 1716,
"label": "CITATION_SPAN",
"start": 1494
},
{
"end": 1834,
"label": "CITATION_SPAN",
"start": 1718
},
{
"end": 1966,
"label": "CITATION_SPAN",
"start": 1836
},
{
"end": 2110,
"label": "CITATION_SPAN",
"start": 1968
},
{
"end": 2259,
"label": "CITATION_SPAN",
"start": 2112
},
{
"end": 2435,
"label": "CITATION_SPAN",
"start": 2261
},
{
"end": 2584,
"label": "CITATION_SPAN",
"start": 2437
},
{
"end": 2749,
"label": "CITATION_SPAN",
"start": 2586
},
{
"end": 2883,
"label": "CITATION_SPAN",
"start": 2751
},
{
"end": 3221,
"label": "CITATION_SPAN",
"start": 2885
}
] |
experience with its application. As the toolkit discusses, ring-fencing may play an important role in the timely collection of government revenue from the mining sector. While appropriate in some cases, it may not be in others, and the policy would be better achieved through other means, such as a mining royalty or a carefully designed capital allowances regime.
It was also argued that the ring-fencing rules are not always necessary. Since there are costs associated with ring-fencing, e.g., impacts on investment decisions or compliance and administration burdens, its implementation should be carefully considered, considering the costs and benefits related to revenue-raising in view of the prevailing mining tax regime.
Before considering the design and implementation of ring-fencing rules, governments need to consider the potential benefits a ring-fencing regime could deliver. Benefits must be weighed against the potential impact on future investment in their country and the additional burden that this is likely to place on taxpayers and tax administrations from complexities in audits and compliance, and the potential increase in disputes.
The toolkit identifies the instances where it is advisable to achieve the tax policy objectives more effectively by careful design of a special mining regime and use of different fiscal instruments (e.g., a mining royalty to deliver early revenues), rather than introducing the ring-fencing rules. Equally, in many cases, addressing and dealing with BEPS and tax avoidance practices may be more effectively achieved by introducing special anti-avoidance rules and having a well-trained tax administration administer them effectively.
In other situations, ring-fencing rules can enhance-or be essential tothe integrity of a special mining taxation regime. Furthermore, ring-fencing rules can also help mitigate some BEPS risks, such as abuse of financial derivatives and hedging transactions for profit-shifting purposes. This is especially the case where the tax administration has limited capacity to scrutinize sophisticated transactions, and ring-fencing rules can isolate such risk into a separate category of tax base that will be quarantined and taxed separately.
## 1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
3.0 THE BENEFITS AND RISKS OF RING-FENCING
4.0 DESIGNING RING-FENCING RULES
5.0 THE IMPLEMENTATION OF RING-FENCING RULES
## 6.0 CONCLUSION
There are different ring-fencing regime options to choose from, each offering different trade-offs and levels of restriction. There could be exceptions to ring-fencing or special design rules that make ring-fencing more flexiblefor example, to deal with permanent losses and to promote investment.
Regardless of which ring-fencing option is
|
[
"experience",
"with",
"its",
"application",
".",
"As",
"the",
"toolkit",
"discusses",
",",
"ring",
"-",
"fencing",
"may",
"play",
"an",
"important",
"role",
"in",
"the",
"timely",
"collection",
"of",
"government",
"revenue",
"from",
"the",
"mining",
"sector",
".",
"While",
"appropriate",
"in",
"some",
"cases",
",",
"it",
"may",
"not",
"be",
"in",
"others",
",",
"and",
"the",
"policy",
"would",
"be",
"better",
"achieved",
"through",
"other",
"means",
",",
"such",
"as",
"a",
"mining",
"royalty",
"or",
"a",
"carefully",
"designed",
"capital",
"allowances",
"regime",
".",
"\n\n",
"It",
"was",
"also",
"argued",
"that",
"the",
"ring",
"-",
"fencing",
"rules",
"are",
"not",
"always",
"necessary",
".",
"Since",
"there",
"are",
"costs",
"associated",
"with",
"ring",
"-",
"fencing",
",",
"e.g.",
",",
"impacts",
"on",
"investment",
"decisions",
"or",
"compliance",
"and",
"administration",
"burdens",
",",
"its",
"implementation",
"should",
"be",
"carefully",
"considered",
",",
"considering",
"the",
"costs",
"and",
"benefits",
"related",
"to",
"revenue",
"-",
"raising",
"in",
"view",
"of",
"the",
"prevailing",
"mining",
"tax",
"regime",
".",
"\n\n",
"Before",
"considering",
"the",
"design",
"and",
"implementation",
"of",
"ring",
"-",
"fencing",
"rules",
",",
"governments",
"need",
"to",
"consider",
"the",
"potential",
"benefits",
"a",
"ring",
"-",
"fencing",
"regime",
"could",
"deliver",
".",
"Benefits",
"must",
"be",
"weighed",
"against",
"the",
"potential",
"impact",
"on",
"future",
"investment",
"in",
"their",
"country",
"and",
"the",
"additional",
"burden",
"that",
"this",
"is",
"likely",
"to",
"place",
"on",
"taxpayers",
"and",
"tax",
"administrations",
"from",
"complexities",
"in",
"audits",
"and",
"compliance",
",",
"and",
"the",
"potential",
"increase",
"in",
"disputes",
".",
"\n\n",
"The",
"toolkit",
"identifies",
"the",
"instances",
"where",
"it",
"is",
"advisable",
"to",
"achieve",
"the",
"tax",
"policy",
"objectives",
"more",
"effectively",
"by",
"careful",
"design",
"of",
"a",
"special",
"mining",
"regime",
"and",
"use",
"of",
"different",
"fiscal",
"instruments",
"(",
"e.g.",
",",
"a",
"mining",
"royalty",
"to",
"deliver",
"early",
"revenues",
")",
",",
"rather",
"than",
"introducing",
"the",
"ring",
"-",
"fencing",
"rules",
".",
"Equally",
",",
"in",
"many",
"cases",
",",
"addressing",
"and",
"dealing",
"with",
"BEPS",
"and",
"tax",
"avoidance",
"practices",
"may",
"be",
"more",
"effectively",
"achieved",
"by",
"introducing",
"special",
"anti",
"-",
"avoidance",
"rules",
"and",
"having",
"a",
"well",
"-",
"trained",
"tax",
"administration",
"administer",
"them",
"effectively",
".",
"\n\n",
"In",
"other",
"situations",
",",
"ring",
"-",
"fencing",
"rules",
"can",
"enhance",
"-",
"or",
"be",
"essential",
"tothe",
"integrity",
"of",
"a",
"special",
"mining",
"taxation",
"regime",
".",
"Furthermore",
",",
"ring",
"-",
"fencing",
"rules",
"can",
"also",
"help",
"mitigate",
"some",
"BEPS",
"risks",
",",
"such",
"as",
"abuse",
"of",
"financial",
"derivatives",
"and",
"hedging",
"transactions",
"for",
"profit",
"-",
"shifting",
"purposes",
".",
"This",
"is",
"especially",
"the",
"case",
"where",
"the",
"tax",
"administration",
"has",
"limited",
"capacity",
"to",
"scrutinize",
"sophisticated",
"transactions",
",",
"and",
"ring",
"-",
"fencing",
"rules",
"can",
"isolate",
"such",
"risk",
"into",
"a",
"separate",
"category",
"of",
"tax",
"base",
"that",
"will",
"be",
"quarantined",
"and",
"taxed",
"separately",
".",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"5.0",
"THE",
"IMPLEMENTATION",
"OF",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"#",
"#",
"6.0",
"CONCLUSION",
"\n\n",
"There",
"are",
"different",
"ring",
"-",
"fencing",
"regime",
"options",
"to",
"choose",
"from",
",",
"each",
"offering",
"different",
"trade",
"-",
"offs",
"and",
"levels",
"of",
"restriction",
".",
"There",
"could",
"be",
"exceptions",
"to",
"ring",
"-",
"fencing",
"or",
"special",
"design",
"rules",
"that",
"make",
"ring",
"-",
"fencing",
"more",
"flexiblefor",
"example",
",",
"to",
"deal",
"with",
"permanent",
"losses",
"and",
"to",
"promote",
"investment",
".",
"\n\n",
"Regardless",
"of",
"which",
"ring",
"-",
"fencing",
"option",
"is"
] |
[] |
A. Massucci (SIRIS Academic)
Hugo Hollanders (Maastricht University)
Monika Matusiak, Ramojus Reimeris
(European Commission – Joint Research Centre)EDITORS
AUTHORSJRC TECHNICAL REPORT
Smart Specialisation in the
Eastern Partnership countries
Potential for knowledge-based
economic cooperation
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperationI
TABLE OF CONTENTS
ABSTRACT .................................................................................................. 1
EXECUTIVE SUMMARY ............................................................................. 2
Main results – The economic, innovation, scientific and technological
(EIST) specialisation domains of Eastern Partnership countries ..... 4
Overview of economic, innovation, scientific and technological spe-
cialisations ........................................................................................................... 9
1. Economic and innovation (E&I) potential in the Eastern Partnership coun-
tries ............................................................................................................................................ 9
2. Scientific and technological (S&T) potential in the Eastern Partnership
countries ................................................................................................................................. 12
Part 1. Introduction and methodology .................................................... 27
1. Introduction, study objectives and key requirements ....................................... 27
2. Methodological approach ............................................................................................... 27
3. Key constraints and limitations ................................................................................... 34
Part 2. Analysis of economic and innovation potential .................... 38
1. Introduction .......................................................................................................................... 38
2. Economic potential ............................................................................................................ 38
3. Innovation potential .......................................................................................................... 85
4. Specialisations resulting from the economic and innovation analysis ..119
5. Common E&I specialisations in the EaP region ................................................. 141
Part 3. Analysis of scientific and technological potential ............. 144
1. Introduction ....................................................................................................................... 144
2. Identification of the S&T specialisation domains in the Eastern Partner-
ship ........................................................................................................................................ 144
3. Characterisation of the S&T specialisation domains ..................................... 153
4. Critical mass, specialisation and excellence indicators in the S&T speciali-
sation domains ................................................................................................................. 173
5. Identification of the main actors and collaboration patterns within the S&T
specialisation domains ................................................................................................. 195
6. Summary of the strengths of each S&T specialisation domain for each EaP
country ................................................................................................................................. 218
II
Table of contents
Part 4. Identification of concordances between the economic, inno-
vation, scientific and technological potentials .................................. 230
1. Introduction ....................................................................................................................... 230
2. Methodology ...................................................................................................................... 231
3. Results of the mapping exercise .............................................................................. 235
4. Potential for EaP collaboration in combined EIST domains ......................... 246
Part 5. Discussion of results and final remarks ................................ 249
REFERENCES ........................................................................................ 254
LIST OF ABBREVIATIONS ................................................................... 256
LIST OF FIGURES ................................................................................. 258
LIST OF TABLES ................................................................................... 264
Annex 1. Results of the full economic mapping analysis for Georgia,
Moldova and Ukraine ................................................................................... 269
Annex 2. Results of the partial economic mapping analysis for Man-
ufacturing for five EaP countries ........................................................... 297
Annex 3. Results of the mapping analysis for goods exports ...... 301
Annex 4. Concordance between IPC and NACE ................................... 321
Annex 5.
|
[
"A.",
"Massucci",
"(",
"SIRIS",
"Academic",
")",
"\n",
"Hugo",
"Hollanders",
"(",
"Maastricht",
"University",
")",
"\n",
"Monika",
"Matusiak",
",",
"Ramojus",
"Reimeris",
" \n",
"(",
"European",
"Commission",
"–",
"Joint",
"Research",
"Centre)EDITORS",
"\n",
"AUTHORSJRC",
"TECHNICAL",
"REPORT",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"\n",
"Eastern",
"Partnership",
"countries",
"\n",
"Potential",
"for",
"knowledge",
"-",
"based",
"\n",
"economic",
"cooperation",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperationI",
"\n",
"TABLE",
"OF",
"CONTENTS",
"\n",
"ABSTRACT",
" ",
"..................................................................................................",
"1",
"\n",
"EXECUTIVE",
"SUMMARY",
" ",
".............................................................................",
"2",
"\n",
"Main",
"results",
"–",
"The",
"economic",
",",
"innovation",
",",
"scientific",
"and",
"technological",
"\n",
"(",
"EIST",
")",
"specialisation",
"domains",
"of",
"Eastern",
"Partnership",
"countries",
".....",
"4",
"\n",
"Overview",
"of",
"economic",
",",
"innovation",
",",
"scientific",
"and",
"technological",
"spe-",
"\n",
"cialisations",
"...........................................................................................................",
"9",
"\n",
"1",
".",
"Economic",
"and",
"innovation",
"(",
"E&I",
")",
"potential",
"in",
"the",
"Eastern",
"Partnership",
"coun-",
"\n",
"tries",
"............................................................................................................................................",
"9",
"\n",
"2",
".",
"Scientific",
"and",
"technological",
"(",
"S&T",
")",
"potential",
"in",
"the",
"Eastern",
"Partnership",
"\n",
"countries",
".................................................................................................................................",
"12",
"\n",
"Part",
"1",
".",
"Introduction",
"and",
"methodology",
"....................................................",
"27",
"\n",
"1",
".",
"Introduction",
",",
"study",
"objectives",
"and",
"key",
"requirements",
".......................................",
"27",
"\n",
"2",
".",
"Methodological",
"approach",
"...............................................................................................",
"27",
"\n",
"3",
".",
"Key",
"constraints",
"and",
"limitations",
"...................................................................................",
"34",
"\n",
"Part",
"2",
".",
"Analysis",
"of",
"economic",
"and",
"innovation",
"potential",
"....................",
"38",
"\n",
"1",
".",
"Introduction",
"..........................................................................................................................",
"38",
"\n",
"2",
".",
"Economic",
"potential",
"............................................................................................................",
"38",
"\n",
"3",
".",
"Innovation",
"potential",
"..........................................................................................................",
"85",
"\n",
"4",
".",
"Specialisations",
"resulting",
"from",
"the",
"economic",
"and",
"innovation",
"analysis",
"..",
"119",
"\n",
"5",
".",
"Common",
"E&I",
"specialisations",
"in",
"the",
"EaP",
"region",
".................................................",
"141",
"\n",
"Part",
"3",
".",
"Analysis",
"of",
"scientific",
"and",
"technological",
"potential",
".............",
"144",
"\n",
"1",
".",
"Introduction",
".......................................................................................................................",
"144",
"\n",
"2",
".",
"Identification",
"of",
"the",
"S&T",
"specialisation",
"domains",
"in",
"the",
"Eastern",
"Partner-",
"\n",
"ship",
"........................................................................................................................................",
"144",
"\n",
"3",
".",
"Characterisation",
"of",
"the",
"S&T",
"specialisation",
"domains",
".....................................",
"153",
"\n",
"4",
".",
"Critical",
"mass",
",",
"specialisation",
"and",
"excellence",
"indicators",
"in",
"the",
"S&T",
"speciali-",
"\n",
"sation",
"domains",
".................................................................................................................",
"173",
"\n",
"5",
".",
"Identification",
"of",
"the",
"main",
"actors",
"and",
"collaboration",
"patterns",
"within",
"the",
"S&T",
"\n",
"specialisation",
"domains",
".................................................................................................",
"195",
"\n",
"6",
".",
"Summary",
"of",
"the",
"strengths",
"of",
"each",
"S&T",
"specialisation",
"domain",
"for",
"each",
"EaP",
"\n",
"country",
".................................................................................................................................",
"218",
"\n",
"II",
"\n",
"Table",
"of",
"contents",
"\n",
"Part",
"4",
".",
"Identification",
"of",
"concordances",
"between",
"the",
"economic",
",",
"inno-",
"\n",
"vation",
",",
"scientific",
"and",
"technological",
"potentials",
"..................................",
"230",
"\n",
"1",
".",
"Introduction",
".......................................................................................................................",
"230",
"\n",
"2",
".",
"Methodology",
"......................................................................................................................",
"231",
"\n",
"3",
".",
"Results",
"of",
"the",
"mapping",
"exercise",
"..............................................................................",
"235",
"\n",
"4",
".",
"Potential",
"for",
"EaP",
"collaboration",
"in",
"combined",
"EIST",
"domains",
".........................",
"246",
"\n",
"Part",
"5",
".",
"Discussion",
"of",
"results",
"and",
"final",
"remarks",
"................................",
"249",
"\n",
"REFERENCES",
" ",
"........................................................................................",
"254",
"\n",
"LIST",
"OF",
"ABBREVIATIONS",
" ",
"...................................................................",
"256",
"\n",
"LIST",
"OF",
"FIGURES",
" ",
".................................................................................",
"258",
"\n",
"LIST",
"OF",
"TABLES",
" ",
"...................................................................................",
"264",
"\n",
"Annex",
"1",
".",
"Results",
"of",
"the",
"full",
"economic",
"mapping",
"analysis",
"for",
"Georgia",
",",
"\n",
"Moldova",
"and",
"Ukraine",
"...................................................................................",
"269",
"\n",
"Annex",
"2",
".",
"Results",
"of",
"the",
"partial",
"economic",
"mapping",
"analysis",
"for",
"Man-",
"\n",
"ufacturing",
"for",
"five",
"EaP",
"countries",
"...........................................................",
"297",
"\n",
"Annex",
"3",
".",
"Results",
"of",
"the",
"mapping",
"analysis",
"for",
"goods",
"exports",
"......",
"301",
"\n",
"Annex",
"4",
".",
"Concordance",
"between",
"IPC",
"and",
"NACE",
"...................................",
"321",
"\n",
"Annex",
"5",
"."
] |
[] |
functionality, such as for operating the subsystems of the , AI/ML system(s) , , , , , , , , conveyors , , and/or any other device or system discussed previously with regard to . In these implementations, the and/or is/are embodied as, or otherwise includes, one or more AI or ML chips that can run many different kinds of AI/ML instruction sets once loaded with the appropriate weightings, training data, AI/ML models, and/or the like. Additionally or alternatively, the and/or is/are emboddied as, or otherwise includes, one or more custom-designed silicon cores specifically designed to operate corresponding subsystems of the , AI/ML system(s) , , , , , , , , conveyors , , and/or any other device or system discussed herein. These cores may be designed as synthesizable cores comprising hardware description language logic (e.g., register transfer logic, verilog, Very High Speed Integrated Circuit hardware description language (VHDL), and the like); netlist cores comprising gate-level description of electronic components and connections and/or process-specific very-large-scale integration (VLSI) layout; and/or analog or digital logic in transistor-layout format. In these implementations, one or more of the subsystems of the , AI/ML system(s) , , , , , , , , conveyors , , and/or any other device or system discussed herein may be operated, at least in part, on custom-designed silicon core(s). These “hardware-ized” subsystems may be integrated into a larger chipset but may be more efficient than using general purpose processor cores.
The operates as a protected area accessible to the and/or other components to enable secure access to data and secure execution of instructions. In some implementations, the may be a physical hardware device that is separate from other components of the such as a secure-embedded controller, a dedicated SoC, a trusted platform module (TPM), a tamper-resistant chipset or microcontroller with embedded processing devices and memory devices, and/or the like. Additionally or alternatively, the is implemented as secure enclaves (or “enclaves”), which are isolated regions of code and/or data within the processor and/or memory/storage circuitry of the , where only code executed within a secure enclave may access data within the same secure enclave, and the secure enclave may only be accessible using the secure app (which may be implemented by an app processor or a tamper-resistant microcontroller). In some implementations, the and/or may be divided into one or more trusted memory regions for storing apps or software modules
|
[
"functionality",
",",
"such",
"as",
"for",
"operating",
"the",
"subsystems",
"of",
"the",
" ",
",",
"AI",
"/",
"ML",
"system(s",
")",
",",
" ",
",",
" ",
",",
",",
" ",
",",
" ",
",",
",",
",",
"conveyors",
",",
",",
"and/or",
"any",
"other",
"device",
"or",
"system",
"discussed",
"previously",
"with",
"regard",
"to",
".",
"In",
"these",
"implementations",
",",
"the",
" ",
"and/or",
" ",
"is",
"/",
"are",
"embodied",
"as",
",",
"or",
"otherwise",
"includes",
",",
"one",
"or",
"more",
"AI",
"or",
"ML",
"chips",
"that",
"can",
"run",
"many",
"different",
"kinds",
"of",
"AI",
"/",
"ML",
"instruction",
"sets",
"once",
"loaded",
"with",
"the",
"appropriate",
"weightings",
",",
"training",
"data",
",",
"AI",
"/",
"ML",
"models",
",",
"and/or",
"the",
"like",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
" ",
"and/or",
" ",
"is",
"/",
"are",
"emboddied",
"as",
",",
"or",
"otherwise",
"includes",
",",
"one",
"or",
"more",
"custom",
"-",
"designed",
"silicon",
"cores",
"specifically",
"designed",
"to",
"operate",
"corresponding",
"subsystems",
"of",
"the",
" ",
",",
"AI",
"/",
"ML",
"system(s",
")",
",",
" ",
",",
" ",
",",
",",
" ",
",",
" ",
",",
",",
",",
"conveyors",
",",
",",
"and/or",
"any",
"other",
"device",
"or",
"system",
"discussed",
"herein",
".",
"These",
"cores",
"may",
"be",
"designed",
"as",
"synthesizable",
"cores",
"comprising",
"hardware",
"description",
"language",
"logic",
"(",
"e.g.",
",",
"register",
"transfer",
"logic",
",",
"verilog",
",",
"Very",
"High",
"Speed",
"Integrated",
"Circuit",
"hardware",
"description",
"language",
"(",
"VHDL",
")",
",",
"and",
"the",
"like",
")",
";",
"netlist",
"cores",
"comprising",
"gate",
"-",
"level",
"description",
"of",
"electronic",
"components",
"and",
"connections",
"and/or",
"process",
"-",
"specific",
"very",
"-",
"large",
"-",
"scale",
"integration",
"(",
"VLSI",
")",
"layout",
";",
"and/or",
"analog",
"or",
"digital",
"logic",
"in",
"transistor",
"-",
"layout",
"format",
".",
"In",
"these",
"implementations",
",",
"one",
"or",
"more",
"of",
"the",
"subsystems",
"of",
"the",
" ",
",",
"AI",
"/",
"ML",
"system(s",
")",
",",
" ",
",",
" ",
",",
",",
" ",
",",
" ",
",",
",",
",",
"conveyors",
",",
",",
"and/or",
"any",
"other",
"device",
"or",
"system",
"discussed",
"herein",
"may",
"be",
"operated",
",",
"at",
"least",
"in",
"part",
",",
"on",
"custom",
"-",
"designed",
"silicon",
"core(s",
")",
".",
"These",
"“",
"hardware",
"-",
"ized",
"”",
"subsystems",
"may",
"be",
"integrated",
"into",
"a",
"larger",
"chipset",
"but",
"may",
"be",
"more",
"efficient",
"than",
"using",
"general",
"purpose",
"processor",
"cores",
".",
"\n\n",
"The",
" ",
"operates",
"as",
"a",
"protected",
"area",
"accessible",
"to",
"the",
" ",
"and/or",
"other",
"components",
"to",
"enable",
"secure",
"access",
"to",
"data",
"and",
"secure",
"execution",
"of",
"instructions",
".",
"In",
"some",
"implementations",
",",
"the",
" ",
"may",
"be",
"a",
"physical",
"hardware",
"device",
"that",
"is",
"separate",
"from",
"other",
"components",
"of",
"the",
" ",
"such",
"as",
"a",
"secure",
"-",
"embedded",
"controller",
",",
"a",
"dedicated",
"SoC",
",",
"a",
"trusted",
"platform",
"module",
"(",
"TPM",
")",
",",
"a",
"tamper",
"-",
"resistant",
"chipset",
"or",
"microcontroller",
"with",
"embedded",
"processing",
"devices",
"and",
"memory",
"devices",
",",
"and/or",
"the",
"like",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
" ",
"is",
"implemented",
"as",
"secure",
"enclaves",
"(",
"or",
"“",
"enclaves",
"”",
")",
",",
"which",
"are",
"isolated",
"regions",
"of",
"code",
"and/or",
"data",
"within",
"the",
"processor",
"and/or",
"memory",
"/",
"storage",
"circuitry",
"of",
"the",
" ",
",",
"where",
"only",
"code",
"executed",
"within",
"a",
"secure",
"enclave",
"may",
"access",
"data",
"within",
"the",
"same",
"secure",
"enclave",
",",
"and",
"the",
"secure",
"enclave",
"may",
"only",
"be",
"accessible",
"using",
"the",
"secure",
"app",
"(",
"which",
"may",
"be",
"implemented",
"by",
"an",
"app",
"processor",
"or",
"a",
"tamper",
"-",
"resistant",
"microcontroller",
")",
".",
"In",
"some",
"implementations",
",",
"the",
" ",
"and/or",
" ",
"may",
"be",
"divided",
"into",
"one",
"or",
"more",
"trusted",
"memory",
"regions",
"for",
"storing",
"apps",
"or",
"software",
"modules"
] |
[] |
generally designed to give pupils a sound basic education in reading, writing and mathematics, and an elementary understanding of subjects such as history, geography, sciences, art and music.
- Secondary education (ISCED levels 2 and 3) . Lower secondary education (ISCED 2) is generally designed to continue the basic programmes of the primary level but the teaching is typically more subject-focused, requiring more specialized teachers for each subject area. The end of this level often coincides with the end of compulsory education. Teaching in upper secondary education (ISCED 3) is often organized even more along subject lines and teachers typically need a higher or more subject-specific qualification.
- Post-secondary non-tertiary education (ISCED level 4). It provides learning experiences building on secondary education, preparing for labour market entry as well as tertiary education.
- Tertiary education (ISCED levels 5-8) . It builds on secondary education, providing learning activities in specialized fields of education. It aims at learning at a high level of complexity and specialization. It comprises:
- Level 5: Short-cycle tertiary education, often designed to provide participants with professional knowledge, skills and competences. It is practically based and occupationally specific, and prepares students to enter the labour market.
- Level 6: Bachelor's, often designed to provide participants with intermediate academic and/or professional knowledge, skills and competences, leading to a first degree or equivalent qualification.
- Level 7: Master's or equivalent level, often designed to provide participants with advanced academic and/ or professional knowledge, skills and competences, leading to a second degree or equivalent qualification.
- Level 8: Doctoral or equivalent level, designed primarily to lead to an advanced research qualification.
## Education for Sustainable Development. A type
of education that aims to enable learners to constructively and creatively address present and future global challenges and create more sustainable and resilient societies.
Global Citizenship Education. A type of education that aims to empower learners to assume active roles to face and resolve global challenges and to become proactive contributors to a more peaceful, tolerant, inclusive and secure world.
Gross domestic product (GDP). The value of all final goods and services produced in a country in one year.
Gross enrolment ratio. Enrolment in a specific level of education, regardless of age, expressed as a percentage of the population in the official age group corresponding to this level of education. It can exceed 100% because of
|
[
"generally",
"designed",
"to",
"give",
"pupils",
"a",
"sound",
"basic",
"education",
"in",
"reading",
",",
"writing",
"and",
"mathematics",
",",
"and",
"an",
"elementary",
"understanding",
"of",
"subjects",
"such",
"as",
"history",
",",
"geography",
",",
"sciences",
",",
"art",
"and",
"music",
".",
"\n",
"-",
"",
"Secondary",
"education",
"(",
"ISCED",
"levels",
"2",
"and",
"3",
")",
".",
"Lower",
"secondary",
"education",
"(",
"ISCED",
"2",
")",
"is",
"generally",
"designed",
"to",
"continue",
"the",
"basic",
"programmes",
"of",
"the",
"primary",
"level",
"but",
"the",
"teaching",
"is",
"typically",
"more",
"subject",
"-",
"focused",
",",
"requiring",
"more",
"specialized",
"teachers",
"for",
"each",
"subject",
"area",
".",
"The",
"end",
"of",
"this",
"level",
"often",
"coincides",
"with",
"the",
"end",
"of",
"compulsory",
"education",
".",
"Teaching",
"in",
"upper",
"secondary",
"education",
"(",
"ISCED",
"3",
")",
"is",
"often",
"organized",
"even",
"more",
"along",
"subject",
"lines",
"and",
"teachers",
"typically",
"need",
"a",
"higher",
"or",
"more",
"subject",
"-",
"specific",
"qualification",
".",
"\n",
"-",
"",
"Post",
"-",
"secondary",
"non",
"-",
"tertiary",
"education",
"(",
"ISCED",
"level",
"4",
")",
".",
"It",
"provides",
"learning",
"experiences",
"building",
"on",
"secondary",
"education",
",",
"preparing",
"for",
"labour",
"market",
"entry",
"as",
"well",
"as",
"tertiary",
"education",
".",
"\n",
"-",
"",
"Tertiary",
"education",
"(",
"ISCED",
"levels",
"5",
"-",
"8)",
".",
"It",
"builds",
"on",
"secondary",
"education",
",",
"providing",
"learning",
"activities",
"in",
"specialized",
"fields",
"of",
"education",
".",
"It",
"aims",
"at",
"learning",
"at",
"a",
"high",
"level",
"of",
"complexity",
"and",
"specialization",
".",
"It",
"comprises",
":",
"\n",
"-",
"",
"Level",
"5",
":",
"Short",
"-",
"cycle",
"tertiary",
"education",
",",
"often",
"designed",
"to",
"provide",
"participants",
"with",
"professional",
"knowledge",
",",
"skills",
"and",
"competences",
".",
"It",
"is",
"practically",
"based",
"and",
"occupationally",
"specific",
",",
"and",
"prepares",
"students",
"to",
"enter",
"the",
"labour",
"market",
".",
"\n",
"-",
"",
"Level",
"6",
":",
"Bachelor",
"'s",
",",
"often",
"designed",
"to",
"provide",
"participants",
"with",
"intermediate",
"academic",
"and/or",
"professional",
"knowledge",
",",
"skills",
"and",
"competences",
",",
"leading",
"to",
"a",
"first",
"degree",
"or",
"equivalent",
"qualification",
".",
"\n\n",
"-",
"",
"Level",
"7",
":",
"Master",
"'s",
"or",
"equivalent",
"level",
",",
"often",
"designed",
"to",
"provide",
"participants",
"with",
"advanced",
"academic",
"and/",
"or",
"professional",
"knowledge",
",",
"skills",
"and",
"competences",
",",
"leading",
"to",
"a",
"second",
"degree",
"or",
"equivalent",
"qualification",
".",
"\n",
"-",
"",
"Level",
"8",
":",
"Doctoral",
"or",
"equivalent",
"level",
",",
"designed",
"primarily",
"to",
"lead",
"to",
"an",
"advanced",
"research",
"qualification",
".",
"\n\n",
"#",
"#",
"Education",
"for",
"Sustainable",
"Development",
".",
"A",
"type",
"\n\n",
"of",
"education",
"that",
"aims",
"to",
"enable",
"learners",
"to",
"constructively",
"and",
"creatively",
"address",
"present",
"and",
"future",
"global",
"challenges",
"and",
"create",
"more",
"sustainable",
"and",
"resilient",
"societies",
".",
"\n\n",
"Global",
"Citizenship",
"Education",
".",
"A",
"type",
"of",
"education",
"that",
"aims",
"to",
"empower",
"learners",
"to",
"assume",
"active",
"roles",
"to",
"face",
"and",
"resolve",
"global",
"challenges",
"and",
"to",
"become",
"proactive",
"contributors",
"to",
"a",
"more",
"peaceful",
",",
"tolerant",
",",
"inclusive",
"and",
"secure",
"world",
".",
"\n\n",
"Gross",
"domestic",
"product",
"(",
"GDP",
")",
".",
"The",
"value",
"of",
"all",
"final",
"goods",
"and",
"services",
"produced",
"in",
"a",
"country",
"in",
"one",
"year",
".",
"\n\n",
"Gross",
"enrolment",
"ratio",
".",
"Enrolment",
"in",
"a",
"specific",
"level",
"of",
"education",
",",
"regardless",
"of",
"age",
",",
"expressed",
"as",
"a",
"percentage",
"of",
"the",
"population",
"in",
"the",
"official",
"age",
"group",
"corresponding",
"to",
"this",
"level",
"of",
"education",
".",
"It",
"can",
"exceed",
"100",
"%",
"because",
"of"
] |
[] |
There are not enough academic institutions achieving top levels of excellence and the pipeline from inno -
vation into commercialisation is weak [see the chapter on innovation] . Universities and other research institutions
are central actors in early-stage innovation, generating breakthrough research and producing new skills profiles for
the workforce. Europe has a strong position in fundamental research and patenting: in 2021, it accounted for 17% of
global patent applications versus 21% for the US and 25% for China. However, while the EU boasts a strong university
system on average, not enough universities and research institutions are at the top. Using volume of publications
in top academic science journals as an indicative metric, the EU has only three research institutions ranked among
28THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 2the top 50 globally, whereas the US has 21 and China 15. The innovation pipeline in the EU is also weaker at the
next stage of commercialising fundamental research. Much of the knowledge generated by European researchers
remains commercially unexploited. According to the European Patent Office, only about one-third of the patented
inventions registered by European universities or research institutions are commercially exploited. A key reason for
this failure is that researchers in Europe are less well integrated into innovation “clusters” – networks of universities,
start-ups, large companies and venture capitalists (VCs) – which account for a large share of successful commer -
cialisations in high-tech sectors. Such clusters have been critical to the more dynamic industrial structure seen in
the US. Europe has no innovation “clusters” in the top 10 globally, while the US has 4 and China has 3.
Public spending on R&I in Europe lacks scale and is insufficiently focused on breakthrough innovation . In
the US, the vast majority of public R&I spending is carried out at the federal level. In the EU, governments overall
spend a similar amount to the US on R&I as a share of GDP, but only one tenth of spending takes place at the EU level,
despite the large spillovers from public R&I investment to the private sectorix [see Figure 6] . The EU has an important
programme for R&I – Horizon Europe – with a budget of close to EUR 100 billion. But it is spread across too many
fields and access is excessively complex and bureaucratic. It is also insufficiently focused on disruptive innovation.
The EU’s key
|
[
"There",
"are",
"not",
"enough",
"academic",
"institutions",
"achieving",
"top",
"levels",
"of",
"excellence",
"and",
"the",
"pipeline",
"from",
"inno",
"-",
"\n",
"vation",
"into",
"commercialisation",
"is",
"weak",
"[",
"see",
"the",
"chapter",
"on",
"innovation",
"]",
".",
"Universities",
"and",
"other",
"research",
"institutions",
"\n",
"are",
"central",
"actors",
"in",
"early",
"-",
"stage",
"innovation",
",",
"generating",
"breakthrough",
"research",
"and",
"producing",
"new",
"skills",
"profiles",
"for",
"\n",
"the",
"workforce",
".",
"Europe",
"has",
"a",
"strong",
"position",
"in",
"fundamental",
"research",
"and",
"patenting",
":",
"in",
"2021",
",",
"it",
"accounted",
"for",
"17",
"%",
"of",
"\n",
"global",
"patent",
"applications",
"versus",
"21",
"%",
"for",
"the",
"US",
"and",
"25",
"%",
"for",
"China",
".",
"However",
",",
"while",
"the",
"EU",
"boasts",
"a",
"strong",
"university",
"\n",
"system",
"on",
"average",
",",
"not",
"enough",
"universities",
"and",
"research",
"institutions",
"are",
"at",
"the",
"top",
".",
"Using",
"volume",
"of",
"publications",
"\n",
"in",
"top",
"academic",
"science",
"journals",
"as",
"an",
"indicative",
"metric",
",",
"the",
"EU",
"has",
"only",
"three",
"research",
"institutions",
"ranked",
"among",
"\n",
"28THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"2the",
"top",
"50",
"globally",
",",
"whereas",
"the",
"US",
"has",
"21",
"and",
"China",
"15",
".",
"The",
"innovation",
"pipeline",
"in",
"the",
"EU",
"is",
"also",
"weaker",
"at",
"the",
"\n",
"next",
"stage",
"of",
"commercialising",
"fundamental",
"research",
".",
"Much",
"of",
"the",
"knowledge",
"generated",
"by",
"European",
"researchers",
"\n",
"remains",
"commercially",
"unexploited",
".",
"According",
"to",
"the",
"European",
"Patent",
"Office",
",",
"only",
"about",
"one",
"-",
"third",
"of",
"the",
"patented",
"\n",
"inventions",
"registered",
"by",
"European",
"universities",
"or",
"research",
"institutions",
"are",
"commercially",
"exploited",
".",
"A",
"key",
"reason",
"for",
"\n",
"this",
"failure",
"is",
"that",
"researchers",
"in",
"Europe",
"are",
"less",
"well",
"integrated",
"into",
"innovation",
"“",
"clusters",
"”",
"–",
"networks",
"of",
"universities",
",",
"\n",
"start",
"-",
"ups",
",",
"large",
"companies",
"and",
"venture",
"capitalists",
"(",
"VCs",
")",
"–",
"which",
"account",
"for",
"a",
"large",
"share",
"of",
"successful",
"commer",
"-",
"\n",
"cialisations",
"in",
"high",
"-",
"tech",
"sectors",
".",
"Such",
"clusters",
"have",
"been",
"critical",
"to",
"the",
"more",
"dynamic",
"industrial",
"structure",
"seen",
"in",
"\n",
"the",
"US",
".",
"Europe",
"has",
"no",
"innovation",
"“",
"clusters",
"”",
"in",
"the",
"top",
"10",
"globally",
",",
"while",
"the",
"US",
"has",
"4",
"and",
"China",
"has",
"3",
".",
"\n",
"Public",
"spending",
"on",
"R&I",
"in",
"Europe",
"lacks",
"scale",
"and",
"is",
"insufficiently",
"focused",
"on",
"breakthrough",
"innovation",
".",
"In",
"\n",
"the",
"US",
",",
"the",
"vast",
"majority",
"of",
"public",
"R&I",
"spending",
"is",
"carried",
"out",
"at",
"the",
"federal",
"level",
".",
"In",
"the",
"EU",
",",
"governments",
"overall",
"\n",
"spend",
"a",
"similar",
"amount",
"to",
"the",
"US",
"on",
"R&I",
"as",
"a",
"share",
"of",
"GDP",
",",
"but",
"only",
"one",
"tenth",
"of",
"spending",
"takes",
"place",
"at",
"the",
"EU",
"level",
",",
"\n",
"despite",
"the",
"large",
"spillovers",
"from",
"public",
"R&I",
"investment",
"to",
"the",
"private",
"sectorix",
"[",
"see",
"Figure",
"6",
"]",
".",
"The",
"EU",
"has",
"an",
"important",
"\n",
"programme",
"for",
"R&I",
"–",
"Horizon",
"Europe",
"–",
"with",
"a",
"budget",
"of",
"close",
"to",
"EUR",
"100",
"billion",
".",
"But",
"it",
"is",
"spread",
"across",
"too",
"many",
"\n",
"fields",
"and",
"access",
"is",
"excessively",
"complex",
"and",
"bureaucratic",
".",
"It",
"is",
"also",
"insufficiently",
"focused",
"on",
"disruptive",
"innovation",
".",
"\n",
"The",
"EU",
"’s",
"key"
] |
[
{
"end": 2210,
"label": "CITATION_REF",
"start": 2208
}
] |
50 ₋₁ | 30 | … 27 ₋₁ | 22 ₋₂ … | … | … | 93 ₋₂ | … … | 78 ₋₂ | … | 86 ₋₂ | 6.2 | 5.5 ₋₂ | 18.3 | 12.7 | 12.8 ₋₂ | BRA | BRA | BRA | BRA | BRA | BRA |
| … | … … | 17 ₋₂ … | … | … | … | … | … | 100 ₊₁ | 100 ₋₁ | 92 | 50 ₋₁ | … | … | … … | | 4.7 | 2.5 ₋₁ | 13.3 | 10.9 | ₊₁ | VGB | VGB | VGB | VGB | VGB | VGB |
| … | … | … | … | … | … | … | … | … | 100 | 88 ₋₂ | 98 | … | 98 | … 99 | … | | 1.5 ₋₁ | … | 15.0 | ₋₄ | CYM | CYM | CYM | CYM | CYM | CYM |
| 58 ₋₂ | … | 44 ₋₂ | … | 72 | 66 ₋₁ | 28 | 44 ₋₁ | … | … | … | … | … | … | … … | 4.9 | | 5.0 ₋₂ | 19.6 | | 14.9 ₋₂ | CHL | CHL | CHL | CHL | CHL | CHL |
| 39 ₋₂ | … | 15 ₋₂ | … | 57 | 49 ₋₁ | 34 | 29 ₋₁ | 83 ₊₁ | 84 ₋₁ | 94 | 98 ₋₁ | 97 | 98 ₋₁ | 98 96 | 98 ₋₁ … | | … | … | | … | COL | COL | COL | COL | COL | COL |
| 50 ₋₂ | … | 21 ₋₂ | … | 60 | 53 ₋₁ | 38 | 28 ₋₁ | 51 ₊₁ | 83 ₋₃ | 94 | 94 ₋₃ | 97 | 97 ₋₃ | 97 ₋₃ | 6.9 | | 6.2 ₋₂ | | 23.4 | 31.2 ₋₂ | CRI | CRI | CRI | CRI | CRI | CRI |
| … | … | … | … | … | … | … | … | … | 66 | 100 | 100 | 100 | 100 | 100 100 | | 9.0 | 9.4 ₋₂ |
|
[
"50",
"₋₁",
" ",
"|",
"30",
" ",
"|",
"…",
"27",
"₋₁",
" ",
"|",
"22",
"₋₂",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"93",
"₋₂",
" ",
"|",
"…",
"…",
" ",
"|",
"78",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"86",
"₋₂",
" ",
"|",
"6.2",
" ",
"|",
"5.5",
"₋₂",
" ",
"|",
"18.3",
" ",
"|",
"12.7",
" ",
"|",
"12.8",
"₋₂",
" ",
"|",
"BRA",
" ",
"|",
"BRA",
" ",
"|",
"BRA",
" ",
"|",
"BRA",
" ",
"|",
"BRA",
" ",
"|",
"BRA",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"17",
"₋₂",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
"₊₁",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"92",
" ",
"|",
"50",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
" ",
"|",
"4.7",
" ",
"|",
"2.5",
"₋₁",
" ",
"|",
"13.3",
" ",
"|",
"10.9",
" ",
"|",
"₊₁",
" ",
"|",
"VGB",
" ",
"|",
"VGB",
" ",
"|",
"VGB",
" ",
"|",
"VGB",
" ",
"|",
"VGB",
" ",
"|",
"VGB",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
" ",
"|",
"88",
"₋₂",
" ",
"|",
"98",
" ",
"|",
"…",
" ",
"|",
"98",
" ",
"|",
"…",
"99",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"1.5",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"15.0",
" ",
"|",
"₋₄",
" ",
"|",
"CYM",
" ",
"|",
"CYM",
" ",
"|",
"CYM",
" ",
"|",
"CYM",
" ",
"|",
"CYM",
" ",
"|",
"CYM",
" ",
"|",
"\n",
"|",
"58",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"44",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"72",
" ",
"|",
"66",
"₋₁",
" ",
"|",
"28",
" ",
"|",
"44",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"4.9",
" ",
"|",
" ",
"|",
"5.0",
"₋₂",
" ",
"|",
"19.6",
" ",
"|",
" ",
"|",
"14.9",
"₋₂",
" ",
"|",
"CHL",
" ",
"|",
"CHL",
" ",
"|",
"CHL",
" ",
"|",
"CHL",
" ",
"|",
"CHL",
" ",
"|",
"CHL",
" ",
"|",
"\n",
"|",
"39",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"15",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"57",
" ",
"|",
"49",
"₋₁",
" ",
"|",
"34",
" ",
"|",
"29",
"₋₁",
" ",
"|",
"83",
"₊₁",
" ",
"|",
"84",
"₋₁",
" ",
"|",
"94",
" ",
"|",
"98",
"₋₁",
" ",
"|",
"97",
" ",
"|",
"98",
"₋₁",
" ",
"|",
"98",
"96",
" ",
"|",
"98",
"₋₁",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"COL",
" ",
"|",
"COL",
" ",
"|",
"COL",
" ",
"|",
"COL",
" ",
"|",
"COL",
" ",
"|",
"COL",
" ",
"|",
"\n",
"|",
"50",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"21",
"₋₂",
" ",
"|",
"…",
" ",
"|",
"60",
" ",
"|",
"53",
"₋₁",
" ",
"|",
"38",
" ",
"|",
"28",
"₋₁",
" ",
"|",
"51",
"₊₁",
" ",
"|",
"83",
"₋₃",
" ",
"|",
"94",
" ",
"|",
"94",
"₋₃",
" ",
"|",
"97",
" ",
"|",
"97",
"₋₃",
" ",
"|",
"97",
"₋₃",
" ",
"|",
"6.9",
" ",
"|",
" ",
"|",
"6.2",
"₋₂",
" ",
"|",
" ",
"|",
"23.4",
" ",
"|",
"31.2",
"₋₂",
" ",
"|",
"CRI",
" ",
"|",
"CRI",
" ",
"|",
"CRI",
" ",
"|",
"CRI",
" ",
"|",
"CRI",
" ",
"|",
"CRI",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"66",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
"100",
" ",
"|",
" ",
"|",
"9.0",
" ",
"|",
"9.4",
"₋₂",
" ",
"|"
] |
[] |
the socio-economic impact of the crisis and bolster resilience for future shocks.
## 3.1. Overview of official development assistance to Kenya before and during the pandemic
Kenya received net ODA of USD 4.3 billion in 2019. This amount reached USD 7.2 billion in 2020, a record high, representing 4% of gross national income and a 70% increase. Then it fell to USD 4 billion again in 2021. On average, ODA loans make up the largest share of official development finance to Kenya, representing 43% of ODF to the country (vs. 37% for ODA grants). Other official flows (OOF), representing 20% of ODF on average, have also increased by 29% year-on-year.
While ODF commitments to Kenya decreased in 2018 and 2019, they witnessed a significant increase in 2020, reaching USD 7.2 billion; they decreased again to USD 4 billion in 2021. This growth was mainly channelled through ODA loans (
## Box 3.1. Using official development finance flows when evaluating the COVID-19 economic response
The analysis in this report considers total official development finance (ODF) flows: That is, both official development assistance (ODA) - grants and concessional loans - and other official flows (OOF), which are flows of official development finance that are not concessional enough to qualify as ODA. The reason for this choice is that donors mix both kinds of official financing to assist developing countries and considering one or the other of these flows in isolation would give an incomplete overview of donors' efforts and resource allocations.
Private sector instruments (PSI) are financial instruments extended by development finance institutions (DFIs) and similar vehicles founded by donors to build markets in developing countries and support their economic development and welfare by investing in private sector activities. Private sector instruments include loans to the private sector, equity investments, mezzanine finance instruments,
reimbursable grants and guarantees, in support of developing countries' development . As of 2023, they are presented as a distinct category in the OECD CRS, whereas in previous years these activities were included within ODA and OOF.
In the case of official flows (ODF) dedicated to help combat the COVID-19 pandemic in particular, grants and concessional loans (ODA) were prioritised to finance the health urgency where non-concessional loans were predominantly used to help developing countries overcome the economic consequences of the crisis. Concessional and non-concessional loans represented 56% and 44% of the global response respectively. As the objective of
|
[
"the",
"socio",
"-",
"economic",
"impact",
"of",
"the",
"crisis",
"and",
"bolster",
"resilience",
"for",
"future",
"shocks",
".",
"\n\n",
"#",
"#",
"3.1",
".",
"Overview",
"of",
"official",
"development",
"assistance",
"to",
"Kenya",
"before",
"and",
"during",
"the",
"pandemic",
"\n\n",
"Kenya",
"received",
"net",
"ODA",
"of",
"USD",
"4.3",
"billion",
"in",
"2019",
".",
"This",
"amount",
"reached",
"USD",
"7.2",
"billion",
"in",
"2020",
",",
"a",
"record",
"high",
",",
"representing",
"4",
"%",
"of",
"gross",
"national",
"income",
"and",
"a",
"70",
"%",
"increase",
".",
"Then",
"it",
"fell",
"to",
"USD",
"4",
"billion",
"again",
"in",
"2021",
".",
" ",
"On",
" ",
"average",
",",
" ",
"ODA",
" ",
"loans",
" ",
"make",
" ",
"up",
" ",
"the",
" ",
"largest",
" ",
"share",
" ",
"of",
" ",
"official",
" ",
"development",
" ",
"finance",
" ",
"to",
" ",
"Kenya",
",",
"representing",
"43",
"%",
"of",
"ODF",
"to",
"the",
"country",
"(",
"vs.",
"37",
"%",
"for",
"ODA",
"grants",
")",
".",
"Other",
"official",
"flows",
"(",
"OOF",
")",
",",
"representing",
"20",
"%",
"of",
"ODF",
"on",
"average",
",",
"have",
"also",
"increased",
"by",
"29",
"%",
"year",
"-",
"on",
"-",
"year",
".",
"\n\n",
"While",
"ODF",
"commitments",
"to",
"Kenya",
"decreased",
"in",
"2018",
"and",
"2019",
",",
"they",
"witnessed",
"a",
"significant",
"increase",
"in",
"2020",
",",
"reaching",
"USD",
"7.2",
"billion",
";",
"they",
"decreased",
"again",
"to",
"USD",
"4",
"billion",
"in",
"2021",
".",
"This",
"growth",
"was",
"mainly",
"channelled",
"through",
"ODA",
"loans",
"(",
"\n\n",
"#",
"#",
"Box",
"3.1",
".",
"Using",
"official",
"development",
"finance",
"flows",
"when",
"evaluating",
"the",
"COVID-19",
"economic",
"response",
"\n\n",
"The",
"analysis",
"in",
"this",
"report",
"considers",
"total",
"official",
"development",
"finance",
"(",
"ODF",
")",
"flows",
":",
"That",
"is",
",",
"both",
"official",
"development",
"assistance",
"(",
"ODA",
")",
"-",
"grants",
"and",
"concessional",
"loans",
"-",
"and",
"other",
"official",
"flows",
"(",
"OOF",
")",
",",
"which",
"are",
"flows",
"of",
"official",
"development",
"finance",
"that",
"are",
"not",
"concessional",
"enough",
"to",
"qualify",
"as",
"ODA",
".",
"The",
"reason",
"for",
"this",
"choice",
"is",
"that",
"donors",
"mix",
"both",
"kinds",
"of",
"official",
"financing",
"to",
"assist",
"developing",
"countries",
"and",
"considering",
"one",
"or",
"the",
"other",
"of",
"these",
"flows",
"in",
"isolation",
"would",
"give",
"an",
"incomplete",
"overview",
"of",
"donors",
"'",
"efforts",
"and",
"resource",
"allocations",
".",
"\n\n",
"Private",
"sector",
"instruments",
"(",
"PSI",
")",
"are",
"financial",
"instruments",
"extended",
"by",
"development",
"finance",
"institutions",
"(",
"DFIs",
")",
"and",
"similar",
"vehicles",
"founded",
"by",
"donors",
"to",
"build",
"markets",
"in",
"developing",
"countries",
"and",
"support",
"their",
" ",
"economic",
" ",
"development",
" ",
"and",
" ",
"welfare",
" ",
"by",
" ",
"investing",
" ",
"in",
" ",
"private",
" ",
"sector",
" ",
"activities",
".",
" ",
"Private",
" ",
"sector",
"instruments",
"include",
"loans",
"to",
"the",
"private",
"sector",
",",
"equity",
"investments",
",",
"mezzanine",
"finance",
"instruments",
",",
"\n\n",
"reimbursable",
"grants",
"and",
"guarantees",
",",
"in",
"support",
"of",
"developing",
"countries",
"'",
"development",
".",
"As",
"of",
"2023",
",",
"they",
"are",
"presented",
"as",
"a",
"distinct",
"category",
"in",
"the",
"OECD",
"CRS",
",",
"whereas",
"in",
"previous",
"years",
"these",
"activities",
"were",
"included",
"within",
"ODA",
"and",
"OOF",
".",
"\n\n",
"In",
"the",
"case",
"of",
"official",
"flows",
"(",
"ODF",
")",
"dedicated",
"to",
"help",
"combat",
"the",
"COVID-19",
"pandemic",
"in",
"particular",
",",
"grants",
"and",
"concessional",
"loans",
"(",
"ODA",
")",
"were",
"prioritised",
"to",
"finance",
"the",
"health",
"urgency",
"where",
"non",
"-",
"concessional",
"loans",
"were",
"predominantly",
"used",
"to",
"help",
"developing",
"countries",
"overcome",
"the",
"economic",
"consequences",
"of",
"the",
"crisis",
".",
"Concessional",
"and",
"non",
"-",
"concessional",
"loans",
"represented",
"56",
"%",
"and",
"44",
"%",
"of",
"the",
"global",
"response",
"respectively",
".",
"As",
"the",
"objective",
"of"
] |
[] |
- Askegaard, S., Ger, G., 1998. Product-country images: towards a contextualized approach. European Advances in Consumer Research 3 (1), 50 -58.
- Bartkova, L., Veselovska, L., 2024. Consumer behaviour under dual quality of products: ´ ´ Does testing reveal what consumers experience? ISSN 171 -184 IIMB Management Review 36 (2), 0970 -3896. https://doi.org/10.1016/j.iimb.2024.05.001.
- Borzan, B. 2017. ' Istrazivanje kvalitete naizgled istih proizvoda na trzistima starih i ˇ ˇ ˇ novih drzava clanica EU. ˇ ˇ ' https://www.hah.hr/wp-content/uploads/2015/10/Istra %C5%BEivanje-kvalitete-naizgled-istih-proizvoda-na-tr%C5%BEi%C5%A1timastarih-i-novih-dr%C5%BEava-%C4%8Dlanica-EU.pdf.
- Ceu, 2017. Experience of certain EU Member States with dual quality of foodstuffs in free movement within the EU. Council of the European Union.
- Chu, P.Y., Chang, C.C., Chen, C.Y., Wang, T.Y., 2010. Countering negative country-oforigin effects: The role of evaluation mode. European Journal of Marketing 44 (7/8), 1055 1076. -
- Colen, L., Chryssochoidis, G., Ciaian, P., Di Marcantonio, F., 2020. Differences in composition of seemingly identical branded food products: Impact on consumer purchasing decisions and welfare. In: EUR, 30026. Publications Office of the European Union, Luxembourg, p. JRC118149.
- Colombo, S., Budzinski, W., Czajkowski, M., Glenk, K., 2022. The relative performance of ´ ex-ante and ex-post measures to mitigate hypothetical and strategic bias in a stated preference study. Journal of Agricultural Economics 73 (3), 845 -873.
- Commission, E., 2017. State of the Union Address 2017. Retrieved from, Europa https:// ec.europa.eu.
- Commission, E., 2019a. Results of an EU wide comparison of quality related characteristics of food products . Publications Office of the European Union, Luxembourg https:// publications.jrc.ec.europa.eu/repository/handle/JRC117088.
- Commission, E., 2019b. Dual food quality: Commission releases study assessing differences in the composition of EU food products. Retrieved from, Brussels https:// ec.europa.eu.
European Commission. (2012). Special Eurobarometer 389: Europeans ' attitudes towards food security, food quality and the countryside. Fieldwork: 2011. Publications Office of the European Union. https://europa.eu/eurobarometer.
European Commission (2021), Guidance on the interpretation and application of Directive 2005/29/EC of the European Parliament and of the Council concerning unfair business-to-consumer commercial practices in the internal market. Official Journal of the European Union . https://eur-lex.europa.eu/legal-content/EN/TXT/ PDF/?uri = CELEX:52021XC1229(05) & from = EN.
Council of the European Union (2024), Dual quality of foodstuffs: An issue that persists -' Information from the Slovak delegation . (Document No. 10287/24 AGRI 435 ' DENLEG 35 FOOD 70). General Secretariat of the Council. https://data.consilium. europa.eu/doc/document/ST-10287-2024-INIT/en/pdf.
- Croatian Food Agency, 2017. Quality research of (seemingly) identical products on the markets of old and new EU member states. Retrieved from. https://www.hah.hr/ wp-content/uploads/2015/10/Dual-quality-final-report.pdf.
|
[
"-",
"Askegaard",
",",
"S.",
",",
"Ger",
",",
"G.",
",",
"1998",
".",
"Product",
"-",
"country",
"images",
":",
"towards",
"a",
"contextualized",
"approach",
".",
"European",
"Advances",
"in",
"Consumer",
"Research",
"3",
"(",
"1",
")",
",",
"50",
"-58",
".",
"\n",
"-",
"Bartkova",
",",
"L.",
",",
"Veselovska",
",",
"L.",
",",
"2024",
".",
"Consumer",
"behaviour",
"under",
"dual",
"quality",
"of",
"products",
":",
"´",
"´",
"Does",
"testing",
"reveal",
"what",
"consumers",
"experience",
"?",
"ISSN",
"171",
"-184",
"IIMB",
"Management",
"Review",
"36",
"(",
"2",
")",
",",
"0970",
"-3896",
".",
"https://doi.org/10.1016/j.iimb.2024.05.001",
".",
"\n",
"-",
"Borzan",
",",
"B.",
"2017",
".",
"'",
"Istrazivanje",
"kvalitete",
"naizgled",
"istih",
"proizvoda",
"na",
"trzistima",
"starih",
"i",
"ˇ",
"ˇ",
"ˇ",
"novih",
"drzava",
"clanica",
"EU",
".",
"ˇ",
"ˇ",
"'",
"https://www.hah.hr/wp-content/uploads/2015/10/Istra",
"%",
"C5%BEivanje",
"-",
"kvalitete",
"-",
"naizgled",
"-",
"istih",
"-",
"proizvoda",
"-",
"na",
"-",
"tr%C5%BEi%C5%A1timastarih",
"-",
"i",
"-",
"novih",
"-",
"dr%C5%BEava-%C4%8Dlanica",
"-",
"EU.pdf",
".",
"\n",
"-",
"Ceu",
",",
"2017",
".",
"Experience",
"of",
"certain",
"EU",
"Member",
"States",
"with",
"dual",
"quality",
"of",
"foodstuffs",
"in",
"free",
"movement",
"within",
"the",
"EU",
".",
"Council",
"of",
"the",
"European",
"Union",
".",
"\n",
"-",
"Chu",
",",
"P.Y.",
",",
"Chang",
",",
"C.C.",
",",
"Chen",
",",
"C.Y.",
",",
"Wang",
",",
"T.Y.",
",",
"2010",
".",
"Countering",
"negative",
"country",
"-",
"oforigin",
"effects",
":",
"The",
"role",
"of",
"evaluation",
"mode",
".",
"European",
"Journal",
"of",
"Marketing",
"44",
"(",
"7/8",
")",
",",
"1055",
"1076",
".",
"-",
"\n",
"-",
"Colen",
",",
"L.",
",",
"Chryssochoidis",
",",
"G.",
",",
"Ciaian",
",",
"P.",
",",
"Di",
"Marcantonio",
",",
"F.",
",",
"2020",
".",
"Differences",
"in",
"composition",
"of",
"seemingly",
"identical",
"branded",
"food",
"products",
":",
"Impact",
"on",
"consumer",
"purchasing",
"decisions",
"and",
"welfare",
".",
"In",
":",
"EUR",
",",
"30026",
".",
"Publications",
"Office",
"of",
"the",
"European",
"Union",
",",
"Luxembourg",
",",
"p.",
"JRC118149",
".",
"\n",
"-",
"Colombo",
",",
"S.",
",",
"Budzinski",
",",
"W.",
",",
"Czajkowski",
",",
"M.",
",",
"Glenk",
",",
"K.",
",",
"2022",
".",
"The",
"relative",
"performance",
"of",
"´",
"ex",
"-",
"ante",
"and",
"ex",
"-",
"post",
"measures",
"to",
"mitigate",
"hypothetical",
"and",
"strategic",
"bias",
"in",
"a",
"stated",
"preference",
"study",
".",
"Journal",
"of",
"Agricultural",
"Economics",
"73",
"(",
"3",
")",
",",
"845",
"-873",
".",
"\n",
"-",
"Commission",
",",
"E.",
",",
"2017",
".",
"State",
"of",
"the",
"Union",
"Address",
"2017",
".",
"Retrieved",
"from",
",",
"Europa",
"https://",
"ec.europa.eu",
".",
"\n",
"-",
"Commission",
",",
"E.",
",",
"2019a",
".",
"Results",
"of",
"an",
"EU",
"wide",
"comparison",
"of",
"quality",
"related",
"characteristics",
"of",
"food",
"products",
".",
"Publications",
"Office",
"of",
"the",
"European",
"Union",
",",
"Luxembourg",
"https://",
"publications.jrc.ec.europa.eu/repository/handle/JRC117088",
".",
"\n",
"-",
"Commission",
",",
"E.",
",",
"2019b",
".",
"Dual",
"food",
"quality",
":",
"Commission",
"releases",
"study",
"assessing",
"differences",
"in",
"the",
"composition",
"of",
"EU",
"food",
"products",
".",
"Retrieved",
"from",
",",
"Brussels",
"https://",
"ec.europa.eu",
".",
"\n\n",
"European",
"Commission",
".",
"(",
"2012",
")",
".",
"Special",
"Eurobarometer",
"389",
":",
"Europeans",
"'",
"attitudes",
"towards",
"food",
"security",
",",
"food",
"quality",
"and",
"the",
"countryside",
".",
"Fieldwork",
":",
"2011",
".",
"Publications",
"Office",
"of",
"the",
"European",
"Union",
".",
"https://europa.eu/eurobarometer",
".",
"\n\n",
"European",
"Commission",
"(",
"2021",
")",
",",
"Guidance",
"on",
"the",
"interpretation",
"and",
"application",
"of",
"Directive",
"2005/29",
"/",
"EC",
"of",
"the",
"European",
"Parliament",
"and",
"of",
"the",
"Council",
"concerning",
"unfair",
"business",
"-",
"to",
"-",
"consumer",
"commercial",
"practices",
"in",
"the",
"internal",
"market",
".",
"Official",
"Journal",
"of",
"the",
"European",
"Union",
".",
"https://eur-lex.europa.eu/legal-content/EN/TXT/",
"PDF/?uri",
"=",
"CELEX:52021XC1229(05",
")",
"&",
"amp",
";",
"from",
"=",
"EN",
".",
"\n\n",
"Council",
"of",
"the",
"European",
"Union",
"(",
"2024",
")",
",",
" ",
"Dual",
"quality",
"of",
"foodstuffs",
":",
"An",
"issue",
"that",
"persists",
"-",
"'",
"Information",
"from",
"the",
"Slovak",
"delegation",
".",
"(",
"Document",
"No",
".",
"10287/24",
"AGRI",
"435",
"'",
"DENLEG",
"35",
"FOOD",
"70",
")",
".",
"General",
"Secretariat",
"of",
"the",
"Council",
".",
"https://data.consilium",
".",
"europa.eu/doc/document/ST-10287-2024-INIT/en/pdf",
".",
"\n\n",
"-",
"Croatian",
"Food",
"Agency",
",",
"2017",
".",
"Quality",
"research",
"of",
"(",
"seemingly",
")",
"identical",
"products",
"on",
"the",
"markets",
"of",
"old",
"and",
"new",
"EU",
"member",
"states",
".",
"Retrieved",
"from",
".",
"https://www.hah.hr/",
"wp",
"-",
"content",
"/",
"uploads/2015/10",
"/",
"Dual",
"-",
"quality",
"-",
"final",
"-",
"report.pdf",
".",
"\n"
] |
[
{
"end": 144,
"label": "CITATION_SPAN",
"start": 2
},
{
"end": 385,
"label": "CITATION_SPAN",
"start": 147
},
{
"end": 683,
"label": "CITATION_SPAN",
"start": 388
},
{
"end": 830,
"label": "CITATION_SPAN",
"start": 686
},
{
"end": 1014,
"label": "CITATION_SPAN",
"start": 833
},
{
"end": 1296,
"label": "CITATION_SPAN",
"start": 1017
},
{
"end": 1544,
"label": "CITATION_SPAN",
"start": 1299
},
{
"end": 1647,
"label": "CITATION_SPAN",
"start": 1547
},
{
"end": 1881,
"label": "CITATION_SPAN",
"start": 1650
},
{
"end": 2061,
"label": "CITATION_SPAN",
"start": 1884
},
{
"end": 2290,
"label": "CITATION_SPAN",
"start": 2063
},
{
"end": 3178,
"label": "CITATION_SPAN",
"start": 2958
},
{
"end": 2659,
"label": "CITATION_SPAN",
"start": 2292
},
{
"end": 2958,
"label": "CITATION_SPAN",
"start": 2661
},
{
"end": 3182,
"label": "CITATION_SPAN",
"start": 2962
}
] |
in more informal,
popular healing techniques, especially midwifery, and were heavily criticized
by literati physicians.22 As demonstrated by Angela Ki- che Leung, from the
Song dynasty (960– 1279) to the Qing dynasty (1644– 1911), increasingly
stricter sex segregation made female healers indispensable to treat wives,
concubines or daughters; but the more indispensable they became, the more
distrusted they were.
|
[
"in",
"more",
"informal",
",",
"\n",
"popular",
"healing",
"techniques",
",",
"especially",
"midwifery",
",",
"and",
"were",
"heavily",
"criticized",
"\n",
"by",
"literati",
"physicians.22",
"As",
"demonstrated",
"by",
"Angela",
"Ki-",
" ",
"che",
"Leung",
",",
"from",
"the",
"\n",
"Song",
"dynasty",
"(",
"960",
"–",
" ",
"1279",
")",
"to",
"the",
"Qing",
"dynasty",
"(",
"1644",
"–",
" ",
"1911",
")",
",",
"increasingly",
"\n",
"stricter",
"sex",
"segregation",
"made",
"female",
"healers",
"indispensable",
"to",
"treat",
"wives",
",",
"\n",
"concubines",
"or",
"daughters",
";",
"but",
"the",
"more",
"indispensable",
"they",
"became",
",",
"the",
"more",
"\n",
"distrusted",
"they",
"were",
"."
] |
[
{
"end": 123,
"label": "CITATION_REF",
"start": 121
}
] |
each case that more than 80% of known species belong to the minority of groups with exceptionally high rates of species diversification."
Wiens and his coauthor Dr Daniel Moen, an assistant professor at the University of California Riverside, here analyzed the distribution of species richness and diversification rates across 'clades' - groups of species that each evolved from a single ancestor, such as phyla, classes, or families.
Out on a limb
They did this for land plants, insects, vertebrates, for all animals, and for all species across life. They analyzed data on each clade's species richness, age, and estimated diversification rate: that is, the accumulation of new species over time.
They focused on 10 phyla, 140 orders, and 678 families of land plants, jointly spanning more than 300,000 species; 31 orders and 870 families of insects, encompassing more than one million known species; 12 classes of vertebrates, encompassing more than 66,000 species; and 28 phyla and 1,710 families of animals with more than 1.5 million species. Finally, they analyzed 17 kingdoms and 2,545 families across all of life, including more than 2 million species.
The results were clear and consistent: irrespective of hierarchical level or group of organisms, the majority of extant species proved to be restricted to a few disproportionately large clades with higher-than-average diversification rates.
'Rapid radiations' of species are thought to occur when a new ecological niche opens up: for example, when a flock of grassquit birds dispersed from Central America to the virgin territory of the Galápagos Islands approximately 2.5 million years ago to diversify into the famous Darwin's finches; or when an evolutionary innovation like powered flight prompted the radiation of bats 50 million years ago.
Seeing the forest for the trees
"Our results imply that most of life's diversity is explained by such relatively rapid radiations. We also suggest key traits that might explain these rapid radiations, based on our results and results of earlier studies," said Wiens.
"These traits include multicellularity in plants, animals, and fungi across the kingdoms of life; the invasion of land and the adoption of a plant-based diet in arthropods among animal phyla; and the emergence of flowers and insect pollination in flowering plants among plant phyla," said Wiens.
However, one 'known unknown' remains: the distribution of species within the kingdom bacteria. Approximately 10,000 species of bacteria are known to science, but current estimates for the true number range
|
[
"each",
"case",
"that",
"more",
"than",
"80",
"%",
"of",
"known",
"species",
"belong",
"to",
"the",
"minority",
"of",
"groups",
"with",
"exceptionally",
"high",
"rates",
"of",
"species",
"diversification",
".",
"\"",
"\n\n\n",
"Wiens",
"and",
"his",
"coauthor",
"Dr",
"Daniel",
"Moen",
",",
"an",
"assistant",
"professor",
"at",
"the",
"University",
"of",
"California",
"Riverside",
",",
"here",
"analyzed",
"the",
"distribution",
"of",
"species",
"richness",
"and",
"diversification",
"rates",
"across",
"'",
"clades",
"'",
"-",
"groups",
"of",
"species",
"that",
"each",
"evolved",
"from",
"a",
"single",
"ancestor",
",",
"such",
"as",
"phyla",
",",
"classes",
",",
"or",
"families",
".",
"\n\n\n",
"Out",
"on",
"a",
"limb",
"\n\n\n",
"They",
"did",
"this",
"for",
"land",
"plants",
",",
"insects",
",",
"vertebrates",
",",
"for",
"all",
"animals",
",",
"and",
"for",
"all",
"species",
"across",
"life",
".",
"They",
"analyzed",
"data",
"on",
"each",
"clade",
"'s",
"species",
"richness",
",",
"age",
",",
"and",
"estimated",
"diversification",
"rate",
":",
"that",
"is",
",",
"the",
"accumulation",
"of",
"new",
"species",
"over",
"time",
".",
"\n\n\n\n\n",
"They",
"focused",
"on",
"10",
"phyla",
",",
"140",
"orders",
",",
"and",
"678",
"families",
"of",
"land",
"plants",
",",
"jointly",
"spanning",
"more",
"than",
"300,000",
"species",
";",
"31",
"orders",
"and",
"870",
"families",
"of",
"insects",
",",
"encompassing",
"more",
"than",
"one",
"million",
"known",
"species",
";",
"12",
"classes",
"of",
"vertebrates",
",",
"encompassing",
"more",
"than",
"66,000",
"species",
";",
"and",
"28",
"phyla",
"and",
"1,710",
"families",
"of",
"animals",
"with",
"more",
"than",
"1.5",
"million",
"species",
".",
"Finally",
",",
"they",
"analyzed",
"17",
"kingdoms",
"and",
"2,545",
"families",
"across",
"all",
"of",
"life",
",",
"including",
"more",
"than",
"2",
"million",
"species",
".",
"\n\n\n",
"The",
"results",
"were",
"clear",
"and",
"consistent",
":",
"irrespective",
"of",
"hierarchical",
"level",
"or",
"group",
"of",
"organisms",
",",
"the",
"majority",
"of",
"extant",
"species",
"proved",
"to",
"be",
"restricted",
"to",
"a",
"few",
"disproportionately",
"large",
"clades",
"with",
"higher",
"-",
"than",
"-",
"average",
"diversification",
"rates",
".",
"\n\n\n\n\n\n\n\n\n\n\n\n\n",
"'",
"Rapid",
"radiations",
"'",
"of",
"species",
"are",
"thought",
"to",
"occur",
"when",
"a",
"new",
"ecological",
"niche",
"opens",
"up",
":",
"for",
"example",
",",
"when",
"a",
"flock",
"of",
"grassquit",
"birds",
"dispersed",
"from",
"Central",
"America",
"to",
"the",
"virgin",
"territory",
"of",
"the",
"Galápagos",
"Islands",
"approximately",
"2.5",
"million",
"years",
"ago",
"to",
"diversify",
"into",
"the",
"famous",
"Darwin",
"'s",
"finches",
";",
"or",
"when",
"an",
"evolutionary",
"innovation",
"like",
"powered",
"flight",
"prompted",
"the",
"radiation",
"of",
"bats",
"50",
"million",
"years",
"ago",
".",
"\n\n\n",
"Seeing",
"the",
"forest",
"for",
"the",
"trees",
"\n\n\n",
"\"",
"Our",
"results",
"imply",
"that",
"most",
"of",
"life",
"'s",
"diversity",
"is",
"explained",
"by",
"such",
"relatively",
"rapid",
"radiations",
".",
"We",
"also",
"suggest",
"key",
"traits",
"that",
"might",
"explain",
"these",
"rapid",
"radiations",
",",
"based",
"on",
"our",
"results",
"and",
"results",
"of",
"earlier",
"studies",
",",
"\"",
"said",
"Wiens",
".",
"\n\n\n",
"\"",
"These",
"traits",
"include",
"multicellularity",
"in",
"plants",
",",
"animals",
",",
"and",
"fungi",
"across",
"the",
"kingdoms",
"of",
"life",
";",
"the",
"invasion",
"of",
"land",
"and",
"the",
"adoption",
"of",
"a",
"plant",
"-",
"based",
"diet",
"in",
"arthropods",
"among",
"animal",
"phyla",
";",
"and",
"the",
"emergence",
"of",
"flowers",
"and",
"insect",
"pollination",
"in",
"flowering",
"plants",
"among",
"plant",
"phyla",
",",
"\"",
"said",
"Wiens",
".",
"\n\n\n",
"However",
",",
"one",
"'",
"known",
"unknown",
"'",
"remains",
":",
"the",
"distribution",
"of",
"species",
"within",
"the",
"kingdom",
"bacteria",
".",
"Approximately",
"10,000",
"species",
"of",
"bacteria",
"are",
"known",
"to",
"science",
",",
"but",
"current",
"estimates",
"for",
"the",
"true",
"number",
"range"
] |
[] |
distributed: each pair of countries collaborates
on at least one (and a maximum of two) agrifood
projects.Regional collaboration in Biotechnology
In Biotechnology publications overall, collabo-
ration with external partners is very significantly
weighted across all six countries. Within the EaP,
Azerbaijan, Georgia and Moldova collaborate most
intensively with Ukraine.
In terms of EC projects, there are very few in col-
laboration within the EaP.
AM
AZ
BY
GE
MD
UA
Other
1 2 2 1 2 2
1 1 1 1 1 2
2 1 2 1 2 2
2 1 2 1 2 5
1 1 1 1 1 7
2 1 2 2 1 9
EC projectsAM
AZ
BY
GE
MD
UA
Other
AM 7 6 22 9 11 150
AZ 7 2 11 4 8 96
BY 6 2 4 5 39 189
GE 22 11 4 8 27 176
MD 9 4 5 8 9 64
UA 11 8 39 27 9 561
PublicationsFigure 3.47. Number of publications and EC projects in collaboration between EaP actors in different countries, in the
‘Agrifood’ domain
Colour indicates the relative distribution of documents, computed row-wise.
AM
AZ
BY
GE
MD
UA
Other
1 3
1
1 1
3
1 3
1 17
EC projectsAM
AZ
BY
GE
MD
UA
Other
AM 2 12 11 5 10 178
AZ 2 2 5 3 10 75
BY 12 2 2 3 89 408
GE 11 5 2 6 23 60
MD 5 3 3 6 34 120
UA 10 10 89 23 34 3 600
PublicationsFigure 3.48. Number of publications and EC projects in collaboration between EaP actors in different countries, in the
‘Biotechnology’ domain
Colour indicates the relative distribution of documents, computed row-wise.
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation211
Regional collaboration in Chemistry and
chemical engineering
In Chemistry and chemical engineering pub-
lications, Moldova collaborates most intensively
with Ukraine. Ukraine is, again, the country with
the highest number of bilateral collaborations.
In terms of EC projects, there are also very few in
collaboration within the EaP.Regional collaboration in Electric and
electronic technologies
In Electric and electronic technologies publi-
cations, all EaP countries have a very diversified
pattern of collaboration. Ukraine is, once more,
the country with the highest number of bilater-
al collaborations. Those two countries, as well as
Georgia and Moldova, have a high number of col-
laborations with external partners.
There
|
[
"distributed",
":",
"each",
"pair",
"of",
"countries",
"collaborates",
"\n",
"on",
"at",
"least",
"one",
"(",
"and",
"a",
"maximum",
"of",
"two",
")",
"agrifood",
"\n",
"projects",
".",
"Regional",
"collaboration",
"in",
"Biotechnology",
"\n",
"In",
"Biotechnology",
"publications",
"overall",
",",
"collabo-",
"\n",
"ration",
"with",
"external",
"partners",
"is",
"very",
"significantly",
"\n",
"weighted",
"across",
"all",
"six",
"countries",
".",
"Within",
"the",
"EaP",
",",
"\n",
"Azerbaijan",
",",
"Georgia",
"and",
"Moldova",
"collaborate",
"most",
"\n",
"intensively",
"with",
"Ukraine",
".",
"\n",
"In",
"terms",
"of",
"EC",
"projects",
",",
"there",
"are",
"very",
"few",
"in",
"col-",
"\n",
"laboration",
"within",
"the",
"EaP.",
"\n",
"AM",
"\n",
"AZ",
"\n",
"BY",
"\n",
"GE",
"\n",
"MD",
"\n",
"UA",
"\n",
"Other",
"\n",
"1",
"2",
"2",
"1",
"2",
"2",
"\n",
"1",
"1",
"1",
"1",
"1",
"2",
"\n",
"2",
"1",
"2",
"1",
"2",
"2",
"\n",
"2",
"1",
"2",
"1",
"2",
"5",
"\n",
"1",
"1",
"1",
"1",
"1",
"7",
"\n",
"2",
"1",
"2",
"2",
"1",
"9",
"\n",
"EC",
"projectsAM",
"\n",
"AZ",
"\n",
"BY",
"\n",
"GE",
"\n",
"MD",
"\n",
"UA",
"\n",
"Other",
"\n",
"AM",
"7",
"6",
"22",
"9",
"11",
"150",
"\n",
"AZ",
"7",
"2",
"11",
"4",
"8",
"96",
"\n",
"BY",
"6",
"2",
"4",
"5",
"39",
"189",
"\n",
"GE",
"22",
"11",
"4",
"8",
"27",
"176",
"\n",
"MD",
"9",
"4",
"5",
"8",
"9",
"64",
"\n",
"UA",
"11",
"8",
"39",
"27",
"9",
"561",
"\n",
"PublicationsFigure",
"3.47",
".",
"Number",
"of",
"publications",
"and",
"EC",
"projects",
"in",
"collaboration",
"between",
"EaP",
"actors",
"in",
"different",
"countries",
",",
"in",
"the",
"\n",
"‘",
"Agrifood",
"’",
"domain",
"\n",
"Colour",
"indicates",
"the",
"relative",
"distribution",
"of",
"documents",
",",
"computed",
"row",
"-",
"wise",
".",
"\n",
"AM",
"\n",
"AZ",
"\n",
"BY",
"\n",
"GE",
"\n",
"MD",
"\n",
"UA",
"\n",
"Other",
"\n",
"1",
"3",
"\n",
"1",
"\n",
"1",
"1",
"\n",
"3",
"\n",
"1",
"3",
"\n",
"1",
"17",
"\n",
"EC",
"projectsAM",
"\n",
"AZ",
"\n",
"BY",
"\n",
"GE",
"\n",
"MD",
"\n",
"UA",
"\n",
"Other",
"\n",
"AM",
"2",
"12",
"11",
"5",
"10",
"178",
"\n",
"AZ",
"2",
"2",
"5",
"3",
"10",
"75",
"\n",
"BY",
"12",
"2",
"2",
"3",
"89",
"408",
"\n",
"GE",
"11",
"5",
"2",
"6",
"23",
"60",
"\n",
"MD",
"5",
"3",
"3",
"6",
"34",
"120",
"\n",
"UA",
"10",
"10",
"89",
"23",
"34",
"3",
"600",
"\n",
"PublicationsFigure",
"3.48",
".",
"Number",
"of",
"publications",
"and",
"EC",
"projects",
"in",
"collaboration",
"between",
"EaP",
"actors",
"in",
"different",
"countries",
",",
"in",
"the",
"\n",
"‘",
"Biotechnology",
"’",
"domain",
"\n",
"Colour",
"indicates",
"the",
"relative",
"distribution",
"of",
"documents",
",",
"computed",
"row",
"-",
"wise",
".",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation211",
"\n",
"Regional",
"collaboration",
"in",
"Chemistry",
"and",
"\n",
"chemical",
"engineering",
"\n",
"In",
"Chemistry",
"and",
"chemical",
"engineering",
"pub-",
"\n",
"lications",
",",
"Moldova",
"collaborates",
"most",
"intensively",
"\n",
"with",
"Ukraine",
".",
"Ukraine",
"is",
",",
"again",
",",
"the",
"country",
"with",
"\n",
"the",
"highest",
"number",
"of",
"bilateral",
"collaborations",
".",
"\n",
"In",
"terms",
"of",
"EC",
"projects",
",",
"there",
"are",
"also",
"very",
"few",
"in",
"\n",
"collaboration",
"within",
"the",
"EaP.Regional",
"collaboration",
"in",
"Electric",
"and",
"\n",
"electronic",
"technologies",
"\n",
"In",
"Electric",
"and",
"electronic",
"technologies",
"publi-",
"\n",
"cations",
",",
"all",
"EaP",
"countries",
"have",
"a",
"very",
"diversified",
"\n",
"pattern",
"of",
"collaboration",
".",
"Ukraine",
"is",
",",
"once",
"more",
",",
"\n",
"the",
"country",
"with",
"the",
"highest",
"number",
"of",
"bilater-",
"\n",
"al",
"collaborations",
".",
"Those",
"two",
"countries",
",",
"as",
"well",
"as",
"\n",
"Georgia",
"and",
"Moldova",
",",
"have",
"a",
"high",
"number",
"of",
"col-",
"\n",
"laborations",
"with",
"external",
"partners",
".",
"\n",
"There"
] |
[] |
Paleontology
- ... more topics
- Society /dropdown-menu
- View all the latest top news in the social sciences & education, or browse the topics below: Science & Society /menu-topics /col-xs-4 Business & Industry /menu-topics /col-xs-4 Education & Learning /menu-topics /col-xs-4 /row /yamm-content
- View all the latest in the social sciences & education, or browse the topics below:
- Arts & Culture
- Economics
- Privacy Issues
- Public Health
- Sports
- ... more topics
- Computers & Internet
- Energy & Resources
- Engineering
- Medical Technology
- Transportation
- ... more topics
- Creativity
- Educational Psychology
- Infant & Preschool
- Learning Disorders
- STEM Education
- ... more topics
- Quirky /dropdown-menu
- Top News
- Human Quirks
- Odd Creatures
- Bizarre Things
- Weird World
Free Subscriptions
Stay informed with ScienceDaily's free email newsletter, updated daily and weekly. Or view our many newsfeeds in your RSS reader:
- Email Newsletter
- RSS Feeds
Follow Us
Keep up to date with the latest news from ScienceDaily via social networks:
- Facebook
- X / Twitter
Have Feedback?
Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
- Leave Feedback
- Contact Us
| | | | | |
or by other parties, where indicated. All rights controlled by their respective owners. Content on this website is for information only. It is not intended to provide medical or other professional advice. Views expressed here do not necessarily reflect those of ScienceDaily, contributors or partners. Financial support for ScienceDaily comes from advertisements and referral programs.
Share this page ...
Researchers uncovered that the Maui wildfires caused a spike in deaths far higher than reported, with hidden fatalities linked to fire, smoke, and lack of medical access. They warn that prevention rooted in Native Hawaiian ecological knowledge is critical to avoiding another tragedy.
<!-- image -->
<!-- image -->
<!-- image -->
Report Ad
<!-- image -->
<!-- image -->
<!-- image -->
|
[
"Paleontology",
"\n ",
"-",
"...",
"more",
"topics",
"\n",
"-",
"Society",
"/dropdown",
"-",
"menu",
"\n ",
"-",
"View",
"all",
"the",
"latest",
"top",
"news",
"in",
"the",
"social",
"sciences",
"&",
"amp",
";",
"education",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"Science",
"&",
"amp",
";",
"Society",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Business",
"&",
"amp",
";",
"Industry",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"Education",
"&",
"amp",
";",
"Learning",
"/menu",
"-",
"topics",
"/col",
"-",
"xs-4",
"/row",
"/yamm",
"-",
"content",
"\n ",
"-",
"View",
"all",
"the",
"latest",
" ",
"in",
"the",
"social",
"sciences",
"&",
"amp",
";",
"education",
",",
"or",
"browse",
"the",
"topics",
"below",
":",
"\n ",
"-",
"Arts",
"&",
"amp",
";",
"Culture",
"\n ",
"-",
"Economics",
"\n ",
"-",
"Privacy",
"Issues",
"\n ",
"-",
"Public",
"Health",
"\n ",
"-",
"Sports",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Computers",
"&",
"amp",
";",
"Internet",
"\n ",
"-",
"Energy",
"&",
"amp",
";",
"Resources",
"\n ",
"-",
"Engineering",
"\n ",
"-",
"Medical",
"Technology",
"\n ",
"-",
"Transportation",
"\n ",
"-",
"...",
"more",
"topics",
"\n ",
"-",
"Creativity",
"\n ",
"-",
"Educational",
"Psychology",
"\n ",
"-",
"Infant",
"&",
"amp",
";",
"Preschool",
"\n ",
"-",
"Learning",
"Disorders",
"\n ",
"-",
"STEM",
"Education",
"\n ",
"-",
"...",
"more",
"topics",
"\n",
"-",
"Quirky",
"/dropdown",
"-",
"menu",
"\n ",
"-",
"Top",
"News",
"\n ",
"-",
"Human",
"Quirks",
"\n ",
"-",
"Odd",
"Creatures",
"\n ",
"-",
"Bizarre",
"Things",
"\n ",
"-",
"Weird",
"World",
"\n\n",
"Free",
"Subscriptions",
"\n\n",
"Stay",
"informed",
"with",
"ScienceDaily",
"'s",
"free",
"email",
"newsletter",
",",
"updated",
"daily",
"and",
"weekly",
".",
"Or",
"view",
"our",
"many",
"newsfeeds",
"in",
"your",
"RSS",
"reader",
":",
"\n\n",
"-",
"Email",
"Newsletter",
"\n",
"-",
"RSS",
"Feeds",
"\n\n",
"Follow",
"Us",
"\n\n",
"Keep",
"up",
"to",
"date",
"with",
"the",
"latest",
"news",
"from",
"ScienceDaily",
"via",
"social",
"networks",
":",
"\n\n",
"-",
"Facebook",
"\n",
"-",
"X",
"/",
"Twitter",
"\n\n",
"Have",
"Feedback",
"?",
"\n\n",
"Tell",
"us",
"what",
"you",
"think",
"of",
"ScienceDaily",
"--",
"we",
"welcome",
"both",
"positive",
"and",
"negative",
"comments",
".",
"Have",
"any",
"problems",
"using",
"the",
"site",
"?",
"Questions",
"?",
"\n\n",
"-",
"Leave",
"Feedback",
"\n",
"-",
"Contact",
"Us",
"\n\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n\n",
"or",
"by",
"other",
"parties",
",",
"where",
"indicated",
".",
"All",
"rights",
"controlled",
"by",
"their",
"respective",
"owners",
".",
"Content",
"on",
"this",
"website",
"is",
"for",
"information",
"only",
".",
"It",
"is",
"not",
"intended",
"to",
"provide",
"medical",
"or",
"other",
"professional",
"advice",
".",
"Views",
"expressed",
"here",
"do",
"not",
"necessarily",
"reflect",
"those",
"of",
"ScienceDaily",
",",
"contributors",
"or",
"partners",
".",
"Financial",
"support",
"for",
"ScienceDaily",
"comes",
"from",
"advertisements",
"and",
"referral",
"programs",
".",
"\n\n",
"Share",
"this",
"page",
"...",
"\n\n",
"Researchers",
"uncovered",
"that",
"the",
"Maui",
"wildfires",
"caused",
"a",
"spike",
"in",
"deaths",
"far",
"higher",
"than",
"reported",
",",
"with",
"hidden",
"fatalities",
"linked",
"to",
"fire",
",",
"smoke",
",",
"and",
"lack",
"of",
"medical",
"access",
".",
"They",
"warn",
"that",
"prevention",
"rooted",
"in",
"Native",
"Hawaiian",
"ecological",
"knowledge",
"is",
"critical",
"to",
"avoiding",
"another",
"tragedy",
".",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Report",
"Ad",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">"
] |
[] |
PREF 0.0 FONC 2
LECT cub6 TERM
FONC NUM 1 TABL 2 0.0 1.0
1.0 1.0
NUM 2 TABL 4 0.0 0.0
0.01 0.0
0.01001 1.0
1.0 1.0
OPTI PINS EQVD REDU ASN
!OPTI PINS STAT
! LNKS STAT
LINK COUP SPLT NONE
BLOQ 123 LECT bas1 TERM
PINB BODY FROT MUST 0.3 MUDY 0.1 GAMM 0.5 MLEV 5
LECT pbas TERM
BODY FROT MUST 0.3 MUDY 0.1 GAMM 0.5 MLEV 5
LECT pcub TERM
OPTI NOTE CSTA 0.5
LOG 1
PINS GRID DPIN 1.0001
QUAS STAT 100. 1.0 UPTO 0.01
ECRI COOR DEPL VITE ACCE FLIA TFRE 0.01
NOEL
POIN LECT p5 p6 p7 p8 TERM
FICH ALIT TFRE 1.E-5
POIN LECT p5 p6 p7 p8 TERM
FICH ALIC TFRE 1.E-3
CALC TINI 0 TEND 0.085
!fin
*=======================================================================
PLAY
CAME 1 EYE 9.67981E+00 -1.55461E+01 1.19133E+01
! Q 8.47889E-01 4.83787E-01 5.59730E-02 2.09526E-01
VIEW -2.97649E-01 7.96940E-01 -5.25635E-01
RIGH 9.05932E-01 4.09467E-01 1.07814E-01
UP -3.01151E-01 4.44099E-01 8.43851E-01
FOV 2.48819E+01
!NAVIGATION MODE: ROTATING CAMERA
!CENTER : 3.50000E+00 1.00000E+00 1.00000E+00
!RSPHERE: 3.77492E+00
!RADIUS : 2.07620E+01
!ASPECT : 1.00000E+00
!NEAR : 1.69871E+01
!FAR : 2.83119E+01
SCEN GEOM NAVI FREE
LIMA ON
SLER CAM1 1 NFRA 1
FREQ 0 TFRE 1.E-3
TRAC OFFS FICH AVI NOCL NFTO 86 FPS 10 KFRE 10 COMP -1
OBJE LECT base cube TERM REND
GOTR LOOP 84 OFFS FICH AVI CONT NOCL
OBJE LECT base cube TERM REND
GO
TRAC OFFS FICH AVI CONT
OBJE LECT base cube TERM RENDENDP
*=======================================================================
SUITE
Post-treatment
ECHO
RESU ALIC TEMP GARD PSCR
SORT GRAP AXTE 1. 't [s]'
COUR 1 'dz_p5' DEPL COMP 3 NOEU LECT p5 TERM
COUR 2 'dz_p6' DEPL COMP 3 NOEU LECT p6 TERM
COUR 3 'dz_p7' DEPL COMP 3 NOEU LECT p7 TERM
COUR 4 'dz_p8' DEPL COMP 3 NOEU LECT p8 TERM
COUR 5 'dx_p5' DEPL COMP 1 NOEU LECT p5 TERM
COUR 6 'dx_p6' DEPL COMP 1 NOEU LECT p6 TERM
COUR 7 'dx_p7' DEPL COMP 1 NOEU LECT p7 TERM
COUR 8 'dx_p8' DEPL COMP 1 NOEU LECT p8 TERM
TRAC 1 2 3 4 AXES 1. 'Z-DISP (m)' YZER
TRAC 5 6 7 8 AXES 1. 'X-DISP (m)' YZER
LIST 1 2 3 4 AXES 1. 'Z-DISP (m)'
LIST 5 6 7 8 AXES 1. 'X-DISP (m)'
RCOU 15 'dx_p5' FICH 'sc3d31.pun' RENA 'dx_p5_31'
TRAC 5 15 AXES 1. 'X-DISP (m)' YZER
COLO NOIR ROUG
FIN
sc3d33.dgibi
opti echo 0;
*
'DEBPROC' pxextr3d m*'MAILLAGE' x1*'FLOTTANT'
|
[
"PREF",
"0.0",
"FONC",
"2",
"\n",
"LECT",
"cub6",
"TERM",
"\n",
"FONC",
"NUM",
"1",
"TABL",
"2",
"0.0",
"1.0",
"\n",
"1.0",
"1.0",
"\n",
"NUM",
"2",
"TABL",
"4",
"0.0",
"0.0",
"\n",
"0.01",
"0.0",
"\n",
"0.01001",
"1.0",
"\n",
"1.0",
"1.0",
"\n",
"OPTI",
"PINS",
"EQVD",
"REDU",
"ASN",
"\n",
"!",
"OPTI",
"PINS",
"STAT",
"\n",
"!",
"LNKS",
"STAT",
"\n",
"LINK",
"COUP",
"SPLT",
"NONE",
"\n",
"BLOQ",
"123",
"LECT",
"bas1",
"TERM",
"\n",
"PINB",
"BODY",
"FROT",
"MUST",
"0.3",
"MUDY",
"0.1",
"GAMM",
"0.5",
"MLEV",
"5",
"\n",
"LECT",
"pbas",
"TERM",
"\n",
"BODY",
"FROT",
"MUST",
"0.3",
"MUDY",
"0.1",
"GAMM",
"0.5",
"MLEV",
"5",
"\n",
"LECT",
"pcub",
"TERM",
"\n",
"OPTI",
"NOTE",
"CSTA",
"0.5",
"\n",
"LOG",
"1",
"\n",
"PINS",
"GRID",
"DPIN",
"1.0001",
"\n",
"QUAS",
"STAT",
"100",
".",
"1.0",
"UPTO",
"0.01",
"\n",
"ECRI",
"COOR",
"DEPL",
"VITE",
"ACCE",
"FLIA",
"TFRE",
"0.01",
"\n",
"NOEL",
"\n",
"POIN",
"LECT",
"p5",
"p6",
"p7",
"p8",
"TERM",
"\n",
"FICH",
"ALIT",
"TFRE",
"1.E-5",
"\n",
"POIN",
"LECT",
"p5",
"p6",
"p7",
"p8",
"TERM",
"\n",
"FICH",
"ALIC",
"TFRE",
"1.E-3",
"\n",
"CALC",
"TINI",
"0",
"TEND",
"0.085",
"\n",
"!",
"fin",
"\n",
"*",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"\n",
"PLAY",
"\n",
"CAME",
"1",
"EYE",
"9.67981E+00",
"-1.55461E+01",
"1.19133E+01",
"\n",
"!",
"Q",
"8.47889E-01",
"4.83787E-01",
"5.59730E-02",
"2.09526E-01",
"\n",
"VIEW",
"-2.97649E-01",
"7.96940E-01",
"-5.25635E-01",
"\n",
"RIGH",
"9.05932E-01",
"4.09467E-01",
"1.07814E-01",
"\n",
"UP",
"-3.01151E-01",
"4.44099E-01",
"8.43851E-01",
"\n",
"FOV",
"2.48819E+01",
"\n",
"!",
"NAVIGATION",
"MODE",
":",
"ROTATING",
"CAMERA",
"\n",
"!",
"CENTER",
":",
"3.50000E+00",
"1.00000E+00",
"1.00000E+00",
"\n",
"!",
"RSPHERE",
":",
"3.77492E+00",
"\n",
"!",
"RADIUS",
":",
"2.07620E+01",
"\n",
"!",
"ASPECT",
":",
"1.00000E+00",
"\n",
"!",
"NEAR",
":",
"1.69871E+01",
"\n",
"!",
"FAR",
":",
"2.83119E+01",
"\n",
"SCEN",
"GEOM",
"NAVI",
"FREE",
"\n",
"LIMA",
"ON",
"\n",
"SLER",
"CAM1",
"1",
"NFRA",
"1",
"\n",
"FREQ",
"0",
"TFRE",
"1.E-3",
"\n",
"TRAC",
"OFFS",
"FICH",
"AVI",
"NOCL",
"NFTO",
"86",
"FPS",
"10",
"KFRE",
"10",
"COMP",
"-1",
"\n",
"OBJE",
"LECT",
"base",
"cube",
"TERM",
"REND",
"\n",
"GOTR",
"LOOP",
"84",
"OFFS",
"FICH",
"AVI",
"CONT",
"NOCL",
"\n",
"OBJE",
"LECT",
"base",
"cube",
"TERM",
"REND",
"\n",
"GO",
"\n",
"TRAC",
"OFFS",
"FICH",
"AVI",
"CONT",
"\n",
"OBJE",
"LECT",
"base",
"cube",
"TERM",
"RENDENDP",
"\n",
"*",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"=",
"\n",
"SUITE",
"\n",
"Post",
"-",
"treatment",
"\n",
"ECHO",
"\n",
"RESU",
"ALIC",
"TEMP",
"GARD",
"PSCR",
"\n",
"SORT",
"GRAP",
"AXTE",
"1",
".",
"'",
"t",
"[",
"s",
"]",
"'",
"\n",
"COUR",
"1",
"'",
"dz_p5",
"'",
"DEPL",
"COMP",
"3",
"NOEU",
"LECT",
"p5",
"TERM",
"\n",
"COUR",
"2",
"'",
"dz_p6",
"'",
"DEPL",
"COMP",
"3",
"NOEU",
"LECT",
"p6",
"TERM",
"\n",
"COUR",
"3",
"'",
"dz_p7",
"'",
"DEPL",
"COMP",
"3",
"NOEU",
"LECT",
"p7",
"TERM",
"\n",
"COUR",
"4",
"'",
"dz_p8",
"'",
"DEPL",
"COMP",
"3",
"NOEU",
"LECT",
"p8",
"TERM",
"\n",
"COUR",
"5",
"'",
"dx_p5",
"'",
"DEPL",
"COMP",
"1",
"NOEU",
"LECT",
"p5",
"TERM",
"\n",
"COUR",
"6",
"'",
"dx_p6",
"'",
"DEPL",
"COMP",
"1",
"NOEU",
"LECT",
"p6",
"TERM",
"\n",
"COUR",
"7",
"'",
"dx_p7",
"'",
"DEPL",
"COMP",
"1",
"NOEU",
"LECT",
"p7",
"TERM",
"\n",
"COUR",
"8",
"'",
"dx_p8",
"'",
"DEPL",
"COMP",
"1",
"NOEU",
"LECT",
"p8",
"TERM",
"\n",
"TRAC",
"1",
"2",
"3",
"4",
"AXES",
"1",
".",
"'",
"Z",
"-",
"DISP",
"(",
"m",
")",
"'",
"YZER",
"\n",
"TRAC",
"5",
"6",
"7",
"8",
"AXES",
"1",
".",
"'",
"X",
"-",
"DISP",
"(",
"m",
")",
"'",
"YZER",
"\n",
"LIST",
"1",
"2",
"3",
"4",
"AXES",
"1",
".",
"'",
"Z",
"-",
"DISP",
"(",
"m",
")",
"'",
"\n",
"LIST",
"5",
"6",
"7",
"8",
"AXES",
"1",
".",
"'",
"X",
"-",
"DISP",
"(",
"m",
")",
"'",
"\n",
"RCOU",
"15",
"'",
"dx_p5",
"'",
"FICH",
"'",
"sc3d31.pun",
"'",
"RENA",
"'",
"dx_p5_31",
"'",
"\n",
"TRAC",
"5",
"15",
"AXES",
"1",
".",
"'",
"X",
"-",
"DISP",
"(",
"m",
")",
"'",
"YZER",
"\n",
"COLO",
"NOIR",
"ROUG",
"\n",
"FIN",
"\n",
"sc3d33.dgibi",
"\n",
"opti",
"echo",
"0",
";",
"\n",
"*",
"\n",
"'",
"DEBPROC",
"'",
"pxextr3d",
"m*'MAILLAGE",
"'",
"x1*'FLOTTANT",
"'"
] |
[] |
impacts analyses of key value chains in the EU.
Areas for improvement and priority intervention s
During the development of the study, key areas in need of improvement were identified. Such areas
were not only unveiled when screening available statistics and data, but also because of the
discussions with stakeholders during the consultation.
It is evident that future variations in the production of virgin plastics for fossil sources could have a
significant role in reducing impacts and improving circularity of the value chain. Remarkably,
available statistics on the plastic value chain suggest a decline in plastic production trends from 2018
to 2022, consequently to multiple factors including for instance oil prices fluctuations, global
production overcapacities and competition from imports, environmental regulations, consumers’
awareness, etc. To reduce the dependency from fossil -based polymers, the presence of bio -based
plastics alternatives could also especially be encouraged, although this would require an in -depth
analysis o f potential trade -offs with regards to impact categories beyond Climate Change.
Enhancing the granularity details concerning imports of plastics could have a pivotal role to
differentiate between the influx of primary and secondary plastics in the EU, as particularly flagged
by stakeholders during the consultation. The inclusion of bio -based p lastics and the tracking of
compostable polymers along the value chain proved to be challenging not only due to the few data
available (especially with sector -specific granular details), but also due to overlapping definitions in
literature (e.g. bio-based vs compostable vs biodegradable).
Notwithstanding the potential trends on the production and imports of plastics, circularity of the
whole value chain would only be possible if end -of-life waste collection and waste management are
also improved. Notably , information on the origin and fate of recyclates could be improved. Besides,
a proper mapping not only of the quantity but also of the fate of pre-consumer waste was recognized
as crucial. Improving the data available to account for the pre -consumer waste stream could be
essential, especial ly to assess its contribution to the circularity of the EU value chain. Although
existing statistics enable the mapping of waste collected and the associated fate, a lack of data
related to the delta between consumed plastics and total waste generated was evident. This is
particularly significant as it affected the mapping of stock and mismanaged plastics, both hotspots for
a thorough EU -wide overview of flows and impacts.
Developments
|
[
"impacts",
"analyses",
"of",
"key",
"value",
"chains",
"in",
"the",
"EU",
".",
" \n",
"Areas",
"for",
"improvement",
"and",
"priority",
"intervention",
"s",
"\n",
"During",
"the",
"development",
"of",
"the",
"study",
",",
"key",
"areas",
"in",
"need",
"of",
"improvement",
"were",
"identified",
".",
"Such",
"areas",
"\n",
"were",
"not",
"only",
"unveiled",
"when",
"screening",
"available",
"statistics",
"and",
"data",
",",
"but",
"also",
"because",
" ",
"of",
"the",
"\n",
"discussions",
"with",
"stakeholders",
"during",
"the",
"consultation",
".",
" \n",
"It",
"is",
"evident",
"that",
"future",
"variations",
"in",
"the",
"production",
"of",
"virgin",
"plastics",
"for",
"fossil",
"sources",
"could",
"have",
"a",
"\n",
"significant",
"role",
"in",
"reducing",
"impacts",
"and",
"improving",
"circularity",
"of",
"the",
"value",
"chain",
".",
"Remarkably",
",",
"\n",
"available",
"statistics",
"on",
"the",
"plastic",
"value",
"chain",
"suggest",
"a",
"decline",
"in",
"plastic",
"production",
"trends",
"from",
"2018",
"\n",
"to",
"2022",
",",
"consequently",
"to",
"multiple",
"factors",
"including",
"for",
"instance",
"oil",
"prices",
"fluctuations",
",",
"global",
"\n",
"production",
"overcapacities",
"and",
"competition",
"from",
"imports",
",",
"environmental",
"regulations",
",",
"consumers",
"’",
"\n",
"awareness",
",",
"etc",
".",
" ",
"To",
"reduce",
"the",
"dependency",
"from",
"fossil",
"-based",
"polymers",
",",
"the",
"presence",
"of",
"bio",
"-based",
"\n",
"plastics",
"alternatives",
"could",
"also",
"especially",
"be",
"encouraged",
",",
"although",
"this",
"would",
"require",
"an",
"in",
"-depth",
"\n",
"analysis",
"o",
"f",
"potential",
"trade",
"-offs",
"with",
"regards",
"to",
"impact",
"categories",
"beyond",
"Climate",
"Change",
".",
" \n",
"Enhancing",
" ",
"the",
"granularity",
"details",
"concerning",
"imports",
"of",
"plastics",
"could",
"have",
"a",
"pivotal",
"role",
"to",
"\n",
"differentiate",
"between",
"the",
"influx",
"of",
"primary",
"and",
"secondary",
"plastics",
"in",
"the",
"EU",
",",
"as",
"particularly",
"flagged",
"\n",
"by",
"stakeholders",
"during",
"the",
"consultation",
".",
"The",
"inclusion",
"of",
"bio",
"-based",
"p",
"lastics",
"and",
"the",
"tracking",
"of",
"\n",
"compostable",
"polymers",
"along",
"the",
"value",
"chain",
"proved",
"to",
"be",
"challenging",
"not",
"only",
"due",
"to",
"the",
"few",
"data",
"\n",
"available",
"(",
"especially",
"with",
"sector",
"-specific",
"granular",
"details",
")",
",",
"but",
"also",
"due",
"to",
"overlapping",
"definitions",
"in",
"\n",
"literature",
"(",
"e.g.",
"bio",
"-",
"based",
"vs",
"compostable",
"vs",
"biodegradable",
")",
".",
" \n",
"Notwithstanding",
"the",
"potential",
"trends",
"on",
"the",
"production",
"and",
"imports",
"of",
"plastics",
",",
"circularity",
"of",
"the",
"\n",
"whole",
"value",
"chain",
"would",
"only",
"be",
"possible",
"if",
"end",
"-of",
"-",
"life",
"waste",
"collection",
"and",
"waste",
"management",
"are",
"\n",
"also",
"improved",
".",
"Notably",
",",
"information",
"on",
"the",
"origin",
"and",
"fate",
"of",
"recyclates",
"could",
"be",
"improved",
".",
"Besides",
",",
"\n",
"a",
"proper",
"mapping",
"not",
"only",
"of",
"the",
"quantity",
" ",
"but",
"also",
"of",
"the",
"fate",
"of",
"pre",
"-",
"consumer",
"waste",
"was",
"recognized",
"\n",
"as",
"crucial",
".",
"Improving",
"the",
"data",
"available",
"to",
"account",
"for",
"the",
"pre",
"-consumer",
"waste",
"stream",
"could",
"be",
"\n",
"essential",
",",
"especial",
"ly",
"to",
"assess",
"its",
"contribution",
"to",
"the",
"circularity",
"of",
"the",
"EU",
"value",
"chain",
".",
"Although",
"\n",
"existing",
"statistics",
"enable",
"the",
"mapping",
"of",
"waste",
"collected",
"and",
"the",
"associated",
"fate",
",",
"a",
"lack",
"of",
"data",
"\n",
"related",
"to",
"the",
"delta",
"between",
"consumed",
"plastics",
"and",
"total",
"waste",
"generated",
"was",
"evident",
".",
"This",
"is",
"\n",
"particularly",
"significant",
"as",
"it",
"affected",
"the",
"mapping",
"of",
"stock",
"and",
"mismanaged",
"plastics",
",",
"both",
"hotspots",
"for",
"\n",
"a",
"thorough",
"EU",
"-wide",
"overview",
"of",
"flows",
"and",
"impacts",
".",
" \n",
"Developments"
] |
[] |
These differences will be explained in detail in the analysis.
## 6. Mousa's (1994) Study
The subjects of this study were 60 native speakers of Hejazi Urban Dialect (HUD), a variety of Arabic spoken in the urban areas of the Western province of Saudi Arabia, mainly Makkah, Madinah and Jeddah. They were divided into three groups, 20 in each. None of them had lived in an English-speaking country before the time of study. The first group consisted of pupils at the third year of their intermediate school. Their age ranged from 14 to 16 years. They had been studying English for three years, four hours a week. The second group was pupils of
the third year at the secondary school. They were between 17 and 18 years of age. They had been exposed to English for six years at a frequency of four hours a week. The third group was university undergraduate students (third year level). They studied different subjects. They had been studying English for nine academic years. In this study, the major aspects of the Saudi learner's interphonology were dealt with. The study drew on the concept of transfer (Broselow, 1983, 1987) and markedness (Eckman, 1977) as two important factors that play major roles in shaping the learners' phonological acquisition. The analysis of the errors made by the learners was eclectic in that it was carried out in such a way that different theories of linear and non-linear phonology as well as theories of language acquisition both first and second, were employed. The study investigated the acquisition of English vowels, monophthongs and diphthongs, the acquisition of some problematic English consonants for Arabs, such as the voiceless bilabial stop /p/, the voiced labio-dental fricative /v/, the voiceless affricate / ʧ /, the pronunciation of the approximant /r/ in general, and when it is preceded by the voiceless stops /p, t, k/, the pronunciation of consonant clusters and the acquisition of English stress. The analysis shows that the difference in parameter settings (Chomsky, 1981b; Archibald, 1990; Dresher & Kay, 1990) between Arabic and English can easily explain why certain errors take place. A number of strategies such as sound substitution, consonant reduction, vowel epenthesis, glottal stop insertion, and the misplacement of stress, were employed in accordance with Arabic norms. The analysis also displayed that plenty of the strategies that were resorted to by the learners were similar to those found
|
[
"These",
"differences",
"will",
"be",
"explained",
"in",
"detail",
"in",
"the",
"analysis",
".",
"\n\n",
"#",
"#",
"6",
".",
"Mousa",
"'s",
"(",
"1994",
")",
"Study",
"\n\n",
"The",
"subjects",
"of",
"this",
"study",
"were",
"60",
"native",
"speakers",
"of",
"Hejazi",
"Urban",
"Dialect",
"(",
"HUD",
")",
",",
"a",
"variety",
"of",
"Arabic",
"spoken",
"in",
"the",
" ",
"urban",
" ",
"areas",
" ",
"of",
" ",
"the",
" ",
"Western",
" ",
"province",
" ",
"of",
" ",
"Saudi",
"Arabia",
",",
" ",
"mainly",
" ",
"Makkah",
",",
" ",
"Madinah",
" ",
"and",
" ",
"Jeddah",
".",
" ",
"They",
" ",
"were",
"divided",
"into",
"three",
"groups",
",",
"20",
"in",
"each",
".",
"None",
"of",
"them",
"had",
"lived",
"in",
"an",
"English",
"-",
"speaking",
"country",
"before",
"the",
"time",
"of",
"study",
".",
"The",
"first",
"group",
"consisted",
"of",
"pupils",
"at",
"the",
"third",
"year",
"of",
"their",
"intermediate",
"school",
".",
"Their",
"age",
"ranged",
"from",
"14",
"to",
"16",
"years",
".",
"They",
"had",
"been",
"studying",
"English",
"for",
"three",
"years",
",",
"four",
"hours",
"a",
"week",
".",
"The",
"second",
"group",
"was",
"pupils",
"of",
"\n\n",
"the",
"third",
"year",
"at",
"the",
"secondary",
"school",
".",
"They",
"were",
"between",
"17",
"and",
"18",
"years",
"of",
"age",
".",
"They",
"had",
"been",
"exposed",
"to",
"English",
"for",
"six",
"years",
"at",
"a",
"frequency",
"of",
"four",
"hours",
"a",
"week",
".",
"The",
"third",
"group",
"was",
"university",
"undergraduate",
"students",
"(",
"third",
"year",
"level",
")",
".",
"They",
"studied",
"different",
"subjects",
".",
"They",
"had",
"been",
"studying",
"English",
"for",
"nine",
"academic",
"years",
".",
"In",
"this",
" ",
"study",
",",
" ",
"the",
" ",
"major",
" ",
"aspects",
" ",
"of",
" ",
"the",
" ",
"Saudi",
" ",
"learner",
"'s",
" ",
"interphonology",
" ",
"were",
" ",
"dealt",
" ",
"with",
".",
" ",
"The",
" ",
"study",
" ",
"drew",
" ",
"on",
" ",
"the",
"concept",
"of",
"transfer",
"(",
"Broselow",
",",
"1983",
",",
"1987",
")",
"and",
"markedness",
"(",
"Eckman",
",",
"1977",
")",
"as",
"two",
"important",
"factors",
"that",
"play",
"major",
"roles",
"in",
"shaping",
"the",
"learners",
"'",
"phonological",
"acquisition",
".",
"The",
"analysis",
"of",
"the",
"errors",
"made",
"by",
"the",
"learners",
"was",
"eclectic",
"in",
"that",
"it",
"was",
"carried",
"out",
"in",
"such",
"a",
"way",
"that",
"different",
"theories",
"of",
"linear",
"and",
"non",
"-",
"linear",
"phonology",
"as",
"well",
"as",
"theories",
"of",
"language",
"acquisition",
"both",
"first",
"and",
"second",
",",
"were",
"employed",
".",
"The",
"study",
"investigated",
"the",
"acquisition",
"of",
"English",
"vowels",
",",
"monophthongs",
"and",
"diphthongs",
",",
"the",
"acquisition",
"of",
"some",
"problematic",
"English",
"consonants",
"for",
"Arabs",
",",
"such",
"as",
"the",
"voiceless",
"bilabial",
"stop",
"/p/",
",",
"the",
"voiced",
"labio",
"-",
"dental",
"fricative",
"/v/",
",",
"the",
"voiceless",
"affricate",
"/",
"ʧ",
"/",
",",
"the",
"pronunciation",
" ",
"of",
" ",
"the",
" ",
"approximant",
" ",
"/r/",
" ",
"in",
" ",
"general",
",",
" ",
"and",
" ",
"when",
" ",
"it",
" ",
"is",
" ",
"preceded",
" ",
"by",
" ",
"the",
" ",
"voiceless",
" ",
"stops",
" ",
"/p",
",",
" ",
"t",
",",
" ",
"k/",
",",
" ",
"the",
"pronunciation",
"of",
"consonant",
"clusters",
"and",
"the",
"acquisition",
"of",
"English",
"stress",
".",
"The",
"analysis",
"shows",
"that",
"the",
"difference",
"in",
"parameter",
"settings",
"(",
"Chomsky",
",",
"1981b",
";",
"Archibald",
",",
"1990",
";",
"Dresher",
"&",
"amp",
";",
"Kay",
",",
"1990",
")",
"between",
"Arabic",
"and",
"English",
"can",
"easily",
" ",
"explain",
" ",
"why",
" ",
"certain",
" ",
"errors",
" ",
"take",
" ",
"place",
".",
"A",
" ",
"number",
" ",
"of",
" ",
"strategies",
" ",
"such",
" ",
"as",
" ",
"sound",
" ",
"substitution",
",",
" ",
"consonant",
"reduction",
",",
"vowel",
"epenthesis",
",",
"glottal",
"stop",
"insertion",
",",
"and",
"the",
"misplacement",
"of",
"stress",
",",
"were",
"employed",
"in",
"accordance",
"with",
"Arabic",
"norms",
".",
"The",
"analysis",
"also",
"displayed",
"that",
"plenty",
"of",
"the",
"strategies",
"that",
"were",
"resorted",
"to",
"by",
"the",
"learners",
"were",
"similar",
"to",
"those",
"found"
] |
[
{
"end": 84,
"label": "CITATION_REF",
"start": 70
},
{
"end": 77,
"label": "AUTHOR",
"start": 70
},
{
"end": 83,
"label": "YEAR",
"start": 79
},
{
"end": 1158,
"label": "CITATION_REF",
"start": 1138
},
{
"end": 1146,
"label": "AUTHOR",
"start": 1138
},
{
"end": 1152,
"label": "YEAR",
"start": 1148
},
{
"end": 1158,
"label": "YEAR",
"start": 1154
},
{
"end": 1188,
"label": "CITATION_REF",
"start": 1176
},
{
"end": 1182,
"label": "AUTHOR",
"start": 1176
},
{
"end": 1188,
"label": "YEAR",
"start": 1184
},
{
"end": 2080,
"label": "CITATION_REF",
"start": 2066
},
{
"end": 2097,
"label": "CITATION_REF",
"start": 2082
},
{
"end": 2073,
"label": "AUTHOR",
"start": 2066
},
{
"end": 2091,
"label": "AUTHOR",
"start": 2082
},
{
"end": 2080,
"label": "YEAR",
"start": 2075
},
{
"end": 2097,
"label": "YEAR",
"start": 2093
},
{
"end": 299,
"label": "CITATION_REF",
"start": 283
},
{
"end": 292,
"label": "AUTHOR",
"start": 283
},
{
"end": 298,
"label": "YEAR",
"start": 294
},
{
"end": 314,
"label": "AUTHOR",
"start": 270
},
{
"end": 2122,
"label": "CITATION_REF",
"start": 2099
},
{
"end": 2116,
"label": "AUTHOR",
"start": 2099
},
{
"end": 2122,
"label": "YEAR",
"start": 2118
}
] |
0.1 C for 16 h and discharge 0.2 C until 1 V); the
experiment stops when the discharge time is less than 3 h. However, it is possible to per-
form a second capacity test, and if the discharge capacity is less than 3 h, the experiment
Figure 10. NiMH endurance in cycles analysis according to IEC 61951-2 for an AAA Energizer
700 mAh battery ( a) voltage profile, ( b) current profile, ( c) capacity, and d) columbic efficiency vs.
cycle number. The vertical red lines in ( c,d) indicate checkup cycles.
If the discharge duration is less than 72 min, the experiment is terminated.
Moreover, every 50 cycles a checkup cycle is performed using the standard conditions
for capacity rate calculation (charge 0.1 C for 16 h and discharge 0.2 C until 1 V); the
experiment stops when the discharge time is less than 3 h. However, it is possible to
perform a second capacity test, and if the discharge capacity is less than 3 h, the experiment
is terminated. A battery has passed the test if the number of cycles is equal to or exceeds
200 (in the case of an AAA NiMH battery).
The voltage and current profiles of an AAA battery are presented in Figures 10a and 10b ,
respectively. The charge termination voltage tends to increase from 1.49 V in the first cycle to
1.59 V at the end of cycle 300; this effect in voltage can be related to an increase in resistance
in the cell after cycling and possible side reactions, e.g., gas formation [ 36]. Furthermore,
the average capacity of the AAA NiMH battery during cycling is 660 mAh, and during
the checkup cycle, a capacity of 698 mAh is observed (see Figure 10c). Additionally, the
columbic efficiency of the AAA NiMH battery varies from 86% to 82% during the cycles
and ~62% during the checkup cycle (see Figure 10d). This is consistent with the kinetics
of the cathode (Ni(OH) 2) and anode (MH), leading to higher capacity with lower C rates,
which we have presented in Section 3.Batteries 2025 ,11, 30 15 of 20
7. Discussion
Portable NiMH batteries are tested for different parameters that are included in the
European Regulation EU 2023/1542 (see Table 1). The procedures for measuring these
parameters will be laid down in harmonized standards currently under development in
CENELEC/TC 21X/WG 08 [ 37]. In this
|
[
"0.1",
" ",
"C",
" ",
"for",
" ",
"16",
" ",
"h",
" ",
"and",
" ",
"discharge",
" ",
"0.2",
" ",
"C",
" ",
"until",
" ",
"1",
" ",
"V",
")",
";",
" ",
"the",
" \n",
"experiment",
" ",
"stops",
" ",
"when",
" ",
"the",
" ",
"discharge",
" ",
"time",
" ",
"is",
" ",
"less",
" ",
"than",
" ",
"3",
" ",
"h.",
" ",
"However",
",",
" ",
"it",
" ",
"is",
" ",
"possible",
" ",
"to",
" ",
"per-",
"\n",
"form",
" ",
"a",
" ",
"second",
" ",
"capacity",
" ",
"test",
",",
" ",
"and",
" ",
"if",
" ",
"the",
" ",
"discharge",
" ",
"capacity",
" ",
"is",
" ",
"less",
" ",
"than",
" ",
"3",
" ",
"h",
",",
" ",
"the",
" ",
"experiment",
" \n",
"Figure",
"10",
".",
"NiMH",
"endurance",
"in",
"cycles",
"analysis",
"according",
"to",
"IEC",
"61951",
"-",
"2",
"for",
"an",
"AAA",
"Energizer",
"\n",
"700",
"mAh",
"battery",
"(",
"a",
")",
"voltage",
"profile",
",",
"(",
"b",
")",
"current",
"profile",
",",
"(",
"c",
")",
"capacity",
",",
"and",
"d",
")",
"columbic",
"efficiency",
"vs.",
"\n",
"cycle",
"number",
".",
"The",
"vertical",
"red",
"lines",
"in",
"(",
"c",
",",
"d",
")",
"indicate",
"checkup",
"cycles",
".",
"\n",
"If",
"the",
"discharge",
"duration",
"is",
"less",
"than",
"72",
"min",
",",
"the",
"experiment",
"is",
"terminated",
".",
"\n",
"Moreover",
",",
"every",
"50",
"cycles",
"a",
"checkup",
"cycle",
"is",
"performed",
"using",
"the",
"standard",
"conditions",
"\n",
"for",
"capacity",
"rate",
"calculation",
"(",
"charge",
"0.1",
"C",
"for",
"16",
"h",
"and",
"discharge",
"0.2",
"C",
"until",
"1",
"V",
")",
";",
"the",
"\n",
"experiment",
"stops",
"when",
"the",
"discharge",
"time",
"is",
"less",
"than",
"3",
"h.",
"However",
",",
"it",
"is",
"possible",
"to",
"\n",
"perform",
"a",
"second",
"capacity",
"test",
",",
"and",
"if",
"the",
"discharge",
"capacity",
"is",
"less",
"than",
"3",
"h",
",",
"the",
"experiment",
"\n",
"is",
"terminated",
".",
"A",
"battery",
"has",
"passed",
"the",
"test",
"if",
"the",
"number",
"of",
"cycles",
"is",
"equal",
"to",
"or",
"exceeds",
"\n",
"200",
"(",
"in",
"the",
"case",
"of",
"an",
"AAA",
"NiMH",
"battery",
")",
".",
"\n",
"The",
"voltage",
"and",
"current",
"profiles",
"of",
"an",
"AAA",
"battery",
"are",
"presented",
"in",
"Figures",
"10a",
"and",
"10b",
",",
"\n",
"respectively",
".",
"The",
"charge",
"termination",
"voltage",
"tends",
"to",
"increase",
"from",
"1.49",
"V",
"in",
"the",
"first",
"cycle",
"to",
"\n",
"1.59",
"V",
"at",
"the",
"end",
"of",
"cycle",
"300",
";",
"this",
"effect",
"in",
"voltage",
"can",
"be",
"related",
"to",
"an",
"increase",
"in",
"resistance",
"\n",
"in",
"the",
"cell",
"after",
"cycling",
"and",
"possible",
"side",
"reactions",
",",
"e.g.",
",",
"gas",
"formation",
"[",
"36",
"]",
".",
"Furthermore",
",",
"\n",
"the",
"average",
"capacity",
"of",
"the",
"AAA",
"NiMH",
"battery",
"during",
"cycling",
"is",
"660",
"mAh",
",",
"and",
"during",
"\n",
"the",
"checkup",
"cycle",
",",
"a",
"capacity",
"of",
"698",
"mAh",
"is",
"observed",
"(",
"see",
"Figure",
"10c",
")",
".",
"Additionally",
",",
"the",
"\n",
"columbic",
"efficiency",
"of",
"the",
"AAA",
"NiMH",
"battery",
"varies",
"from",
"86",
"%",
"to",
"82",
"%",
"during",
"the",
"cycles",
"\n",
"and",
"~62",
"%",
"during",
"the",
"checkup",
"cycle",
"(",
"see",
"Figure",
"10d",
")",
".",
"This",
"is",
"consistent",
"with",
"the",
"kinetics",
"\n",
"of",
"the",
"cathode",
"(",
"Ni(OH",
")",
"2",
")",
"and",
"anode",
"(",
"MH",
")",
",",
"leading",
"to",
"higher",
"capacity",
"with",
"lower",
"C",
"rates",
",",
"\n",
"which",
"we",
"have",
"presented",
"in",
"Section",
"3.Batteries",
"2025",
",",
"11",
",",
"30",
"15",
"of",
"20",
"\n",
"7",
".",
"Discussion",
"\n",
"Portable",
"NiMH",
"batteries",
"are",
"tested",
"for",
"different",
"parameters",
"that",
"are",
"included",
"in",
"the",
"\n",
"European",
"Regulation",
"EU",
"2023/1542",
"(",
"see",
"Table",
"1",
")",
".",
"The",
"procedures",
"for",
"measuring",
"these",
"\n",
"parameters",
"will",
"be",
"laid",
"down",
"in",
"harmonized",
"standards",
"currently",
"under",
"development",
"in",
"\n",
"CENELEC",
"/",
"TC",
"21X",
"/",
"WG",
"08",
"[",
"37",
"]",
".",
"In",
"this"
] |
[
{
"end": 1442,
"label": "CITATION_REF",
"start": 1440
},
{
"end": 2253,
"label": "CITATION_REF",
"start": 2251
}
] |
will set Kenya's economy on the path to inclusive growth and sustainable development over the coming years.
## United Nations: Comprehensive support across health, socio-economic recovery and vulnerable populations
In close collaboration with the Government of Kenya, the United Nations and its partners developed the United Nations in Kenya 's COVID-19 socio-economic response plan (UNDP, 2020[52]) 7 . Through this strategy the United Nations contributed to the COVID-19 response in a wide range of areas, including through the following organisations:
- · United Nations High Commissioner for Refugees (UNHCR): Aligned cash and in-kind assistance to displaced populations with Kenya 's social assistance programmes during COVID-19; supporting social enterprises; hiring health and education workers; and supporting inclusive health insurance for refugees (UNHCR, 2020[53]);
28
- · International Organization for Migration (IOM): Provided and scaled-up essential services, including COVID-19 health services, protecting displaced persons, mobile populations and host communities, as well as mitigating the socio-economic impacts of the pandemic on these vulnerable groups (IOM, 2021[54]);
- · United Nations Development Programme (UNDP): Supported the health response and worked with the national task force to provide an effective health crisis response drawing on their experience of responding to Ebola, HIV, SARS, TB and malaria under leadership of the World Health Organization (UNDP, 2021[4]);
- · Un ited Nations Children's Fund ( UNICEF): Focused on risk communication, vaccine delivery and transport, and ensuring vaccine uptake and inclusive coverage through a range of efforts in advocacy and community mobilisation.
- · World Health Organization (WHO): Offered technical support in infection prevention and control, operational support and logistics, pandemic preparedness, training and capacity building, risk communication, surveillance, testing scale-ups and COVID-19 treatment (WHO, 2020[55]).
- · World Food Programme (WFP): Provided cash and nutrition support for the urban poor in the informal settlements of Nairobi and Mombasa adversely affected by the economic impact of the pandemic (WFP, 2022[56]).
- · Food and Agriculture Organization (FAO): Delivered cash transfers in arid and semi-arid areas for households whose livelihoods were threatened by COVID-19, primarily used to buy food; and supported agricultural value chains to sustain farmers' incomes (FAO, 2022[57]).
## European Union and European Investment Bank : Supporting Kenya's socio-economic recovery and vaccine deployment
The EU member states and the European Investment Bank (EIB, Team Europe) reprogrammed and increased funding to support direct cash transfers to the households most affected by the pandemic. It also supported the
|
[
" ",
"will",
"set",
"Kenya",
"'s",
"economy",
"on",
"the",
"path",
"to",
"inclusive",
"growth",
"and",
"sustainable",
"development",
"over",
"the",
"coming",
"years",
".",
"\n\n",
"#",
"#",
"United",
"Nations",
":",
"Comprehensive",
"support",
"across",
"health",
",",
"socio",
"-",
"economic",
"recovery",
"and",
"vulnerable",
"populations",
"\n\n",
"In",
"close",
"collaboration",
"with",
"the",
"Government",
"of",
"Kenya",
",",
"the",
"United",
"Nations",
"and",
"its",
"partners",
"developed",
"the",
"United",
" ",
"Nations",
" ",
"in",
" ",
"Kenya",
"'s",
"COVID-19",
" ",
"socio",
"-",
"economic",
" ",
"response",
" ",
"plan",
" ",
"(",
"UNDP",
",",
" ",
"2020[52",
"]",
")",
"7",
".",
" ",
"Through",
" ",
"this",
"strategy",
"the",
"United",
"Nations",
"contributed",
"to",
"the",
"COVID-19",
"response",
"in",
"a",
"wide",
"range",
"of",
"areas",
",",
"including",
"through",
"the",
"following",
"organisations",
":",
"\n\n",
"-",
"·",
"United",
"Nations",
"High",
"Commissioner",
"for",
"Refugees",
"(",
"UNHCR",
"):",
"Aligned",
"cash",
"and",
"in",
"-",
"kind",
"assistance",
"to",
"displaced",
"populations",
"with",
"Kenya",
"'s",
"social",
"assistance",
"programmes",
"during",
"COVID-19",
";",
"supporting",
"social",
"enterprises",
";",
"hiring",
"health",
"and",
"education",
"workers",
";",
"and",
"supporting",
"inclusive",
"health",
"insurance",
"for",
"refugees",
"(",
"UNHCR",
",",
"2020[53",
"]",
")",
";",
"\n\n",
"28",
"",
"\n\n",
"-",
"·",
"International",
" ",
"Organization",
" ",
"for",
" ",
"Migration",
" ",
"(",
"IOM",
"):",
" ",
"Provided",
" ",
"and",
" ",
"scaled",
"-",
"up",
" ",
"essential",
" ",
"services",
",",
"including",
"COVID-19",
"health",
"services",
",",
"protecting",
"displaced",
"persons",
",",
"mobile",
"populations",
"and",
"host",
"communities",
",",
" ",
"as",
" ",
"well",
" ",
"as",
" ",
"mitigating",
" ",
"the",
" ",
"socio",
"-",
"economic",
" ",
"impacts",
" ",
"of",
" ",
"the",
" ",
"pandemic",
" ",
"on",
" ",
"these",
"vulnerable",
"groups",
"(",
"IOM",
",",
"2021[54",
"]",
")",
";",
"\n",
"-",
"·",
"United",
"Nations",
"Development",
"Programme",
"(",
"UNDP",
"):",
"Supported",
"the",
"health",
"response",
"and",
"worked",
"with",
"the",
"national",
"task",
"force",
"to",
"provide",
"an",
"effective",
"health",
"crisis",
"response",
"drawing",
"on",
"their",
"experience",
"of",
"responding",
" ",
"to",
" ",
"Ebola",
",",
" ",
"HIV",
",",
" ",
"SARS",
",",
" ",
"TB",
" ",
"and",
" ",
"malaria",
" ",
"under",
" ",
"leadership",
" ",
"of",
" ",
"the",
" ",
"World",
" ",
"Health",
"Organization",
"(",
"UNDP",
",",
"2021[4",
"]",
")",
";",
"\n",
"-",
"·",
"Un",
"ited",
"Nations",
"Children",
"'s",
"Fund",
"(",
"UNICEF",
"):",
"Focused",
"on",
"risk",
"communication",
",",
"vaccine",
"delivery",
"and",
"transport",
",",
" ",
"and",
" ",
"ensuring",
" ",
"vaccine",
" ",
"uptake",
" ",
"and",
" ",
"inclusive",
" ",
"coverage",
" ",
"through",
" ",
"a",
" ",
"range",
" ",
"of",
" ",
"efforts",
" ",
"in",
"advocacy",
"and",
"community",
"mobilisation",
".",
"\n",
"-",
"·",
"World",
"Health",
"Organization",
"(",
"WHO",
"):",
"Offered",
"technical",
"support",
"in",
"infection",
"prevention",
"and",
"control",
",",
"operational",
" ",
"support",
" ",
"and",
" ",
"logistics",
",",
" ",
"pandemic",
" ",
"preparedness",
",",
" ",
"training",
" ",
"and",
" ",
"capacity",
" ",
"building",
",",
" ",
"risk",
"communication",
",",
"surveillance",
",",
"testing",
"scale",
"-",
"ups",
"and",
"COVID-19",
"treatment",
"(",
"WHO",
",",
"2020[55",
"]",
")",
".",
"\n",
"-",
"·",
"World",
"Food",
"Programme",
"(",
"WFP",
"):",
"Provided",
"cash",
"and",
"nutrition",
"support",
"for",
"the",
"urban",
"poor",
"in",
"the",
"informal",
"settlements",
"of",
"Nairobi",
"and",
"Mombasa",
"adversely",
"affected",
"by",
"the",
"economic",
"impact",
"of",
"the",
"pandemic",
"(",
"WFP",
",",
"2022[56",
"]",
")",
".",
"\n",
"-",
"·",
"Food",
"and",
"Agriculture",
"Organization",
"(",
"FAO",
"):",
"Delivered",
"cash",
"transfers",
"in",
"arid",
"and",
"semi",
"-",
"arid",
"areas",
"for",
"households",
"whose",
"livelihoods",
"were",
"threatened",
"by",
"COVID-19",
",",
"primarily",
"used",
"to",
"buy",
"food",
";",
"and",
"supported",
"agricultural",
"value",
"chains",
"to",
"sustain",
"farmers",
"'",
"incomes",
"(",
"FAO",
",",
"2022[57",
"]",
")",
".",
"\n\n",
"#",
"#",
"European",
"Union",
"and",
"European",
"Investment",
"Bank",
":",
"Supporting",
"Kenya",
"'s",
"socio",
"-",
"economic",
"recovery",
"and",
"vaccine",
"deployment",
"\n\n",
"The",
" ",
"EU",
" ",
"member",
" ",
"states",
" ",
"and",
" ",
"the",
" ",
"European",
" ",
"Investment",
" ",
"Bank",
" ",
"(",
"EIB",
",",
" ",
"Team",
" ",
"Europe",
")",
" ",
"reprogrammed",
" ",
"and",
"increased",
"funding",
"to",
"support",
"direct",
"cash",
"transfers",
"to",
"the",
"households",
"most",
"affected",
"by",
"the",
"pandemic",
".",
"It",
"also",
"supported",
"the"
] |
[
{
"end": 409,
"label": "CITATION_REF",
"start": 394
},
{
"end": 398,
"label": "AUTHOR",
"start": 394
},
{
"end": 405,
"label": "YEAR",
"start": 401
},
{
"end": 408,
"label": "CITATION_ID",
"start": 406
},
{
"end": 888,
"label": "CITATION_REF",
"start": 873
},
{
"end": 878,
"label": "AUTHOR",
"start": 873
},
{
"end": 884,
"label": "YEAR",
"start": 880
},
{
"end": 887,
"label": "CITATION_ID",
"start": 885
}
] |
Delhi registered Voter ID card.
When talking with a broker in Sanjay colony on the issue of community leadership and party affiliation, his response was:
'Sanjay colony is set to become the best colony under our AAP leadership. Joining politics with AAP and working as a community leader has always been my dream because I believe in the potential for real change in our com -munity. The main aim I have is to address the issues in Sanjay - this is
getting cleaner, better drainage system and sorting out our garbage problems. For the past five years, the facilities we've had haven't been effective, and the dirty drains and garbage everywhere continue to cause significant problems for the residents here'.
Other community members relayed the same message to us around cleanliness in the community:
'I felt compelled to participate actively in the clean-up efforts. Our people deserve better living conditions, and I want to be a part of making our colony a better place. By being involved, I hope to lead by example and show that we can make a difference if we work together.'
## Concerning the broker and his involvement:
'Everybody in the community here in Sanjay, comes together to work on get -ting sewers installed, all thanks to our community leader. Pramood (community leader/ broker) organized meetings and got everyone to help. It wasn't easy, but with some organisation and a lot of talking, everyone agreed to save up some money. Each family put in what they could.
We finally had enough money to get the sewers installed. This made a huge difference to our lives, making the colony cleaner and better to live in. It showed us how much can be done when we work together. Pramood had meetings and brought everyone together, giving confidence that we could solve big problems.'
Leadership roles and the association with different political parties were a recurring theme. One broker indicated that:
'I want to encourage more people in our colony to step up and take on leader -ship roles. Our party provides excellent facilities and opportunities for those who want to get involved, and it's important that everyone participates. This ensures that leadership is bringing diverse perspectives and solutions to our community's challenges.'
It's crucial for brokers to assist communities as the market is highly competitive. From the interviews, it was evident that residents only support brokers who can
|
[
"Delhi",
"registered",
"Voter",
"ID",
"card",
".",
"\n\n",
"When",
"talking",
"with",
"a",
"broker",
"in",
"Sanjay",
"colony",
"on",
"the",
"issue",
"of",
"community",
"leadership",
"and",
"party",
"affiliation",
",",
"his",
"response",
"was",
":",
"\n\n",
"'",
"Sanjay",
"colony",
"is",
"set",
"to",
"become",
"the",
"best",
"colony",
"under",
"our",
"AAP",
"leadership",
".",
"Joining",
"politics",
"with",
"AAP",
"and",
"working",
"as",
"a",
"community",
"leader",
"has",
"always",
"been",
"my",
"dream",
"because",
"I",
"believe",
"in",
"the",
"potential",
"for",
"real",
"change",
"in",
"our",
"com",
"-munity",
".",
" ",
"The",
" ",
"main",
" ",
"aim",
" ",
"I",
" ",
"have",
" ",
"is",
" ",
"to",
" ",
"address",
" ",
"the",
" ",
"issues",
" ",
"in",
" ",
"Sanjay",
" ",
"-",
" ",
"this",
" ",
"is",
"\n\n",
"getting",
"cleaner",
",",
"better",
"drainage",
"system",
"and",
"sorting",
"out",
"our",
"garbage",
"problems",
".",
"For",
"the",
"past",
"five",
"years",
",",
"the",
"facilities",
"we",
"'ve",
"had",
"have",
"n't",
"been",
"effective",
",",
"and",
"the",
"dirty",
"drains",
"and",
"garbage",
"everywhere",
"continue",
"to",
"cause",
"significant",
"problems",
"for",
"the",
"residents",
"here",
"'",
".",
"\n\n",
"Other",
"community",
"members",
"relayed",
"the",
"same",
"message",
"to",
"us",
"around",
"cleanliness",
"in",
"the",
"community",
":",
"\n\n",
"'",
"I",
"felt",
"compelled",
"to",
"participate",
"actively",
"in",
"the",
"clean",
"-",
"up",
"efforts",
".",
"Our",
"people",
"deserve",
"better",
"living",
"conditions",
",",
"and",
"I",
"want",
"to",
"be",
"a",
"part",
"of",
"making",
"our",
"colony",
"a",
"better",
"place",
".",
"By",
"being",
"involved",
",",
"I",
"hope",
"to",
"lead",
"by",
"example",
"and",
"show",
"that",
"we",
"can",
"make",
"a",
"difference",
"if",
"we",
"work",
"together",
".",
"'",
"\n\n",
"#",
"#",
"Concerning",
"the",
"broker",
"and",
"his",
"involvement",
":",
"\n\n",
"'",
"Everybody",
"in",
"the",
"community",
"here",
"in",
"Sanjay",
",",
"comes",
"together",
"to",
"work",
"on",
"get",
"-ting",
"sewers",
"installed",
",",
"all",
"thanks",
"to",
"our",
"community",
"leader",
".",
"Pramood",
"(",
"community",
"leader/",
"broker",
")",
"organized",
"meetings",
"and",
"got",
"everyone",
"to",
"help",
".",
"It",
"was",
"n't",
"easy",
",",
"but",
"with",
"some",
"organisation",
"and",
"a",
"lot",
"of",
"talking",
",",
"everyone",
"agreed",
"to",
"save",
"up",
"some",
"money",
".",
"Each",
"family",
"put",
"in",
"what",
"they",
"could",
".",
"\n\n",
"We",
"finally",
"had",
"enough",
"money",
"to",
"get",
"the",
"sewers",
"installed",
".",
"This",
"made",
"a",
"huge",
"difference",
"to",
"our",
"lives",
",",
"making",
"the",
"colony",
"cleaner",
"and",
"better",
"to",
"live",
"in",
".",
"It",
"showed",
"us",
"how",
"much",
"can",
"be",
"done",
"when",
"we",
"work",
"together",
".",
"Pramood",
"had",
"meetings",
"and",
"brought",
"everyone",
"together",
",",
"giving",
"confidence",
"that",
"we",
"could",
"solve",
"big",
"problems",
".",
"'",
"\n\n",
"Leadership",
"roles",
"and",
"the",
"association",
"with",
"different",
"political",
"parties",
"were",
"a",
"recurring",
"theme",
".",
"One",
"broker",
"indicated",
"that",
":",
"\n\n",
"'",
"I",
"want",
"to",
"encourage",
"more",
"people",
"in",
"our",
"colony",
"to",
"step",
"up",
"and",
"take",
"on",
"leader",
"-ship",
"roles",
".",
"Our",
"party",
"provides",
"excellent",
"facilities",
"and",
"opportunities",
"for",
"those",
"who",
"want",
"to",
"get",
"involved",
",",
"and",
"it",
"'s",
"important",
"that",
"everyone",
"participates",
".",
"This",
"ensures",
"that",
"leadership",
"is",
"bringing",
"diverse",
"perspectives",
"and",
"solutions",
"to",
"our",
"community",
"'s",
"challenges",
".",
"'",
"\n\n",
"It",
"'s",
"crucial",
"for",
"brokers",
"to",
"assist",
"communities",
"as",
"the",
"market",
"is",
"highly",
"competitive",
".",
"From",
"the",
"interviews",
",",
"it",
"was",
"evident",
"that",
"residents",
"only",
"support",
"brokers",
"who",
"can"
] |
[] |
decisions, which is the result of rules that reflect cultural norms, frees leaders’ potential to exercise leadership, although leaders also work in constrained contexts.
In designing a leadership policy, attention needs to shift from exceptional individuals to systematic processes.
It is often difficult to distinguish a good leader from a good manager. Managing daily activities effectively to make time for future planning is at the heart of what leaders do.
Although being a change agent is what often distinguishes a leader, leadership may be more important for maintaining stability in some cases than for seeking change.
The focus of a leadership policy should be how to encourage and nurture diverse groups of people with good leadership potential to pursue such careers through appropriate institutional and organizational structures.
Four dimensions of school leadership are important for leadership at all levels of education.
Setting expectations, focusing on learning, fostering collaboration and developing people are important not only for school principals and teacher leaders, but also for system leaders.
1
6 CHAPTER 1 • INTRODUCTION
The role of education leaders is taken for granted.
Yet, often invisibly, they shape the direction of their
schools, universities, departments and ministries.
|
[
"decisions",
",",
"which",
"is",
"the",
"result",
"of",
"rules",
"that",
"reflect",
"cultural",
"norms",
",",
"frees",
"leaders",
"’",
"potential",
"to",
"exercise",
"leadership",
",",
"although",
"leaders",
"also",
"work",
"in",
"constrained",
"contexts",
".",
"\n",
"In",
"designing",
"a",
"leadership",
"policy",
",",
"attention",
"needs",
"to",
"shift",
"from",
"exceptional",
"individuals",
"to",
"systematic",
"processes",
".",
"\n ",
"",
"It",
"is",
"often",
"difficult",
"to",
"distinguish",
"a",
"good",
"leader",
"from",
"a",
"good",
"manager",
".",
"Managing",
"daily",
"activities",
"effectively",
"to",
"make",
"time",
"for",
"future",
"planning",
"is",
"at",
"the",
"heart",
"of",
"what",
"leaders",
"do",
".",
"\n ",
"",
"Although",
"being",
"a",
"change",
"agent",
"is",
"what",
"often",
"distinguishes",
"a",
"leader",
",",
"leadership",
"may",
"be",
"more",
"important",
"for",
"maintaining",
"stability",
"in",
"some",
"cases",
"than",
"for",
"seeking",
"change",
".",
"\n ",
"",
"The",
"focus",
"of",
"a",
"leadership",
"policy",
"should",
"be",
"how",
"to",
"encourage",
"and",
"nurture",
"diverse",
"groups",
"of",
"people",
"with",
"good",
"leadership",
"potential",
"to",
"pursue",
"such",
"careers",
"through",
"appropriate",
"institutional",
"and",
"organizational",
"structures",
".",
"\n",
"Four",
"dimensions",
"of",
"school",
"leadership",
"are",
"important",
"for",
"leadership",
"at",
"all",
"levels",
"of",
"education",
".",
"\n ",
"",
"Setting",
"expectations",
",",
"focusing",
"on",
"learning",
",",
"fostering",
"collaboration",
"and",
"developing",
"people",
"are",
"important",
"not",
"only",
"for",
"school",
"principals",
"and",
"teacher",
"leaders",
",",
"but",
"also",
"for",
"system",
"leaders",
".",
"\n",
"1",
"\n",
"6",
"CHAPTER",
" ",
"1",
"•",
"INTRODUCTION",
"\n",
"The",
"role",
"of",
"education",
"leaders",
"is",
"taken",
"for",
"granted",
".",
"\n",
"Yet",
",",
"often",
"invisibly",
",",
"they",
"shape",
"the",
"direction",
"of",
"their",
"\n",
"schools",
",",
"universities",
",",
"departments",
"and",
"ministries",
"."
] |
[] |
The second key goal is to accelerate decarbonisation in a cost-effi.ligacient way, leveraging all available solutions through a technology-neutral approach . This approach should include renewables, nuclear, hydrogen, bioenergy and carbon capture, utilisation and storage, and should be backed by massive mobilisation of both public and private finance (based on the proposals laid out in the chapter on investment. However, increasing the supply of finance for clean energy deployment will not yield the desired results without increasing the pace of permitting for installation. Diff.ligaerent options are available to reduce permitting delays for new energy projects. Systematically implementing existing legislation can make a major diff.ligaerence: for example, several Member States have experienced double-digit increases in the volume of permits issued for onshore wind since the entry into force of the Article 122 Emergency Regulation. The report recommends extending acceleration measures and emergency regulation to heat networks, heat generators, and hydrogen and carbon capture and storage infrastructure. Greater focus is also needed on digitalising national permitting processes across the EU and addressing permitting authorities' lack of resources. For instance, administrative fees for procedures could be increased to ensure authorities have adequate capabilities to deliver prompt approvals. Another potential avenue would be for the EU to make renewable acceleration areas and strategic environmental assessments the rule for renewables expansion, replacing individual assessments per project. Targeted updates to relevant EU Environmental legislation could be used to provide limited (in time and perimeter) exemptions in EU environmental directives until climate neutrality is achieved. This revised legislation should appoint last-resort national authorities to ensure the permitting of projects in the event that there is no answer from local authorities after a predetermined time (e.g. 45 days).
A central element in accelerating decarbonisation will be unlocking the potential of clean energy through a collective EU focus on grids . If there is one horizontal area in the energy sector whose importance cannot be
overstated, it is the EU's energy grids. Delivering a step-change in grid deployment will require a new approach to planning at the EU and Member State levels, including the ability to eff.ligaectively reach decisions and accelerate permitting, to mobilise adequate public and private financing and to innovate grid assets and processes. From a European perspective, rapidly increasing the installation of interconnectors should be the focus. The report recommends, first, to establish a '28th regime' - i.e. a special legal framework outside of the 27
|
[
"The",
"second",
"key",
"goal",
"is",
"to",
"accelerate",
"decarbonisation",
"in",
"a",
"cost-effi.ligacient",
"way",
",",
"leveraging",
"all",
"available",
"solutions",
"through",
"a",
"technology",
"-",
"neutral",
"approach",
".",
"This",
"approach",
"should",
"include",
"renewables",
",",
"nuclear",
",",
"hydrogen",
",",
"bioenergy",
"and",
"carbon",
"capture",
",",
"utilisation",
"and",
"storage",
",",
"and",
"should",
"be",
"backed",
"by",
"massive",
"mobilisation",
"of",
"both",
"public",
"and",
"private",
"finance",
"(",
"based",
"on",
"the",
"proposals",
"laid",
"out",
"in",
"the",
"chapter",
"on",
"investment",
".",
"However",
",",
"increasing",
"the",
"supply",
"of",
"finance",
"for",
"clean",
"energy",
"deployment",
"will",
"not",
"yield",
"the",
"desired",
"results",
"without",
"increasing",
"the",
"pace",
"of",
"permitting",
"for",
"installation",
".",
"Diff.ligaerent",
"options",
"are",
"available",
"to",
"reduce",
"permitting",
"delays",
"for",
"new",
"energy",
"projects",
".",
"Systematically",
"implementing",
"existing",
"legislation",
"can",
"make",
"a",
"major",
"diff.ligaerence",
":",
"for",
"example",
",",
"several",
"Member",
"States",
"have",
"experienced",
"double",
"-",
"digit",
"increases",
"in",
"the",
"volume",
"of",
"permits",
"issued",
"for",
"onshore",
"wind",
"since",
"the",
"entry",
"into",
"force",
"of",
"the",
"Article",
"122",
"Emergency",
"Regulation",
".",
"The",
"report",
"recommends",
"extending",
"acceleration",
"measures",
"and",
"emergency",
"regulation",
"to",
"heat",
"networks",
",",
"heat",
"generators",
",",
"and",
"hydrogen",
"and",
"carbon",
"capture",
"and",
"storage",
"infrastructure",
".",
"Greater",
"focus",
"is",
"also",
"needed",
"on",
"digitalising",
"national",
"permitting",
"processes",
"across",
"the",
"EU",
"and",
"addressing",
"permitting",
"authorities",
"'",
"lack",
"of",
"resources",
".",
"For",
"instance",
",",
"administrative",
"fees",
"for",
"procedures",
"could",
"be",
"increased",
"to",
"ensure",
"authorities",
"have",
"adequate",
"capabilities",
"to",
"deliver",
"prompt",
"approvals",
".",
"Another",
"potential",
"avenue",
"would",
"be",
"for",
"the",
"EU",
"to",
"make",
"renewable",
"acceleration",
"areas",
"and",
"strategic",
"environmental",
"assessments",
"the",
"rule",
"for",
"renewables",
"expansion",
",",
"replacing",
"individual",
"assessments",
"per",
"project",
".",
"Targeted",
"updates",
"to",
"relevant",
"EU",
"Environmental",
"legislation",
"could",
"be",
"used",
"to",
"provide",
"limited",
"(",
"in",
"time",
"and",
"perimeter",
")",
"exemptions",
"in",
"EU",
"environmental",
"directives",
"until",
"climate",
"neutrality",
"is",
"achieved",
".",
"This",
"revised",
"legislation",
"should",
"appoint",
"last",
"-",
"resort",
"national",
"authorities",
"to",
"ensure",
"the",
"permitting",
"of",
"projects",
"in",
"the",
"event",
"that",
"there",
"is",
"no",
"answer",
"from",
"local",
"authorities",
"after",
"a",
"predetermined",
"time",
"(",
"e.g.",
"45",
"days",
")",
".",
"\n\n",
"A",
"central",
"element",
"in",
"accelerating",
"decarbonisation",
"will",
"be",
"unlocking",
"the",
"potential",
"of",
"clean",
"energy",
"through",
"a",
"collective",
"EU",
"focus",
"on",
"grids",
".",
"If",
"there",
"is",
"one",
"horizontal",
"area",
"in",
"the",
"energy",
"sector",
"whose",
"importance",
"can",
"not",
"be",
"\n\n",
"overstated",
",",
"it",
"is",
"the",
"EU",
"'s",
"energy",
"grids",
".",
"Delivering",
"a",
"step",
"-",
"change",
"in",
"grid",
"deployment",
"will",
"require",
"a",
"new",
"approach",
"to",
"planning",
"at",
"the",
"EU",
"and",
"Member",
"State",
"levels",
",",
"including",
"the",
"ability",
"to",
"eff.ligaectively",
"reach",
"decisions",
"and",
"accelerate",
"permitting",
",",
"to",
"mobilise",
"adequate",
"public",
"and",
"private",
"financing",
"and",
"to",
"innovate",
"grid",
"assets",
"and",
"processes",
".",
"From",
"a",
"European",
"perspective",
",",
"rapidly",
"increasing",
"the",
"installation",
"of",
"interconnectors",
"should",
"be",
"the",
"focus",
".",
"The",
"report",
"recommends",
",",
"first",
",",
"to",
"establish",
"a",
"'",
"28th",
"regime",
"'",
"-",
"i.e.",
"a",
"special",
"legal",
"framework",
"outside",
"of",
"the",
"27"
] |
[] |
chain (from exploration to recycling) and, unlike its competitors, the mining and
trading of commodities is largely left to private actors and the market.
Strategic dependencies also extend to critical technologies for the digitalisation of Europe’s economy [see
the chapter on digitalisation and advanced technologies] . The EU relies on foreign countries for over 80% of digital
products, services, infrastructure and intellectual propertyvi. Dependencies are particularly acute, however, for semi -
conductors owing to the structure of the industry, which is dominated by a small number of large players. The US
has specialised in chips design, Korea, Taiwan and China in chips manufacturing, and Japan and some EU Member
States in key materials and equipment – optics, chemistry and machinery [see Figure 3] . Europe has little domestic
capacity in many parts of the supply chain. For example, the EU currently has no foundry producing below 22 nm
process nodes and relies on Asia for 75% to 90% of wafer fabrication capacity (as does the US). Europe has become
dependent on non-EU countries for chips design, packaging and assembly as well. Dependencies are also acute for
other advanced tech. The EU’s AI industry relies on hardware produced largely by one US-based company for the
most advanced processors. Similarly, Europe’s dependence on cloud services developed and run by US companies
is massive. For quantum computing platforms, the EU suffers from six critical dependencies across 17 key technolo -
gies, components and materials. China and the US hold technological leadership in most of these critical elements.
In the telecoms sector, Europe is less dependent on foreign technology: top EU vendors are well positioned in the
global supply of telecoms equipment. However, it will be important that dependencies do not increase, especially
on high-risk suppliers that could compromise the security of EU networks and citizens’ data. Currently, 14 Member
States have no restrictions on high-risk suppliers in place.
FIGURE 3
Share in semiconductor value chain by country
% of worldwide total, 2019
Source: SIA, 2021.
To reduce its vulnerabilities, the EU needs to develop a genuine “foreign economic policy” based on
securing critical resources [see the chapter on critical raw materials] . In the short term, the EU needs to imple -
ment the Critical Raw Materials Act (CRMA) rapidly and fully. The report recommends complementing this Act with
a comprehensive strategy covering all stages of the critical mineral supply chain, from extraction
|
[
"chain",
"(",
"from",
"exploration",
"to",
"recycling",
")",
"and",
",",
"unlike",
"its",
"competitors",
",",
"the",
"mining",
"and",
"\n",
"trading",
"of",
"commodities",
"is",
"largely",
"left",
"to",
"private",
"actors",
"and",
"the",
"market",
".",
"\n",
"Strategic",
"dependencies",
"also",
"extend",
"to",
"critical",
"technologies",
"for",
"the",
"digitalisation",
"of",
"Europe",
"’s",
"economy",
" ",
"[",
"see",
"\n",
"the",
"chapter",
"on",
"digitalisation",
"and",
"advanced",
"technologies",
"]",
".",
"The",
"EU",
"relies",
"on",
"foreign",
"countries",
"for",
"over",
"80",
"%",
"of",
"digital",
"\n",
"products",
",",
"services",
",",
"infrastructure",
"and",
"intellectual",
"propertyvi",
".",
"Dependencies",
"are",
"particularly",
"acute",
",",
"however",
",",
"for",
"semi",
"-",
"\n",
"conductors",
"owing",
"to",
"the",
"structure",
"of",
"the",
"industry",
",",
"which",
"is",
"dominated",
"by",
"a",
"small",
"number",
"of",
"large",
"players",
".",
"The",
"US",
"\n",
"has",
"specialised",
"in",
"chips",
"design",
",",
"Korea",
",",
"Taiwan",
"and",
"China",
"in",
"chips",
"manufacturing",
",",
"and",
"Japan",
"and",
"some",
"EU",
"Member",
"\n",
"States",
"in",
"key",
"materials",
"and",
"equipment",
"–",
"optics",
",",
"chemistry",
"and",
"machinery",
"[",
"see",
"Figure",
"3",
"]",
".",
"Europe",
"has",
"little",
"domestic",
"\n",
"capacity",
"in",
"many",
"parts",
"of",
"the",
"supply",
"chain",
".",
"For",
"example",
",",
"the",
"EU",
"currently",
"has",
"no",
"foundry",
"producing",
"below",
"22",
"nm",
"\n",
"process",
"nodes",
"and",
"relies",
"on",
"Asia",
"for",
"75",
"%",
"to",
"90",
"%",
"of",
"wafer",
"fabrication",
"capacity",
"(",
"as",
"does",
"the",
"US",
")",
".",
"Europe",
"has",
"become",
"\n",
"dependent",
"on",
"non",
"-",
"EU",
"countries",
"for",
"chips",
"design",
",",
"packaging",
"and",
"assembly",
"as",
"well",
".",
"Dependencies",
"are",
"also",
"acute",
"for",
"\n",
"other",
"advanced",
"tech",
".",
"The",
"EU",
"’s",
"AI",
"industry",
"relies",
"on",
"hardware",
"produced",
"largely",
"by",
"one",
"US",
"-",
"based",
"company",
"for",
"the",
"\n",
"most",
"advanced",
"processors",
".",
"Similarly",
",",
"Europe",
"’s",
"dependence",
"on",
"cloud",
"services",
"developed",
"and",
"run",
"by",
"US",
"companies",
"\n",
"is",
"massive",
".",
"For",
"quantum",
"computing",
"platforms",
",",
"the",
"EU",
"suffers",
"from",
"six",
"critical",
"dependencies",
"across",
"17",
"key",
"technolo",
"-",
"\n",
"gies",
",",
"components",
"and",
"materials",
".",
"China",
"and",
"the",
"US",
"hold",
"technological",
"leadership",
"in",
"most",
"of",
"these",
"critical",
"elements",
".",
"\n",
"In",
"the",
"telecoms",
"sector",
",",
"Europe",
"is",
"less",
"dependent",
"on",
"foreign",
"technology",
":",
"top",
"EU",
"vendors",
"are",
"well",
"positioned",
"in",
"the",
"\n",
"global",
"supply",
"of",
"telecoms",
"equipment",
".",
"However",
",",
"it",
"will",
"be",
"important",
"that",
"dependencies",
"do",
"not",
"increase",
",",
"especially",
"\n",
"on",
"high",
"-",
"risk",
"suppliers",
"that",
"could",
"compromise",
"the",
"security",
"of",
"EU",
"networks",
"and",
"citizens",
"’",
"data",
".",
"Currently",
",",
"14",
"Member",
"\n",
"States",
"have",
"no",
"restrictions",
"on",
"high",
"-",
"risk",
"suppliers",
"in",
"place",
".",
"\n",
"FIGURE",
"3",
"\n",
"Share",
"in",
"semiconductor",
"value",
"chain",
"by",
"country",
" \n",
"%",
"of",
"worldwide",
"total",
",",
"2019",
"\n",
"Source",
":",
"SIA",
",",
"2021",
".",
"\n",
"To",
"reduce",
"its",
"vulnerabilities",
",",
"the",
"EU",
"needs",
"to",
"develop",
"a",
"genuine",
"“",
"foreign",
"economic",
"policy",
"”",
"based",
"on",
"\n",
"securing",
"critical",
"resources",
" ",
"[",
"see",
"the",
"chapter",
"on",
"critical",
"raw",
"materials",
"]",
".",
"In",
"the",
"short",
"term",
",",
"the",
"EU",
"needs",
"to",
"imple",
"-",
"\n",
"ment",
"the",
"Critical",
"Raw",
"Materials",
"Act",
"(",
"CRMA",
")",
"rapidly",
"and",
"fully",
".",
"The",
"report",
"recommends",
"complementing",
"this",
"Act",
"with",
"\n",
"a",
"comprehensive",
"strategy",
"covering",
"all",
"stages",
"of",
"the",
"critical",
"mineral",
"supply",
"chain",
",",
"from",
"extraction"
] |
[
{
"end": 447,
"label": "CITATION_REF",
"start": 445
}
] |
Different colours have been used to identify
commonalities matching descriptions of indus-
try names, export categories and cluster names,
where possible. The economic and innovation
analysis shows the following E&I specialisations:
■food & beverages (NACE 10, 11) based on
an economic specialisation, specialised per-
formance in venture capital and start-ups and
specialised performance in related goods ex-
ports;
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation121
■textiles & wearing apparel (NACE 13, 14)
based on an economic specialisation, and spe-
cialised performance in related goods exports;
■leather and related products (NACE 15)
based on an economic specialisation, and spe-
cialised performance in related goods exports;
■wood and products of wood and cork
(NACE 16) based on an economic specialisa-
tion, an innovation specialisation and special-
ised performance in related patents;
■chemicals and chemical products (NACE
20) based on an economic specialisation, and
an innovation specialisation;
■financial services (NACE 64) based on an
economic specialisation, specialised perfor-
mance in venture capital and start-ups and
specialised performance in related services
exports;
■information and communication (NACE
61-63) based on an economic specialisation,
an innovation specialisation and specialised
performance in venture capital and start-ups.
E&I specialisations for Ukraine
Summary table S.5 for Ukraine combines the re-
sults of the various economic and innovation map-
pings. Different colours have been used to identify
commonalities matching descriptions of indus-
try names, export categories and cluster names,
where possible. The economic and innovation
analysis shows the following E&I specialisations:
■food products (NACE 10) based on an eco-
nomic specialisation, the identification of a
food and agriculture cluster and specialised
performance in related goods exports;
■wood and products of wood and cork
(NACE 16) based on an economic specialisa-
tion, and specialised performance in related
goods exports;
■basic metals & fabricated metal prod-
ucts (NACE 25, 26) based on an economic
specialisation, and specialised performance in
related patents; ■machinery and equipment (NACE 28)
based on an economic specialisation, special-
ised performance in related patents and spe-
cialised performance in related goods exports;
■manufacture of motor vehicles (NACE 29)
based on an economic specialisation;
■wholesale and retail trade (NACE 46)
based on an economic specialisation, and spe-
cialised performance in venture capital and
start-ups.
Summary
T ables
S.1-S.5
>122 Part 2 Analysis of economic and innovation potential
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation123 124
Part 2 Analysis
|
[
"Different",
"colours",
"have",
"been",
"used",
"to",
"identify",
"\n",
"commonalities",
"matching",
"descriptions",
"of",
"indus-",
"\n",
"try",
"names",
",",
"export",
"categories",
"and",
"cluster",
"names",
",",
"\n",
"where",
"possible",
".",
"The",
"economic",
"and",
"innovation",
"\n",
"analysis",
"shows",
"the",
"following",
"E&I",
"specialisations",
":",
"\n ",
"■",
"food",
"&",
"beverages",
"(",
"NACE",
"10",
",",
"11",
")",
"based",
"on",
"\n",
"an",
"economic",
"specialisation",
",",
"specialised",
"per-",
"\n",
"formance",
"in",
"venture",
"capital",
"and",
"start",
"-",
"ups",
"and",
"\n",
"specialised",
"performance",
"in",
"related",
"goods",
"ex-",
"\n",
"ports",
";",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation121",
"\n ",
"■",
"textiles",
"&",
"wearing",
"apparel",
"(",
"NACE",
"13",
",",
"14",
")",
"\n",
"based",
"on",
"an",
"economic",
"specialisation",
",",
"and",
"spe-",
"\n",
"cialised",
"performance",
"in",
"related",
"goods",
"exports",
";",
"\n ",
"■",
"leather",
"and",
"related",
"products",
"(",
"NACE",
"15",
")",
"\n",
"based",
"on",
"an",
"economic",
"specialisation",
",",
"and",
"spe-",
"\n",
"cialised",
"performance",
"in",
"related",
"goods",
"exports",
";",
"\n ",
"■",
"wood",
"and",
"products",
"of",
"wood",
"and",
"cork",
"\n",
"(",
"NACE",
"16",
")",
"based",
"on",
"an",
"economic",
"specialisa-",
"\n",
"tion",
",",
"an",
"innovation",
"specialisation",
"and",
"special-",
"\n",
"ised",
"performance",
"in",
"related",
"patents",
";",
"\n ",
"■",
"chemicals",
"and",
"chemical",
"products",
"(",
"NACE",
"\n",
"20",
")",
"based",
"on",
"an",
"economic",
"specialisation",
",",
"and",
"\n",
"an",
"innovation",
"specialisation",
";",
"\n ",
"■",
"financial",
"services",
"(",
"NACE",
"64",
")",
"based",
"on",
"an",
"\n",
"economic",
"specialisation",
",",
"specialised",
"perfor-",
"\n",
"mance",
"in",
"venture",
"capital",
"and",
"start",
"-",
"ups",
"and",
"\n",
"specialised",
"performance",
"in",
"related",
"services",
"\n",
"exports",
";",
"\n ",
"■",
"information",
"and",
"communication",
"(",
"NACE",
"\n",
"61",
"-",
"63",
")",
"based",
"on",
"an",
"economic",
"specialisation",
",",
"\n",
"an",
"innovation",
"specialisation",
"and",
"specialised",
"\n",
"performance",
"in",
"venture",
"capital",
"and",
"start",
"-",
"ups",
".",
"\n",
"E&I",
"specialisations",
"for",
"Ukraine",
"\n",
"Summary",
"table",
"S.5",
"for",
"Ukraine",
"combines",
"the",
"re-",
"\n",
"sults",
"of",
"the",
"various",
"economic",
"and",
"innovation",
"map-",
"\n",
"pings",
".",
"Different",
"colours",
"have",
"been",
"used",
"to",
"identify",
"\n",
"commonalities",
"matching",
"descriptions",
"of",
"indus-",
"\n",
"try",
"names",
",",
"export",
"categories",
"and",
"cluster",
"names",
",",
"\n",
"where",
"possible",
".",
"The",
"economic",
"and",
"innovation",
"\n",
"analysis",
"shows",
"the",
"following",
"E&I",
"specialisations",
":",
"\n ",
"■",
"food",
"products",
"(",
"NACE",
"10",
")",
"based",
"on",
"an",
"eco-",
"\n",
"nomic",
"specialisation",
",",
"the",
"identification",
"of",
"a",
"\n",
"food",
"and",
"agriculture",
"cluster",
"and",
"specialised",
"\n",
"performance",
"in",
"related",
"goods",
"exports",
";",
"\n ",
"■",
"wood",
"and",
"products",
"of",
"wood",
"and",
"cork",
"\n",
"(",
"NACE",
"16",
")",
"based",
"on",
"an",
"economic",
"specialisa-",
"\n",
"tion",
",",
"and",
"specialised",
"performance",
"in",
"related",
"\n",
"goods",
"exports",
";",
"\n ",
"■",
"basic",
"metals",
"&",
"fabricated",
"metal",
"prod-",
"\n",
"ucts",
"(",
"NACE",
"25",
",",
"26",
")",
"based",
"on",
"an",
"economic",
"\n",
"specialisation",
",",
"and",
"specialised",
"performance",
"in",
"\n",
"related",
"patents",
";",
"■",
"machinery",
"and",
"equipment",
"(",
"NACE",
"28",
")",
"\n",
"based",
"on",
"an",
"economic",
"specialisation",
",",
"special-",
"\n",
"ised",
"performance",
"in",
"related",
"patents",
"and",
"spe-",
"\n",
"cialised",
"performance",
"in",
"related",
"goods",
"exports",
";",
"\n ",
"■",
"manufacture",
"of",
"motor",
"vehicles",
"(",
"NACE",
"29",
")",
"\n",
"based",
"on",
"an",
"economic",
"specialisation",
";",
"\n ",
"■",
"wholesale",
"and",
"retail",
"trade",
"(",
"NACE",
"46",
")",
"\n",
"based",
"on",
"an",
"economic",
"specialisation",
",",
"and",
"spe-",
"\n",
"cialised",
"performance",
"in",
"venture",
"capital",
"and",
"\n",
"start",
"-",
"ups",
".",
"\n",
"Summary",
"\n",
"T",
"ables",
"\n",
"S.1",
"-",
"S.5",
"\n ",
">",
"122",
"Part",
"2",
"Analysis",
"of",
"economic",
"and",
"innovation",
"potential",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation123",
"124",
"\n ",
"Part",
"2",
"Analysis"
] |
[] |
from which candidates for job vacancies can be selected.
School leadership: Roles, responsibilities and practices involved in a process of social influence, which aims to maximize the efforts of other school community members towards the achievement of the school's goal.
Selection: A process of collecting and using relevant information to make an employment decision about applicants for a vacant position.
Shared leadership: An approach to leadership where practice takes shape through the interactions and situation of multiple members of an organization, rather than the actions of an individual leader, in which other team members also have decision-making authority (see: distributed leadership ).
Student council: Elected representative body of students that provides a platform for students' participation in school governance and voicing their concerns.
Student leadership: A process through which students, through formal positions or informally, influence others toward the achievement of an education or social goal.
System leadership: Roles and responsibilities of central and local officials involved in a process of social influence, which aims to maximize the efforts of others, towards the achievement of the system's goals.
Teacher leadership: A process through which teachers, through formal positions (oversight of departments, grades or key initiatives) or informally, influence others toward the achievement of a goal (also: middle leadership ).
Transformational leadership: An approach to leadership which focuses on inspiring and motivating positive change in individuals and organizations.
## Acronyms and Abbreviations
| AMPL | Assessment for Minimum Proficiency Level |
|---------|-----------------------------------------------------------------------------------|
| BRACE | Building the Climate Resilience of Children and Communities through the Education |
| C | Celsius |
| CBSE | Central Board of Secondary Education |
| CTE | College of teacher education |
| DAC | Development Assistance Committee |
| ECCE | Early Childhood Care and Education |
| EEA | European Economic Area |
| EU | European Union |
| FONERWA | National Environment Fund (Rwanda) |
| GDP | Gross domestic product |
| GEM | Global Monitoring Report |
| GNI | Gross national income |
| ICCS | International Civic and Citizenship Education Study |
| ICT | Information and communication technology |
| ISCED | International Standard Classification of Education |
| ISCED-T | International Standard Classification of Teacher Training Programmes |
| ISSP | International Study of Principal Preparation |
| MECCE | Monitoring and Evaluating Climate Communication and Education |
| MEXT | Ministry of Education,
|
[
"from",
"which",
"candidates",
"for",
"job",
"vacancies",
"can",
"be",
"selected",
".",
"\n\n",
"School",
"leadership",
":",
"Roles",
",",
"responsibilities",
"and",
"practices",
"involved",
"in",
"a",
"process",
"of",
"social",
"influence",
",",
"which",
"aims",
"to",
"maximize",
"the",
"efforts",
"of",
"other",
"school",
"community",
"members",
"towards",
"the",
"achievement",
"of",
"the",
"school",
"'s",
"goal",
".",
"\n\n",
"Selection",
":",
"A",
"process",
"of",
"collecting",
"and",
"using",
"relevant",
"information",
"to",
"make",
"an",
"employment",
"decision",
"about",
"applicants",
"for",
"a",
"vacant",
"position",
".",
"\n\n",
"Shared",
"leadership",
":",
"An",
"approach",
"to",
"leadership",
"where",
"practice",
"takes",
"shape",
"through",
"the",
"interactions",
"and",
"situation",
"of",
"multiple",
"members",
"of",
"an",
"organization",
",",
"rather",
"than",
"the",
"actions",
"of",
"an",
"individual",
"leader",
",",
"in",
"which",
"other",
"team",
"members",
"also",
"have",
"decision",
"-",
"making",
"authority",
"(",
"see",
":",
"distributed",
"leadership",
")",
".",
"\n\n",
"Student",
"council",
":",
"Elected",
"representative",
"body",
"of",
"students",
"that",
"provides",
"a",
"platform",
"for",
"students",
"'",
"participation",
"in",
"school",
"governance",
"and",
"voicing",
"their",
"concerns",
".",
"\n\n",
"Student",
"leadership",
":",
"A",
"process",
"through",
"which",
"students",
",",
"through",
"formal",
"positions",
"or",
"informally",
",",
"influence",
"others",
"toward",
"the",
"achievement",
"of",
"an",
"education",
"or",
"social",
"goal",
".",
"\n\n",
"System",
"leadership",
":",
"Roles",
"and",
"responsibilities",
"of",
"central",
"and",
"local",
"officials",
"involved",
"in",
"a",
"process",
"of",
"social",
"influence",
",",
"which",
"aims",
"to",
"maximize",
"the",
"efforts",
"of",
"others",
",",
"towards",
"the",
"achievement",
"of",
"the",
"system",
"'s",
"goals",
".",
"\n\n",
"Teacher",
"leadership",
":",
"A",
"process",
"through",
"which",
"teachers",
",",
"through",
"formal",
"positions",
"(",
"oversight",
"of",
"departments",
",",
"grades",
"or",
"key",
"initiatives",
")",
"or",
"informally",
",",
"influence",
"others",
"toward",
"the",
"achievement",
"of",
"a",
"goal",
"(",
"also",
":",
"middle",
"leadership",
")",
".",
"\n\n",
"Transformational",
"leadership",
":",
"An",
"approach",
"to",
"leadership",
"which",
"focuses",
"on",
"inspiring",
"and",
"motivating",
"positive",
"change",
"in",
"individuals",
"and",
"organizations",
".",
"\n\n",
"#",
"#",
"Acronyms",
"and",
"Abbreviations",
"\n\n",
"|",
"AMPL",
" ",
"|",
"Assessment",
"for",
"Minimum",
"Proficiency",
"Level",
" ",
"|",
"\n",
"|---------|-----------------------------------------------------------------------------------|",
"\n",
"|",
"BRACE",
" ",
"|",
"Building",
"the",
"Climate",
"Resilience",
"of",
"Children",
"and",
"Communities",
"through",
"the",
"Education",
"|",
"\n",
"|",
"C",
" ",
"|",
"Celsius",
" ",
"|",
"\n",
"|",
"CBSE",
" ",
"|",
"Central",
"Board",
"of",
"Secondary",
"Education",
" ",
"|",
"\n",
"|",
"CTE",
" ",
"|",
"College",
"of",
"teacher",
"education",
" ",
"|",
"\n",
"|",
"DAC",
" ",
"|",
"Development",
"Assistance",
"Committee",
" ",
"|",
"\n",
"|",
"ECCE",
" ",
"|",
"Early",
"Childhood",
"Care",
"and",
"Education",
" ",
"|",
"\n",
"|",
"EEA",
" ",
"|",
"European",
"Economic",
"Area",
" ",
"|",
"\n",
"|",
"EU",
" ",
"|",
"European",
"Union",
" ",
"|",
"\n",
"|",
"FONERWA",
"|",
"National",
"Environment",
"Fund",
"(",
"Rwanda",
")",
" ",
"|",
"\n",
"|",
"GDP",
" ",
"|",
"Gross",
"domestic",
"product",
" ",
"|",
"\n",
"|",
"GEM",
" ",
"|",
"Global",
"Monitoring",
"Report",
" ",
"|",
"\n",
"|",
"GNI",
" ",
"|",
"Gross",
"national",
"income",
" ",
"|",
"\n",
"|",
"ICCS",
" ",
"|",
"International",
"Civic",
"and",
"Citizenship",
"Education",
"Study",
" ",
"|",
"\n",
"|",
"ICT",
" ",
"|",
"Information",
"and",
"communication",
"technology",
" ",
"|",
"\n",
"|",
"ISCED",
" ",
"|",
"International",
"Standard",
"Classification",
"of",
"Education",
" ",
"|",
"\n",
"|",
"ISCED",
"-",
"T",
"|",
"International",
"Standard",
"Classification",
"of",
"Teacher",
"Training",
"Programmes",
" ",
"|",
"\n",
"|",
"ISSP",
" ",
"|",
"International",
"Study",
"of",
"Principal",
"Preparation",
" ",
"|",
"\n",
"|",
"MECCE",
" ",
"|",
"Monitoring",
"and",
"Evaluating",
"Climate",
"Communication",
"and",
"Education",
" ",
"|",
"\n",
"|",
"MEXT",
" ",
"|",
"Ministry",
"of",
"Education",
","
] |
[] |
the exceptions applied in Kenya, PNG, and the Cook Islands are not clearly set out in public policy documentation; however, we can assume that these resource-rich countries are trying to balance different policy objectives by delivering early government revenues while also attracting exploration investments to their jurisdiction.
## 4.7.1 Recommendations
## What should be ring-fenced (i.e., mine area, mining activities, etc.)?
- · When designing the ring-fencing rules based on the mining area, each country's specific rules and reporting framework will be critical. For instance, it is reasonable to follow the existing reporting obligations to the mining authority, which can be on a mine, project, or licence basis. This will prevent an excessive tax compliance burden, since the separation of the costs and revenues will be already corresponding to the established reporting practices for regulatory purposes.
- · Where shared processing facilities exist, governments can consider whether such processing activities are to be ring-fenced. Where ring-fencing around the processing facility is not suitable for countries, tax authorities could use the following options:
- ⁰ Ring-fence around the mining licence area and treat the activities related to the processing facility as non-mining activities, and ring-fence it from mining activities.
- ⁰ Ring-fence around the mining licence area and allocate the CapEx and OpEx from the processing facility to the relevant mines covered by the mining licences that benefit from it. In this scenario, there should be guidance with apportionment rules to allocate the costs between mines.
- · Resource-rich countries with highly integrated mining sectors with different tax rates or different tax regimes, including concessions or incentives for different parts of the mining value chain, may also wish to explicitly ring-fence upstream from downstream income. In such cases, it will be important to provide clear guidance for the delineation of activities or definitions of upstream and downstream, as well as, potentially, guidance to taxpayers on implementation.
- · Resource-rich countries with differential tax rates for different types of activities-mining and non-mining-may wish to explicitly ring-fence mining from non-mining income. Clear definitions and potential guidance to taxpayers on implementation are also key. This additional level of ring-fencing is particularly relevant to ringfence some of the BEPS risks derived from investors undertaking speculative investment activities or structuring complex financial transactions next to mining activities.
## 1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
3.0 THE BENEFITS AND RISKS OF RING-FENCING
## 4.0 DESIGNING RING-FENCING
|
[
"the",
"exceptions",
"applied",
"in",
"Kenya",
",",
"PNG",
",",
"and",
"the",
"Cook",
"Islands",
"are",
"not",
"clearly",
"set",
"out",
"in",
"public",
"policy",
"documentation",
";",
"however",
",",
"we",
"can",
"assume",
"that",
"these",
"resource",
"-",
"rich",
"countries",
"are",
"trying",
"to",
"balance",
"different",
"policy",
"objectives",
"by",
"delivering",
"early",
"government",
"revenues",
"while",
"also",
"attracting",
"exploration",
"investments",
"to",
"their",
"jurisdiction",
".",
"\n\n",
"#",
"#",
"4.7.1",
"Recommendations",
"\n\n",
"#",
"#",
"What",
"should",
"be",
"ring",
"-",
"fenced",
"(",
"i.e.",
",",
"mine",
"area",
",",
"mining",
"activities",
",",
"etc",
".",
")",
"?",
"\n\n",
"-",
"·",
"When",
"designing",
"the",
"ring",
"-",
"fencing",
"rules",
"based",
"on",
"the",
"mining",
"area",
",",
"each",
"country",
"'s",
"specific",
"rules",
"and",
"reporting",
"framework",
"will",
"be",
"critical",
".",
"For",
"instance",
",",
"it",
"is",
"reasonable",
"to",
"follow",
"the",
"existing",
"reporting",
"obligations",
"to",
"the",
"mining",
"authority",
",",
"which",
"can",
"be",
"on",
"a",
"mine",
",",
"project",
",",
"or",
"licence",
"basis",
".",
"This",
"will",
"prevent",
"an",
"excessive",
"tax",
"compliance",
"burden",
",",
"since",
"the",
"separation",
"of",
"the",
"costs",
"and",
"revenues",
"will",
"be",
"already",
"corresponding",
"to",
"the",
"established",
"reporting",
"practices",
"for",
"regulatory",
"purposes",
".",
"\n",
"-",
"·",
"Where",
"shared",
"processing",
"facilities",
"exist",
",",
"governments",
"can",
"consider",
"whether",
"such",
"processing",
"activities",
"are",
"to",
"be",
"ring",
"-",
"fenced",
".",
"Where",
"ring",
"-",
"fencing",
"around",
"the",
"processing",
"facility",
"is",
"not",
"suitable",
"for",
"countries",
",",
"tax",
"authorities",
"could",
"use",
"the",
"following",
"options",
":",
"\n",
"-",
"⁰",
"Ring",
"-",
"fence",
"around",
"the",
"mining",
"licence",
"area",
"and",
"treat",
"the",
"activities",
"related",
"to",
"the",
"processing",
"facility",
"as",
"non",
"-",
"mining",
"activities",
",",
"and",
"ring",
"-",
"fence",
"it",
"from",
"mining",
"activities",
".",
"\n",
"-",
"⁰",
"Ring",
"-",
"fence",
"around",
"the",
"mining",
"licence",
"area",
"and",
"allocate",
"the",
"CapEx",
"and",
"OpEx",
"from",
"the",
"processing",
"facility",
"to",
"the",
"relevant",
"mines",
"covered",
"by",
"the",
"mining",
"licences",
"that",
"benefit",
"from",
"it",
".",
"In",
"this",
"scenario",
",",
"there",
"should",
"be",
"guidance",
"with",
"apportionment",
"rules",
"to",
"allocate",
"the",
"costs",
"between",
"mines",
".",
"\n",
"-",
"·",
"Resource",
"-",
"rich",
"countries",
"with",
"highly",
"integrated",
"mining",
"sectors",
"with",
"different",
"tax",
"rates",
"or",
"different",
"tax",
"regimes",
",",
"including",
"concessions",
"or",
"incentives",
"for",
"different",
"parts",
"of",
"the",
"mining",
"value",
"chain",
",",
"may",
"also",
"wish",
"to",
"explicitly",
"ring",
"-",
"fence",
"upstream",
"from",
"downstream",
"income",
".",
"In",
"such",
"cases",
",",
"it",
"will",
"be",
"important",
"to",
"provide",
"clear",
"guidance",
"for",
"the",
"delineation",
"of",
"activities",
"or",
"definitions",
"of",
"upstream",
"and",
"downstream",
",",
"as",
"well",
"as",
",",
"potentially",
",",
"guidance",
"to",
"taxpayers",
"on",
"implementation",
".",
"\n",
"-",
"·",
"Resource",
"-",
"rich",
"countries",
"with",
"differential",
"tax",
"rates",
"for",
"different",
"types",
"of",
"activities",
"-",
"mining",
"and",
"non",
"-",
"mining",
"-",
"may",
"wish",
"to",
"explicitly",
"ring",
"-",
"fence",
"mining",
"from",
"non",
"-",
"mining",
"income",
".",
"Clear",
"definitions",
"and",
"potential",
"guidance",
"to",
"taxpayers",
"on",
"implementation",
"are",
"also",
"key",
".",
"This",
"additional",
"level",
"of",
"ring",
"-",
"fencing",
"is",
"particularly",
"relevant",
"to",
"ringfence",
"some",
"of",
"the",
"BEPS",
"risks",
"derived",
"from",
"investors",
"undertaking",
"speculative",
"investment",
"activities",
"or",
"structuring",
"complex",
"financial",
"transactions",
"next",
"to",
"mining",
"activities",
".",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"#",
"#",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING"
] |
[] |
between the related
Companies A and B in the absence of Investment Bank Z.3.0 THE BENEFITS
AND RISKS OF
RING -FENCING
4.0 DESIGNING
RING -FENCING
RULES
5.0 THE
IMPLEMENTATION
OF RING -FENCING
RULES
6.0 CONCLUSION 2.0 THE
FUNDAMENTALS
OF RING -FENCING 1.0 INTRODUCTION
18
Ring-Fencing Mining Income: A toolkit for tax administrators and policy-makersSuch BEPS practices also result in permanent revenue losses for the host
government. Where the costs or losses resulting from such BEPS practices
are ring-fenced from the mining tax base, the ring-fencing rules can
contribute to protecting the tax base from permanent revenue losses.
While aggressive tax planning could be dealt with more effectively by (a)
introducing general anti-avoidance measures, and/or (b) improving the
capability of tax administrations to detect and mitigate BEPS practices
generally, the reality is that these two conditions are not always in place in
developing countries. Ring-fencing can be considered a temporary measure
in such circumstances.
3.1.2.4 The Overstatement of Exploration and
Development Expenditures
The consolidation of revenues and expenditures between projects held
by one mining investor can increase the risk of companies inflating their
exploration and mine development expenditures, which may not be audited
at all (due to limited capacities and statute of limitation rules) or are audited
only once the mine starts production and often receive preferential tax
treatment, such as accelerated depreciation or investment allowances/tax
credits, to lower their overall tax burden on profit-making operations.15 This
is particularly common in jurisdictions with weak monitoring capacity.
The overstatement of expenditures raises the need for additional financing
and, thus, associated costs, such as interest deductions, where the investor
uses debt to finance the additional “overstated” costs. Such additional debt
financing is often provided by related parties, which has a further negative
effect on the tax base—in addition to the overstated costs—because
there is an additional deduction of the financing costs in relation to the
related-party debt financing. Ring-fencing may reduce this risk by limiting
the consolidation of revenues with losses derived from exploration or
development areas.
BEPS practices may need to be resolved through the full suite of transfer
pricing rules and other measures. However, the effect of ring-fencing may,
to some extent, discourage such practices. This is especially true where
both the overstated expenses and the financing costs are allocated to
the ring-fenced activity (see Section 5).
15 Most tax regimes provide preferential tax treatment for mineral exploration to
offset the
|
[
"between",
"the",
"related",
"\n",
"Companies",
"A",
"and",
"B",
"in",
"the",
"absence",
"of",
"Investment",
"Bank",
"Z.3.0",
"THE",
"BENEFITS",
"\n",
"AND",
"RISKS",
"OF",
" \n",
"RING",
"-FENCING",
"\n",
"4.0",
"DESIGNING",
"\n",
"RING",
"-FENCING",
"\n",
"RULES",
"\n",
"5.0",
"THE",
"\n",
"IMPLEMENTATION",
"\n",
"OF",
"RING",
"-FENCING",
"\n",
"RULES",
"\n",
"6.0",
"CONCLUSION",
"2.0",
"THE",
"\n",
"FUNDAMENTALS",
" \n",
"OF",
"RING",
"-FENCING",
"1.0",
"INTRODUCTION",
"\n",
"18",
"\n",
"Ring",
"-",
"Fencing",
"Mining",
"Income",
":",
"A",
"toolkit",
"for",
"tax",
"administrators",
"and",
"policy",
"-",
"makersSuch",
"BEPS",
"practices",
"also",
"result",
"in",
"permanent",
"revenue",
"losses",
"for",
"the",
"host",
"\n",
"government",
".",
"Where",
"the",
"costs",
"or",
"losses",
"resulting",
"from",
"such",
"BEPS",
"practices",
"\n",
"are",
"ring",
"-",
"fenced",
"from",
"the",
"mining",
"tax",
"base",
",",
"the",
"ring",
"-",
"fencing",
"rules",
"can",
"\n",
"contribute",
"to",
"protecting",
"the",
"tax",
"base",
"from",
"permanent",
"revenue",
"losses",
".",
"\n",
"While",
"aggressive",
"tax",
"planning",
"could",
"be",
"dealt",
"with",
"more",
"effectively",
"by",
"(",
"a",
")",
"\n",
"introducing",
"general",
"anti",
"-",
"avoidance",
"measures",
",",
"and/or",
"(",
"b",
")",
"improving",
"the",
"\n",
"capability",
"of",
"tax",
"administrations",
"to",
"detect",
"and",
"mitigate",
"BEPS",
"practices",
"\n",
"generally",
",",
"the",
"reality",
"is",
"that",
"these",
"two",
"conditions",
"are",
"not",
"always",
"in",
"place",
"in",
"\n",
"developing",
"countries",
".",
"Ring",
"-",
"fencing",
"can",
"be",
"considered",
"a",
"temporary",
"measure",
"\n",
"in",
"such",
"circumstances",
".",
"\n",
"3.1.2.4",
"The",
"Overstatement",
"of",
"Exploration",
"and",
"\n",
"Development",
"Expenditures",
"\n",
"The",
"consolidation",
"of",
"revenues",
"and",
"expenditures",
"between",
"projects",
"held",
"\n",
"by",
"one",
"mining",
"investor",
"can",
"increase",
"the",
"risk",
"of",
"companies",
"inflating",
"their",
"\n",
"exploration",
"and",
"mine",
"development",
"expenditures",
",",
"which",
"may",
"not",
"be",
"audited",
"\n",
"at",
"all",
"(",
"due",
"to",
"limited",
"capacities",
"and",
"statute",
"of",
"limitation",
"rules",
")",
"or",
"are",
"audited",
"\n",
"only",
"once",
"the",
"mine",
"starts",
"production",
"and",
"often",
"receive",
"preferential",
"tax",
"\n",
"treatment",
",",
"such",
"as",
"accelerated",
"depreciation",
"or",
"investment",
"allowances",
"/",
"tax",
"\n",
"credits",
",",
"to",
"lower",
"their",
"overall",
"tax",
"burden",
"on",
"profit",
"-",
"making",
"operations.15",
"This",
" \n",
"is",
"particularly",
"common",
"in",
"jurisdictions",
"with",
"weak",
"monitoring",
"capacity",
".",
"\n",
"The",
"overstatement",
"of",
"expenditures",
"raises",
"the",
"need",
"for",
"additional",
"financing",
"\n",
"and",
",",
"thus",
",",
"associated",
"costs",
",",
"such",
"as",
"interest",
"deductions",
",",
"where",
"the",
"investor",
"\n",
"uses",
"debt",
"to",
"finance",
"the",
"additional",
"“",
"overstated",
"”",
"costs",
".",
"Such",
"additional",
"debt",
"\n",
"financing",
"is",
"often",
"provided",
"by",
"related",
"parties",
",",
"which",
"has",
"a",
"further",
"negative",
"\n",
"effect",
"on",
"the",
"tax",
"base",
"—",
"in",
"addition",
"to",
"the",
"overstated",
"costs",
"—",
"because",
"\n",
"there",
"is",
"an",
"additional",
"deduction",
"of",
"the",
"financing",
"costs",
"in",
"relation",
"to",
"the",
"\n",
"related",
"-",
"party",
"debt",
"financing",
".",
"Ring",
"-",
"fencing",
"may",
"reduce",
"this",
"risk",
"by",
"limiting",
"\n",
"the",
"consolidation",
"of",
"revenues",
"with",
"losses",
"derived",
"from",
"exploration",
"or",
"\n",
"development",
"areas",
".",
"\n",
"BEPS",
"practices",
"may",
"need",
"to",
"be",
"resolved",
"through",
"the",
"full",
"suite",
"of",
"transfer",
"\n",
"pricing",
"rules",
"and",
"other",
"measures",
".",
"However",
",",
"the",
"effect",
"of",
"ring",
"-",
"fencing",
"may",
",",
" \n",
"to",
"some",
"extent",
",",
"discourage",
"such",
"practices",
".",
"This",
"is",
"especially",
"true",
"where",
" \n",
"both",
"the",
"overstated",
"expenses",
"and",
"the",
"financing",
"costs",
"are",
"allocated",
"to",
" \n",
"the",
"ring",
"-",
"fenced",
"activity",
"(",
"see",
"Section",
"5",
")",
".",
"\n",
"15",
"Most",
"tax",
"regimes",
"provide",
"preferential",
"tax",
"treatment",
"for",
"mineral",
"exploration",
"to",
"\n",
"offset",
"the"
] |
[
{
"end": 1639,
"label": "CITATION_REF",
"start": 1637
},
{
"end": 2682,
"label": "CITATION_ID",
"start": 2680
}
] |
heads-up position. They were also observed to suck fish directly from bagans, which often damaged the nets. Most sighted individuals were juveniles between four and five meters long, while 90% were males.
52.6% of whale sharks were resighted at least once, up to 11 years apart. The record holder was a young male which was recorded 34 times over three years.
Of the 206 sharks recorded with injuries or scarring, 80.6% exhibited injuries that were attributed to human-made causes, while 58.3% had injuries that were likely from natural causes (note: some individuals had both anthropogenic and natural injuries). Serious lacerations, amputations, and evidence of blunt trauma from anthropogenic causes were relatively rare, observed in 17.7% of individuals. However, non-life-threatening abrasions were common and frequently due to whale sharks rubbing against bagans or boats.
Other fish in the sea
But where did the females, and older, sexually mature individuals hang out? The researchers have a good inkling.
“Previous studies from around the world have shown that adult whale sharks, especially females, prefer the deep ocean where they feed on prey like krill and schooling fish, while the younger males stay closer to shore in shallow, plankton-rich waters that help them grow quickly,” said co-author Mochamad Iqbal Herwata Putra, a senior manager at the Focal Species Conservation Program of the national foundation Konservasi Indonesia.
“Our own satellite tracking data also show that females and adults frequently use deep sea features such as canyons and seamounts.”
“Whale sharks in Cenderawasih Bay and Triton Bay (Kaimana) had high rates of residency and resighting, indicating that they should be viewed as valuable tourism assets for local communities and governments,” said Dr Mark Erdmann, the study’s last author and Shark Conservation Director for Re:wild.
Since the majority of the whale shark sightings took place at bagans, at a time when whale shark tourism is growing, the researchers expect the risk of injuries from bagans and boats to increase in the future – unless simple steps are taken to protect the whale sharks better.
“We aim to work with the management authorities of the marine protected areas to develop regulations to require slight modifications to the bagans, including the removal of any sharp edges from boat outriggers and net frames. We believe those changes will greatly reduce scarring of whale sharks in the region," said Erdmann.
#### Journal
Frontiers in Marine Science
#### DOI
10.3389/fmars.2025.1607027
#### Method
|
[
"heads",
"-",
"up",
"position",
".",
"They",
"were",
"also",
"observed",
"to",
"suck",
"fish",
"directly",
"from",
"bagans",
",",
"which",
"often",
"damaged",
"the",
"nets",
".",
"Most",
"sighted",
"individuals",
"were",
"juveniles",
"between",
"four",
"and",
"five",
"meters",
"long",
",",
"while",
"90",
"%",
"were",
"males",
".",
"\n\n",
"52.6",
"%",
"of",
"whale",
"sharks",
"were",
"resighted",
"at",
"least",
"once",
",",
"up",
"to",
"11",
"years",
"apart",
".",
"The",
"record",
"holder",
"was",
"a",
"young",
"male",
"which",
"was",
"recorded",
"34",
"times",
"over",
"three",
"years",
".",
"\n\n",
"Of",
"the",
"206",
"sharks",
"recorded",
"with",
"injuries",
"or",
"scarring",
",",
"80.6",
"%",
"exhibited",
"injuries",
"that",
"were",
"attributed",
"to",
"human",
"-",
"made",
"causes",
",",
"while",
"58.3",
"%",
"had",
"injuries",
"that",
"were",
"likely",
"from",
"natural",
"causes",
"(",
"note",
":",
"some",
"individuals",
"had",
"both",
"anthropogenic",
"and",
"natural",
"injuries",
")",
".",
"Serious",
"lacerations",
",",
"amputations",
",",
"and",
"evidence",
"of",
"blunt",
"trauma",
"from",
"anthropogenic",
"causes",
"were",
"relatively",
"rare",
",",
"observed",
"in",
"17.7",
"%",
"of",
"individuals",
".",
"However",
",",
"non",
"-",
"life",
"-",
"threatening",
"abrasions",
"were",
"common",
"and",
"frequently",
"due",
"to",
"whale",
"sharks",
"rubbing",
"against",
"bagans",
"or",
"boats",
".",
"\n\n",
"Other",
"fish",
"in",
"the",
"sea",
"\n\n",
"But",
"where",
"did",
"the",
"females",
",",
"and",
"older",
",",
"sexually",
"mature",
"individuals",
"hang",
"out",
"?",
"The",
"researchers",
"have",
"a",
"good",
"inkling",
".",
"\n\n",
"“",
"Previous",
"studies",
"from",
"around",
"the",
"world",
"have",
"shown",
"that",
"adult",
"whale",
"sharks",
",",
"especially",
"females",
",",
"prefer",
"the",
"deep",
"ocean",
"where",
"they",
"feed",
"on",
"prey",
"like",
"krill",
"and",
"schooling",
"fish",
",",
"while",
"the",
"younger",
"males",
"stay",
"closer",
"to",
"shore",
"in",
"shallow",
",",
"plankton",
"-",
"rich",
"waters",
"that",
"help",
"them",
"grow",
"quickly",
",",
"”",
"said",
"co",
"-",
"author",
"Mochamad",
"Iqbal",
"Herwata",
"Putra",
",",
"a",
"senior",
"manager",
"at",
"the",
"Focal",
"Species",
"Conservation",
"Program",
"of",
"the",
"national",
"foundation",
"Konservasi",
"Indonesia",
".",
"\n\n",
"“",
"Our",
"own",
"satellite",
"tracking",
"data",
"also",
"show",
"that",
"females",
"and",
"adults",
"frequently",
"use",
"deep",
"sea",
"features",
"such",
"as",
"canyons",
"and",
"seamounts",
".",
"”",
"\n\n",
"“",
"Whale",
"sharks",
"in",
"Cenderawasih",
"Bay",
"and",
"Triton",
"Bay",
"(",
"Kaimana",
")",
"had",
"high",
"rates",
"of",
"residency",
"and",
"resighting",
",",
"indicating",
"that",
"they",
"should",
"be",
"viewed",
"as",
"valuable",
"tourism",
"assets",
"for",
"local",
"communities",
"and",
"governments",
",",
"”",
"said",
"Dr",
"Mark",
"Erdmann",
",",
"the",
"study",
"’s",
"last",
"author",
"and",
"Shark",
"Conservation",
"Director",
"for",
"Re",
":",
"wild",
".",
"\n\n",
"Since",
"the",
"majority",
"of",
"the",
"whale",
"shark",
"sightings",
"took",
"place",
"at",
"bagans",
",",
"at",
"a",
"time",
"when",
"whale",
"shark",
"tourism",
"is",
"growing",
",",
"the",
"researchers",
"expect",
"the",
"risk",
"of",
"injuries",
"from",
"bagans",
"and",
"boats",
"to",
"increase",
"in",
"the",
"future",
"–",
"unless",
"simple",
"steps",
"are",
"taken",
"to",
"protect",
"the",
"whale",
"sharks",
"better",
".",
"\n\n",
"“",
"We",
"aim",
"to",
"work",
"with",
"the",
"management",
"authorities",
"of",
"the",
"marine",
"protected",
"areas",
"to",
"develop",
"regulations",
"to",
"require",
"slight",
"modifications",
"to",
"the",
"bagans",
",",
"including",
"the",
"removal",
"of",
"any",
"sharp",
"edges",
"from",
"boat",
"outriggers",
"and",
"net",
"frames",
".",
"We",
"believe",
"those",
"changes",
"will",
"greatly",
"reduce",
"scarring",
"of",
"whale",
"sharks",
"in",
"the",
"region",
",",
"\"",
"said",
"Erdmann",
".",
"\n\n",
"#",
"#",
"#",
"#",
"Journal",
"\n\n",
"Frontiers",
"in",
"Marine",
"Science",
"\n\n",
"#",
"#",
"#",
"#",
"DOI",
"\n\n",
"10.3389",
"/",
"fmars.2025.1607027",
"\n\n",
"#",
"#",
"#",
"#",
"Method"
] |
[
{
"end": 2571,
"label": "CITATION_SPAN",
"start": 2506
}
] |
Saegert, S. , Thompson, J. P., and Warren, M. R. (2001). Social Capital and Poor Communities . New York, NY: Russell Sage Foundation.
Sampson, R. J., Raudenbush, S. W., and Earls, F. (1997). Neighbourhoods and Violent Crime: A Multilevel Study of Collective Efficacy, Science , 277 (5328), 918-924.
Sampson, R. J., and Raudenbush, S. W. (1999). Systematic Social Observation of Public Spaces: A New Look at Disorder in Urban Neighbourhoods, American Journal of Sociology , 105 (3), 603-651.
Savage, M. , Bagnall, G., and Longhurst, B. (2005). Globalisation and Belonging . London, UK: Sage.
Steptoe, A. , Deaton, A., and Stone, A. A. (2015). Subjective Wellbeing, Health, and Ageing, Lancet , 385 , 640-648.
Verme, P. (2009). Happiness, Freedom and Control, Journal of Economic Behaviour and Organization , 71 , 146-161.
|
[
"Saegert",
",",
" ",
"S.",
",",
"Thompson",
",",
" ",
"J.",
" ",
"P.",
",",
" ",
"and",
" ",
"Warren",
",",
" ",
"M.",
" ",
"R.",
" ",
"(",
"2001",
")",
".",
"Social",
" ",
"Capital",
" ",
"and",
" ",
"Poor",
"Communities",
".",
"New",
"York",
",",
"NY",
":",
"Russell",
"Sage",
"Foundation",
".",
"\n\n",
"Sampson",
",",
"R.",
"J.",
",",
" ",
"Raudenbush",
",",
" ",
"S.",
" ",
"W.",
",",
" ",
"and",
" ",
"Earls",
",",
" ",
"F.",
" ",
"(",
"1997",
")",
".",
" ",
"Neighbourhoods",
" ",
"and",
" ",
"Violent",
"Crime",
":",
"A",
"Multilevel",
"Study",
"of",
"Collective",
"Efficacy",
",",
"Science",
",",
"277",
"(",
"5328",
")",
",",
"918",
"-",
"924",
".",
"\n\n",
"Sampson",
",",
"R.",
"J.",
",",
"and",
"Raudenbush",
",",
"S.",
"W.",
"(",
"1999",
")",
".",
"Systematic",
"Social",
"Observation",
"of",
"Public",
"Spaces",
":",
" ",
"A",
" ",
"New",
" ",
"Look",
" ",
"at",
" ",
"Disorder",
" ",
"in",
" ",
"Urban",
" ",
"Neighbourhoods",
",",
"American",
" ",
"Journal",
" ",
"of",
"Sociology",
",",
"105",
"(",
"3",
")",
",",
"603",
"-",
"651",
".",
"\n\n",
"Savage",
",",
"M.",
",",
"Bagnall",
",",
"G.",
",",
"and",
"Longhurst",
",",
"B.",
"(",
"2005",
")",
".",
"Globalisation",
"and",
"Belonging",
".",
"London",
",",
"UK",
":",
"Sage",
".",
"\n\n",
"Steptoe",
",",
"A.",
",",
"Deaton",
",",
"A.",
",",
"and",
"Stone",
",",
"A.",
"A.",
"(",
"2015",
")",
".",
"Subjective",
"Wellbeing",
",",
"Health",
",",
"and",
"Ageing",
",",
"Lancet",
",",
"385",
",",
"640",
"-",
"648",
".",
"\n\n",
"Verme",
",",
"P.",
"(",
"2009",
")",
".",
"Happiness",
",",
"Freedom",
"and",
"Control",
",",
"Journal",
"of",
"Economic",
"Behaviour",
"and",
"Organization",
",",
"71",
",",
"146",
"-",
"161",
"."
] |
[
{
"end": 144,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 320,
"label": "CITATION_SPAN",
"start": 146
},
{
"end": 523,
"label": "CITATION_SPAN",
"start": 322
},
{
"end": 624,
"label": "CITATION_SPAN",
"start": 525
},
{
"end": 742,
"label": "CITATION_SPAN",
"start": 626
},
{
"end": 856,
"label": "CITATION_SPAN",
"start": 744
}
] |
LIBR POIN 12 Q42L 4 TERM
-2 0 -1 0 0 0 0 0 1 0 2 0
-2 1 -1 1 0 1 0 1 1 1 2 1
1 2 8 7
2 3 9 8
4 5 11 10
5 6 12 11
COMP EPAI 1.0 LECT TOUS TERM
GROU 4 'b1' LECT 1 2 TERM
'b2' LECT 3 4 TERM
'c1' LECT 2 TERM
'c2' LECT 3 TERM
! COUL VERT LECT b1 TERM
! TURQ LECT b2 TERM
MATE VM23 RO 8000. YOUN 2.E11 NU 0.3 ELAS 2.E11
TRAC 1 2.E11 1.0
LECT b1 b2 TERM
LINK COUP SPLT NONE
PINB BODY MLEV 2 LECT c1 TERM
BODY MLEV 2 LECT c2 TERM
INIT VITE 1 10.0 LECT b1 TERM
VITE 1 -10.0 LECT b2 TERM
ECRI COOR DEPL VITE ACCE FLIA FREQ 1
FICH ALIC FREQ 1
OPTI NOTE CSTA 0.5 LOG 1
143
Tuesday 12thAugust, 2025 @ 13:38
LNKS STAT
PINS STAT EQVD
CALC TINI 0.0 TEND 0.01 NMAX 15
PLAY
CAME 1 EYE 0.00000E+00 5.00000E-01 1.00623E+01
! Q 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
VIEW 0.00000E+00 0.00000E+00 -1.00000E+00
RIGH 1.00000E+00 0.00000E+00 0.00000E+00
UP 0.00000E+00 1.00000E+00 0.00000E+00
FOV 2.48819E+01
!NAVIGATION MODE: ROTATING CAMERA
!CENTER : 0.00000E+00 5.00000E-01 0.00000E+00
!RSPHERE: 2.23607E+00
!RADIUS : 1.00623E+01
!ASPECT : 1.00000E+00
!NEAR : 7.82624E+00
!FAR : 1.45344E+01
SCEN GEOM NAVI FREE
FACE HFRO
PINB CDES NORM
VECT SCCO FIEL FLIA SCAL USER PROG 3.5E7 PAS 3.5E7 4.9E8
SLER CAM1 1 NFRA 1
FREQ 1
TRAC OFFS FICH AVI NOCL NFTO 16 FPS 5 KFRE 10 COMP -1 REND
GOTR LOOP 14 OFFS FICH AVI CONT NOCL REND
GO
TRAC OFFS FICH AVI CONT REND
ENDPLAY
SUIT
Post
ECHO
OPTI PRIN
RESU ALIC GARD PSCR
SORT GRAP
AXTE 1.0 'Time [s]'
COUR 1 'x_3' COOR COMP 1 NOEU LECT 3 TERM
COUR 2 'x_4' COOR COMP 1 NOEU LECT 4 TERM
COUR 11 'rx_3' FLIA COMP 1 NOEU LECT 3 TERM
COUR 12 'rx_4' FLIA COMP 1 NOEU LECT 4 TERM
RCOU 101 'x_3' FICH 'repm01.pun' RENA 'x_3_01'
RCOU 102 'x_4' FICH 'repm01.pun' RENA 'x_4_01'
RCOU 111 'rx_3' FICH 'repm01.pun' RENA 'rx_3_01'
RCOU 112 'rx_4' FICH 'repm01.pun' RENA 'rx_4_01'
TRAC 1 2 101 102 AXES 1.0 'X-COOR [m]'
COLO NOIR NOIR ROUG ROUG
TRAC 11 12 111 112 AXES 1.0 'X-FLIA [N]'
COLO NOIR NOIR ROUG ROUG
LIST 1 2 AXES 1.0 'X-COOR [m]'
LIST 11 12 AXES 1.0 'X-FLIA [N]'
|
[
"LIBR",
"POIN",
"12",
"Q42L",
"4",
"TERM",
"\n",
"-2",
"0",
"-1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"\n",
"-2",
"1",
"-1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"2",
"1",
"\n",
"1",
"2",
"8",
"7",
"\n",
"2",
"3",
"9",
"8",
"\n",
"4",
"5",
"11",
"10",
"\n",
"5",
"6",
"12",
"11",
"\n",
"COMP",
"EPAI",
"1.0",
"LECT",
"TOUS",
"TERM",
"\n",
"GROU",
"4",
"'",
"b1",
"'",
"LECT",
"1",
"2",
"TERM",
"\n",
"'",
"b2",
"'",
"LECT",
"3",
"4",
"TERM",
"\n",
"'",
"c1",
"'",
"LECT",
"2",
"TERM",
"\n",
"'",
"c2",
"'",
"LECT",
"3",
"TERM",
"\n",
"!",
"COUL",
"VERT",
"LECT",
"b1",
"TERM",
"\n",
"!",
"TURQ",
"LECT",
"b2",
"TERM",
"\n",
"MATE",
"VM23",
"RO",
"8000",
".",
"YOUN",
"2.E11",
"NU",
"0.3",
"ELAS",
"2.E11",
"\n",
"TRAC",
"1",
"2.E11",
"1.0",
"\n",
"LECT",
"b1",
"b2",
"TERM",
"\n",
"LINK",
"COUP",
"SPLT",
"NONE",
"\n",
"PINB",
"BODY",
"MLEV",
"2",
"LECT",
"c1",
"TERM",
"\n",
"BODY",
"MLEV",
"2",
"LECT",
"c2",
"TERM",
"\n",
"INIT",
"VITE",
"1",
"10.0",
"LECT",
"b1",
"TERM",
"\n",
"VITE",
"1",
"-10.0",
"LECT",
"b2",
"TERM",
"\n",
"ECRI",
"COOR",
"DEPL",
"VITE",
"ACCE",
"FLIA",
"FREQ",
"1",
"\n",
"FICH",
"ALIC",
"FREQ",
"1",
"\n",
"OPTI",
"NOTE",
"CSTA",
"0.5",
"LOG",
"1",
"\n",
"143",
"\n",
"Tuesday",
"12thAugust",
",",
"2025",
"@",
"13:38",
"\n",
"LNKS",
"STAT",
"\n",
"PINS",
"STAT",
"EQVD",
"\n",
"CALC",
"TINI",
"0.0",
"TEND",
"0.01",
"NMAX",
"15",
"\n",
"PLAY",
"\n",
"CAME",
"1",
"EYE",
"0.00000E+00",
"5.00000E-01",
"1.00623E+01",
"\n",
"!",
"Q",
"1.00000E+00",
"0.00000E+00",
"0.00000E+00",
"0.00000E+00",
"\n",
"VIEW",
"0.00000E+00",
"0.00000E+00",
"-1.00000E+00",
"\n",
"RIGH",
"1.00000E+00",
"0.00000E+00",
"0.00000E+00",
"\n",
"UP",
"0.00000E+00",
"1.00000E+00",
"0.00000E+00",
"\n",
"FOV",
"2.48819E+01",
"\n",
"!",
"NAVIGATION",
"MODE",
":",
"ROTATING",
"CAMERA",
"\n",
"!",
"CENTER",
":",
"0.00000E+00",
"5.00000E-01",
"0.00000E+00",
"\n",
"!",
"RSPHERE",
":",
"2.23607E+00",
"\n",
"!",
"RADIUS",
":",
"1.00623E+01",
"\n",
"!",
"ASPECT",
":",
"1.00000E+00",
"\n",
"!",
"NEAR",
":",
"7.82624E+00",
"\n",
"!",
"FAR",
":",
"1.45344E+01",
"\n",
"SCEN",
"GEOM",
"NAVI",
"FREE",
"\n",
"FACE",
"HFRO",
"\n",
"PINB",
"CDES",
"NORM",
"\n",
"VECT",
"SCCO",
"FIEL",
"FLIA",
"SCAL",
"USER",
"PROG",
"3.5E7",
"PAS",
"3.5E7",
"4.9E8",
"\n",
"SLER",
"CAM1",
"1",
"NFRA",
"1",
"\n",
"FREQ",
"1",
"\n",
"TRAC",
"OFFS",
"FICH",
"AVI",
"NOCL",
"NFTO",
"16",
"FPS",
"5",
"KFRE",
"10",
"COMP",
"-1",
"REND",
"\n",
"GOTR",
"LOOP",
"14",
"OFFS",
"FICH",
"AVI",
"CONT",
"NOCL",
"REND",
"\n",
"GO",
"\n",
"TRAC",
"OFFS",
"FICH",
"AVI",
"CONT",
"REND",
"\n",
"ENDPLAY",
"\n",
"SUIT",
"\n",
"Post",
"\n",
"ECHO",
"\n",
"OPTI",
"PRIN",
"\n",
"RESU",
"ALIC",
"GARD",
"PSCR",
"\n",
"SORT",
"GRAP",
"\n",
"AXTE",
"1.0",
"'",
"Time",
"[",
"s",
"]",
"'",
"\n",
"COUR",
"1",
"'",
"x_3",
"'",
"COOR",
"COMP",
"1",
"NOEU",
"LECT",
"3",
"TERM",
"\n",
"COUR",
"2",
"'",
"x_4",
"'",
"COOR",
"COMP",
"1",
"NOEU",
"LECT",
"4",
"TERM",
"\n",
"COUR",
"11",
"'",
"rx_3",
"'",
"FLIA",
"COMP",
"1",
"NOEU",
"LECT",
"3",
"TERM",
"\n",
"COUR",
"12",
"'",
"rx_4",
"'",
"FLIA",
"COMP",
"1",
"NOEU",
"LECT",
"4",
"TERM",
"\n",
"RCOU",
"101",
"'",
"x_3",
"'",
"FICH",
"'",
"repm01.pun",
"'",
"RENA",
"'",
"x_3_01",
"'",
"\n",
"RCOU",
"102",
"'",
"x_4",
"'",
"FICH",
"'",
"repm01.pun",
"'",
"RENA",
"'",
"x_4_01",
"'",
"\n",
"RCOU",
"111",
"'",
"rx_3",
"'",
"FICH",
"'",
"repm01.pun",
"'",
"RENA",
"'",
"rx_3_01",
"'",
"\n",
"RCOU",
"112",
"'",
"rx_4",
"'",
"FICH",
"'",
"repm01.pun",
"'",
"RENA",
"'",
"rx_4_01",
"'",
"\n",
"TRAC",
"1",
"2",
"101",
"102",
"AXES",
"1.0",
"'",
"X",
"-",
"COOR",
"[",
"m",
"]",
"'",
"\n",
"COLO",
"NOIR",
"NOIR",
"ROUG",
"ROUG",
"\n",
"TRAC",
"11",
"12",
"111",
"112",
"AXES",
"1.0",
"'",
"X",
"-",
"FLIA",
"[",
"N",
"]",
"'",
"\n",
"COLO",
"NOIR",
"NOIR",
"ROUG",
"ROUG",
"\n",
"LIST",
"1",
"2",
"AXES",
"1.0",
"'",
"X",
"-",
"COOR",
"[",
"m",
"]",
"'",
"\n",
"LIST",
"11",
"12",
"AXES",
"1.0",
"'",
"X",
"-",
"FLIA",
"[",
"N",
"]",
"'",
"\n"
] |
[] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.