text
stringlengths 29
12.2k
| tokens
listlengths 5
1.47k
| label
listlengths 0
64
|
|---|---|---|
in specific S&T domains or
related sets of domains.
The presence of public actors depends on the
public-sector structure of each country, since hos-
pitals and medical facilities, ministries and minis-
terial institutes and state companies (notably in
Azerbaijan and Ukraine) can be observed with a
differing presence depending on the country.
With regard to private for-profit companies, their
presence in the international S&T data sources is,
for the most part, rather small. In all countries,
there is a relevant presence of scientific, applied
research and technical companies, as well as ICT
companies. Beyond those, some clear national
champions and small and medium highly special-
ised companies in specific sectors can be found.
EaP regional collaboration
In publications, Armenia and Georgia present con-
sistent scientific collaboration with one another.
Ukraine also presents a high level of collaboration
with these two countries. Conversely, Azerbaijan
and Moldova are currently minor scientific part-
ners of the rest of the EaP countries, only present-
Figure III. Example of one such interactive visualisation tool, depicting the main analysed actors and collaboration
networks in the Eastern Partnership
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation23
ing a moderate collaboration with Ukraine. It must
be noted, however, that the scientific collaboration
between EaP countries is mainly driven by very in-
tense collaboration in physics (within the Funda-
mental physics and mathematics domain), which
concentrates by far the largest number of co-pub-
lications due to the countries’ co-participation in
large, high-energy and astronomy endeavours. At
a great distance, Health and wellbeing; Govern-
ance, culture, education and the economy; Nano-
technology and materials; Optics and photonics;
ICT and computer science; and Environmental
sciences and industries present some regional sci-
entific collaboration.
In EC-funded projects, Ukraine collaborates most
intensively with Georgia and Moldova. Armenia
and Moldova also have a high level of collabo-
ration. Azerbaijan remains slightly more isolated,
also due to the lower number of projects overall.
This collaboration intensity is certainly a positive
result of the EaP countries’ participation in H2020,
particularly since a significant number of these
collaborations are concentrated in the domain
Governance, culture, education and the economy.
Lastly, some domains which present a strong bi-
lateral collaboration between EaP countries in scientific publications are ICT and computer sci-
ence, Biotechnology, Fundamental physics and
mathematics and Nanotechnology and materials.
As shown in the figure below, the geometries of
the scientific collaboration
|
[
"in",
"specific",
"S&T",
"domains",
"or",
"\n",
"related",
"sets",
"of",
"domains",
".",
"\n",
"The",
"presence",
"of",
"public",
"actors",
"depends",
"on",
"the",
"\n",
"public",
"-",
"sector",
"structure",
"of",
"each",
"country",
",",
"since",
"hos-",
"\n",
"pitals",
"and",
"medical",
"facilities",
",",
"ministries",
"and",
"minis-",
"\n",
"terial",
"institutes",
"and",
"state",
"companies",
"(",
"notably",
"in",
"\n",
"Azerbaijan",
"and",
"Ukraine",
")",
"can",
"be",
"observed",
"with",
"a",
"\n",
"differing",
"presence",
"depending",
"on",
"the",
"country",
".",
"\n",
"With",
"regard",
"to",
"private",
"for",
"-",
"profit",
"companies",
",",
"their",
"\n",
"presence",
"in",
"the",
"international",
"S&T",
"data",
"sources",
"is",
",",
"\n",
"for",
"the",
"most",
"part",
",",
"rather",
"small",
".",
"In",
"all",
"countries",
",",
"\n",
"there",
"is",
"a",
"relevant",
"presence",
"of",
"scientific",
",",
"applied",
"\n",
"research",
"and",
"technical",
"companies",
",",
"as",
"well",
"as",
"ICT",
"\n",
"companies",
".",
"Beyond",
"those",
",",
"some",
"clear",
"national",
"\n",
"champions",
"and",
"small",
"and",
"medium",
"highly",
"special-",
"\n",
"ised",
"companies",
"in",
"specific",
"sectors",
"can",
"be",
"found",
".",
"\n",
"EaP",
"regional",
"collaboration",
"\n",
"In",
"publications",
",",
"Armenia",
"and",
"Georgia",
"present",
"con-",
"\n",
"sistent",
"scientific",
"collaboration",
"with",
"one",
"another",
".",
"\n",
"Ukraine",
"also",
"presents",
"a",
"high",
"level",
"of",
"collaboration",
"\n",
"with",
"these",
"two",
"countries",
".",
"Conversely",
",",
"Azerbaijan",
"\n",
"and",
"Moldova",
"are",
"currently",
"minor",
"scientific",
"part-",
"\n",
"ners",
"of",
"the",
"rest",
"of",
"the",
"EaP",
"countries",
",",
"only",
"present-",
"\n",
"Figure",
"III",
".",
"Example",
"of",
"one",
"such",
"interactive",
"visualisation",
"tool",
",",
"depicting",
"the",
"main",
"analysed",
"actors",
"and",
"collaboration",
"\n",
"networks",
"in",
"the",
"Eastern",
"Partnership",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation23",
"\n",
"ing",
"a",
"moderate",
"collaboration",
"with",
"Ukraine",
".",
"It",
"must",
"\n",
"be",
"noted",
",",
"however",
",",
"that",
"the",
"scientific",
"collaboration",
"\n",
"between",
"EaP",
"countries",
"is",
"mainly",
"driven",
"by",
"very",
"in-",
"\n",
"tense",
"collaboration",
"in",
"physics",
"(",
"within",
"the",
"Funda-",
"\n",
"mental",
"physics",
"and",
"mathematics",
"domain",
")",
",",
"which",
"\n",
"concentrates",
"by",
"far",
"the",
"largest",
"number",
"of",
"co",
"-",
"pub-",
"\n",
"lications",
"due",
"to",
"the",
"countries",
"’",
"co",
"-",
"participation",
"in",
"\n",
"large",
",",
"high",
"-",
"energy",
"and",
"astronomy",
"endeavours",
".",
"At",
"\n",
"a",
"great",
"distance",
",",
"Health",
"and",
"wellbeing",
";",
"Govern-",
"\n",
"ance",
",",
"culture",
",",
"education",
"and",
"the",
"economy",
";",
"Nano-",
"\n",
"technology",
"and",
"materials",
";",
"Optics",
"and",
"photonics",
";",
"\n",
"ICT",
"and",
"computer",
"science",
";",
"and",
"Environmental",
"\n",
"sciences",
"and",
"industries",
"present",
"some",
"regional",
"sci-",
"\n",
"entific",
"collaboration",
".",
"\n",
"In",
"EC",
"-",
"funded",
"projects",
",",
"Ukraine",
"collaborates",
"most",
"\n",
"intensively",
"with",
"Georgia",
"and",
"Moldova",
".",
"Armenia",
"\n",
"and",
"Moldova",
"also",
"have",
"a",
"high",
"level",
"of",
"collabo-",
"\n",
"ration",
".",
"Azerbaijan",
"remains",
"slightly",
"more",
"isolated",
",",
"\n",
"also",
"due",
"to",
"the",
"lower",
"number",
"of",
"projects",
"overall",
".",
"\n",
"This",
"collaboration",
"intensity",
"is",
"certainly",
"a",
"positive",
"\n",
"result",
"of",
"the",
"EaP",
"countries",
"’",
"participation",
"in",
"H2020",
",",
"\n",
"particularly",
"since",
"a",
"significant",
"number",
"of",
"these",
"\n",
"collaborations",
"are",
"concentrated",
"in",
"the",
"domain",
"\n",
"Governance",
",",
"culture",
",",
"education",
"and",
"the",
"economy",
".",
"\n",
"Lastly",
",",
"some",
"domains",
"which",
"present",
"a",
"strong",
"bi-",
"\n",
"lateral",
"collaboration",
"between",
"EaP",
"countries",
"in",
"scientific",
"publications",
"are",
"ICT",
"and",
"computer",
"sci-",
"\n",
"ence",
",",
"Biotechnology",
",",
"Fundamental",
"physics",
"and",
"\n",
"mathematics",
"and",
"Nanotechnology",
"and",
"materials",
".",
"\n",
"As",
"shown",
"in",
"the",
"figure",
"below",
",",
"the",
"geometries",
"of",
"\n",
"the",
"scientific",
"collaboration"
] |
[] |
science abroad, her proxim -
ity to foreign missionaries in China facilitated international mobility. In
1935, she earned a doctoral degree from the University of Jena. She then
returned to China and briefly practised in Shanghai before the war started.
After the Japanese invasion of China and the fall of Nanjing in December
1937, the nationalist government of Chang Kai- shek retreated to Chongqing,
in the province of Sichuan, where it remained until the end of the war. The
occupation of the eastern part of the country by Japanese troops led to the
relocation of many government- related institutions, followed by many in
the educated elite. Thus, after 1937, like Zhu Ziqing – who was a teacher
at the Tsinghua University in Beijing – Liu Yunbo left the Japanese- occupied
territory and settled in south- western China. In Chengdu, the capital of
173
173
Women and Western medicine in late Republican China
Sichuan, she founded her hospital while assuming responsibilities in many
other medical institutions in the city. Some of these institutions played a vital
role in the development of Western medicine in the province.2 For example,
she headed the Chengdu Superior Medical Vocational School, which was
the first non- missionary school in the province to train nurses and midwives.
The Chengdu Superior Medical Vocational School was part of a broader
strategy of promoting modern childbirth and childcare that became central
during the war against Japan, as Nicole Elizabeth Barnes shows.3 It was part
of an even broader intellectual trend that linked the promotion of Western
science and Western medicine to the strengthening of the nation, defined
in biological and racial terms.4 From this perspective, developing modern,
scientific obstetrics and midwifery and educating mothers in hygiene was
indispensable to the strengthening of the Chinese nation.5 This wartime
strategy sought to continue the public health efforts initiated during the
1927– 37 period: the school, in a certain way, built on the experience of
other institutions, such as the First National Midwifery School, set up in
1929 in Peking by another woman, Yang Chongrui.6 Yang had graduated
from Peking Union Medical College (hereafter, PUMC) and had also stud -
ied at Johns Hopkins University. She participated in the foundation of the
National Midwifery Board and worked to improve childbirth practices in
China. During the war she followed the PUMC, moving from Beijing to
Sichuan. Although mainly committed to war orphan relief, she
|
[
"science",
"abroad",
",",
"her",
"proxim",
"-",
"\n",
"ity",
"to",
"foreign",
"missionaries",
"in",
"China",
"facilitated",
"international",
"mobility",
".",
"In",
"\n",
"1935",
",",
"she",
"earned",
"a",
"doctoral",
"degree",
"from",
"the",
"University",
"of",
"Jena",
".",
"She",
"then",
"\n",
"returned",
"to",
"China",
"and",
"briefly",
"practised",
"in",
"Shanghai",
"before",
"the",
"war",
"started",
".",
" \n",
"After",
"the",
"Japanese",
"invasion",
"of",
"China",
"and",
"the",
"fall",
"of",
"Nanjing",
"in",
"December",
"\n",
"1937",
",",
"the",
"nationalist",
"government",
"of",
"Chang",
"Kai-",
" ",
"shek",
"retreated",
"to",
"Chongqing",
",",
"\n",
"in",
"the",
"province",
"of",
"Sichuan",
",",
"where",
"it",
"remained",
"until",
"the",
"end",
"of",
"the",
"war",
".",
"The",
"\n",
"occupation",
"of",
"the",
"eastern",
"part",
"of",
"the",
"country",
"by",
"Japanese",
"troops",
"led",
"to",
"the",
"\n",
"relocation",
"of",
"many",
"government-",
" ",
"related",
"institutions",
",",
"followed",
"by",
"many",
"in",
"\n",
"the",
"educated",
"elite",
".",
"Thus",
",",
"after",
"1937",
",",
"like",
"Zhu",
"Ziqing",
"–",
" ",
"who",
"was",
"a",
"teacher",
"\n",
"at",
"the",
"Tsinghua",
"University",
"in",
"Beijing",
"–",
" ",
"Liu",
"Yunbo",
"left",
"the",
"Japanese-",
" ",
"occupied",
"\n",
"territory",
"and",
"settled",
"in",
"south-",
" ",
"western",
"China",
".",
"In",
"Chengdu",
",",
"the",
"capital",
"of",
" \n \n \n",
"173",
"\n",
"173",
"\n",
"Women",
"and",
"Western",
"medicine",
"in",
"late",
"Republican",
"China",
"\n",
"Sichuan",
",",
"she",
"founded",
"her",
"hospital",
"while",
"assuming",
"responsibilities",
"in",
"many",
"\n",
"other",
"medical",
"institutions",
"in",
"the",
"city",
".",
"Some",
"of",
"these",
"institutions",
"played",
"a",
"vital",
"\n",
"role",
"in",
"the",
"development",
"of",
"Western",
"medicine",
"in",
"the",
"province.2",
"For",
"example",
",",
"\n",
"she",
"headed",
"the",
"Chengdu",
"Superior",
"Medical",
"Vocational",
"School",
",",
"which",
"was",
"\n",
"the",
"first",
"non-",
" ",
"missionary",
"school",
"in",
"the",
"province",
"to",
"train",
"nurses",
"and",
"midwives",
".",
"\n",
"The",
"Chengdu",
"Superior",
"Medical",
"Vocational",
"School",
"was",
"part",
"of",
"a",
"broader",
"\n",
"strategy",
"of",
"promoting",
"modern",
"childbirth",
"and",
"childcare",
"that",
"became",
"central",
"\n",
"during",
"the",
"war",
"against",
"Japan",
",",
"as",
"Nicole",
"Elizabeth",
"Barnes",
"shows.3",
"It",
"was",
"part",
"\n",
"of",
"an",
"even",
"broader",
"intellectual",
"trend",
"that",
"linked",
"the",
"promotion",
"of",
"Western",
"\n",
"science",
"and",
"Western",
"medicine",
"to",
"the",
"strengthening",
"of",
"the",
"nation",
",",
"defined",
"\n",
"in",
"biological",
"and",
"racial",
"terms.4",
"From",
"this",
"perspective",
",",
"developing",
"modern",
",",
"\n",
"scientific",
"obstetrics",
"and",
"midwifery",
"and",
"educating",
"mothers",
"in",
"hygiene",
"was",
"\n",
"indispensable",
"to",
"the",
"strengthening",
"of",
"the",
"Chinese",
"nation.5",
"This",
"wartime",
"\n",
"strategy",
"sought",
"to",
"continue",
"the",
"public",
"health",
"efforts",
"initiated",
"during",
"the",
"\n",
"1927",
"–",
" ",
"37",
"period",
":",
"the",
"school",
",",
"in",
"a",
"certain",
"way",
",",
"built",
"on",
"the",
"experience",
"of",
"\n",
"other",
"institutions",
",",
"such",
"as",
"the",
"First",
"National",
"Midwifery",
"School",
",",
"set",
"up",
"in",
"\n",
"1929",
"in",
"Peking",
"by",
"another",
"woman",
",",
"Yang",
"Chongrui.6",
"Yang",
"had",
"graduated",
"\n",
"from",
"Peking",
"Union",
"Medical",
"College",
"(",
"hereafter",
",",
"PUMC",
")",
"and",
"had",
"also",
"stud",
"-",
"\n",
"ied",
"at",
"Johns",
"Hopkins",
"University",
".",
"She",
"participated",
"in",
"the",
"foundation",
"of",
"the",
"\n",
"National",
"Midwifery",
"Board",
"and",
"worked",
"to",
"improve",
"childbirth",
"practices",
"in",
"\n",
"China",
".",
"During",
"the",
"war",
"she",
"followed",
"the",
"PUMC",
",",
"moving",
"from",
"Beijing",
"to",
"\n",
"Sichuan",
".",
"Although",
"mainly",
"committed",
"to",
"war",
"orphan",
"relief",
",",
"she"
] |
[
{
"end": 1159,
"label": "CITATION_REF",
"start": 1158
},
{
"end": 1533,
"label": "CITATION_REF",
"start": 1532
},
{
"end": 1729,
"label": "CITATION_REF",
"start": 1728
},
{
"end": 1905,
"label": "CITATION_REF",
"start": 1904
},
{
"end": 2196,
"label": "CITATION_REF",
"start": 2195
}
] |
center of the IC cathode) and the detectors’ front faceand the azimuthal angle ϕ. The relative energy resolution (FWHM) is
also given for the137Cs full energy peak
LaBr 3(Ce) Position Resolution
serial no. Distance r Angle ϕ (662 keV)
Q489 13.98 cm 139◦2.81%
Q491 13.12 cm 41◦2.97%
5414 13.33 cm 91◦2.70%
5415 13.43 cm −2◦2.67%
5416 14.58 cm 180◦2.76%
Fig. 3 Time distribution of γ-rays detected in a LaBr 3(Ce) detector
with respect to fission trigger from the IC
tribution originated from the inelastic scattering of prompt
fission neutrons with the detectors or IC materials, mostly Al
and Fe, generating spurious γ-rays in the data. The width of
the prompt peak in Fig. 3was about 0.6 ns (FWHM), hence
demonstrating the good timing resolution of the ionization
chamber, as expected from this kind of detector [ 8].
The second purpose of the IC was the determination of
the mass and kinetic energy of the Fission Fragments (FFs).
These characteristics were estimated using the double kinetic
energy (2E) method (see, e.g., Ref. [ 9]). This method is based
on mass and linear momentum conservation laws and thesimultaneous measurement of post-neutron FF kinetic ener-
gies. Neutron emission was accounted for in an iterative pro-
cedure, taking the average multiplicity ¯ν(A)from Ref. [ 10],
and assuming isotropic neutron emission in the center of
mass frame. These simplifying assumptions were responsible
for smearing the mass distributions obtained by this method[11,12]. As a consequence, the post-neutron mass resolution
of the IC was about 5 u (FWHM). The angle θbetween the
fission and the IC axes was determined from the electron drifttime in the IC [ 7]. Then, FFs emitted at grazing angles, thatis cosθ< 0.5(θ< 60
◦), were rejected from the analysis.
Indeed, such fragments were subject to a large energy loss,
leading to incorrect energy and mass characterization.
Finally, the data obtained in this work was acquired for
about 3500 h (effectively), which amounts to 8 .7×109total
fission event. From those, 4 .8×109were selected according
to the cuts described above and analyzed in this work.
2.2 Data analysis
The isomers were selected by means of FF- γ-γcoincidences,
that is, a fission event followed by two γ-rays detected in
coincidence in LaBr 3(Ce) detectors. In this work, the coinci-
dence window between two γ-rays was set to ±2n s . T h i s
short window is consistent with the timing properties of
LaBr 3(Ce)
|
[
"center",
"of",
"the",
"IC",
"cathode",
")",
"and",
"the",
"detectors",
"’",
"front",
"faceand",
"the",
"azimuthal",
"angle",
"ϕ.",
"The",
"relative",
"energy",
"resolution",
"(",
"FWHM",
")",
"is",
"\n",
"also",
"given",
"for",
"the137Cs",
"full",
"energy",
"peak",
"\n",
"LaBr",
"3(Ce",
")",
"Position",
"Resolution",
"\n",
"serial",
"no",
".",
"Distance",
"r",
"Angle",
"ϕ",
"(",
"662",
"keV",
")",
"\n",
"Q489",
"13.98",
"cm",
"139",
"◦",
"2.81",
"%",
"\n",
"Q491",
"13.12",
"cm",
"41",
"◦",
"2.97",
"%",
"\n",
"5414",
"13.33",
"cm",
"91",
"◦",
"2.70",
"%",
"\n",
"5415",
"13.43",
"cm",
"−2",
"◦",
"2.67",
"%",
"\n",
"5416",
"14.58",
"cm",
"180",
"◦",
"2.76",
"%",
"\n",
"Fig",
".",
"3",
"Time",
"distribution",
"of",
"γ",
"-",
"rays",
"detected",
"in",
"a",
"LaBr",
"3(Ce",
")",
"detector",
"\n",
"with",
"respect",
"to",
"fission",
"trigger",
"from",
"the",
"IC",
"\n",
"tribution",
"originated",
"from",
"the",
"inelastic",
"scattering",
"of",
"prompt",
"\n",
"fission",
"neutrons",
"with",
"the",
"detectors",
"or",
"IC",
"materials",
",",
"mostly",
"Al",
"\n",
"and",
"Fe",
",",
"generating",
"spurious",
"γ",
"-",
"rays",
"in",
"the",
"data",
".",
"The",
"width",
"of",
"\n",
"the",
"prompt",
"peak",
"in",
"Fig",
".",
"3was",
"about",
"0.6",
"ns",
"(",
"FWHM",
")",
",",
"hence",
"\n",
"demonstrating",
"the",
"good",
"timing",
"resolution",
"of",
"the",
"ionization",
"\n",
"chamber",
",",
"as",
"expected",
"from",
"this",
"kind",
"of",
"detector",
"[",
"8",
"]",
".",
"\n",
"The",
"second",
"purpose",
"of",
"the",
"IC",
"was",
"the",
"determination",
"of",
"\n",
"the",
"mass",
"and",
"kinetic",
"energy",
"of",
"the",
"Fission",
"Fragments",
"(",
"FFs",
")",
".",
"\n",
"These",
"characteristics",
"were",
"estimated",
"using",
"the",
"double",
"kinetic",
"\n",
"energy",
"(",
"2E",
")",
"method",
"(",
"see",
",",
"e.g.",
",",
"Ref",
".",
"[",
"9",
"]",
")",
".",
"This",
"method",
"is",
"based",
"\n",
"on",
"mass",
"and",
"linear",
"momentum",
"conservation",
"laws",
"and",
"thesimultaneous",
"measurement",
"of",
"post",
"-",
"neutron",
"FF",
"kinetic",
"ener-",
"\n",
"gies",
".",
"Neutron",
"emission",
"was",
"accounted",
"for",
"in",
"an",
"iterative",
"pro-",
"\n",
"cedure",
",",
"taking",
"the",
"average",
"multiplicity",
"¯ν(A)from",
"Ref",
".",
"[",
"10",
"]",
",",
"\n",
"and",
"assuming",
"isotropic",
"neutron",
"emission",
"in",
"the",
"center",
"of",
"\n",
"mass",
"frame",
".",
"These",
"simplifying",
"assumptions",
"were",
"responsible",
"\n",
"for",
"smearing",
"the",
"mass",
"distributions",
"obtained",
"by",
"this",
"method[11,12",
"]",
".",
"As",
"a",
"consequence",
",",
"the",
"post",
"-",
"neutron",
"mass",
"resolution",
"\n",
"of",
"the",
"IC",
"was",
"about",
"5",
"u",
"(",
"FWHM",
")",
".",
"The",
"angle",
"θbetween",
"the",
"\n",
"fission",
"and",
"the",
"IC",
"axes",
"was",
"determined",
"from",
"the",
"electron",
"drifttime",
"in",
"the",
"IC",
"[",
"7",
"]",
".",
"Then",
",",
"FFs",
"emitted",
"at",
"grazing",
"angles",
",",
"thatis",
"cosθ",
"<",
"0.5(θ",
"<",
"60",
"\n",
"◦",
")",
",",
"were",
"rejected",
"from",
"the",
"analysis",
".",
"\n",
"Indeed",
",",
"such",
"fragments",
"were",
"subject",
"to",
"a",
"large",
"energy",
"loss",
",",
"\n",
"leading",
"to",
"incorrect",
"energy",
"and",
"mass",
"characterization",
".",
"\n",
"Finally",
",",
"the",
"data",
"obtained",
"in",
"this",
"work",
"was",
"acquired",
"for",
"\n",
"about",
"3500",
"h",
"(",
"effectively",
")",
",",
"which",
"amounts",
"to",
"8",
".7×109total",
"\n",
"fission",
"event",
".",
"From",
"those",
",",
"4",
".8×109were",
"selected",
"according",
"\n",
"to",
"the",
"cuts",
"described",
"above",
"and",
"analyzed",
"in",
"this",
"work",
".",
"\n",
"2.2",
"Data",
"analysis",
"\n",
"The",
"isomers",
"were",
"selected",
"by",
"means",
"of",
"FF-",
"γ",
"-",
"γcoincidences",
",",
"\n",
"that",
"is",
",",
"a",
"fission",
"event",
"followed",
"by",
"two",
"γ",
"-",
"rays",
"detected",
"in",
"\n",
"coincidence",
"in",
"LaBr",
"3(Ce",
")",
"detectors",
".",
"In",
"this",
"work",
",",
"the",
"coinci-",
"\n",
"dence",
"window",
"between",
"two",
"γ",
"-",
"rays",
"was",
"set",
"to",
"±2n",
"s",
".",
"T",
"h",
"i",
"s",
"\n",
"short",
"window",
"is",
"consistent",
"with",
"the",
"timing",
"properties",
"of",
"\n",
"LaBr",
"3(Ce",
")"
] |
[
{
"end": 814,
"label": "CITATION_REF",
"start": 813
},
{
"end": 1032,
"label": "CITATION_REF",
"start": 1031
},
{
"end": 1289,
"label": "CITATION_REF",
"start": 1287
},
{
"end": 1470,
"label": "CITATION_REF",
"start": 1468
},
{
"end": 1473,
"label": "CITATION_REF",
"start": 1471
},
{
"end": 1661,
"label": "CITATION_REF",
"start": 1660
}
] |
research scientists themselves (but often had a background in a scientific discipline). Participants enjoyed that they were able to hear more autobiographical details through these lectures in addition to the research. We also found that 90 per cent of respondents felt this lecture series helped participants understand what people with different identities and backgrounds experienced in the scientific fields and 40 per cent of participants found attending lectures helped them understand others' experiences in their own fields. Finally, the survey also gave us some insight into logistical details of the lecture series that could help it improve, such as better audio quality and having the lectures in different places across campus so they are easier to attend in person.
## Next steps and future goals
In addition to this evaluation, we plan to debrief with our co- sponsors and partners and get feedback and ideas for how we can continue building on this work and improving the lecture series. We also plan to share a four- year report with the co- sponsors as a means to not only illustrate the impact of
the lecture series, but to reiterate its goals, gather additional feedback and outline a plan for making the lecture series a sustainable ongoing initiative. As of May 2024, we have had a total of 31 speakers, 2,733 registrants and 1,330 attendees, and our email list has grown to 901 subscribers. We have also moved to a hybrid approach so that attendees can join in person or online. In addition to continuing the traditional lecture format, we hosted a panel discussion in response to feedback from the 2021 survey. 39 Above all, we would like to continue creating a broad and diverse collection of women scientists' research. Through support from our co- sponsors and dedicated funding from the Archives' budget itself, we have been able to continue to hire graduate students to help with the logistics, preservation of the lectures and supplemental exhibits.
One of our larger goals is to more systematically understand the ways that women are under- represented in science across our holdings. While we have few personal papers overall, it is important to understand how women are under- represented across identities and how differences in identities can inform archival selection and collection development. 40 Collection development is an activity we hope to do in collaboration with our co- sponsors and the communities with whom we have
|
[
"research",
"scientists",
"themselves",
"(",
"but",
"often",
"had",
"a",
"background",
"in",
"a",
"scientific",
"discipline",
")",
".",
"Participants",
"enjoyed",
"that",
"they",
"were",
"able",
"to",
"hear",
"more",
"autobiographical",
"details",
"through",
"these",
"lectures",
"in",
"addition",
"to",
"the",
"research",
".",
"We",
"also",
"found",
"that",
"90",
"per",
"cent",
"of",
"respondents",
"felt",
"this",
"lecture",
"series",
" ",
"helped",
" ",
"participants",
"understand",
"what",
"people",
"with",
"different",
"identities",
"and",
"backgrounds",
"experienced",
" ",
"in",
" ",
"the",
" ",
"scientific",
" ",
"fields",
" ",
"and",
" ",
"40",
" ",
"per",
" ",
"cent",
" ",
"of",
" ",
"participants",
" ",
"found",
"attending",
"lectures",
"helped",
"them",
"understand",
"others",
"'",
"experiences",
"in",
"their",
"own",
"fields",
".",
"Finally",
",",
"the",
"survey",
"also",
"gave",
"us",
"some",
"insight",
"into",
"logistical",
"details",
"of",
"the",
"lecture",
"series",
"that",
"could",
"help",
"it",
"improve",
",",
"such",
"as",
"better",
"audio",
"quality",
"and",
"having",
"the",
"lectures",
"in",
"different",
"places",
"across",
"campus",
"so",
"they",
"are",
"easier",
"to",
"attend",
"in",
"person",
".",
"\n\n",
"#",
"#",
"Next",
"steps",
"and",
"future",
"goals",
"\n\n",
"In",
"addition",
"to",
"this",
"evaluation",
",",
"we",
"plan",
"to",
"debrief",
"with",
"our",
"co-",
" ",
"sponsors",
"and",
"partners",
"and",
"get",
"feedback",
"and",
"ideas",
"for",
"how",
"we",
"can",
"continue",
"building",
"on",
"this",
"work",
"and",
"improving",
"the",
"lecture",
"series",
".",
"We",
"also",
"plan",
"to",
"share",
"a",
"four-",
" ",
"year",
"report",
"with",
"the",
"co-",
" ",
"sponsors",
"as",
"a",
"means",
"to",
"not",
"only",
"illustrate",
"the",
"impact",
"of",
"\n\n",
"the",
"lecture",
"series",
",",
"but",
"to",
"reiterate",
"its",
"goals",
",",
"gather",
"additional",
"feedback",
"and",
"outline",
"a",
"plan",
"for",
"making",
"the",
"lecture",
"series",
"a",
"sustainable",
"ongoing",
"initiative",
".",
"As",
"of",
"May",
"2024",
",",
"we",
"have",
"had",
"a",
"total",
"of",
"31",
"speakers",
",",
"2,733",
"registrants",
"and",
"1,330",
"attendees",
",",
"and",
"our",
"email",
"list",
"has",
"grown",
"to",
"901",
"subscribers",
".",
"We",
"have",
"also",
"moved",
"to",
"a",
"hybrid",
"approach",
"so",
"that",
"attendees",
"can",
"join",
"in",
"person",
"or",
"online",
".",
"In",
"addition",
"to",
"continuing",
"the",
"traditional",
"lecture",
"format",
",",
"we",
"hosted",
"a",
"panel",
"discussion",
"in",
"response",
"to",
"feedback",
"from",
"the",
"2021",
"survey",
".",
"39",
" ",
"Above",
"all",
",",
"we",
"would",
"like",
"to",
"continue",
"creating",
"a",
"broad",
"and",
"diverse",
"collection",
"of",
"women",
"scientists",
"'",
"research",
".",
"Through",
"support",
"from",
"our",
"co-",
" ",
"sponsors",
"and",
"dedicated",
"funding",
"from",
"the",
"Archives",
"'",
"budget",
"itself",
",",
"we",
"have",
"been",
"able",
"to",
"continue",
"to",
"hire",
"graduate",
"students",
"to",
"help",
"with",
"the",
"logistics",
",",
"preservation",
"of",
"the",
"lectures",
"and",
"supplemental",
"exhibits",
".",
"\n\n",
"One",
"of",
"our",
"larger",
"goals",
"is",
"to",
"more",
"systematically",
"understand",
"the",
"ways",
"that",
"women",
"are",
"under-",
" ",
"represented",
"in",
"science",
"across",
"our",
"holdings",
".",
"While",
"we",
"have",
"few",
"personal",
"papers",
"overall",
",",
"it",
"is",
"important",
"to",
"understand",
"how",
"women",
"are",
"under-",
" ",
"represented",
"across",
"identities",
"and",
"how",
"differences",
"in",
"identities",
"can",
"inform",
"archival",
"selection",
"and",
"collection",
"development",
".",
"40",
" ",
"Collection",
"development",
"is",
"an",
"activity",
"we",
"hope",
"to",
"do",
"in",
"collaboration",
"with",
"our",
"co-",
" ",
"sponsors",
"and",
"the",
"communities",
"with",
"whom",
"we",
"have"
] |
[
{
"end": 1656,
"label": "CITATION_REF",
"start": 1654
},
{
"end": 2358,
"label": "CITATION_REF",
"start": 2356
}
] |
The author has
written extensively on the struggles university graduates faced in the context of
the global economic crisis.
40 Dezbaterile Adun ării Deputa ţilor, Şedinţa de s âmbătă 21 iunie 1924, Adunarea
Deputa ţilor Sesiunea prelungit ă 1923– 1924 [The Debates of the Chamber of
Deputies, The Meeting on Saturday, 21 June 1924, The Deputies Assembly,
Prolonged Session 1923– 1924] in Monitorul Oficial , no. 111, 30 July 1924, p.
3183.
41 ANIC, MCIP Collection, file 329/ 1929, pp. 165– 72.
42 ANIC, MCIP Collection, file 329/ 1929, pp. 286, 291.
43 ANIC, MCIP Collection, file 329/ 1929, p. 257.
44 ANIC, MCIP Collection, file 329/ 1929, pp. 183– 86.
45 ANIC, MCIP Collection, file 329/ 1929, p. 222.
46 ANIC, MCIP Collection, file 329/ 1929, pp. 236– 50. Her CV was quite impres -
sive. She had been working as an eye doctor, had experience as a school doctor
and teacher and had worked in gynaecology offices. She had also published
different sanitary articles for broader audiences.
47 ANIC, MCIP Collection, 329/ 1929, pp. 83– 85.
48 C. Odeseanu, Cartea femeii moderne: Ce trebuie s ă știe o femeie și chiar o
fată [Modern Woman’s Book : What Women and Even Girls Need to Know ]
(Bucharest: Editura Cartea Românească, 1934), pp. 19– 21. She quoted numer -
ous examples of female patients who had given birth multiple times but were
still reluctant to let themselves be examined by a gynaecologist; also, the author
highlighted the erroneous information even educated patients had regarding
their reproductive anatomy and physiology.
49 I. Chrisopol, Curs de igien ă pentru școlile profesionale și cele de ucenici din
atelierele și depourile c ăilor ferate [Hygiene Manual for Professional Schools
and Apprentice Schools Associated with Railway Workshops and Depots ]
(Bucharest: Tipografia Cultura, 1925), p. 61. Students who were trained in
professional institutions were given free access to this type of information, pre -
cisely because of the way they were regarded: coming from rural regions or
peripheral neighbourhoods, they were seen as prone to early, unsafe sexual
encounters and therefore they needed to be warned about the dangers of vene -
real diseases.
50 ANIC, MCIP Collection, file 329/ 1929, p. 133 front and back.
51 ANIC, MCIP Collection, file 329/ 1929, p. 192.
52 ANIC, MCIP Collection, file 329/ 1929, pp. 284, 266.
170
Negotiating in/visibility
53 ANIC, MCIP Collection, file 329/ 1929, p. 217.
|
[
"The",
"author",
"has",
"\n",
"written",
"extensively",
"on",
"the",
"struggles",
"university",
"graduates",
"faced",
"in",
"the",
"context",
"of",
"\n",
"the",
"global",
"economic",
"crisis",
".",
"\n ",
"40",
"Dezbaterile",
"Adun",
"ării",
"Deputa",
"ţilor",
",",
"Şedinţa",
"de",
"s",
"âmbătă",
"21",
"iunie",
"1924",
",",
"Adunarea",
"\n",
"Deputa",
"ţilor",
"Sesiunea",
"prelungit",
"ă",
"1923",
"–",
" ",
"1924",
" ",
"[",
"The",
"Debates",
"of",
"the",
"Chamber",
"of",
"\n",
"Deputies",
",",
"The",
"Meeting",
"on",
"Saturday",
",",
"21",
"June",
"1924",
",",
"The",
"Deputies",
"Assembly",
",",
"\n",
"Prolonged",
"Session",
"1923",
"–",
" ",
"1924",
"]",
"in",
"Monitorul",
"Oficial",
",",
"no",
".",
"111",
",",
"30",
"July",
"1924",
",",
"p.",
"\n",
"3183",
".",
"\n ",
"41",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"pp",
".",
"165",
"–",
" ",
"72",
".",
"\n ",
"42",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"pp",
".",
"286",
",",
"291",
".",
"\n ",
"43",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"p.",
"257",
".",
"\n ",
"44",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"pp",
".",
"183",
"–",
" ",
"86",
".",
"\n ",
"45",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"p.",
"222",
".",
"\n ",
"46",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"pp",
".",
"236",
"–",
" ",
"50",
".",
"Her",
"CV",
"was",
"quite",
"impres",
"-",
"\n",
"sive",
".",
"She",
"had",
"been",
"working",
"as",
"an",
"eye",
"doctor",
",",
"had",
"experience",
"as",
"a",
"school",
"doctor",
"\n",
"and",
"teacher",
"and",
"had",
"worked",
"in",
"gynaecology",
"offices",
".",
"She",
"had",
"also",
"published",
"\n",
"different",
"sanitary",
"articles",
"for",
"broader",
"audiences",
".",
"\n ",
"47",
"ANIC",
",",
"MCIP",
"Collection",
",",
"329/",
" ",
"1929",
",",
"pp",
".",
"83",
"–",
" ",
"85",
".",
"\n ",
"48",
"C.",
"Odeseanu",
",",
"Cartea",
"femeii",
"moderne",
":",
"Ce",
"trebuie",
"s",
"ă",
"știe",
"o",
"femeie",
"și",
"chiar",
"o",
"\n",
"fată",
"[",
"Modern",
"Woman",
"’s",
"Book",
":",
"What",
"Women",
"and",
"Even",
"Girls",
"Need",
"to",
"Know",
"]",
"\n",
"(",
"Bucharest",
":",
"Editura",
"Cartea",
"Românească",
",",
"1934",
")",
",",
"pp",
".",
"19",
"–",
" ",
"21",
".",
"She",
"quoted",
"numer",
"-",
"\n",
"ous",
"examples",
"of",
"female",
"patients",
"who",
"had",
"given",
"birth",
"multiple",
"times",
"but",
"were",
"\n",
"still",
"reluctant",
"to",
"let",
"themselves",
"be",
"examined",
"by",
"a",
"gynaecologist",
";",
"also",
",",
"the",
"author",
"\n",
"highlighted",
"the",
"erroneous",
"information",
"even",
"educated",
"patients",
"had",
"regarding",
"\n",
"their",
"reproductive",
"anatomy",
"and",
"physiology",
".",
"\n ",
"49",
"I.",
"Chrisopol",
",",
"Curs",
"de",
"igien",
"ă",
"pentru",
"școlile",
"profesionale",
"și",
"cele",
"de",
"ucenici",
"din",
"\n",
"atelierele",
"și",
"depourile",
"c",
"ăilor",
"ferate",
" ",
"[",
"Hygiene",
"Manual",
"for",
"Professional",
"Schools",
"\n",
"and",
"Apprentice",
"Schools",
"Associated",
"with",
"Railway",
"Workshops",
"and",
"Depots",
"]",
"\n",
"(",
"Bucharest",
":",
"Tipografia",
"Cultura",
",",
"1925",
")",
",",
"p.",
"61",
".",
"Students",
"who",
"were",
"trained",
"in",
"\n",
"professional",
"institutions",
"were",
"given",
"free",
"access",
"to",
"this",
"type",
"of",
"information",
",",
"pre",
"-",
"\n",
"cisely",
"because",
"of",
"the",
"way",
"they",
"were",
"regarded",
":",
"coming",
"from",
"rural",
"regions",
"or",
"\n",
"peripheral",
"neighbourhoods",
",",
"they",
"were",
"seen",
"as",
"prone",
"to",
"early",
",",
"unsafe",
"sexual",
"\n",
"encounters",
"and",
"therefore",
"they",
"needed",
"to",
"be",
"warned",
"about",
"the",
"dangers",
"of",
"vene",
"-",
"\n",
"real",
"diseases",
".",
"\n ",
"50",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"p.",
"133",
"front",
"and",
"back",
".",
"\n ",
"51",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"p.",
"192",
".",
"\n ",
"52",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"pp",
".",
"284",
",",
"266",
".",
"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n",
"170",
"\n ",
"Negotiating",
"in",
"/",
"visibility",
"\n ",
"53",
"ANIC",
",",
"MCIP",
"Collection",
",",
"file",
"329/",
" ",
"1929",
",",
"p.",
"217",
".",
"\n "
] |
[
{
"end": 450,
"label": "CITATION_SPAN",
"start": 131
},
{
"end": 508,
"label": "CITATION_SPAN",
"start": 455
},
{
"end": 566,
"label": "CITATION_SPAN",
"start": 513
},
{
"end": 618,
"label": "CITATION_SPAN",
"start": 571
},
{
"end": 676,
"label": "CITATION_SPAN",
"start": 623
},
{
"end": 728,
"label": "CITATION_SPAN",
"start": 681
},
{
"end": 786,
"label": "CITATION_SPAN",
"start": 733
},
{
"end": 1070,
"label": "CITATION_SPAN",
"start": 1023
},
{
"end": 130,
"label": "CITATION_ID",
"start": 128
},
{
"end": 454,
"label": "CITATION_ID",
"start": 452
},
{
"end": 512,
"label": "CITATION_ID",
"start": 510
},
{
"end": 570,
"label": "CITATION_ID",
"start": 568
},
{
"end": 622,
"label": "CITATION_ID",
"start": 620
},
{
"end": 680,
"label": "CITATION_ID",
"start": 678
},
{
"end": 732,
"label": "CITATION_ID",
"start": 730
},
{
"end": 1022,
"label": "CITATION_ID",
"start": 1020
},
{
"end": 1074,
"label": "CITATION_ID",
"start": 1072
},
{
"end": 1280,
"label": "CITATION_SPAN",
"start": 1075
},
{
"end": 1583,
"label": "CITATION_ID",
"start": 1581
},
{
"end": 1864,
"label": "CITATION_SPAN",
"start": 1584
},
{
"end": 2227,
"label": "CITATION_ID",
"start": 2225
},
{
"end": 2294,
"label": "CITATION_ID",
"start": 2292
},
{
"end": 2346,
"label": "CITATION_ID",
"start": 2344
},
{
"end": 2290,
"label": "CITATION_SPAN",
"start": 2228
},
{
"end": 2342,
"label": "CITATION_SPAN",
"start": 2295
},
{
"end": 2400,
"label": "CITATION_SPAN",
"start": 2347
},
{
"end": 2470,
"label": "CITATION_ID",
"start": 2468
},
{
"end": 2518,
"label": "CITATION_SPAN",
"start": 2471
}
] |
difficult to implement the model (Middle East Monitor, 2024).
2024/5 • GLOBAL EDUCATION MONITORING REPORT
243 CHAPTER 15 • EDUCATION FACILITIES AND LEARNING ENVIRONMENTS
15
amount of time they spend online (Craig et al., 2020). In
the United Kingdom, girls were more likely to report
spending time on social media from the age of 10 and, at age 15, 43% of girls vs 31% of boys reported spending one to three hours a day on social media. Moreover, social media usage was more strongly associated with lower levels of well-being among girls than boys (Kelly et al., 2018). Girls are also more often targeted by specific types of cyberbullying. Algorithm-driven image-based content can expose girls to inappropriate material, ranging from sexual content to videos that glorify unhealthy behaviours or unrealistic body standards (Lin, 2023; UNESCO, 2024a).
ATTACKS ON SCHOOLS
Target 4.a also emphasizes that schools must be safe. The Global Coalition to Protect Education from Attack monitors the number of attacks on educational institutions, students, teachers and personnel inside and outside of classrooms (SDG thematic indicator 4.a.3). In 2022 and 2023, there were about 3,000 attacks on education, a significant increase from about 2,500 in the two previous years. The increase in 2022 was largely due to the war in Ukraine, where 555 attacks on education were recorded that year. It is estimated that in the first two years of the war, over 360 schools were destroyed and 3,428 were damaged, mostly from aerial attacks, artillery shelling and rocket strikes. Schools have also often been used for military purposes and have had equipment pillaged by soldiers (Human Rights Watch, 2023). In 2023, the State of Palestine suffered 720 attacks on education, the highest number in the world, and the casualties continue to increase in 2024 as a result of the Israel–Palestine conflict ( Box 15.2).FIGURE 15.4:
More countries are suffering attacks on education, though most attacks remain concentrated in a few countries
Number of countries with at least five attacks per year on students, personnel or institutions, 2013–23
Afghanistan
D. R. Congo
State of Palestine
Ukraine
Yemen
India
Myanmar
Burkina Faso
Ethiopia
0
5
10
15
20
25
30
35
40
45
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
Number of countries with at least 5 attacks on education
Countries with over 100
attacks in 2023 and in the reference year
The State of Palestine has
|
[
"difficult",
"to",
"implement",
"the",
"model",
"(",
"Middle",
"East",
"Monitor",
",",
"2024",
")",
".",
"\n",
"2024/5",
"•",
"GLOBAL",
"EDUCATION",
"MONITORING",
"REPORT",
"\n",
"243",
"CHAPTER",
" ",
"15",
" ",
"•",
"EDUCATION",
" ",
"FACILITIES",
" ",
"AND",
" ",
"LEARNING",
" ",
"ENVIRONMENTS",
"\n",
"15",
"\n",
"amount",
"of",
"time",
"they",
"spend",
"online",
"(",
"Craig",
"et",
"al",
".",
",",
"2020",
")",
".",
"In",
" \n",
"the",
"United",
"Kingdom",
",",
"girls",
"were",
"more",
"likely",
"to",
"report",
"\n",
"spending",
"time",
"on",
"social",
"media",
"from",
"the",
"age",
"of",
"10",
"and",
",",
"at",
"age",
"15",
",",
"43",
"%",
"of",
"girls",
"vs",
"31",
"%",
"of",
"boys",
"reported",
"spending",
"one",
"to",
"three",
"hours",
"a",
"day",
"on",
"social",
"media",
".",
"Moreover",
",",
"social",
"media",
"usage",
"was",
"more",
"strongly",
"associated",
"with",
"lower",
"levels",
"of",
"well",
"-",
"being",
"among",
"girls",
"than",
"boys",
"(",
"Kelly",
"et",
"al",
".",
",",
"2018",
")",
".",
"Girls",
"are",
"also",
"more",
"often",
"targeted",
"by",
"specific",
"types",
"of",
"cyberbullying",
".",
"Algorithm",
"-",
"driven",
"image",
"-",
"based",
"content",
"can",
"expose",
"girls",
"to",
"inappropriate",
"material",
",",
"ranging",
"from",
"sexual",
"content",
"to",
"videos",
"that",
"glorify",
"unhealthy",
"behaviours",
"or",
"unrealistic",
"body",
"standards",
"(",
"Lin",
",",
"2023",
";",
"UNESCO",
",",
"2024a",
")",
".",
"\n",
"ATTACKS",
"ON",
"SCHOOLS",
"\n",
"Target",
"4.a",
"also",
"emphasizes",
"that",
"schools",
"must",
"be",
"safe",
".",
"The",
"Global",
"Coalition",
"to",
"Protect",
"Education",
"from",
"Attack",
"monitors",
"the",
"number",
"of",
"attacks",
"on",
"educational",
"institutions",
",",
"students",
",",
"teachers",
"and",
"personnel",
"inside",
"and",
"outside",
"of",
"classrooms",
"(",
"SDG",
"thematic",
"indicator",
"4.a.3",
")",
".",
"In",
"2022",
"and",
"2023",
",",
"there",
"were",
"about",
"3,000",
"attacks",
"on",
"education",
",",
"a",
"significant",
"increase",
"from",
"about",
"2,500",
"in",
"the",
"two",
"previous",
"years",
".",
"The",
"increase",
"in",
"2022",
"was",
"largely",
"due",
"to",
"the",
"war",
"in",
"Ukraine",
",",
"where",
"555",
"attacks",
"on",
"education",
"were",
"recorded",
"that",
"year",
".",
"It",
"is",
"estimated",
"that",
"in",
"the",
"first",
"two",
"years",
"of",
"the",
"war",
",",
"over",
"360",
"schools",
"were",
"destroyed",
"and",
"3,428",
"were",
"damaged",
",",
"mostly",
"from",
"aerial",
"attacks",
",",
"artillery",
"shelling",
"and",
"rocket",
"strikes",
".",
"Schools",
"have",
"also",
"often",
"been",
"used",
"for",
"military",
"purposes",
"and",
"have",
"had",
"equipment",
"pillaged",
"by",
"soldiers",
"(",
"Human",
"Rights",
"Watch",
",",
"2023",
")",
".",
"In",
"2023",
",",
"the",
"State",
"of",
"Palestine",
"suffered",
"720",
"attacks",
"on",
"education",
",",
"the",
"highest",
"number",
"in",
"the",
"world",
",",
"and",
"the",
"casualties",
"continue",
"to",
"increase",
"in",
"2024",
"as",
"a",
"result",
"of",
"the",
"Israel",
"–",
"Palestine",
"conflict",
"(",
"Box",
"15.2).FIGURE",
"15.4",
":",
" \n",
"More",
"countries",
"are",
"suffering",
"attacks",
"on",
"education",
",",
"though",
"most",
"attacks",
"remain",
"concentrated",
"in",
"a",
"few",
"countries",
"\n",
"Number",
"of",
"countries",
"with",
"at",
"least",
"five",
"attacks",
"per",
"year",
"on",
"students",
",",
"personnel",
"or",
"institutions",
",",
"2013–23",
"\n",
"Afghanistan",
"\n",
"D.",
"R.",
" ",
"Congo",
"\n",
"State",
"of",
"Palestine",
"\n",
"Ukraine",
"\n",
"Yemen",
"\n",
"India",
"\n",
"Myanmar",
"\n",
"Burkina",
"Faso",
"\n",
"Ethiopia",
"\n",
"0",
"\n",
"5",
"\n",
"10",
"\n",
"15",
"\n",
"20",
"\n",
"25",
"\n",
"30",
"\n",
"35",
"\n",
"40",
"\n",
"45",
"\n",
"2013",
"\n",
"2014",
"\n",
"2015",
"\n",
"2016",
"\n",
"2017",
"\n",
"2018",
"\n",
"2019",
"\n",
"2020",
"\n",
"2021",
"\n",
"2022",
"\n",
"2023",
"\n",
"Number",
"of",
"countries",
"with",
"at",
"least",
"5",
"attacks",
"on",
"education",
"\n",
"Countries",
"with",
"over",
"100",
"\n",
"attacks",
"in",
"2023",
"and",
"in",
"the",
"reference",
"year",
"\n",
"The",
"State",
"of",
"Palestine",
"has"
] |
[
{
"end": 59,
"label": "CITATION_REF",
"start": 34
},
{
"end": 53,
"label": "AUTHOR",
"start": 34
},
{
"end": 59,
"label": "YEAR",
"start": 55
},
{
"end": 233,
"label": "CITATION_REF",
"start": 215
},
{
"end": 227,
"label": "AUTHOR",
"start": 215
},
{
"end": 233,
"label": "YEAR",
"start": 229
},
{
"end": 579,
"label": "CITATION_REF",
"start": 561
},
{
"end": 573,
"label": "AUTHOR",
"start": 561
},
{
"end": 579,
"label": "YEAR",
"start": 575
},
{
"end": 846,
"label": "CITATION_REF",
"start": 837
},
{
"end": 840,
"label": "AUTHOR",
"start": 837
},
{
"end": 846,
"label": "YEAR",
"start": 842
},
{
"end": 861,
"label": "CITATION_REF",
"start": 848
},
{
"end": 854,
"label": "AUTHOR",
"start": 848
},
{
"end": 861,
"label": "YEAR",
"start": 856
},
{
"end": 1700,
"label": "CITATION_REF",
"start": 1676
},
{
"end": 1694,
"label": "AUTHOR",
"start": 1676
},
{
"end": 1700,
"label": "YEAR",
"start": 1696
}
] |
… | 9 ₋₂ 10 ₋₁ | 19 ₋₁ | 44 ₋₁ | TTO TCA |
| 3,1 4,5 ₋₁ | 9,3 | 6931 ₋₂ | 2472 1804 ₋₁ 3982 ₋₁ | ₋₁ | ₋₁ | 13 ₋₁ | 14 ₋₁ | 20 ₋₁ | |
| | 15,4 | ₋₁ | | 3359 4194 ₋₁ | ₋₁ | | | | URY |
| | | | | | 6125 | | … | | |
| | | | … | | 13 ₋₁ | | | | |
| … | | | | | | | | | |
| | | 3903 | | | | … | | | |
| | | | | | | | | … | |
| | | | | | | | | | VEN |
| | | | | | … | | | | |
| | | | | | 7797 | ₋₂ | | | |
| | | | | | | … | | | |
| | | | | … | | | | | |
| | - | | | | | | | | |
| | | … | | | | 42 | | | |
## CUADRO 1: Continuación
<!-- image -->
| Finanzas | Finanzas | Finanzas | Finanzas | Finanzas | Finanzas | Finanzas | Finanzas | Finanzas | Finanzas |
|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| | H | I | I | I | I | I | I | | |
| | a la | | | | Gasto público en educación | Gasto público en educación | Gasto público en educación | | |
| educación | gasto destinado | PPA a precios constantes en dólares estadounidenses | PPA a precios constantes en dólares estadounidenses | PPA a precios constantes en dólares estadounidenses | | | | | |
| público en PIB) | Porcentaje del total (%) | Preprimaria | | | Terciaria | Preprimaria Primaria | Secundaria | Terciaria | |
| Gasto (% público educación Primaria Secundaria 1.a.2 | Gasto (% público educación Primaria Secundaria 1.a.2 | Gasto (% público educación Primaria Secundaria 1.a.2 | Gasto (% público educación Primaria Secundaria 1.a.2 | Gasto (% público educación Primaria Secundaria 1.a.2 | Gasto (% público educación Primaria Secundaria 1.a.2 | Gasto (% público educación Primaria Secundaria
|
[
"…",
" ",
"|",
"9",
"₋₂",
"10",
"₋₁",
" ",
"|",
"19",
"₋₁",
" ",
"|",
"44",
"₋₁",
" ",
"|",
"TTO",
"TCA",
" ",
"|",
"\n",
"|",
"3,1",
"4,5",
"₋₁",
" ",
"|",
"9,3",
" ",
"|",
"6931",
"₋₂",
" ",
"|",
"2472",
"1804",
"₋₁",
"3982",
"₋₁",
" ",
"|",
"₋₁",
" ",
"|",
"₋₁",
" ",
"|",
"13",
"₋₁",
" ",
"|",
"14",
"₋₁",
" ",
"|",
"20",
"₋₁",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
"15,4",
" ",
"|",
"₋₁",
" ",
"|",
" ",
"|",
"3359",
"4194",
"₋₁",
" ",
"|",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"URY",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"6125",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"13",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
"3903",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"VEN",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"7797",
" ",
"|",
"₋₂",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
"-",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"42",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n\n",
"#",
"#",
"CUADRO",
"1",
":",
"Continuación",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"Finanzas",
" ",
"|",
"\n",
"|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|",
"\n",
"|",
" ",
"|",
"H",
" ",
"|",
"I",
" ",
"|",
"I",
" ",
"|",
"I",
" ",
"|",
"I",
" ",
"|",
"I",
" ",
"|",
"I",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
"a",
"la",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"Gasto",
"público",
"en",
"educación",
" ",
"|",
"Gasto",
"público",
"en",
"educación",
" ",
"|",
"Gasto",
"público",
"en",
"educación",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"educación",
" ",
"|",
"gasto",
"destinado",
" ",
"|",
"PPA",
"a",
"precios",
"constantes",
"en",
"dólares",
"estadounidenses",
" ",
"|",
"PPA",
"a",
"precios",
"constantes",
"en",
"dólares",
"estadounidenses",
" ",
"|",
"PPA",
"a",
"precios",
"constantes",
"en",
"dólares",
"estadounidenses",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"público",
"en",
"PIB",
")",
" ",
"|",
"Porcentaje",
"del",
"total",
"(",
"%",
")",
" ",
"|",
"Preprimaria",
" ",
"|",
" ",
"|",
" ",
"|",
"Terciaria",
" ",
"|",
"Preprimaria",
"Primaria",
" ",
"|",
"Secundaria",
" ",
"|",
"Terciaria",
" ",
"|",
" ",
"|",
"\n",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria",
"1.a.2",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria",
"1.a.2",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria",
"1.a.2",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria",
"1.a.2",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria",
"1.a.2",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria",
"1.a.2",
"|",
"Gasto",
"(",
"%",
"público",
"educación",
"Primaria",
"Secundaria"
] |
[] |
Quinn, T. J. et al. (2021) European Stroke Organisation (ESO) and European Academy Neurology (EAN) joint guidelines on post stroke cognitive impairment. European Stroke Journal, 6(3), I-XXXVIII. (doi: 10.1177/23969873211042192) (PMCID:PMC8564156)
Taylor-Rowan, M. , Nafisi, S., Owen, R., Duffy, R., Patel, A., Burton, J. K. and Quinn, T. J. (2021) Informant-based screening tools for dementia: an overview of systematic reviews. Psychological Medicine, (doi: 10.1017/S0033291721002002) (PMID:34030753) (Early Online Publication)
https://www.gla.ac.uk/researchinstitutes/icams/staff/terryquinn/#:~:text=Levis%2C%20B.%20et%20al.%20(2020)%20Patient%20Health%20Questionnaire%2D9%20scores%20do%20not%20accurately%20estimate%20depression%20prevalence%3A%20individual%20participant%20data%20meta%2Danalysis.%20Journal%20of%20Clinical%20Epidemiology%2C%20122%2C%20115%2D128.e1.%20(doi%3A%2010.1016/j.jclinepi.2020.02.002)%20(PMID%3A32105798)"
"1. Baker, E.K., Butler, M.G., Hartin, S.N. et al. Relationships between UBE3A and SNORD116 expression and features of autism in chromosome 15 imprinting disorders. Transl Psychiatry 10, 362 (2020). https://doi.org/10.1038/s41398-020-01034-7
2. Ballester-Navarro, P., Richdale, A. L., Baker, E. K., & Peiro, A. (2020). Sleep in autism: A biomolecular approach to aetiology and treatment. Sleep Medicine Reviews, 54.
3. Baker, E.K., Arpone, M., Aliaga, S.M. et al. Incomplete silencing of full mutation alleles in males with fragile X syndrome is associated with autistic features. Molecular Autism 10, 21 (2019). https://doi.org/10.1186/s13229-019-0271-7
4. Baker & Richdale. (2015). Sleep patterns in adults with a diagnosis of high-functioning autism spectrum disorder. Sleep 38(11):1765-74.
5. Baker, E. K., Arora, S., Amor, D. J., Date, P., Cross, M., O'Brien, J., Simons, C., Rogers, C., Goodall, S., Slee, J., Cahir, C., & Godler, D. E. (2021). The Cost of Raising Individuals with Fragile X or Chromosome 15 Imprinting Disorders in Australia. Journal of autism and developmental disorders, 10.1007/s10803-021-05193-4. Advance online publication. https://doi.org/10.1007/s10803-021-05193-4"
|
[
"Quinn",
",",
"T.",
"J.",
"et",
"al",
".",
"(",
"2021",
")",
"European",
"Stroke",
"Organisation",
"(",
"ESO",
")",
"and",
"European",
"Academy",
"Neurology",
"(",
"EAN",
")",
"joint",
"guidelines",
"on",
"post",
"stroke",
"cognitive",
"impairment",
".",
"European",
"Stroke",
"Journal",
",",
"6(3",
")",
",",
"I",
"-",
"XXXVIII",
".",
"(",
"doi",
":",
"10.1177/23969873211042192",
")",
"(",
"PMCID",
":",
"PMC8564156",
")",
"\n\n",
"Taylor",
"-",
"Rowan",
",",
"M.",
",",
"Nafisi",
",",
"S.",
",",
"Owen",
",",
"R.",
",",
"Duffy",
",",
"R.",
",",
"Patel",
",",
"A.",
",",
"Burton",
",",
"J.",
"K.",
"and",
"Quinn",
",",
"T.",
"J.",
"(",
"2021",
")",
"Informant",
"-",
"based",
"screening",
"tools",
"for",
"dementia",
":",
"an",
"overview",
"of",
"systematic",
"reviews",
".",
"Psychological",
"Medicine",
",",
"(",
"doi",
":",
"10.1017",
"/",
"S0033291721002002",
")",
"(",
"PMID:34030753",
")",
"(",
"Early",
"Online",
"Publication",
")",
"\n\n",
"https://www.gla.ac.uk/researchinstitutes/icams/staff/terryquinn/#:~:text=Levis%2C%20B.%20et%20al.%20(2020)%20Patient%20Health%20Questionnaire%2D9%20scores%20do%20not%20accurately%20estimate%20depression%20prevalence%3A%20individual%20participant%20data%20meta%2Danalysis.%20Journal%20of%20Clinical%20Epidemiology%2C%20122%2C%20115%2D128.e1.%20(doi%3A%2010.1016/j.jclinepi.2020.02.002)%20(PMID%3A32105798",
")",
"\"",
"\n",
"\"",
"1",
".",
"Baker",
",",
"E.K.",
",",
"Butler",
",",
"M.G.",
",",
"Hartin",
",",
"S.N.",
"et",
"al",
".",
"Relationships",
"between",
"UBE3A",
"and",
"SNORD116",
"expression",
"and",
"features",
"of",
"autism",
"in",
"chromosome",
"15",
"imprinting",
"disorders",
".",
"Transl",
"Psychiatry",
"10",
",",
"362",
"(",
"2020",
")",
".",
"https://doi.org/10.1038/s41398-020-01034-7",
"\n",
"2",
".",
"Ballester",
"-",
"Navarro",
",",
"P.",
",",
"Richdale",
",",
"A.",
"L.",
",",
"Baker",
",",
"E.",
"K.",
",",
"&",
"Peiro",
",",
"A.",
"(",
"2020",
")",
".",
"Sleep",
"in",
"autism",
":",
"A",
"biomolecular",
"approach",
"to",
"aetiology",
"and",
"treatment",
".",
"Sleep",
"Medicine",
"Reviews",
",",
"54",
".",
"\n",
"3",
".",
"Baker",
",",
"E.K.",
",",
"Arpone",
",",
"M.",
",",
"Aliaga",
",",
"S.M.",
"et",
"al",
".",
"Incomplete",
"silencing",
"of",
"full",
"mutation",
"alleles",
"in",
"males",
"with",
"fragile",
"X",
"syndrome",
"is",
"associated",
"with",
"autistic",
"features",
".",
"Molecular",
"Autism",
"10",
",",
"21",
"(",
"2019",
")",
".",
"https://doi.org/10.1186/s13229-019-0271-7",
"\n",
"4",
".",
"Baker",
"&",
"Richdale",
".",
"(",
"2015",
")",
".",
"Sleep",
"patterns",
"in",
"adults",
"with",
"a",
"diagnosis",
"of",
"high",
"-",
"functioning",
"autism",
"spectrum",
"disorder",
".",
"Sleep",
"38(11):1765",
"-",
"74",
".",
"\n",
"5",
".",
"Baker",
",",
"E.",
"K.",
",",
"Arora",
",",
"S.",
",",
"Amor",
",",
"D.",
"J.",
",",
"Date",
",",
"P.",
",",
"Cross",
",",
"M.",
",",
"O'Brien",
",",
"J.",
",",
"Simons",
",",
"C.",
",",
"Rogers",
",",
"C.",
",",
"Goodall",
",",
"S.",
",",
"Slee",
",",
"J.",
",",
"Cahir",
",",
"C.",
",",
"&",
"Godler",
",",
"D.",
"E.",
"(",
"2021",
")",
".",
"The",
"Cost",
"of",
"Raising",
"Individuals",
"with",
"Fragile",
"X",
"or",
"Chromosome",
"15",
"Imprinting",
"Disorders",
"in",
"Australia",
".",
"Journal",
"of",
"autism",
"and",
"developmental",
"disorders",
",",
"10.1007",
"/",
"s10803",
"-",
"021",
"-",
"05193",
"-",
"4",
".",
"Advance",
"online",
"publication",
".",
"https://doi.org/10.1007/s10803-021-05193-4",
"\""
] |
[
{
"end": 246,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 502,
"label": "CITATION_SPAN",
"start": 248
},
{
"end": 939,
"label": "CITATION_ID",
"start": 938
},
{
"end": 1180,
"label": "CITATION_ID",
"start": 1179
},
{
"end": 1354,
"label": "CITATION_ID",
"start": 1353
},
{
"end": 1732,
"label": "CITATION_ID",
"start": 1731
},
{
"end": 1593,
"label": "CITATION_ID",
"start": 1592
},
{
"end": 1178,
"label": "CITATION_SPAN",
"start": 941
},
{
"end": 1352,
"label": "CITATION_SPAN",
"start": 1182
},
{
"end": 1591,
"label": "CITATION_SPAN",
"start": 1356
},
{
"end": 1730,
"label": "CITATION_SPAN",
"start": 1595
},
{
"end": 2132,
"label": "CITATION_SPAN",
"start": 1734
}
] |
-
tion projects for decarbonisation challenges, such as an industrial demonstrator (as part of a new Competitiveness
Joint Undertaking, replacing current public-private partnerships) or an IPCEI for the zero-emission flight of the future.
52THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 3
ENDNOTESi European Commission, ‘ Medium-term projections of
potential GDP growth in turbulent times ’, European
Economic Forecast, Spring 2023, Special Issue 4.1, 2023.
ii EIB, ‘ EIB Investment Survey 2023: European
Union Overview ’, 2023.
iii IEA, Net Zero roadmap , 2023 update.
iv DiPippo, G., Mazzocco, I., & Kennedy, S., ‘ Red Ink: Estimating
Chinese Industrial Policy Spending in Comparative Perspective ’,
Center for Strategic and International Studies, 2022.
v ECB, The EU’s Open Strategic Autonomy from a central
banking perspective: Challenges to the monetary policy
landscape from a changing geopolitical environment ,
ECB Occasional Paper Series No. 311, 2023.vi ECB, The evolution of China’s growth model:
challenges and long-term growth prospects ”, ECB
Economic Bulletin, Issue 5/2024, 2024.
vii ESMA, TRV Risk analysis – EU natural gas
derivatives markets: risks and trends , 2023.
viii EIB and European Patent Office, Financing and
commercialisation of cleantech innovation , 2024.
ix Ibid.
x IEA, Advancing Clean Technology Manufacturing , 2024.
53THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 3
4. Increasing security and
reducing dependencies
While dependencies are a two-way street, Europe is vulnerable to both coercion and, in extreme cases,
geo-economic fragmentation . Europe has extensive external dependencies, ranging from critical raw mate -
rials (CRMs) to advanced technologies. Many of these dependencies could become vulnerabilities in a situation
where trade fragments along geopolitical lines. Around 40% of Europe’s imports are sourced from a small number
of suppliers and difficult to substitute, and around half of these imports originate from countries with which it is not
strategically alignedi. As a result, Europe’s notional exposure to any “sudden stops” in trade caused by geopolitical
conflagration is high. However, absent an extreme unforeseen scenario, a profound and rapid decoupling of global
trade seems unlikely in the medium term. Evidence of de-globalisation is currently limited, with companies preferring
to diversify suppliers rather than re-shore or near-shore production on a significant scaleii. Neither China nor the
EU has an incentive to accelerate this process: as the previous chapter demonstrated, China is reliant on the EU to
absorb its excess capacity in clean technologies. The more immediate risk
|
[
"-",
"\n",
"tion",
"projects",
"for",
"decarbonisation",
"challenges",
",",
"such",
"as",
"an",
"industrial",
"demonstrator",
"(",
"as",
"part",
"of",
"a",
"new",
"Competitiveness",
"\n",
"Joint",
"Undertaking",
",",
"replacing",
"current",
"public",
"-",
"private",
"partnerships",
")",
"or",
"an",
"IPCEI",
"for",
"the",
"zero",
"-",
"emission",
"flight",
"of",
"the",
"future",
".",
"\n",
"52THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"3",
"\n",
"ENDNOTESi",
"European",
"Commission",
",",
"‘",
"Medium",
"-",
"term",
"projections",
"of",
"\n",
"potential",
"GDP",
"growth",
"in",
"turbulent",
"times",
"’",
",",
"European",
"\n",
"Economic",
"Forecast",
",",
"Spring",
"2023",
",",
"Special",
"Issue",
"4.1",
",",
"2023",
".",
"\n",
"ii",
"EIB",
",",
"‘",
"EIB",
"Investment",
"Survey",
"2023",
":",
"European",
"\n",
"Union",
"Overview",
"’",
",",
"2023",
".",
"\n",
"iii",
"IEA",
",",
"Net",
"Zero",
"roadmap",
",",
"2023",
"update",
".",
"\n",
"iv",
"DiPippo",
",",
"G.",
",",
"Mazzocco",
",",
"I.",
",",
"&",
"Kennedy",
",",
"S.",
",",
"‘",
"Red",
"Ink",
":",
"Estimating",
"\n",
"Chinese",
"Industrial",
"Policy",
"Spending",
"in",
"Comparative",
"Perspective",
"’",
",",
"\n",
"Center",
"for",
"Strategic",
"and",
"International",
"Studies",
",",
"2022",
".",
"\n",
"v",
"ECB",
",",
"The",
"EU",
"’s",
"Open",
"Strategic",
"Autonomy",
"from",
"a",
"central",
"\n",
"banking",
"perspective",
":",
"Challenges",
"to",
"the",
"monetary",
"policy",
"\n",
"landscape",
"from",
"a",
"changing",
"geopolitical",
"environment",
",",
"\n",
"ECB",
"Occasional",
"Paper",
"Series",
"No",
".",
"311",
",",
"2023.vi",
"ECB",
",",
"The",
"evolution",
"of",
"China",
"’s",
"growth",
"model",
":",
"\n",
"challenges",
"and",
"long",
"-",
"term",
"growth",
"prospects",
"”",
",",
"ECB",
"\n",
"Economic",
"Bulletin",
",",
"Issue",
"5/2024",
",",
"2024",
".",
"\n",
"vii",
"ESMA",
",",
"TRV",
"Risk",
"analysis",
"–",
"EU",
"natural",
"gas",
"\n",
"derivatives",
"markets",
":",
"risks",
"and",
"trends",
",",
"2023",
".",
"\n",
"viii",
"EIB",
"and",
"European",
"Patent",
"Office",
",",
"Financing",
"and",
"\n",
"commercialisation",
"of",
"cleantech",
"innovation",
",",
"2024",
".",
"\n",
"ix",
"Ibid",
".",
"\n",
"x",
"IEA",
",",
"Advancing",
"Clean",
"Technology",
"Manufacturing",
",",
"2024",
".",
"\n",
"53THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"3",
"\n",
"4",
".",
"Increasing",
"security",
"and",
" \n",
"reducing",
"dependencies",
"\n",
"While",
"dependencies",
"are",
"a",
"two",
"-",
"way",
"street",
",",
"Europe",
"is",
"vulnerable",
"to",
"both",
"coercion",
"and",
",",
"in",
"extreme",
"cases",
",",
"\n",
"geo",
"-",
"economic",
"fragmentation",
".",
"Europe",
"has",
"extensive",
"external",
"dependencies",
",",
"ranging",
"from",
"critical",
"raw",
"mate",
"-",
"\n",
"rials",
"(",
"CRMs",
")",
"to",
"advanced",
"technologies",
".",
"Many",
"of",
"these",
"dependencies",
"could",
"become",
"vulnerabilities",
"in",
"a",
"situation",
"\n",
"where",
"trade",
"fragments",
"along",
"geopolitical",
"lines",
".",
"Around",
"40",
"%",
"of",
"Europe",
"’s",
"imports",
"are",
"sourced",
"from",
"a",
"small",
"number",
"\n",
"of",
"suppliers",
"and",
"difficult",
"to",
"substitute",
",",
"and",
"around",
"half",
"of",
"these",
"imports",
"originate",
"from",
"countries",
"with",
"which",
"it",
"is",
"not",
"\n",
"strategically",
"alignedi",
".",
"As",
"a",
"result",
",",
"Europe",
"’s",
"notional",
"exposure",
"to",
"any",
"“",
"sudden",
"stops",
"”",
"in",
"trade",
"caused",
"by",
"geopolitical",
"\n",
"conflagration",
"is",
"high",
".",
"However",
",",
"absent",
"an",
"extreme",
"unforeseen",
"scenario",
",",
"a",
"profound",
"and",
"rapid",
"decoupling",
"of",
"global",
"\n",
"trade",
"seems",
"unlikely",
"in",
"the",
"medium",
"term",
".",
"Evidence",
"of",
"de",
"-",
"globalisation",
"is",
"currently",
"limited",
",",
"with",
"companies",
"preferring",
"\n",
"to",
"diversify",
"suppliers",
"rather",
"than",
"re",
"-",
"shore",
"or",
"near",
"-",
"shore",
"production",
"on",
"a",
"significant",
"scaleii",
".",
"Neither",
"China",
"nor",
"the",
"\n",
"EU",
"has",
"an",
"incentive",
"to",
"accelerate",
"this",
"process",
":",
"as",
"the",
"previous",
"chapter",
"demonstrated",
",",
"China",
"is",
"reliant",
"on",
"the",
"EU",
"to",
"\n",
"absorb",
"its",
"excess",
"capacity",
"in",
"clean",
"technologies",
".",
"The",
"more",
"immediate",
"risk"
] |
[
{
"end": 312,
"label": "CITATION_ID",
"start": 311
},
{
"end": 473,
"label": "CITATION_SPAN",
"start": 313
},
{
"end": 545,
"label": "CITATION_SPAN",
"start": 477
},
{
"end": 586,
"label": "CITATION_SPAN",
"start": 550
},
{
"end": 774,
"label": "CITATION_SPAN",
"start": 590
},
{
"end": 983,
"label": "CITATION_SPAN",
"start": 778
},
{
"end": 1119,
"label": "CITATION_SPAN",
"start": 986
},
{
"end": 1322,
"label": "CITATION_SPAN",
"start": 1317
},
{
"end": 1378,
"label": "CITATION_SPAN",
"start": 1325
},
{
"end": 476,
"label": "CITATION_ID",
"start": 474
},
{
"end": 549,
"label": "CITATION_ID",
"start": 546
},
{
"end": 589,
"label": "CITATION_ID",
"start": 587
},
{
"end": 776,
"label": "CITATION_ID",
"start": 775
},
{
"end": 985,
"label": "CITATION_ID",
"start": 983
},
{
"end": 1123,
"label": "CITATION_ID",
"start": 1120
},
{
"end": 1216,
"label": "CITATION_ID",
"start": 1212
},
{
"end": 1211,
"label": "CITATION_SPAN",
"start": 1124
},
{
"end": 1313,
"label": "CITATION_SPAN",
"start": 1217
},
{
"end": 1316,
"label": "CITATION_ID",
"start": 1314
},
{
"end": 1324,
"label": "CITATION_ID",
"start": 1323
},
{
"end": 2492,
"label": "CITATION_REF",
"start": 2490
},
{
"end": 2069,
"label": "CITATION_REF",
"start": 2068
}
] |
the different ways in which colonizing and colonized women were able to access education and careers in science. 39 At the same time, as Grace Shen argues with regard to Chinese women scientists' transnational mobility in the early twentieth century, the decision to travel abroad was framed not only by strategic career considerations and politically infused agendas like 'national salvation or modernization', but also by the complicated personal circumstances women tried to navigate. 40 Mariko Ogawa makes a similar argument in her discussion of Japanese women scientists in the Foreword to this volume.
Mobility was made possible by formal and informal networks of exchange and collaboration. Georgeta Nazarska has used prosopography as well as historical and social network analysis to investigate associational cultures in hitherto- little- explored settings like Bulgaria, Romania, Yugoslavia, Greece and Turkey (e.g., in relation to the activity of the International Federation of University Women in the Balkans in the 1920s- 1950s). She has also used this approach to study professional subgroups among Bulgarian female doctors in the nineteenth century, demonstrating that they were not a monolithic entity. 41 As the following section discusses in more detail, several chapters in this volume pursue similarly fruitful lines of investigation, exploring formal and informal networks of support, collaboration and, sometimes, contestation between women in STEMM (e.g., Nair, Macková, Rees Koerner and Gooday). All point to the importance of gender solidarity in the pursuit of scientific careers by women and the validation that participation in such networks afforded them, difficult to find in other types of professional, maledominated contexts.
Broadening the conversation to include different academic cultures and strands of writing also reveals the context- specific ways in which power asymmetries have worked to render women in science, engineering and
medicine invisible in the twentieth century. Earlier North American feminist scholarship connected women's invisibility in science to the ideal of scientific objectivity, which helped devalue certain forms of knowledge and scientific labour associated with women by cementing the notion of the scientist as a rational (white) man engaged in the pursuit of knowledge and unhindered by his own subjectivity. As Donna Haraway argued, knowledge could only be fragmentary and 'feminist objectivity mean[t] quite simply situated knowledges '. 42 But understanding how knowledge is 'situated' requires us to document the socio- economic, political and material contexts of its production and circulation; among other things, this should also mean investigating histories of
|
[
"the",
"different",
"ways",
"in",
"which",
"colonizing",
"and",
"colonized",
"women",
"were",
"able",
"to",
"access",
"education",
"and",
"careers",
"in",
"science",
".",
"39",
"At",
"the",
"same",
"time",
",",
"as",
"Grace",
"Shen",
"argues",
"with",
"regard",
"to",
"Chinese",
"women",
"scientists",
"'",
"transnational",
"mobility",
"in",
"the",
"early",
"twentieth",
"century",
",",
"the",
"decision",
"to",
"travel",
"abroad",
"was",
"framed",
"not",
"only",
"by",
"strategic",
"career",
"considerations",
"and",
"politically",
"infused",
"agendas",
"like",
"'",
"national",
"salvation",
"or",
"modernization",
"'",
",",
"but",
"also",
"by",
"the",
"complicated",
"personal",
"circumstances",
"women",
"tried",
"to",
"navigate",
".",
"40",
" ",
"Mariko",
"Ogawa",
"makes",
"a",
"similar",
"argument",
"in",
"her",
"discussion",
"of",
"Japanese",
"women",
"scientists",
"in",
"the",
"Foreword",
"to",
"this",
"volume",
".",
"\n\n",
"Mobility",
"was",
"made",
"possible",
"by",
"formal",
"and",
"informal",
"networks",
"of",
"exchange",
"and",
"collaboration",
".",
"Georgeta",
"Nazarska",
"has",
"used",
"prosopography",
"as",
"well",
"as",
"historical",
"and",
"social",
"network",
"analysis",
"to",
"investigate",
"associational",
"cultures",
"in",
"hitherto-",
" ",
"little-",
" ",
"explored",
"settings",
"like",
"Bulgaria",
",",
"Romania",
",",
"Yugoslavia",
",",
"Greece",
"and",
"Turkey",
"(",
"e.g.",
",",
"in",
"relation",
"to",
"the",
"activity",
"of",
"the",
"International",
"Federation",
"of",
"University",
"Women",
"in",
"the",
"Balkans",
"in",
"the",
"1920s-",
" ",
"1950s",
")",
".",
"She",
"has",
"also",
"used",
"this",
"approach",
"to",
"study",
"professional",
"subgroups",
"among",
"Bulgarian",
"female",
"doctors",
"in",
"the",
"nineteenth",
"century",
",",
"demonstrating",
"that",
"they",
"were",
"not",
"a",
"monolithic",
"entity",
".",
"41",
"As",
"the",
"following",
"section",
"discusses",
"in",
"more",
"detail",
",",
"several",
"chapters",
"in",
"this",
"volume",
"pursue",
"similarly",
"fruitful",
"lines",
"of",
"investigation",
",",
"exploring",
"formal",
"and",
"informal",
"networks",
"of",
"support",
",",
"collaboration",
"and",
",",
"sometimes",
",",
"contestation",
"between",
"women",
"in",
"STEMM",
"(",
"e.g.",
",",
"Nair",
",",
"Macková",
",",
"Rees",
"Koerner",
"and",
"Gooday",
")",
".",
"All",
"point",
"to",
"the",
"importance",
"of",
"gender",
"solidarity",
"in",
"the",
"pursuit",
"of",
"scientific",
"careers",
"by",
"women",
"and",
"the",
"validation",
"that",
"participation",
"in",
"such",
"networks",
"afforded",
"them",
",",
"difficult",
"to",
"find",
"in",
"other",
"types",
"of",
"professional",
",",
"maledominated",
"contexts",
".",
"\n\n",
"Broadening",
"the",
"conversation",
"to",
"include",
"different",
"academic",
"cultures",
"and",
"strands",
" ",
"of",
" ",
"writing",
" ",
"also",
" ",
"reveals",
" ",
"the",
" ",
"context-",
" ",
"specific",
" ",
"ways",
" ",
"in",
" ",
"which",
" ",
"power",
"asymmetries",
" ",
"have",
" ",
"worked",
" ",
"to",
" ",
"render",
" ",
"women",
" ",
"in",
" ",
"science",
",",
" ",
"engineering",
" ",
"and",
"\n\n",
"medicine",
"invisible",
"in",
"the",
"twentieth",
"century",
".",
"Earlier",
"North",
"American",
"feminist",
" ",
"scholarship",
" ",
"connected",
" ",
"women",
"'s",
" ",
"invisibility",
" ",
"in",
" ",
"science",
" ",
"to",
" ",
"the",
" ",
"ideal",
" ",
"of",
"scientific",
"objectivity",
",",
"which",
"helped",
"devalue",
"certain",
"forms",
"of",
"knowledge",
"and",
"scientific",
"labour",
"associated",
"with",
"women",
"by",
"cementing",
"the",
"notion",
"of",
"the",
"scientist",
"as",
"a",
"rational",
"(",
"white",
")",
"man",
"engaged",
"in",
"the",
"pursuit",
"of",
"knowledge",
"and",
"unhindered",
"by",
"his",
"own",
"subjectivity",
".",
"As",
"Donna",
"Haraway",
"argued",
",",
"knowledge",
"could",
"only",
"be",
"fragmentary",
"and",
"'",
"feminist",
"objectivity",
"mean[t",
"]",
"quite",
"simply",
"situated",
"knowledges",
"'",
".",
"42",
"But",
"understanding",
"how",
"knowledge",
"is",
"'",
"situated",
"'",
"requires",
"us",
"to",
"document",
"the",
"socio-",
" ",
"economic",
",",
"political",
"and",
"material",
"contexts",
"of",
"its",
"production",
"and",
"circulation",
";",
"among",
"other",
"things",
",",
"this",
"should",
"also",
"mean",
"investigating",
"histories",
"of"
] |
[
{
"end": 490,
"label": "CITATION_REF",
"start": 488
},
{
"end": 115,
"label": "CITATION_REF",
"start": 113
},
{
"end": 1227,
"label": "CITATION_REF",
"start": 1225
},
{
"end": 2549,
"label": "CITATION_REF",
"start": 2547
}
] |
employs nearly 15,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $650 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH continually pushes the boundaries of medicine, including building on its legacy in transplantation by performing a partial face transplant in 2009 and the nation's first full face transplant in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information, resources and to follow us on social media, please visit BWH's online newsroom.
Journal
Circulation
DOI
10.1161/CIRCULATIONAHA.115.017300
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
Media Contact
Johanna Younghans
[email protected]
Office: 617-525-6373
More on this News Release
Novel blood thinner found to be safe and effective in women
Brigham and Women's Hospital
Journal
Circulation
DOI
10.1161/CIRCULATIONAHA.115.017300
Keywords
/Life sciences/Organismal biology/Anatomy/Body fluids/Blood
/Health and medicine/Health care/Medical facilities/Hospitals
/Health and medicine/Clinical medicine/Medical treatments/Transplantation
EurekAlert! The Global Source for Science News
AAAS - American Association for the Advancement of Science
Copyright © 2024 by the American Association for the Advancement of Science (AAAS)
facebook.com/EurekAlert
@EurekAlert
youtube.com/EurekAlert
Help / FAQ
Services
Eligibility Guidelines
Contact EurekAlert!
Terms & Conditions
DMCA
Privacy Policy
Disclaimer
Copyright © 2024 by the American Association for the Advancement of Science (AAAS)
|
[
"employs",
"nearly",
"15,000",
"people",
".",
"The",
"Brigham",
"'s",
"medical",
"preeminence",
"dates",
"back",
"to",
"1832",
",",
"and",
"today",
"that",
"rich",
"history",
"in",
"clinical",
"care",
"is",
"coupled",
"with",
"its",
"national",
"leadership",
"in",
"patient",
"care",
",",
"quality",
"improvement",
"and",
"patient",
"safety",
"initiatives",
",",
"and",
"its",
"dedication",
"to",
"research",
",",
"innovation",
",",
"community",
"engagement",
"and",
"educating",
"and",
"training",
"the",
"next",
"generation",
"of",
"health",
"care",
"professionals",
".",
"Through",
"investigation",
"and",
"discovery",
"conducted",
"at",
"its",
"Brigham",
"Research",
"Institute",
"(",
"BRI",
")",
",",
"BWH",
"is",
"an",
"international",
"leader",
"in",
"basic",
",",
"clinical",
"and",
"translational",
"research",
"on",
"human",
"diseases",
",",
"more",
"than",
"1,000",
"physician",
"-",
"investigators",
"and",
"renowned",
"biomedical",
"scientists",
"and",
"faculty",
"supported",
"by",
"nearly",
"$",
"650",
"million",
"in",
"funding",
".",
"For",
"the",
"last",
"25",
"years",
",",
"BWH",
"ranked",
"second",
"in",
"research",
"funding",
"from",
"the",
"National",
"Institutes",
"of",
"Health",
"(",
"NIH",
")",
"among",
"independent",
"hospitals",
".",
"BWH",
"continually",
"pushes",
"the",
"boundaries",
"of",
"medicine",
",",
"including",
"building",
"on",
"its",
"legacy",
"in",
"transplantation",
"by",
"performing",
"a",
"partial",
"face",
"transplant",
"in",
"2009",
"and",
"the",
"nation",
"'s",
"first",
"full",
"face",
"transplant",
"in",
"2011",
".",
"BWH",
"is",
"also",
"home",
"to",
"major",
"landmark",
"epidemiologic",
"population",
"studies",
",",
"including",
"the",
"Nurses",
"'",
"and",
"Physicians",
"'",
"Health",
"Studies",
"and",
"the",
"Women",
"'s",
"Health",
"Initiative",
".",
"For",
"more",
"information",
",",
"resources",
"and",
"to",
"follow",
"us",
"on",
"social",
"media",
",",
"please",
"visit",
"BWH",
"'s",
"online",
"newsroom",
".",
"\n\n\n",
"Journal",
"\n",
"Circulation",
"\n\n",
"DOI",
"\n",
"10.1161",
"/",
"CIRCULATIONAHA.115.017300",
"\n\n",
"Disclaimer",
":",
"AAAS",
"and",
"EurekAlert",
"!",
"are",
"not",
"responsible",
"for",
"the",
"accuracy",
"of",
"news",
"releases",
"posted",
"to",
"EurekAlert",
"!",
"by",
"contributing",
"institutions",
"or",
"for",
"the",
"use",
"of",
"any",
"information",
"through",
"the",
"EurekAlert",
"system",
".",
"\n\n",
"Media",
"Contact",
"\n\n",
"Johanna",
"Younghans",
"\n\n",
"[email protected]",
"\n",
"Office",
":",
"617",
"-",
"525",
"-",
"6373",
"\n\n",
"More",
"on",
"this",
"News",
"Release",
"\n",
"Novel",
"blood",
"thinner",
"found",
"to",
"be",
"safe",
"and",
"effective",
"in",
"women",
"\n",
"Brigham",
"and",
"Women",
"'s",
"Hospital",
"\n\n",
"Journal",
"\n",
"Circulation",
"\n",
"DOI",
"\n",
"10.1161",
"/",
"CIRCULATIONAHA.115.017300",
"\n",
"Keywords",
"\n",
"/Life",
"sciences",
"/",
"Organismal",
"biology",
"/",
"Anatomy",
"/",
"Body",
"fluids",
"/",
"Blood",
"\n",
"/Health",
"and",
"medicine",
"/",
"Health",
"care",
"/",
"Medical",
"facilities",
"/",
"Hospitals",
"\n",
"/Health",
"and",
"medicine",
"/",
"Clinical",
"medicine",
"/",
"Medical",
"treatments",
"/",
"Transplantation",
"\n",
"EurekAlert",
"!",
"The",
"Global",
"Source",
"for",
"Science",
"News",
"\n\n",
"AAAS",
"-",
"American",
"Association",
"for",
"the",
"Advancement",
"of",
"Science",
"\n\n",
"Copyright",
"©",
"2024",
"by",
"the",
"American",
"Association",
"for",
"the",
"Advancement",
"of",
"Science",
"(",
"AAAS",
")",
"\n\n ",
"facebook.com/EurekAlert",
"\n ",
"@EurekAlert",
"\n ",
"youtube.com/EurekAlert",
"\n",
"Help",
"/",
"FAQ",
"\n",
"Services",
"\n",
"Eligibility",
"Guidelines",
"\n",
"Contact",
"EurekAlert",
"!",
"\n",
"Terms",
"&",
"Conditions",
"\n",
"DMCA",
"\n",
"Privacy",
"Policy",
"\n",
"Disclaimer",
"\n",
"Copyright",
"©",
"2024",
"by",
"the",
"American",
"Association",
"for",
"the",
"Advancement",
"of",
"Science",
"(",
"AAAS",
")"
] |
[
{
"end": 1813,
"label": "CITATION_SPAN",
"start": 1756
}
] |
political, economic and cultural circumstances that have circumscribed
their access to STEMM.23 Some of these publications follow a compensa -
tory approach, seeking to uncover forgotten figures of science and searching
for historical proof of women’s participation in it.24 Others move beyond
recovering lost voices to examining the complex interplay of factors that
contributed to the structural exclusion and marginalization of women, illu -
minating, for example, how gendered identities were constructed and how
they came to structure interactions between men and women in science, as
well as processes of knowledge- making.25
Compensatory writing might go some way towards making women in
STEMM more visible, but it is not, in and by itself, sufficient to challenge
the epistemological assumptions underlying historical analyses that have
long treated them as lesser actors of knowledge- making. In fact, as Devika
cautions in a related context, this type of writing can end up reinforcing
hegemonic conceptions of science and gender roles, for example, when ‘the
biography does the job of filling a gap rather too literally and faithfully, by
upholding the figure of the transgressive woman author who was “as good
as” or “better than” her male counterparts’.26 As other scholars have also
noted, understanding the historical trajectory of ‘processes of gendering’
and, indeed, the power relations that circumscribed them is more pressing
and radical a research agenda than simply filling a gap.27
The compensatory approach has been influential in many areas of the
world. In South- Eastern and Central Europe, writing in this vein has some -
times acquired a celebratory or exceptionalist tone, likely an outcome of
the fact that the study of gender and science is a relatively new area of
research. Until 1989, there was only a small and mostly underground femi -
nist movement in these regions, although sometimes with relevant impact
9
9
Introduction
on the global women’s movement.28 The authoritarian regimes in the region
imposed a cultural and political agenda that encouraged the entrance of
women into scientific fields, but their activities became subsumed under a
broader and, for the purposes of perpetuating the regimes in power, politi -
cally more significant identity as ‘working people’. In the post- 1989 period,
investigations of science under communism, including the role of women
therein, have often been incorporated into a broader repertoire of anti-
communist writing.29
Scholarly engagement with women’s history and gender studies varies
across countries of the
|
[
"political",
",",
"economic",
"and",
"cultural",
"circumstances",
"that",
"have",
"circumscribed",
"\n",
"their",
"access",
"to",
"STEMM.23",
"Some",
"of",
"these",
"publications",
"follow",
"a",
"compensa",
"-",
"\n",
"tory",
"approach",
",",
"seeking",
"to",
"uncover",
"forgotten",
"figures",
"of",
"science",
"and",
"searching",
"\n",
"for",
"historical",
"proof",
"of",
"women",
"’s",
"participation",
"in",
"it.24",
"Others",
"move",
"beyond",
"\n",
"recovering",
"lost",
"voices",
"to",
"examining",
"the",
"complex",
"interplay",
"of",
"factors",
"that",
"\n",
"contributed",
"to",
"the",
"structural",
"exclusion",
"and",
"marginalization",
"of",
"women",
",",
"illu",
"-",
"\n",
"minating",
",",
"for",
"example",
",",
"how",
"gendered",
"identities",
"were",
"constructed",
"and",
"how",
"\n",
"they",
"came",
"to",
"structure",
"interactions",
"between",
"men",
"and",
"women",
"in",
"science",
",",
"as",
"\n",
"well",
"as",
"processes",
"of",
"knowledge-",
" ",
"making.25",
"\n",
"Compensatory",
"writing",
"might",
"go",
"some",
"way",
"towards",
"making",
"women",
"in",
"\n",
"STEMM",
"more",
"visible",
",",
"but",
"it",
"is",
"not",
",",
"in",
"and",
"by",
"itself",
",",
"sufficient",
"to",
"challenge",
"\n",
"the",
"epistemological",
"assumptions",
"underlying",
"historical",
"analyses",
"that",
"have",
"\n",
"long",
"treated",
"them",
"as",
"lesser",
"actors",
"of",
"knowledge-",
" ",
"making",
".",
"In",
"fact",
",",
"as",
"Devika",
"\n",
"cautions",
"in",
"a",
"related",
"context",
",",
"this",
"type",
"of",
"writing",
"can",
"end",
"up",
"reinforcing",
"\n",
"hegemonic",
"conceptions",
"of",
"science",
"and",
"gender",
"roles",
",",
"for",
"example",
",",
"when",
"‘",
"the",
"\n",
"biography",
"does",
"the",
"job",
"of",
"filling",
"a",
"gap",
"rather",
"too",
"literally",
"and",
"faithfully",
",",
"by",
"\n",
"upholding",
"the",
"figure",
"of",
"the",
"transgressive",
"woman",
"author",
"who",
"was",
"“",
"as",
"good",
"\n",
"as",
"”",
"or",
"“",
"better",
"than",
"”",
"her",
"male",
"counterparts’.26",
"As",
"other",
"scholars",
"have",
"also",
"\n",
"noted",
",",
"understanding",
"the",
"historical",
"trajectory",
"of",
"‘",
"processes",
"of",
"gendering",
"’",
"\n",
"and",
",",
"indeed",
",",
"the",
"power",
"relations",
"that",
"circumscribed",
"them",
"is",
"more",
"pressing",
"\n",
"and",
"radical",
"a",
"research",
"agenda",
"than",
"simply",
"filling",
"a",
"gap.27",
"\n",
"The",
"compensatory",
"approach",
"has",
"been",
"influential",
"in",
"many",
"areas",
"of",
"the",
"\n",
"world",
".",
"In",
"South-",
" ",
"Eastern",
"and",
"Central",
"Europe",
",",
"writing",
"in",
"this",
"vein",
"has",
"some",
"-",
"\n",
"times",
"acquired",
"a",
"celebratory",
"or",
"exceptionalist",
"tone",
",",
"likely",
"an",
"outcome",
"of",
"\n",
"the",
"fact",
"that",
"the",
"study",
"of",
"gender",
"and",
"science",
"is",
"a",
"relatively",
"new",
"area",
"of",
"\n",
"research",
".",
"Until",
"1989",
",",
"there",
"was",
"only",
"a",
"small",
"and",
"mostly",
"underground",
"femi",
"-",
"\n",
"nist",
"movement",
"in",
"these",
"regions",
",",
"although",
"sometimes",
"with",
"relevant",
"impact",
" \n \n \n \n \n \n",
"9",
"\n",
"9",
"\n",
"Introduction",
"\n",
"on",
"the",
"global",
"women",
"’s",
"movement.28",
"The",
"authoritarian",
"regimes",
"in",
"the",
"region",
"\n",
"imposed",
"a",
"cultural",
"and",
"political",
"agenda",
"that",
"encouraged",
"the",
"entrance",
"of",
"\n",
"women",
"into",
"scientific",
"fields",
",",
"but",
"their",
"activities",
"became",
"subsumed",
"under",
"a",
"\n",
"broader",
"and",
",",
"for",
"the",
"purposes",
"of",
"perpetuating",
"the",
"regimes",
"in",
"power",
",",
"politi",
"-",
"\n",
"cally",
"more",
"significant",
"identity",
"as",
"‘",
"working",
"people",
"’",
".",
"In",
"the",
"post-",
" ",
"1989",
"period",
",",
"\n",
"investigations",
"of",
"science",
"under",
"communism",
",",
"including",
"the",
"role",
"of",
"women",
"\n",
"therein",
",",
"have",
"often",
"been",
"incorporated",
"into",
"a",
"broader",
"repertoire",
"of",
"anti-",
" \n",
"communist",
"writing.29",
"\n",
"Scholarly",
"engagement",
"with",
"women",
"’s",
"history",
"and",
"gender",
"studies",
"varies",
"\n",
"across",
"countries",
"of",
"the"
] |
[
{
"end": 96,
"label": "CITATION_REF",
"start": 94
},
{
"end": 276,
"label": "CITATION_REF",
"start": 274
},
{
"end": 638,
"label": "CITATION_REF",
"start": 636
},
{
"end": 1284,
"label": "CITATION_REF",
"start": 1282
},
{
"end": 1523,
"label": "CITATION_REF",
"start": 1521
},
{
"end": 2030,
"label": "CITATION_REF",
"start": 2028
},
{
"end": 2546,
"label": "CITATION_REF",
"start": 2544
}
] |
with their shoulders touching, and share their story to the larger group with a rule to interrupt one another. Listening not only to each other s voices, but also to the movement of their bodies ' that accompanied their speech, this activity invited them to become one organism, the movement of one body interrupting the other, and to co-create a new collective narrative of disobedience.
With this invitation to embody disobedience, to create a disobeying collective body, as well as to establish relationships with more-than-humans beings, these exercises aimed to remind participants of their inherent place within a broader ecological system, one that has supported both human and non-human regenerative strategies across generations. This was also a key element of the Flag activity, which accompanied the second collective healing circle, and which we will explore in the next section.
Challenging traditional, mind -body dualisms, Common Ground thus aimed at emphasizing the importance of lived experience and the ways in which the body is involved in knowledge and meaning making. Inspired by Donna Haraway s work, ' ' embodying knowledge ' is linked to the idea that human beings are always situated, embodied subjects, whose experiences of knowing are shaped by their physical, emotional and social contexts.² ⁷ Knowledge is not just something we acquire or think about abstractly but something we ' do ' in the world, informed by our lived, embodied experiences.
## The Flag Activity: A Case Study of Art, Interspecies and Healing Processes
This part delves into the co-creation of what became the artwork entitled Flag , which was one of the most powerful activities, connecting past and future, materialising the reflections unfolded in the previous sections around the cyclical nature of time, our interconnection with the living world, as well as bringing the focus on
27 Haraway (1988). Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective.
the body and the senses in the healing process through artistic co-creation. Bringing together the different CHC pillars, it highlighted how art can bridge the realms of human and more-than-human in a collective healing process. Conducted on the second day of Common Ground s CHC weekend, this experience invited ' participants to interact with soil, seeds and each other s ' stories, using art to embody and materialize a symbiotic relationship that acknowledges both trauma and resilience. Through the Flag activity, participants co-created a shared
|
[
"with",
"their",
"shoulders",
"touching",
",",
"and",
"share",
"their",
"story",
"to",
"the",
"larger",
"group",
"with",
"a",
"rule",
"to",
"interrupt",
"one",
"another",
".",
"Listening",
"not",
"only",
"to",
"each",
"other",
"s",
"voices",
",",
"but",
"also",
"to",
"the",
"movement",
"of",
"their",
"bodies",
"'",
"that",
"accompanied",
"their",
"speech",
",",
"this",
"activity",
"invited",
"them",
"to",
"become",
"one",
"organism",
",",
"the",
"movement",
"of",
"one",
"body",
"interrupting",
"the",
"other",
",",
"and",
"to",
"co",
"-",
"create",
"a",
"new",
"collective",
"narrative",
"of",
"disobedience",
".",
"\n\n",
"With",
"this",
"invitation",
"to",
"embody",
"disobedience",
",",
"to",
"create",
"a",
"disobeying",
"collective",
"body",
",",
"as",
"well",
"as",
"to",
"establish",
"relationships",
"with",
"more",
"-",
"than",
"-",
"humans",
"beings",
",",
"these",
"exercises",
"aimed",
"to",
"remind",
"participants",
"of",
"their",
"inherent",
"place",
"within",
"a",
"broader",
"ecological",
"system",
",",
"one",
"that",
"has",
"supported",
"both",
"human",
"and",
"non",
"-",
"human",
"regenerative",
"strategies",
"across",
"generations",
".",
"This",
"was",
"also",
"a",
"key",
"element",
"of",
"the",
"Flag",
"activity",
",",
"which",
"accompanied",
"the",
"second",
"collective",
"healing",
"circle",
",",
"and",
"which",
"we",
"will",
"explore",
"in",
"the",
"next",
"section",
".",
"\n\n",
"Challenging",
"traditional",
",",
"mind",
"-body",
"dualisms",
",",
"Common",
"Ground",
"thus",
"aimed",
"at",
"emphasizing",
"the",
"importance",
"of",
"lived",
"experience",
"and",
"the",
"ways",
"in",
"which",
"the",
"body",
"is",
"involved",
"in",
"knowledge",
"and",
"meaning",
"making",
".",
"Inspired",
"by",
"Donna",
"Haraway",
"s",
"work",
",",
"'",
"'",
"embodying",
"knowledge",
"'",
"is",
"linked",
"to",
"the",
"idea",
"that",
"human",
"beings",
"are",
"always",
"situated",
",",
"embodied",
"subjects",
",",
"whose",
"experiences",
"of",
"knowing",
"are",
"shaped",
"by",
"their",
"physical",
",",
"emotional",
"and",
"social",
"contexts.²",
"⁷",
"Knowledge",
"is",
"not",
"just",
"something",
"we",
"acquire",
"or",
"think",
"about",
"abstractly",
"but",
"something",
"we",
"'",
"do",
"'",
"in",
"the",
"world",
",",
"informed",
"by",
"our",
"lived",
",",
"embodied",
"experiences",
".",
"\n\n",
"#",
"#",
"The",
"Flag",
"Activity",
":",
"A",
"Case",
"Study",
"of",
"Art",
",",
"Interspecies",
"and",
"Healing",
"Processes",
"\n\n",
"This",
"part",
"delves",
"into",
"the",
"co",
"-",
"creation",
"of",
"what",
"became",
"the",
"artwork",
"entitled",
"Flag",
",",
"which",
"was",
"one",
"of",
"the",
"most",
"powerful",
"activities",
",",
"connecting",
"past",
"and",
"future",
",",
"materialising",
"the",
"reflections",
"unfolded",
"in",
"the",
"previous",
"sections",
"around",
"the",
"cyclical",
"nature",
"of",
"time",
",",
"our",
"interconnection",
"with",
"the",
"living",
"world",
",",
"as",
"well",
"as",
"bringing",
"the",
"focus",
"on",
"\n\n",
"27",
"Haraway",
"(",
"1988",
")",
".",
"Situated",
"Knowledges",
":",
"The",
"Science",
"Question",
"in",
"Feminism",
"and",
"the",
"Privilege",
"of",
"Partial",
"Perspective",
".",
"\n\n",
"the",
"body",
"and",
"the",
"senses",
"in",
"the",
"healing",
"process",
"through",
"artistic",
"co",
"-",
"creation",
".",
"Bringing",
"together",
"the",
"different",
"CHC",
"pillars",
",",
"it",
"highlighted",
"how",
"art",
"can",
"bridge",
"the",
"realms",
"of",
"human",
"and",
"more",
"-",
"than",
"-",
"human",
"in",
"a",
"collective",
"healing",
"process",
".",
"Conducted",
"on",
"the",
"second",
"day",
"of",
"Common",
"Ground",
"s",
"CHC",
"weekend",
",",
"this",
"experience",
"invited",
"'",
"participants",
"to",
"interact",
"with",
"soil",
",",
"seeds",
"and",
"each",
"other",
"s",
"'",
"stories",
",",
"using",
"art",
"to",
"embody",
"and",
"materialize",
"a",
"symbiotic",
"relationship",
"that",
"acknowledges",
"both",
"trauma",
"and",
"resilience",
".",
"Through",
"the",
"Flag",
"activity",
",",
"participants",
"co",
"-",
"created",
"a",
"shared"
] |
[
{
"end": 1891,
"label": "CITATION_ID",
"start": 1889
},
{
"end": 2003,
"label": "CITATION_SPAN",
"start": 1892
},
{
"end": 1323,
"label": "CITATION_REF",
"start": 1320
}
] |
Chile Undersecretariat for Early Childhood Education. (2019). Marco para la Buena Enseñanza de la Educación Parvularia [Framework for Good Teaching of Early Childhood Education]. https://parvularia.mineduc.cl/recursos/12805
- Diale, B. M. and Sewagegn, A. A. (2021). Early childhood care and education in Ethiopia: A quest for quality. Journal of Early Childhood Research, 1 9(4), 516-529.
- Dyer, C., Bhattacharjea, S., Alcott, B., Thomas, S. E., Imran, W., and Loyo, D. (2019). Left Behind in School . UNESCO International Institute for Educational Planning. (Leave No One Behind in Education Evidence Brief.) https://learningportal.iiep.unesco.org/es/biblioteca/left-behind-in-school
Dzhusupbekova, N. (2020). The Kyrgyz Republic expands access to quality early childhood education . Global Partnership for Education Blog . https://www.globalpartnership.org/blog/kyrgyz-republic-expands-access-quality-earlychildhood-education
ECDA. (2021). Early Childhood Leadership Development Framework. Singapore Early Childhood Development Agency. https://www.ecda.gov.sg/docs/default-source/default-document-library/early-childhood-educator/ec-ldf.pdf Emmers, D., Jiang, Q., Xue, H., Zhang, Y., Zhang, Y., Zhao, Y., Liu, B., Dill, S. E., Qian, Y., Warrinnier, N., Johnstone, H., Cai, J., Wang, X., Wang, L., Luo, R., Li, G., Xu, J., Liu, M., Huang, Y., Shan, W., Li, Z., Zhang, Y., Sylvia, S., Ma, Y., Medina, A., and Rozelle, S. (2021). Early childhood development and parental training interventions in rural China: A systematic review and meta-analysis. BMJ Global Health , 6 (8).
Fletcher, K. L. and Reese, E. (2005). Picture book reading with young children: A conceptual framework. Developmental Review 25 , (1), 64-103.
Fonsén, E. (2013). Dimensions of pedagogical leadership in early childhood education and care. In E. Hujala et al.
(Eds.), Researching Leadership in Early Childhood Education . Tampere University Press. http://urn.fi/ URN:NBN:fi:uta-201406061622
Fonsén, E., Lahtinen, L., Sillman, M., and Reunamo, J. (2022). Pedagogical leadership and children's well-being in Finnish early education. Educational Management Administration and Leadership , 50 (6), 979-994.
Fonsén, E., Varpanen, J., Strehmel, P., Kawakita, M., Inoue, C., Marchant, S., Modise, M., Szecsi, T., and Halpern, C. (2019). International review of ECE leadership research - Finland, Germany, Japan, Singapore, South Africa and the United States under review. In P. Strehmel et al. (Eds.), Leadership in Early Education in Times of Change . Barbara Budrich Publishers. https://doi.org/10.3224/8474219919
Friedlander, S. and Perks, B. (2024). Caregiver mental health and well-being: The key to thriving families . UNICEF Blog . https://www.unicef.org/blog/caregiver-mental-health-well-being-key-thriving-families
Gertler, P., Heckman, J., Pinto, R., Chang-Lopez, S. M., Grantham-McGregor, S., Vermeersch, C., Walker, S., and Wright, A. S. (2021). Effect of the Jamaica Early Childhood Stimulation Intervention on Labor Market Outcomes at Age 31 . World Bank. (Policy Research Working Paper 9787.) https://documents.worldbank.org/en/publication/ documents-reports/documentdetail/105461633005046760/effect-of-the-jamaica-early-childhoodstimulation-intervention-on-labor-market-outcomes-at-age-31
|
[
"Chile",
"Undersecretariat",
"for",
"Early",
"Childhood",
"Education",
".",
"(",
"2019",
")",
".",
"Marco",
"para",
"la",
"Buena",
"Enseñanza",
"de",
"la",
"Educación",
"Parvularia",
"[",
"Framework",
"for",
"Good",
"Teaching",
"of",
"Early",
"Childhood",
"Education",
"]",
".",
"https://parvularia.mineduc.cl/recursos/12805",
"\n\n",
"-",
"Diale",
",",
"B.",
"M.",
"and",
"Sewagegn",
",",
"A.",
"A.",
"(",
"2021",
")",
".",
"Early",
"childhood",
"care",
"and",
"education",
"in",
"Ethiopia",
":",
"A",
"quest",
"for",
"quality",
".",
"Journal",
"of",
"Early",
"Childhood",
"Research",
",",
"1",
"9(4",
")",
",",
"516",
"-",
"529",
".",
"\n",
"-",
"Dyer",
",",
"C.",
",",
"Bhattacharjea",
",",
"S.",
",",
"Alcott",
",",
"B.",
",",
"Thomas",
",",
"S.",
"E.",
",",
"Imran",
",",
"W.",
",",
"and",
"Loyo",
",",
"D.",
"(",
"2019",
")",
".",
"Left",
"Behind",
"in",
"School",
".",
"UNESCO",
"International",
"Institute",
"for",
"Educational",
"Planning",
".",
"(",
"Leave",
"No",
"One",
"Behind",
"in",
"Education",
"Evidence",
"Brief",
".",
")",
"https://learningportal.iiep.unesco.org/es/biblioteca/left-behind-in-school",
"\n\n",
"Dzhusupbekova",
",",
"N.",
"(",
"2020",
")",
".",
"The",
"Kyrgyz",
"Republic",
"expands",
"access",
"to",
"quality",
"early",
"childhood",
"education",
".",
"Global",
"Partnership",
"for",
"Education",
"Blog",
".",
"https://www.globalpartnership.org/blog/kyrgyz-republic-expands-access-quality-earlychildhood-education",
"\n\n",
"ECDA",
".",
"(",
"2021",
")",
".",
"Early",
"Childhood",
"Leadership",
"Development",
"Framework",
".",
"Singapore",
"Early",
"Childhood",
"Development",
"Agency",
".",
"https://www.ecda.gov.sg/docs/default-source/default-document-library/early-childhood-educator/ec-ldf.pdf",
"Emmers",
",",
"D.",
",",
"Jiang",
",",
"Q.",
",",
"Xue",
",",
"H.",
",",
"Zhang",
",",
"Y.",
",",
"Zhang",
",",
"Y.",
",",
"Zhao",
",",
"Y.",
",",
"Liu",
",",
"B.",
",",
"Dill",
",",
"S.",
"E.",
",",
"Qian",
",",
"Y.",
",",
"Warrinnier",
",",
"N.",
",",
"Johnstone",
",",
"H.",
",",
"Cai",
",",
"J.",
",",
"Wang",
",",
"X.",
",",
"Wang",
",",
"L.",
",",
"Luo",
",",
"R.",
",",
"Li",
",",
"G.",
",",
"Xu",
",",
"J.",
",",
"Liu",
",",
"M.",
",",
"Huang",
",",
"Y.",
",",
"Shan",
",",
"W.",
",",
"Li",
",",
"Z.",
",",
"Zhang",
",",
"Y.",
",",
"Sylvia",
",",
"S.",
",",
"Ma",
",",
"Y.",
",",
"Medina",
",",
"A.",
",",
"and",
"Rozelle",
",",
"S.",
"(",
"2021",
")",
".",
"Early",
"childhood",
"development",
"and",
"parental",
"training",
"interventions",
"in",
"rural",
"China",
":",
"A",
"systematic",
"review",
"and",
"meta",
"-",
"analysis",
".",
"BMJ",
"Global",
"Health",
",",
"6",
"(",
"8)",
".",
"\n\n",
"Fletcher",
",",
"K.",
"L.",
"and",
"Reese",
",",
"E.",
"(",
"2005",
")",
".",
"Picture",
"book",
"reading",
"with",
"young",
"children",
":",
"A",
"conceptual",
"framework",
".",
"Developmental",
"Review",
"25",
",",
"(",
"1",
")",
",",
"64",
"-",
"103",
".",
"\n\n",
"Fonsén",
",",
"E.",
"(",
"2013",
")",
".",
"Dimensions",
"of",
"pedagogical",
"leadership",
"in",
"early",
"childhood",
"education",
"and",
"care",
".",
"In",
"E.",
"Hujala",
"et",
"al",
".",
"\n\n",
"(",
"Eds",
".",
")",
",",
"Researching",
"Leadership",
"in",
"Early",
"Childhood",
"Education",
".",
"Tampere",
"University",
"Press",
".",
"http://urn.fi/",
"URN",
":",
"NBN",
":",
"fi",
":",
"uta-201406061622",
"\n\n",
"Fonsén",
",",
"E.",
",",
"Lahtinen",
",",
"L.",
",",
"Sillman",
",",
"M.",
",",
"and",
"Reunamo",
",",
"J.",
"(",
"2022",
")",
".",
"Pedagogical",
"leadership",
"and",
"children",
"'s",
"well",
"-",
"being",
"in",
"Finnish",
"early",
"education",
".",
"Educational",
"Management",
"Administration",
"and",
"Leadership",
",",
"50",
"(",
"6",
")",
",",
"979",
"-",
"994",
".",
"\n\n",
"Fonsén",
",",
"E.",
",",
"Varpanen",
",",
"J.",
",",
"Strehmel",
",",
"P.",
",",
"Kawakita",
",",
"M.",
",",
"Inoue",
",",
"C.",
",",
"Marchant",
",",
"S.",
",",
"Modise",
",",
"M.",
",",
"Szecsi",
",",
"T.",
",",
"and",
"Halpern",
",",
"C.",
"(",
"2019",
")",
".",
"International",
"review",
"of",
"ECE",
"leadership",
"research",
"-",
"Finland",
",",
"Germany",
",",
"Japan",
",",
"Singapore",
",",
"South",
"Africa",
"and",
"the",
"United",
"States",
"under",
"review",
".",
"In",
"P.",
"Strehmel",
"et",
"al",
".",
"(",
"Eds",
".",
")",
",",
"Leadership",
"in",
"Early",
"Education",
"in",
"Times",
"of",
"Change",
".",
"Barbara",
"Budrich",
"Publishers",
".",
"https://doi.org/10.3224/8474219919",
"\n\n",
"Friedlander",
",",
"S.",
"and",
"Perks",
",",
"B.",
"(",
"2024",
")",
".",
"Caregiver",
"mental",
"health",
"and",
"well",
"-",
"being",
":",
"The",
"key",
"to",
"thriving",
"families",
".",
"UNICEF",
"Blog",
".",
"https://www.unicef.org/blog/caregiver-mental-health-well-being-key-thriving-families",
"\n\n",
"Gertler",
",",
"P.",
",",
"Heckman",
",",
"J.",
",",
"Pinto",
",",
"R.",
",",
"Chang",
"-",
"Lopez",
",",
"S.",
"M.",
",",
"Grantham",
"-",
"McGregor",
",",
"S.",
",",
"Vermeersch",
",",
"C.",
",",
"Walker",
",",
"S.",
",",
"and",
"Wright",
",",
"A.",
"S.",
"(",
"2021",
")",
".",
"Effect",
"of",
"the",
"Jamaica",
"Early",
"Childhood",
"Stimulation",
"Intervention",
"on",
"Labor",
"Market",
"Outcomes",
"at",
"Age",
"31",
".",
"World",
"Bank",
".",
"(",
"Policy",
"Research",
"Working",
"Paper",
"9787",
".",
")",
"https://documents.worldbank.org/en/publication/",
"documents",
"-",
"reports",
"/",
"documentdetail/105461633005046760",
"/",
"effect",
"-",
"of",
"-",
"the",
"-",
"jamaica",
"-",
"early",
"-",
"childhoodstimulation",
"-",
"intervention",
"-",
"on",
"-",
"labor",
"-",
"market",
"-",
"outcomes",
"-",
"at",
"-",
"age-31",
"\n\n"
] |
[
{
"end": 390,
"label": "CITATION_SPAN",
"start": 227
},
{
"end": 224,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 687,
"label": "CITATION_SPAN",
"start": 393
},
{
"end": 932,
"label": "CITATION_SPAN",
"start": 689
},
{
"end": 1147,
"label": "CITATION_SPAN",
"start": 933
},
{
"end": 1579,
"label": "CITATION_SPAN",
"start": 1148
},
{
"end": 1723,
"label": "CITATION_SPAN",
"start": 1581
},
{
"end": 1971,
"label": "CITATION_SPAN",
"start": 1725
},
{
"end": 2184,
"label": "CITATION_SPAN",
"start": 1973
},
{
"end": 2591,
"label": "CITATION_SPAN",
"start": 2186
},
{
"end": 2800,
"label": "CITATION_SPAN",
"start": 2593
},
{
"end": 3282,
"label": "CITATION_SPAN",
"start": 2802
}
] |
1.3
1
0.75
0.50.25 0.5 1 2 4
0.60 0.80 1.00 2.00
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation175
Armenia
Table 3.9 and Figure 3.24 showcase the num-
ber of records per S&T specialisation domain in
Armenia. Fundamental physics and mathematics
is the domain with the most records (with a to-
tal of 4 262), followed by Health and wellbeing
(1 436), Nanotechnology and materials (1 326),
Governance, culture, education and the economy
(731) and Chemistry and chemical engineering
(632). The first one accounts for almost half the
total number of records (45%). It must be noted,
however, that the number of patents obtained for
Armenia is rather small, jeopardising any analysis
and interpretation.
Consequently, publications account for the vast
majority of records in all domains, ranging from
90% to 99% of the total records in most cases,
as shown in Figure 3.24. The only exceptions are
Electric and electronic technologies (23%) and Me-
chanical engineering and heavy machinery (47%),
where the number of patents is higher than the
number of publications.
Following the trend in the EaP, EC projects in Ar-
menia are highly concentrated in the domain of Governance, culture, education and the economy
due to the nature of these projects. There is, how-
ever, also some concentration in the domain of ICT
and computer science.
The growth rate of publications in recent years, in
terms of the compound annual growth rate, is also
shown. Of the top 5 domains in terms of critical
mass, Health and wellbeing (+7.5%), Governance,
culture, education and the economy (+9.5) and
Chemistry and chemical engineering (+2.6) have
a growing trend, while Fundamental physics and
mathematics (-0.6%) and Nanotechnology and
materials (-1.6%) show a decreasing trend. This is
particularly noteworthy for these last two domains,
as it signals that the number of publications in the
coming years may continue to decrease and these
domains may become less relevant. The rest of
the domains, barring a couple of exceptions, all
have a positive growth rate for publications. ICT
and computer science and Environmental sciences
and industries present the highest growth in publi-
cations, a proof of thematic dynamism.
Finally, as the Figure 3.25 and Figure 3.26 show,
Armenia’s publications are specialised in Funda-
Publications
(critical mass | CAGR)PatentsEC
projectsTotal
Fundamental physics and mathematics 4 200 -0.6% 58 3 4 261
Health and wellbeing 1 411 7.5% 22 4
|
[
"1.3",
"\n",
"1",
"\n",
"0.75",
"\n",
"0.50.25",
"0.5",
"1",
"2",
"4",
"\n ",
"0.60",
"0.80",
"1.00",
"2.00",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation175",
"\n",
"Armenia",
"\n",
"Table",
"3.9",
"and",
"Figure",
"3.24",
"showcase",
"the",
"num-",
"\n",
"ber",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"\n",
"Armenia",
".",
"Fundamental",
"physics",
"and",
"mathematics",
"\n",
"is",
"the",
"domain",
"with",
"the",
"most",
"records",
"(",
"with",
"a",
"to-",
"\n",
"tal",
"of",
"4",
"262",
")",
",",
"followed",
"by",
"Health",
"and",
"wellbeing",
"\n",
"(",
"1",
"436",
")",
",",
"Nanotechnology",
"and",
"materials",
"(",
"1",
"326",
")",
",",
"\n",
"Governance",
",",
"culture",
",",
"education",
"and",
"the",
"economy",
"\n",
"(",
"731",
")",
"and",
"Chemistry",
"and",
"chemical",
"engineering",
"\n",
"(",
"632",
")",
".",
"The",
"first",
"one",
"accounts",
"for",
"almost",
"half",
"the",
"\n",
"total",
"number",
"of",
"records",
"(",
"45",
"%",
")",
".",
"It",
"must",
"be",
"noted",
",",
"\n",
"however",
",",
"that",
"the",
"number",
"of",
"patents",
"obtained",
"for",
"\n",
"Armenia",
"is",
"rather",
"small",
",",
"jeopardising",
"any",
"analysis",
"\n",
"and",
"interpretation",
".",
"\n",
"Consequently",
",",
"publications",
"account",
"for",
"the",
"vast",
"\n",
"majority",
"of",
"records",
"in",
"all",
"domains",
",",
"ranging",
"from",
"\n",
"90",
"%",
"to",
"99",
"%",
"of",
"the",
"total",
"records",
"in",
"most",
"cases",
",",
"\n",
"as",
"shown",
"in",
"Figure",
"3.24",
".",
"The",
"only",
"exceptions",
"are",
"\n",
"Electric",
"and",
"electronic",
"technologies",
"(",
"23",
"%",
")",
"and",
"Me-",
"\n",
"chanical",
"engineering",
"and",
"heavy",
"machinery",
"(",
"47",
"%",
")",
",",
"\n",
"where",
"the",
"number",
"of",
"patents",
"is",
"higher",
"than",
"the",
"\n",
"number",
"of",
"publications",
".",
"\n",
"Following",
"the",
"trend",
"in",
"the",
"EaP",
",",
"EC",
"projects",
"in",
"Ar-",
"\n",
"menia",
"are",
"highly",
"concentrated",
"in",
"the",
"domain",
"of",
"Governance",
",",
"culture",
",",
"education",
"and",
"the",
"economy",
"\n",
"due",
"to",
"the",
"nature",
"of",
"these",
"projects",
".",
"There",
"is",
",",
"how-",
"\n",
"ever",
",",
"also",
"some",
"concentration",
"in",
"the",
"domain",
"of",
"ICT",
"\n",
"and",
"computer",
"science",
".",
"\n",
"The",
"growth",
"rate",
"of",
"publications",
"in",
"recent",
"years",
",",
"in",
"\n",
"terms",
"of",
"the",
"compound",
"annual",
"growth",
"rate",
",",
"is",
"also",
"\n",
"shown",
".",
"Of",
"the",
"top",
"5",
"domains",
"in",
"terms",
"of",
"critical",
"\n",
"mass",
",",
"Health",
"and",
"wellbeing",
"(",
"+7.5",
"%",
")",
",",
"Governance",
",",
"\n",
"culture",
",",
"education",
"and",
"the",
"economy",
"(",
"+9.5",
")",
"and",
"\n",
"Chemistry",
"and",
"chemical",
"engineering",
"(",
"+2.6",
")",
"have",
"\n",
"a",
"growing",
"trend",
",",
"while",
"Fundamental",
"physics",
"and",
"\n",
"mathematics",
"(",
"-0.6",
"%",
")",
"and",
"Nanotechnology",
"and",
"\n",
"materials",
"(",
"-1.6",
"%",
")",
"show",
"a",
"decreasing",
"trend",
".",
"This",
"is",
"\n",
"particularly",
"noteworthy",
"for",
"these",
"last",
"two",
"domains",
",",
"\n",
"as",
"it",
"signals",
"that",
"the",
"number",
"of",
"publications",
"in",
"the",
"\n",
"coming",
"years",
"may",
"continue",
"to",
"decrease",
"and",
"these",
"\n",
"domains",
"may",
"become",
"less",
"relevant",
".",
"The",
"rest",
"of",
"\n",
"the",
"domains",
",",
"barring",
"a",
"couple",
"of",
"exceptions",
",",
"all",
"\n",
"have",
"a",
"positive",
"growth",
"rate",
"for",
"publications",
".",
"ICT",
"\n",
"and",
"computer",
"science",
"and",
"Environmental",
"sciences",
"\n",
"and",
"industries",
"present",
"the",
"highest",
"growth",
"in",
"publi-",
"\n",
"cations",
",",
"a",
"proof",
"of",
"thematic",
"dynamism",
".",
"\n",
"Finally",
",",
"as",
"the",
"Figure",
"3.25",
"and",
"Figure",
"3.26",
"show",
",",
"\n",
"Armenia",
"’s",
"publications",
"are",
"specialised",
"in",
"Funda-",
"\n",
"Publications",
"\n",
"(",
"critical",
"mass",
"|",
"CAGR)PatentsEC",
"\n",
"projectsTotal",
"\n",
"Fundamental",
"physics",
"and",
"mathematics",
"4",
"200",
"-0.6",
"%",
"58",
"3",
"4",
"261",
"\n",
"Health",
"and",
"wellbeing",
"1",
"411",
"7.5",
"%",
"22",
"4"
] |
[] |
SciDetect Method
The next approach [21] was invented to detect documents automatically generated
using the software SCIGen, MathGen, PropGen and PhysGen. For this, the distancesbetween a text and others (inter-textual distances) are computed. Then these distancesare used to determine which texts, within a large set, are closer to each other and maythus be grouped together. Inter-textual distance depends on four factors: genre, author,subject and epoch.
As the authors don ’t provide any numerical results of the method ’s work, we have
implemented the method using the source Java code provided by SciDetect developers.
3 Choosing a Method
Every arti ficial content is generated for a speci fic purpose. Here we focus only on fake
scienti fic paper for academic publishing or increase in the percentage of originality of
the article.
It is important to recognize the aim of fake content for its subsequent detection.
Various generation strategies require different approaches to find it. For example,
algorithms for detecting word salad are clearly possible and are not particularly dif ficult
to implement. A statistical approach based on Zipf ’s law of word frequency has
potential in detecting simple word salad, as do grammar checking and the use of naturallanguage processing. Statistical Markovian analysis, where short phrases are used todetermine if they can occur in normal English sentences, is another statistical approach
that would be effective against completely random phrasing but might be fooled by
dissociated press methods. Combining linguistic and statistical features can improvethe result of experiment. By contrast, texts generated with stochastic language modelsappear much harder to detect.
One also needs to estimate the data capacity. Text corpuses are taken depending on
the aim of the experiment and capabilities of getting them. Like a generation strategy,every data capacity needs different approach. For instance, small trainings samplespermit to use such indexes as Jaccard or Dice [ 5] to count the similarity measure or
distance between documents. For big datasets, one can use some linguistics features424 D. Beresnevaand variations of Support Vector Machine and Decision Trees algorithms. Table 1
summarizes results of described methods. The numerical results are provided by theauthors of the articles, except the last one.
4 Conclusion
This work presents the results of a systematic review of arti ficial content detection
methods. About a hundred articles were considered for this review; perhaps one-sixthof them met our selection criteria. All the presented methods give good result inpractice, but it makes
|
[
"SciDetect",
"Method",
"\n",
"The",
"next",
"approach",
"[",
"21",
"]",
"was",
"invented",
"to",
"detect",
"documents",
"automatically",
"generated",
"\n",
"using",
"the",
"software",
"SCIGen",
",",
"MathGen",
",",
"PropGen",
"and",
"PhysGen",
".",
"For",
"this",
",",
"the",
"distancesbetween",
"a",
"text",
"and",
"others",
"(",
"inter",
"-",
"textual",
"distances",
")",
"are",
"computed",
".",
"Then",
"these",
"distancesare",
"used",
"to",
"determine",
"which",
"texts",
",",
"within",
"a",
"large",
"set",
",",
"are",
"closer",
"to",
"each",
"other",
"and",
"maythus",
"be",
"grouped",
"together",
".",
"Inter",
"-",
"textual",
"distance",
"depends",
"on",
"four",
"factors",
":",
"genre",
",",
"author",
",",
"subject",
"and",
"epoch",
".",
"\n",
"As",
"the",
"authors",
"don",
"’",
"t",
"provide",
"any",
"numerical",
"results",
"of",
"the",
"method",
"’s",
"work",
",",
"we",
"have",
"\n",
"implemented",
"the",
"method",
"using",
"the",
"source",
"Java",
"code",
"provided",
"by",
"SciDetect",
"developers",
".",
"\n",
"3",
"Choosing",
"a",
"Method",
"\n",
"Every",
"arti",
"ficial",
"content",
"is",
"generated",
"for",
"a",
"speci",
"fic",
"purpose",
".",
"Here",
"we",
"focus",
"only",
"on",
"fake",
"\n",
"scienti",
"fic",
"paper",
"for",
"academic",
"publishing",
"or",
"increase",
"in",
"the",
"percentage",
"of",
"originality",
"of",
"\n",
"the",
"article",
".",
"\n",
"It",
"is",
"important",
"to",
"recognize",
"the",
"aim",
"of",
"fake",
"content",
"for",
"its",
"subsequent",
"detection",
".",
"\n",
"Various",
"generation",
"strategies",
"require",
"different",
"approaches",
"to",
"find",
"it",
".",
"For",
"example",
",",
"\n",
"algorithms",
"for",
"detecting",
"word",
"salad",
"are",
"clearly",
"possible",
"and",
"are",
"not",
"particularly",
"dif",
"ficult",
"\n",
"to",
"implement",
".",
"A",
"statistical",
"approach",
"based",
"on",
"Zipf",
"’s",
"law",
"of",
"word",
"frequency",
"has",
"\n",
"potential",
"in",
"detecting",
"simple",
"word",
"salad",
",",
"as",
"do",
"grammar",
"checking",
"and",
"the",
"use",
"of",
"naturallanguage",
"processing",
".",
"Statistical",
"Markovian",
"analysis",
",",
"where",
"short",
"phrases",
"are",
"used",
"todetermine",
"if",
"they",
"can",
"occur",
"in",
"normal",
"English",
"sentences",
",",
"is",
"another",
"statistical",
"approach",
"\n",
"that",
"would",
"be",
"effective",
"against",
"completely",
"random",
"phrasing",
"but",
"might",
"be",
"fooled",
"by",
"\n",
"dissociated",
"press",
"methods",
".",
"Combining",
"linguistic",
"and",
"statistical",
"features",
"can",
"improvethe",
"result",
"of",
"experiment",
".",
"By",
"contrast",
",",
"texts",
"generated",
"with",
"stochastic",
"language",
"modelsappear",
"much",
"harder",
"to",
"detect",
".",
"\n",
"One",
"also",
"needs",
"to",
"estimate",
"the",
"data",
"capacity",
".",
"Text",
"corpuses",
"are",
"taken",
"depending",
"on",
"\n",
"the",
"aim",
"of",
"the",
"experiment",
"and",
"capabilities",
"of",
"getting",
"them",
".",
"Like",
"a",
"generation",
"strategy",
",",
"every",
"data",
"capacity",
"needs",
"different",
"approach",
".",
"For",
"instance",
",",
"small",
"trainings",
"samplespermit",
"to",
"use",
"such",
"indexes",
"as",
"Jaccard",
"or",
"Dice",
"[",
"5",
"]",
"to",
"count",
"the",
"similarity",
"measure",
"or",
"\n",
"distance",
"between",
"documents",
".",
"For",
"big",
"datasets",
",",
"one",
"can",
"use",
"some",
"linguistics",
"features424",
"D.",
"Beresnevaand",
"variations",
"of",
"Support",
"Vector",
"Machine",
"and",
"Decision",
"Trees",
"algorithms",
".",
"Table",
"1",
"\n",
"summarizes",
"results",
"of",
"described",
"methods",
".",
"The",
"numerical",
"results",
"are",
"provided",
"by",
"theauthors",
"of",
"the",
"articles",
",",
"except",
"the",
"last",
"one",
".",
"\n",
"4",
"Conclusion",
"\n",
"This",
"work",
"presents",
"the",
"results",
"of",
"a",
"systematic",
"review",
"of",
"arti",
"ficial",
"content",
"detection",
"\n",
"methods",
".",
"About",
"a",
"hundred",
"articles",
"were",
"considered",
"for",
"this",
"review",
";",
"perhaps",
"one",
"-",
"sixthof",
"them",
"met",
"our",
"selection",
"criteria",
".",
"All",
"the",
"presented",
"methods",
"give",
"good",
"result",
"inpractice",
",",
"but",
"it",
"makes"
] |
[
{
"end": 38,
"label": "CITATION_REF",
"start": 36
},
{
"end": 2017,
"label": "CITATION_REF",
"start": 2016
}
] |
:
Yasong Zhao, Jiawei Wan, Chongyi Ling, Yanlei Wang, Hongyan He, Nailiang Yang, Rui Wen, Qinghua Zhang, Lin Gu, Bolong Yang, Zhonghua Xiang, Chen Chen, Jinlan Wang, Xin Wang, Yucheng Wang, Huabing Tao, Xuning Li, Bin Liu, Suojiang Zhang, Dan Wang.
Acidic oxygen reduction by single-atom Fe catalysts on curved supports
.
Nature
, 2025; 644 (8077): 668 DOI:
10.1038/s41586-025-09364-6
Cite This Page
:
MLA
APA
Chicago
Chinese Academy of Sciences Headquarters. "This tiny iron catalyst could transform the future of clean energy." ScienceDaily. ScienceDaily, 27 August 2025. <www.sciencedaily.com
/
releases
/
2025
/
08
/
250827010717.htm>.
Chinese Academy of Sciences Headquarters. (2025, August 27). This tiny iron catalyst could transform the future of clean energy.
ScienceDaily
. Retrieved August 27, 2025 from www.sciencedaily.com
/
releases
/
2025
/
08
/
250827010717.htm
Chinese Academy of Sciences Headquarters. "This tiny iron catalyst could transform the future of clean energy." ScienceDaily. www.sciencedaily.com
/
releases
/
2025
/
08
/
250827010717.htm (accessed August 27, 2025).
Explore More
from ScienceDaily
RELATED STORIES
New Dual-Atom Catalyst Boosts Performance of Zinc-Air Batteries for Real-World Applications
May 15, 2025 —
A research team has unveiled a breakthrough in improving the performance of zinc-air batteries (ZABs), which are an important energy storage technology. This breakthrough involves a new catalyst that ...
Breakthrough Extends Fuel Cell Lifespan Beyond 200,000 Hours, Paving the Way for Clean Long-Haul Trucking
Apr. 28, 2025 —
Researchers have developed a new catalyst design capable of pushing the projected fuel cell catalyst lifespans to 200,000 hours. The research marks a significant step toward the widespread adoption ...
A Step Toward Cleaner Iron Extraction Using Electricity
Apr. 9, 2025 —
Iron and its alloys, such as steel and cast iron, dominate the modern world, and there's growing demand for iron-derived products. Traditionally, blast furnaces transform iron ore into purified ...
Breakthrough in Clean Energy: Palladium Nanosheets Pave Way for Affordable Hydrogen
Mar. 4, 2025 —
Hydrogen energy is widely recognized as a sustainable source for the future, but its large-scale production still relies on expensive and scarce platinum-based catalysts. In order to address this ...
Subterranean Storage of Hydrogen
Apr. 9, 2024 —
Scientists are using computer simulations and laboratory experiments to see if depleted oil and natural gas reservoirs can be used for storing carbon-free hydrogen fuel. Hydrogen is an important ...
Safe Space: Improving 'Clean' Methanol Fuel Cells Using a Protective Carbon Shell
Dec.
|
[
":",
"\n\n\n\n\n",
"Yasong",
"Zhao",
",",
"Jiawei",
"Wan",
",",
"Chongyi",
"Ling",
",",
"Yanlei",
"Wang",
",",
"Hongyan",
"He",
",",
"Nailiang",
"Yang",
",",
"Rui",
"Wen",
",",
"Qinghua",
"Zhang",
",",
"Lin",
"Gu",
",",
"Bolong",
"Yang",
",",
"Zhonghua",
"Xiang",
",",
"Chen",
"Chen",
",",
"Jinlan",
"Wang",
",",
"Xin",
"Wang",
",",
"Yucheng",
"Wang",
",",
"Huabing",
"Tao",
",",
"Xuning",
"Li",
",",
"Bin",
"Liu",
",",
"Suojiang",
"Zhang",
",",
"Dan",
"Wang",
".",
"\n",
"Acidic",
"oxygen",
"reduction",
"by",
"single",
"-",
"atom",
"Fe",
"catalysts",
"on",
"curved",
"supports",
"\n",
".",
"\n",
"Nature",
"\n",
",",
"2025",
";",
"644",
"(",
"8077",
"):",
"668",
"DOI",
":",
"\n",
"10.1038",
"/",
"s41586",
"-",
"025",
"-",
"09364",
"-",
"6",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Cite",
"This",
"Page",
"\n",
":",
"\n\n\n\n\n\n\n",
"MLA",
"\n\n\n",
"APA",
"\n\n\n",
"Chicago",
"\n\n\n\n\n\n\n\n\n",
"Chinese",
"Academy",
"of",
"Sciences",
"Headquarters",
".",
"\"",
"This",
"tiny",
"iron",
"catalyst",
"could",
"transform",
"the",
"future",
"of",
"clean",
"energy",
".",
"\"",
"ScienceDaily",
".",
"ScienceDaily",
",",
"27",
"August",
"2025",
".",
"<",
"www.sciencedaily.com",
"\n",
"/",
"\n",
"releases",
"\n",
"/",
"\n",
"2025",
"\n",
"/",
"\n",
"08",
"\n",
"/",
"\n",
"250827010717.htm",
">",
".",
"\n\n\n",
"Chinese",
"Academy",
"of",
"Sciences",
"Headquarters",
".",
"(",
"2025",
",",
"August",
"27",
")",
".",
"This",
"tiny",
"iron",
"catalyst",
"could",
"transform",
"the",
"future",
"of",
"clean",
"energy",
".",
"\n",
"ScienceDaily",
"\n",
".",
"Retrieved",
"August",
"27",
",",
"2025",
"from",
"www.sciencedaily.com",
"\n",
"/",
"\n",
"releases",
"\n",
"/",
"\n",
"2025",
"\n",
"/",
"\n",
"08",
"\n",
"/",
"\n",
"250827010717.htm",
"\n\n\n",
"Chinese",
"Academy",
"of",
"Sciences",
"Headquarters",
".",
"\"",
"This",
"tiny",
"iron",
"catalyst",
"could",
"transform",
"the",
"future",
"of",
"clean",
"energy",
".",
"\"",
"ScienceDaily",
".",
"www.sciencedaily.com",
"\n",
"/",
"\n",
"releases",
"\n",
"/",
"\n",
"2025",
"\n",
"/",
"\n",
"08",
"\n",
"/",
"\n",
"250827010717.htm",
"(",
"accessed",
"August",
"27",
",",
"2025",
")",
".",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Explore",
"More",
"\n\n\n",
"from",
"ScienceDaily",
"\n\n\n\n\n\n\n\n\n",
"RELATED",
"STORIES",
"\n\n\n\n\n \n",
"New",
"Dual",
"-",
"Atom",
"Catalyst",
"Boosts",
"Performance",
"of",
"Zinc",
"-",
"Air",
"Batteries",
"for",
"Real",
"-",
"World",
"Applications",
"\n\n\n\n\n",
"May",
"15",
",",
"2025",
"—",
"\n ",
"A",
"research",
"team",
"has",
"unveiled",
"a",
"breakthrough",
"in",
"improving",
"the",
"performance",
"of",
"zinc",
"-",
"air",
"batteries",
"(",
"ZABs",
")",
",",
"which",
"are",
"an",
"important",
"energy",
"storage",
"technology",
".",
"This",
"breakthrough",
"involves",
"a",
"new",
"catalyst",
"that",
"...",
"\n \n",
"Breakthrough",
"Extends",
"Fuel",
"Cell",
"Lifespan",
"Beyond",
"200,000",
"Hours",
",",
"Paving",
"the",
"Way",
"for",
"Clean",
"Long",
"-",
"Haul",
"Trucking",
"\n\n\n\n\n",
"Apr.",
"28",
",",
"2025",
"—",
"\n ",
"Researchers",
"have",
"developed",
"a",
"new",
"catalyst",
"design",
"capable",
"of",
"pushing",
"the",
"projected",
"fuel",
"cell",
"catalyst",
"lifespans",
"to",
"200,000",
"hours",
".",
"The",
"research",
"marks",
"a",
"significant",
"step",
"toward",
"the",
"widespread",
"adoption",
"...",
"\n \n",
"A",
"Step",
"Toward",
"Cleaner",
"Iron",
"Extraction",
"Using",
"Electricity",
"\n\n\n\n\n",
"Apr.",
"9",
",",
"2025",
"—",
"\n ",
"Iron",
"and",
"its",
"alloys",
",",
"such",
"as",
"steel",
"and",
"cast",
"iron",
",",
"dominate",
"the",
"modern",
"world",
",",
"and",
"there",
"'s",
"growing",
"demand",
"for",
"iron",
"-",
"derived",
"products",
".",
"Traditionally",
",",
"blast",
"furnaces",
"transform",
"iron",
"ore",
"into",
"purified",
"...",
"\n \n",
"Breakthrough",
"in",
"Clean",
"Energy",
":",
"Palladium",
"Nanosheets",
"Pave",
"Way",
"for",
"Affordable",
"Hydrogen",
"\n\n\n\n\n",
"Mar.",
"4",
",",
"2025",
"—",
"\n ",
"Hydrogen",
"energy",
"is",
"widely",
"recognized",
"as",
"a",
"sustainable",
"source",
"for",
"the",
"future",
",",
"but",
"its",
"large",
"-",
"scale",
"production",
"still",
"relies",
"on",
"expensive",
"and",
"scarce",
"platinum",
"-",
"based",
"catalysts",
".",
"In",
"order",
"to",
"address",
"this",
"...",
"\n \n",
"Subterranean",
"Storage",
"of",
"Hydrogen",
"\n\n\n\n\n",
"Apr.",
"9",
",",
"2024",
"—",
"\n ",
"Scientists",
"are",
"using",
"computer",
"simulations",
"and",
"laboratory",
"experiments",
"to",
"see",
"if",
"depleted",
"oil",
"and",
"natural",
"gas",
"reservoirs",
"can",
"be",
"used",
"for",
"storing",
"carbon",
"-",
"free",
"hydrogen",
"fuel",
".",
"Hydrogen",
"is",
"an",
"important",
"...",
"\n \n",
"Safe",
"Space",
":",
"Improving",
"'",
"Clean",
"'",
"Methanol",
"Fuel",
"Cells",
"Using",
"a",
"Protective",
"Carbon",
"Shell",
"\n\n\n\n\n",
"Dec."
] |
[
{
"end": 391,
"label": "CITATION_SPAN",
"start": 6
}
] |
who help shift the political system: members of parliament, researchers, international organizations, civil society, trade unions, media and many others. All of them exercise leadership, helping influence countries towards specific education and broader societal goals. Some politicians, for example, have made inclusive and equitable education of good quality a priority in their countries through forward-looking reforms and adequate resource allocation. But before delving into the 'how' of leadership - and risk it becoming an end in itself - it is therefore important not to lose sight of 'what' leadership is meant to achieve.
Leadership is exercised in many ways and multiple forms, given differences in contexts, values, personalities and organizations. And the range of outcomes to which leaders contribute is so wide that focusing on any single one for analytical convenience underestimates their full impact. Stories of good leaders inspire but can only offer direct lessons to those who may find themselves in similar situations. The challenge is to draw from these individual
•
stories and focus on institutional mechanisms that nurture rather than stifle talented leaders of all styles and backgrounds, in all contexts. In many countries, education leaders are often thought of only as administrators or managers. Yet in recent years some countries have recognized the full scope of their roles and built foundations for their professionalization. Other countries have even taken steps to shape approaches to leadership, urging leaders to engage more with those around them. Change can be slow, however, when it involves long-standing cultures and traditions.
This report's four recommendations focus on actions governments can take to foster leadership in education at school and in the civil service. They are underpinned by four dimensions of an education leader's role that are relevant for them to lead effectively, whether they work in a school or a government education office: to set expectations, to focus on learning, to foster collaboration and to develop capacity. These dimensions should be the basis upon which to build coherent national strategies of education leadership that cut across all levels of the system. For an education system to work well, leaders at different levels need to be working in the same direction to achieve common goals.
## RECOMMENDATION 1. TRUST AND EMPOWER
## Create the enabling conditions for school principals to improve education
There can be no leadership when there is no opportunity to make decisions. Education leaders contribute to education improvement
|
[
"who",
"help",
"shift",
"the",
"political",
"system",
":",
"members",
"of",
"parliament",
",",
"researchers",
",",
"international",
"organizations",
",",
"civil",
"society",
",",
"trade",
"unions",
",",
"media",
"and",
"many",
"others",
".",
"All",
"of",
"them",
"exercise",
"leadership",
",",
"helping",
"influence",
"countries",
"towards",
"specific",
"education",
"and",
"broader",
"societal",
"goals",
".",
"Some",
"politicians",
",",
"for",
"example",
",",
"have",
"made",
"inclusive",
"and",
"equitable",
"education",
"of",
"good",
"quality",
"a",
"priority",
"in",
"their",
"countries",
"through",
"forward",
"-",
"looking",
"reforms",
"and",
"adequate",
"resource",
"allocation",
".",
"But",
"before",
"delving",
"into",
"the",
"'",
"how",
"'",
"of",
"leadership",
"-",
"and",
"risk",
"it",
"becoming",
"an",
"end",
"in",
"itself",
"-",
"it",
"is",
"therefore",
"important",
"not",
"to",
"lose",
"sight",
"of",
"'",
"what",
"'",
"leadership",
"is",
"meant",
"to",
"achieve",
".",
"\n\n",
"Leadership",
"is",
"exercised",
"in",
"many",
"ways",
"and",
"multiple",
"forms",
",",
"given",
"differences",
"in",
"contexts",
",",
"values",
",",
"personalities",
"and",
"organizations",
".",
"And",
"the",
"range",
"of",
"outcomes",
"to",
"which",
"leaders",
"contribute",
"is",
"so",
"wide",
"that",
"focusing",
"on",
"any",
"single",
"one",
"for",
"analytical",
"convenience",
"underestimates",
"their",
"full",
"impact",
".",
"Stories",
"of",
"good",
"leaders",
"inspire",
"but",
"can",
"only",
"offer",
"direct",
"lessons",
"to",
"those",
"who",
"may",
"find",
"themselves",
"in",
"similar",
"situations",
".",
"The",
"challenge",
"is",
"to",
"draw",
"from",
"these",
"individual",
"\n\n",
"•",
"\n\n",
"stories",
"and",
"focus",
"on",
"institutional",
"mechanisms",
"that",
"nurture",
"rather",
"than",
"stifle",
"talented",
"leaders",
"of",
"all",
"styles",
"and",
"backgrounds",
",",
"in",
"all",
"contexts",
".",
"In",
"many",
"countries",
",",
"education",
"leaders",
"are",
"often",
"thought",
"of",
"only",
"as",
"administrators",
"or",
"managers",
".",
"Yet",
"in",
"recent",
"years",
"some",
"countries",
"have",
"recognized",
"the",
"full",
"scope",
"of",
"their",
"roles",
"and",
"built",
"foundations",
"for",
"their",
"professionalization",
".",
"Other",
"countries",
"have",
"even",
"taken",
"steps",
"to",
"shape",
"approaches",
"to",
"leadership",
",",
"urging",
"leaders",
"to",
"engage",
"more",
"with",
"those",
"around",
"them",
".",
"Change",
"can",
"be",
"slow",
",",
"however",
",",
"when",
"it",
"involves",
"long",
"-",
"standing",
"cultures",
"and",
"traditions",
".",
"\n\n",
"This",
"report",
"'s",
"four",
"recommendations",
"focus",
"on",
"actions",
"governments",
"can",
"take",
"to",
"foster",
"leadership",
"in",
"education",
"at",
"school",
"and",
"in",
"the",
"civil",
"service",
".",
"They",
"are",
"underpinned",
"by",
"four",
"dimensions",
"of",
"an",
"education",
"leader",
"'s",
"role",
"that",
"are",
"relevant",
"for",
"them",
"to",
"lead",
"effectively",
",",
"whether",
"they",
"work",
"in",
"a",
"school",
"or",
"a",
"government",
"education",
"office",
":",
"to",
"set",
"expectations",
",",
"to",
"focus",
"on",
"learning",
",",
"to",
"foster",
"collaboration",
"and",
"to",
"develop",
"capacity",
".",
"These",
"dimensions",
"should",
"be",
"the",
"basis",
"upon",
"which",
"to",
"build",
"coherent",
"national",
"strategies",
"of",
"education",
"leadership",
"that",
"cut",
"across",
"all",
"levels",
"of",
"the",
"system",
".",
"For",
"an",
"education",
"system",
"to",
"work",
"well",
",",
"leaders",
"at",
"different",
"levels",
"need",
"to",
"be",
"working",
"in",
"the",
"same",
"direction",
"to",
"achieve",
"common",
"goals",
".",
"\n\n",
"#",
"#",
"RECOMMENDATION",
"1",
".",
"TRUST",
"AND",
"EMPOWER",
"\n\n",
"#",
"#",
"Create",
"the",
"enabling",
"conditions",
"for",
"school",
"principals",
"to",
"improve",
"education",
"\n\n",
"There",
"can",
"be",
"no",
"leadership",
"when",
"there",
"is",
"no",
"opportunity",
"to",
"make",
"decisions",
".",
"Education",
"leaders",
"contribute",
"to",
"education",
"improvement"
] |
[] |
of or written differently within public memory'. 6 There is a benefit in looking at a single case study to determine what barriers were put in place to prevent a successful outcome.
This chapter begins with an examination of women's situation before Maasdorp arrived at Cambridge. As Mariko Ogawa also discusses in the Foreword to this volume, the acceptance of women to full membership of the university was a drawn- out and often fraught process. It then outlines Maasdorp's experience as a postgraduate student working in the laboratory and underlines the discrimination against women. Next, it looks at gender bias and how the discrimination against women was perpetrated by institutions such as the Royal Society. The last section of this chapter looks at the paid and unpaid contributions of Maasdorp to science.
## Women at Cambridge
When Maasdorp arrived at Cambridge University in 1935, the Cavendish Laboratory was at the forefront of experimental voyages into the atomic structure. Among many other ground- breaking discoveries, Cavendish researchers discovered the neutron and photographed isotopes of chemical elements. They produced the first controlled nuclear disintegrations induced by accelerating high- energy particles, thus demonstrating Einstein's 1905 special theory of relativity, E = mc 2 . Between 1904 and 1935, the year Maasdorp arrived at Cambridge University, ten Cavendish researchers won a Nobel Prize. 7
The Cavendish Laboratory first officially accepted women students in 1882. 8 Despite this, women graduates at the University of Cambridge could cite their qualifications but could not receive their degree in the ceremonies at Senate House. Unlike Deputy Director James Chadwick, Director of Cambridge's Cavendish Laboratory Ernest Rutherford promoted women's rights and supported extending full membership of women at university, including the conferring of degrees. Originally from New Zealand, Rutherford studied for his doctorate at the Cavendish Laboratory under J. J. Thomson. In 1898, he took up a professorship at McGill University, Montreal, Canada. His first graduate student was a woman, the physicist Harriet Brooks. In 1907, Rutherford returned to Britain, accepting the post of director of physics at Victoria University of Manchester. He was vice- president of the Manchester Society for Women's Suffrage and the Manchester Branch of the Men's League for Women's Suffrage. 9 In 1919, Rutherford returned to Cambridge's Cavendish Laboratory as director.
The University of London became the first British university to concede degrees to women in 1878. Other universities followed suit so that, by the
|
[
"of",
"or",
"written",
"differently",
"within",
"public",
"memory",
"'",
".",
"6",
" ",
"There",
"is",
"a",
"benefit",
"in",
"looking",
"at",
"a",
"single",
"case",
"study",
"to",
"determine",
"what",
"barriers",
"were",
"put",
"in",
"place",
"to",
"prevent",
"a",
"successful",
"outcome",
".",
"\n\n",
"This",
" ",
"chapter",
" ",
"begins",
" ",
"with",
" ",
"an",
" ",
"examination",
" ",
"of",
" ",
"women",
"'s",
" ",
"situation",
" ",
"before",
"Maasdorp",
"arrived",
"at",
"Cambridge",
".",
"As",
"Mariko",
"Ogawa",
"also",
"discusses",
"in",
"the",
"Foreword",
"to",
"this",
"volume",
",",
"the",
"acceptance",
"of",
"women",
"to",
"full",
"membership",
"of",
"the",
"university",
"was",
"a",
"drawn-",
" ",
"out",
"and",
"often",
"fraught",
"process",
".",
"It",
"then",
"outlines",
"Maasdorp",
"'s",
"experience",
"as",
"a",
"postgraduate",
"student",
"working",
"in",
"the",
"laboratory",
"and",
"underlines",
"the",
"discrimination",
"against",
"women",
".",
"Next",
",",
"it",
"looks",
"at",
"gender",
"bias",
"and",
"how",
"the",
"discrimination",
"against",
"women",
"was",
"perpetrated",
"by",
"institutions",
"such",
"as",
"the",
"Royal",
"Society",
".",
"The",
"last",
"section",
"of",
"this",
"chapter",
"looks",
"at",
"the",
"paid",
"and",
"unpaid",
"contributions",
"of",
"Maasdorp",
"to",
"science",
".",
"\n\n",
"#",
"#",
"Women",
"at",
"Cambridge",
"\n\n",
"When",
"Maasdorp",
"arrived",
"at",
"Cambridge",
"University",
"in",
"1935",
",",
"the",
"Cavendish",
"Laboratory",
"was",
"at",
"the",
"forefront",
"of",
"experimental",
"voyages",
"into",
"the",
"atomic",
"structure",
".",
" ",
"Among",
" ",
"many",
" ",
"other",
" ",
"ground-",
" ",
"breaking",
" ",
"discoveries",
",",
" ",
"Cavendish",
"researchers",
" ",
"discovered",
" ",
"the",
" ",
"neutron",
" ",
"and",
" ",
"photographed",
" ",
"isotopes",
" ",
"of",
" ",
"chemical",
" ",
"elements",
".",
" ",
"They",
" ",
"produced",
" ",
"the",
" ",
"first",
" ",
"controlled",
" ",
"nuclear",
" ",
"disintegrations",
"induced",
"by",
"accelerating",
"high-",
" ",
"energy",
"particles",
",",
"thus",
"demonstrating",
"Einstein",
"'s",
"1905",
"special",
"theory",
"of",
"relativity",
",",
"E",
"=",
"mc",
"2",
".",
"Between",
"1904",
"and",
"1935",
",",
"the",
"year",
"Maasdorp",
"arrived",
"at",
"Cambridge",
"University",
",",
"ten",
"Cavendish",
"researchers",
"won",
"a",
"Nobel",
"Prize",
".",
"7",
"\n\n",
"The",
"Cavendish",
"Laboratory",
"first",
"officially",
"accepted",
"women",
"students",
"in",
"1882",
".",
"8",
" ",
"Despite",
"this",
",",
"women",
"graduates",
"at",
"the",
"University",
"of",
"Cambridge",
"could",
"cite",
"their",
"qualifications",
"but",
"could",
"not",
"receive",
"their",
"degree",
"in",
"the",
"ceremonies",
"at",
"Senate",
"House",
".",
"Unlike",
"Deputy",
"Director",
"James",
"Chadwick",
",",
"Director",
"of",
"Cambridge",
"'s",
" ",
"Cavendish",
" ",
"Laboratory",
" ",
"Ernest",
" ",
"Rutherford",
" ",
"promoted",
"women",
"'s",
"rights",
"and",
"supported",
"extending",
"full",
"membership",
"of",
"women",
"at",
"university",
",",
" ",
"including",
" ",
"the",
" ",
"conferring",
" ",
"of",
" ",
"degrees",
".",
" ",
"Originally",
" ",
"from",
" ",
"New",
"Zealand",
",",
"Rutherford",
"studied",
"for",
"his",
"doctorate",
"at",
"the",
"Cavendish",
"Laboratory",
"under",
"J.",
"J.",
"Thomson",
".",
"In",
"1898",
",",
"he",
"took",
"up",
"a",
"professorship",
"at",
"McGill",
"University",
",",
"Montreal",
",",
"Canada",
".",
"His",
"first",
"graduate",
"student",
"was",
"a",
"woman",
",",
"the",
"physicist",
"Harriet",
"Brooks",
".",
"In",
"1907",
",",
"Rutherford",
"returned",
"to",
"Britain",
",",
"accepting",
"the",
"post",
"of",
"director",
"of",
"physics",
"at",
"Victoria",
"University",
"of",
" ",
"Manchester",
".",
" ",
"He",
" ",
"was",
" ",
"vice-",
" ",
"president",
" ",
"of",
" ",
"the",
" ",
"Manchester",
" ",
"Society",
" ",
"for",
"Women",
"'s",
" ",
"Suffrage",
" ",
"and",
" ",
"the",
" ",
"Manchester",
" ",
"Branch",
" ",
"of",
" ",
"the",
" ",
"Men",
"'s",
" ",
"League",
"for",
" ",
"Women",
"'s",
" ",
"Suffrage",
".",
"9",
" ",
"In",
" ",
"1919",
",",
" ",
"Rutherford",
" ",
"returned",
" ",
"to",
" ",
"Cambridge",
"'s",
"Cavendish",
"Laboratory",
"as",
"director",
".",
"\n\n",
"The",
"University",
"of",
"London",
"became",
"the",
"first",
"British",
"university",
"to",
"concede",
"degrees",
"to",
"women",
"in",
"1878",
".",
"Other",
"universities",
"followed",
"suit",
"so",
"that",
",",
"by",
"the"
] |
[
{
"end": 1474,
"label": "CITATION_REF",
"start": 1473
},
{
"end": 50,
"label": "CITATION_REF",
"start": 49
},
{
"end": 2499,
"label": "CITATION_REF",
"start": 2498
},
{
"end": 1552,
"label": "CITATION_REF",
"start": 1551
}
] |
90
Tuesday 12thAugust, 2025 @ 13:38
STEP T N_RAW N_NCOL N_RCEL N_REDP N_REDU N_REBO PENEMX PENEMAX PDOTMX PDOTMAX
0 0.00000E+00 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 1.00000E-01 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 2.00000E-01 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 3.00000E-01 2 2 2 2 1 1 7.107E-03 7.107E-03 1.000E+00 1.000E+00
4 4.00000E-01 2 2 2 2 1 1 1.071E-01 1.071E-01 1.000E+00 1.000E+00
5 5.00000E-01 4 4 4 2 1 1 2.071E-01 2.071E-01 1.000E+00 1.000E+00
6 6.00000E-01 4 4 4 2 1 1 3.071E-01 3.071E-01 1.000E+00 1.000E+00
7 7.00000E-01 4 4 4 2 1 1 4.071E-01 4.071E-01 1.000E+00 1.000E+00
8 8.00000E-01 8 8 8 4 1 1 2.571E-01 4.071E-01 1.000E+00 1.000E+00
9 9.00000E-01 8 8 8 4 1 1 3.571E-01 4.071E-01 1.000E+00 1.000E+00
10 1.00000E+00 12 12 12 4 1 1 4.571E-01 4.571E-01 1.000E+00 1.000E+00
11 1.10000E+00 12 12 12 4 1 1 5.571E-01 5.571E-01 1.000E+00 1.000E+00
12 1.20000E+00 12 12 12 4 1 1 6.571E-01 6.571E-01 1.000E+00 1.000E+00
13 1.30000E+00 14 14 14 4 1 1 5.071E-01 6.571E-01 1.000E+00 1.000E+00
14 1.40000E+00 14 14 14 4 1 1 6.071E-01 6.571E-01 1.000E+00 1.000E+00
15 1.50000E+00 14 14 14 4 1 0 6.071E-01 6.571E-01 1.000E+00 1.000E+00
16 1.60000E+00 14 14 14 4 1 0 6.071E-01 6.571E-01 1.000E+00 1.000E+00
17 1.70000E+00 14 14 14 4 1 0 6.071E-01 6.571E-01 1.000E+00 1.000E+00
18 1.80000E+00 12 12 12 4 1 0 6.071E-01 6.571E-01 1.000E+00 1.000E+00
19 1.90000E+00 12 12 12 4 1 0 6.071E-01 6.571E-01 1.000E+00 1.000E+00
20 2.00000E+00 8 8 8 4 1 0 6.071E-01 6.571E-01 1.000E+00 1.000E+00
91
Tuesday 12thAugust, 2025 @ 13:38
6.4.5 Case MEPE27
This test is a repetition of case MEPE07 by adding the REDP andREDU options. The test runs until
the nal step 20, when the projectile has completely traversed the target.
Results are shown in Figure 107 and the .PIN le is listed below. First contact occurs at step 4 like
in case MEPE07, with four detected raw contacts. The REDP option has no eect on this conguration
(as expected) and then the REDU procedure computes the (single) average contact.
(a) Step 0
(b) Step 4
(c) Step 5
(d) Step 5
(e) Step 7
(f) Step 7
(g) Step 11
(h) Step 11
Figure 107: Results of test MEPE27.
The simulation continues with rather regular results, respected imposed velocities
|
[
"90",
"\n",
"Tuesday",
"12thAugust",
",",
"2025",
"@",
"13:38",
"\n",
"STEP",
"T",
"N_RAW",
"N_NCOL",
"N_RCEL",
"N_REDP",
"N_REDU",
"N_REBO",
"PENEMX",
"PENEMAX",
"PDOTMX",
"PDOTMAX",
"\n",
"0",
"0.00000E+00",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"1",
"1.00000E-01",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"2",
"2.00000E-01",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"3",
"3.00000E-01",
"2",
"2",
"2",
"2",
"1",
"1",
"7.107E-03",
"7.107E-03",
"1.000E+00",
"1.000E+00",
"\n",
"4",
"4.00000E-01",
"2",
"2",
"2",
"2",
"1",
"1",
"1.071E-01",
"1.071E-01",
"1.000E+00",
"1.000E+00",
"\n",
"5",
"5.00000E-01",
"4",
"4",
"4",
"2",
"1",
"1",
"2.071E-01",
"2.071E-01",
"1.000E+00",
"1.000E+00",
"\n",
"6",
"6.00000E-01",
"4",
"4",
"4",
"2",
"1",
"1",
"3.071E-01",
"3.071E-01",
"1.000E+00",
"1.000E+00",
"\n",
"7",
"7.00000E-01",
"4",
"4",
"4",
"2",
"1",
"1",
"4.071E-01",
"4.071E-01",
"1.000E+00",
"1.000E+00",
"\n",
"8",
"8.00000E-01",
"8",
"8",
"8",
"4",
"1",
"1",
"2.571E-01",
"4.071E-01",
"1.000E+00",
"1.000E+00",
"\n",
"9",
"9.00000E-01",
"8",
"8",
"8",
"4",
"1",
"1",
"3.571E-01",
"4.071E-01",
"1.000E+00",
"1.000E+00",
"\n",
"10",
"1.00000E+00",
"12",
"12",
"12",
"4",
"1",
"1",
"4.571E-01",
"4.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"11",
"1.10000E+00",
"12",
"12",
"12",
"4",
"1",
"1",
"5.571E-01",
"5.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"12",
"1.20000E+00",
"12",
"12",
"12",
"4",
"1",
"1",
"6.571E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"13",
"1.30000E+00",
"14",
"14",
"14",
"4",
"1",
"1",
"5.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"14",
"1.40000E+00",
"14",
"14",
"14",
"4",
"1",
"1",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"15",
"1.50000E+00",
"14",
"14",
"14",
"4",
"1",
"0",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"16",
"1.60000E+00",
"14",
"14",
"14",
"4",
"1",
"0",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"17",
"1.70000E+00",
"14",
"14",
"14",
"4",
"1",
"0",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"18",
"1.80000E+00",
"12",
"12",
"12",
"4",
"1",
"0",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"19",
"1.90000E+00",
"12",
"12",
"12",
"4",
"1",
"0",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"20",
"2.00000E+00",
"8",
"8",
"8",
"4",
"1",
"0",
"6.071E-01",
"6.571E-01",
"1.000E+00",
"1.000E+00",
"\n",
"91",
"\n",
"Tuesday",
"12thAugust",
",",
"2025",
"@",
"13:38",
"\n",
"6.4.5",
"Case",
"MEPE27",
"\n",
"This",
"test",
"is",
"a",
"repetition",
"of",
"case",
"MEPE07",
"by",
"adding",
"the",
"REDP",
"andREDU",
"options",
".",
"The",
"test",
"runs",
"until",
"\n",
"the",
"\f",
"nal",
"step",
"20",
",",
"when",
"the",
"projectile",
"has",
"completely",
"traversed",
"the",
"target",
".",
"\n",
"Results",
"are",
"shown",
"in",
"Figure",
"107",
"and",
"the",
".PIN",
"\f",
"le",
"is",
"listed",
"below",
".",
"First",
"contact",
"occurs",
"at",
"step",
"4",
"like",
"\n",
"in",
"case",
"MEPE07",
",",
"with",
"four",
"detected",
"raw",
"contacts",
".",
"The",
"REDP",
"option",
"has",
"no",
"e",
"\u000b",
"ect",
"on",
"this",
"con",
"\f",
"guration",
"\n",
"(",
"as",
"expected",
")",
"and",
"then",
"the",
"REDU",
"procedure",
"computes",
"the",
"(",
"single",
")",
"average",
"contact",
".",
"\n",
"(",
"a",
")",
"Step",
"0",
"\n ",
"(",
"b",
")",
"Step",
"4",
"\n ",
"(",
"c",
")",
"Step",
"5",
"\n ",
"(",
"d",
")",
"Step",
"5",
"\n",
"(",
"e",
")",
"Step",
"7",
"\n ",
"(",
"f",
")",
"Step",
"7",
"\n ",
"(",
"g",
")",
"Step",
"11",
"\n ",
"(",
"h",
")",
"Step",
"11",
"\n",
"Figure",
"107",
":",
"Results",
"of",
"test",
"MEPE27",
".",
"\n",
"The",
"simulation",
"continues",
"with",
"rather",
"regular",
"results",
",",
"respected",
"imposed",
"velocities"
] |
[] |
scrutiny. In addition,
energy commodities are subject to position limits, including Henry Hub natural gas contracts.
01. AggregateEU is a first step in demand aggregation allowing the pooling of demand, the coordination of infrastructure use and
negotiation with international partners, fostering more centralised EU joint purchasing to further leverage the EU’s market power.
43THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 3
FIGURE 4
Market concentration in EU gas derivatives markets
Europe’s market rules pass on this volatility to end users and may prevent the full benefits of decarbonising
power generation from reaching them . Even as Europe reduces its dependence on natural gas and increases
investment in clean energy generation, its market rules in the power sector do not fully decouple the price of renew -
able and nuclear energy from higher and more volatile fossil fuel prices, preventing end users from capturing the full
benefits of clean energy in their bills [see Figure 5] . In 2022 at the peak of the energy crisis, natural gas was the price-
setter 63% of the time, despite making up only 20% share of the EU’s electricity mix. The use of long-term contract
solutions – like Power Purchase Agreement (PPA) markets or Contracts for Difference (CfDs) – can help attenuate the
link between the marginal price setter and the cost of energy for end users, but such solutions are underdeveloped
in Europe, in turn limiting the benefits from accelerating the roll-out of renewables. In the absence of action, this
decoupling problem will remain acute at least for the remainder of this decade. Even if renewable installation targets
are met, it is not forecast to significantly reduce the share of hours during which fossil fuels set energy prices by 2030.
FIGURE 5
Price-setting technology per Member State and their generation mix
%, 2022
Source: European Commission (JRC), 2023
Note: Market share of natural gas by venue in % of reported notionals,
excluding central counterparties and clearing members. The figure shows
that the top-5 and top-10 EU counterparties (in terms of gross notionals)
accounted for more than 50% and 60% respectively of reported notionals by
EU entities on each of the two EU gas regulated markets. Data as of November
2022. OI: Open Interest. TV: Trading Venue. OTC: Over-the-counter.
Sources: Trade repositories (TRs), Bank of England, ESMA.Note: Absolute value of net positions in EUR billion for the top five long and
|
[
"scrutiny",
".",
" ",
"In",
"addition",
",",
"\n",
"energy",
"commodities",
"are",
"subject",
"to",
"position",
"limits",
",",
"including",
"Henry",
"Hub",
"natural",
"gas",
"contracts",
".",
"\n",
"01",
".",
"AggregateEU",
"is",
"a",
"first",
"step",
"in",
"demand",
"aggregation",
"allowing",
"the",
"pooling",
"of",
"demand",
",",
"the",
"coordination",
"of",
"infrastructure",
"use",
"and",
"\n",
"negotiation",
"with",
"international",
"partners",
",",
"fostering",
"more",
"centralised",
"EU",
"joint",
"purchasing",
"to",
"further",
"leverage",
"the",
"EU",
"’s",
"market",
"power",
".",
"\n",
"43THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"3",
"\n",
"FIGURE",
"4",
"\n",
"Market",
"concentration",
"in",
"EU",
"gas",
"derivatives",
"markets",
"\n",
"Europe",
"’s",
"market",
"rules",
"pass",
"on",
"this",
"volatility",
"to",
"end",
"users",
"and",
"may",
"prevent",
"the",
"full",
"benefits",
"of",
"decarbonising",
"\n",
"power",
"generation",
"from",
"reaching",
"them",
".",
"Even",
"as",
"Europe",
"reduces",
"its",
"dependence",
"on",
"natural",
"gas",
"and",
"increases",
"\n",
"investment",
"in",
"clean",
"energy",
"generation",
",",
"its",
"market",
"rules",
"in",
"the",
"power",
"sector",
"do",
"not",
"fully",
"decouple",
"the",
"price",
"of",
"renew",
"-",
"\n",
"able",
"and",
"nuclear",
"energy",
"from",
"higher",
"and",
"more",
"volatile",
"fossil",
"fuel",
"prices",
",",
"preventing",
"end",
"users",
"from",
"capturing",
"the",
"full",
"\n",
"benefits",
"of",
"clean",
"energy",
"in",
"their",
"bills",
"[",
"see",
"Figure",
"5",
"]",
".",
"In",
"2022",
"at",
"the",
"peak",
"of",
"the",
"energy",
"crisis",
",",
"natural",
"gas",
"was",
"the",
"price-",
"\n",
"setter",
"63",
"%",
"of",
"the",
"time",
",",
"despite",
"making",
"up",
"only",
"20",
"%",
"share",
"of",
"the",
"EU",
"’s",
"electricity",
"mix",
".",
"The",
"use",
"of",
"long",
"-",
"term",
"contract",
"\n",
"solutions",
"–",
"like",
"Power",
"Purchase",
"Agreement",
"(",
"PPA",
")",
"markets",
"or",
"Contracts",
"for",
"Difference",
"(",
"CfDs",
")",
"–",
"can",
"help",
"attenuate",
"the",
"\n",
"link",
"between",
"the",
"marginal",
"price",
"setter",
"and",
"the",
"cost",
"of",
"energy",
"for",
"end",
"users",
",",
"but",
"such",
"solutions",
"are",
"underdeveloped",
"\n",
"in",
"Europe",
",",
"in",
"turn",
"limiting",
"the",
"benefits",
"from",
"accelerating",
"the",
"roll",
"-",
"out",
"of",
"renewables",
".",
"In",
"the",
"absence",
"of",
"action",
",",
"this",
"\n",
"decoupling",
"problem",
"will",
"remain",
"acute",
"at",
"least",
"for",
"the",
"remainder",
"of",
"this",
"decade",
".",
"Even",
"if",
"renewable",
"installation",
"targets",
"\n",
"are",
"met",
",",
"it",
"is",
"not",
"forecast",
"to",
"significantly",
"reduce",
"the",
"share",
"of",
"hours",
"during",
"which",
"fossil",
"fuels",
"set",
"energy",
"prices",
"by",
"2030",
".",
"\n",
"FIGURE",
"5",
"\n",
"Price",
"-",
"setting",
"technology",
"per",
"Member",
"State",
"and",
"their",
"generation",
"mix",
" \n",
"%",
",",
"2022",
"\n",
"Source",
":",
"European",
"Commission",
"(",
"JRC",
")",
",",
"2023",
"\n",
"Note",
":",
" ",
"Market",
"share",
"of",
"natural",
"gas",
"by",
"venue",
"in",
"%",
"of",
"reported",
"notionals",
",",
"\n",
"excluding",
"central",
"counterparties",
"and",
"clearing",
"members",
".",
"The",
"figure",
"shows",
"\n",
"that",
"the",
"top-5",
"and",
"top-10",
"EU",
"counterparties",
"(",
"in",
"terms",
"of",
"gross",
"notionals",
")",
"\n",
"accounted",
"for",
"more",
"than",
"50",
"%",
"and",
"60",
"%",
"respectively",
"of",
"reported",
"notionals",
"by",
"\n",
"EU",
"entities",
"on",
"each",
"of",
"the",
"two",
"EU",
"gas",
"regulated",
"markets",
".",
"Data",
"as",
"of",
"November",
"\n",
"2022",
".",
"OI",
":",
"Open",
"Interest",
".",
"TV",
":",
"Trading",
"Venue",
".",
"OTC",
":",
"Over",
"-",
"the",
"-",
"counter",
".",
"\n",
"Sources",
":",
"Trade",
"repositories",
"(",
"TRs",
")",
",",
"Bank",
"of",
"England",
",",
"ESMA.Note",
":",
"Absolute",
"value",
"of",
"net",
"positions",
"in",
"EUR",
"billion",
"for",
"the",
"top",
"five",
"long",
"and",
"\n"
] |
[
{
"end": 1922,
"label": "CITATION_REF",
"start": 1891
}
] |
the industry group
with the highest number of companies but ranks
significantly lower in terms of number of employ-
ees and estimated revenue than other countries.
Science & Engineering and Manufacturing, while
being the industry groups with the highest num-
ber of employees and highest estimated revenue
(respectively) are low-ranking in the other two
variables. Transportation, Energy and Natural Re-
sources have a high number of employees and es-
timated revenue, but account for few companies.
Financial Services ranks consistently high across
all three variables. Other industry groups relevant
in more than one variable are Lending & Invest-
ments, Hardware and Mobile. Information Technol-
ogy, while third in terms of number of companies,
is not as relevant in the other two variables as in
other countries.
104
Part 2 Analysis of economic and innovation potential
Armenia
# firms CM Firms # employees CM Employees # est. revenue CM Revenue
Software 63 Software 8 425 Hardware $753 m
Internet Services 28 Information Technology 7 085 Software $135 m
Mobile 28 Internet Services 4 375 Information Technology $129 m
Information Technology 27 Gaming 3 060 Financial Services $105 m
Apps 21 Sports 3 005Lending and
Investments$105 m
Hardware 18 Mobile 1 565 Gaming $92 m
Media and
Entertainment18 Sales and Marketing 1 525Commerce and
Shopping$84 m
Sales and Marketing 17 Apps 1 490 Travel and Tourism $78 m
Science and
Engineering15 Financial Services 1 405 Transportation $76 m
Other 15 Travel and Tourism 1 360 Administrative Services $76 mTable 2.39. Largest industry groups – Armenia
For Armenia, the table shows the raw number of companies, number of employees and estimated revenue featured in the
Crunchbase database by Industry Group.
Azerbaijan
# firms CM Firms # employees CM Employees # est. revenue CM Revenue
Software 35Science and
Engineering7 710 Manufacturing $5 530 m
Internet Services 32 Transportation 7 580 Transportation $5 506 m
Information Technology 22 Energy 3 085 Natural Resources $5 500 m
Financial Services 17 Natural Resources 3 080 Energy $5 500 m
Commerce and
Shopping15 Financial Services 2 825 Financial Services $401 m
Mobile 14Lending and
Investments1 900Lending and
Investments$330 m
Hardware 13 Hardware 1 820 Payments $60 m
Media and
Entertainment11 Professional Services 1 010 Software $52 m
Other 10 Mobile 880 Hardware $48 m
Lending and
Investments9 Other 875 Mobile $48 mTable 2.40. Largest industry groups – Azerbaijan
For Azerbaijan, the table shows the raw number of companies,
|
[
"the",
"industry",
"group",
"\n",
"with",
"the",
"highest",
"number",
"of",
"companies",
"but",
"ranks",
"\n",
"significantly",
"lower",
"in",
"terms",
"of",
"number",
"of",
"employ-",
"\n",
"ees",
"and",
"estimated",
"revenue",
"than",
"other",
"countries",
".",
"\n",
"Science",
"&",
"Engineering",
"and",
"Manufacturing",
",",
"while",
"\n",
"being",
"the",
"industry",
"groups",
"with",
"the",
"highest",
"num-",
"\n",
"ber",
"of",
"employees",
"and",
"highest",
"estimated",
"revenue",
"\n",
"(",
"respectively",
")",
"are",
"low",
"-",
"ranking",
"in",
"the",
"other",
"two",
"\n",
"variables",
".",
"Transportation",
",",
"Energy",
"and",
"Natural",
"Re-",
"\n",
"sources",
"have",
"a",
"high",
"number",
"of",
"employees",
"and",
"es-",
"\n",
"timated",
"revenue",
",",
"but",
"account",
"for",
"few",
"companies",
".",
"\n",
"Financial",
"Services",
"ranks",
"consistently",
"high",
"across",
"\n",
"all",
"three",
"variables",
".",
"Other",
"industry",
"groups",
"relevant",
"\n",
"in",
"more",
"than",
"one",
"variable",
"are",
"Lending",
"&",
"Invest-",
"\n",
"ments",
",",
"Hardware",
"and",
"Mobile",
".",
"Information",
"Technol-",
"\n",
"ogy",
",",
"while",
"third",
"in",
"terms",
"of",
"number",
"of",
"companies",
",",
"\n",
"is",
"not",
"as",
"relevant",
"in",
"the",
"other",
"two",
"variables",
"as",
"in",
"\n",
"other",
"countries",
".",
"\n",
"104",
"\n ",
"Part",
"2",
"Analysis",
"of",
"economic",
"and",
"innovation",
"potential",
"\n",
"Armenia",
"\n",
"#",
"firms",
"CM",
"Firms",
"#",
"employees",
"CM",
"Employees",
"#",
"est",
".",
"revenue",
"CM",
"Revenue",
"\n",
"Software",
"63",
"Software",
"8",
"425",
"Hardware",
"$",
"753",
"m",
"\n",
"Internet",
"Services",
"28",
"Information",
"Technology",
"7",
"085",
"Software",
"$",
"135",
"m",
"\n",
"Mobile",
"28",
"Internet",
"Services",
"4",
"375",
"Information",
"Technology",
"$",
"129",
"m",
"\n",
"Information",
"Technology",
"27",
"Gaming",
"3",
"060",
"Financial",
"Services",
"$",
"105",
"m",
"\n",
"Apps",
"21",
"Sports",
"3",
"005Lending",
"and",
"\n",
"Investments$105",
"m",
"\n",
"Hardware",
"18",
"Mobile",
"1",
"565",
"Gaming",
"$",
"92",
"m",
"\n",
"Media",
"and",
"\n",
"Entertainment18",
"Sales",
"and",
"Marketing",
"1",
"525Commerce",
"and",
"\n",
"Shopping$84",
"m",
"\n",
"Sales",
"and",
"Marketing",
"17",
"Apps",
"1",
"490",
"Travel",
"and",
"Tourism",
"$",
"78",
"m",
"\n",
"Science",
"and",
"\n",
"Engineering15",
"Financial",
"Services",
"1",
"405",
"Transportation",
"$",
"76",
"m",
"\n",
"Other",
"15",
"Travel",
"and",
"Tourism",
"1",
"360",
"Administrative",
"Services",
"$",
"76",
"mTable",
"2.39",
".",
"Largest",
"industry",
"groups",
"–",
"Armenia",
"\n",
"For",
"Armenia",
",",
"the",
"table",
"shows",
"the",
"raw",
"number",
"of",
"companies",
",",
"number",
"of",
"employees",
"and",
"estimated",
"revenue",
"featured",
"in",
"the",
"\n",
"Crunchbase",
"database",
"by",
"Industry",
"Group",
".",
"\n",
"Azerbaijan",
"\n",
"#",
"firms",
"CM",
"Firms",
"#",
"employees",
"CM",
"Employees",
"#",
"est",
".",
"revenue",
"CM",
"Revenue",
"\n",
"Software",
"35Science",
"and",
"\n",
"Engineering7",
"710",
"Manufacturing",
"$",
"5",
"530",
"m",
"\n",
"Internet",
"Services",
"32",
"Transportation",
"7",
"580",
"Transportation",
"$",
"5",
"506",
"m",
"\n",
"Information",
"Technology",
"22",
"Energy",
"3",
"085",
"Natural",
"Resources",
"$",
"5",
"500",
"m",
"\n",
"Financial",
"Services",
"17",
"Natural",
"Resources",
"3",
"080",
"Energy",
"$",
"5",
"500",
"m",
"\n",
"Commerce",
"and",
"\n",
"Shopping15",
"Financial",
"Services",
"2",
"825",
"Financial",
"Services",
"$",
"401",
"m",
"\n",
"Mobile",
"14Lending",
"and",
"\n",
"Investments1",
"900Lending",
"and",
"\n",
"Investments$330",
"m",
"\n",
"Hardware",
"13",
"Hardware",
"1",
"820",
"Payments",
"$",
"60",
"m",
"\n",
"Media",
"and",
"\n",
"Entertainment11",
"Professional",
"Services",
"1",
"010",
"Software",
"$",
"52",
"m",
"\n",
"Other",
"10",
"Mobile",
"880",
"Hardware",
"$",
"48",
"m",
"\n",
"Lending",
"and",
"\n",
"Investments9",
"Other",
"875",
"Mobile",
"$",
"48",
"mTable",
"2.40",
".",
"Largest",
"industry",
"groups",
"–",
"Azerbaijan",
"\n",
"For",
"Azerbaijan",
",",
"the",
"table",
"shows",
"the",
"raw",
"number",
"of",
"companies",
","
] |
[] |
. . . . . . . . . . . . . . . . . . . . . . . . . . 151
sc2d42.dgibi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
sc2d42.epx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
sc2d43.dgibi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
sc2d43.epx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
sc3d01.dgibi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
sc3d01.epx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
sc3d131.dgibi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
sc3d131.epx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
sc3d231.dgibi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
sc3d231.epx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
sc3d31.dgibi . . . . . . . . . . . . . . . . . . . . .
|
[
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"151",
"\n",
"sc2d42.dgibi",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"151",
"\n",
"sc2d42.epx",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"151",
"\n",
"sc2d43.dgibi",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"152",
"\n",
"sc2d43.epx",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"152",
"\n",
"sc3d01.dgibi",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"153",
"\n",
"sc3d01.epx",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"153",
"\n",
"sc3d131.dgibi",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"154",
"\n",
"sc3d131.epx",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"154",
"\n",
"sc3d231.dgibi",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"155",
"\n",
"sc3d231.epx",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"155",
"\n",
"sc3d31.dgibi",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
".",
"."
] |
[] |
are treated as a separate trade.
“If a company carries on any oil-related activities as part of a trade,
those activities are treated for the purposes of the charge to corporation
tax on income as a separate trade, distinct from all other activities
carried on by the company as part of the trade.”
Source: Chapter 3, Section 279: Oil-Related Activities Deemed as Separate Trade.
Corporation T ax Act 2010.
However, even with such a ring-fence in place, companies may still seek
to shift elements of profit (income or costs) between the ring-fenced
activities by manipulating the internal “transfer” price of internal dealings
within the same entity responsible for downstream, non-mining activities,
to reduce the income of the mine with the costs from the non-mining and/
or upstream activities. Countries can address this risk by extending the
application of the transfer pricing rules to these internal dealings in addition
to domestic and cross-border-related-party transactions, putting in place
effective monitoring systems, and limiting tax incentives (see Section 5 on
Implementation).
4.3.3.1 Ring-Fencing Upstream Versus Downstream
Activities
The terms “upstream” and “downstream” are more commonly used in oil
and gas than in mining. Upstream activities typically relate to extraction
and production processes, while downstream activities relate to refining,
transportation, and supplying consumers with end-user products (Cameron
& Stanley, 2017, p. 49). This separation is often reinforced by distinct laws for
oil exploration, production, and refining. Drawing a line between upstream and
downstream activities in the mining sector may be more complex, depending
on the type of mineral and beneficiation process. In general, legislation
should follow industry practice by defining upstream mining activities as
exploration, development, and production and downstream mining activities
as processing, refining, transport, and marketing.
Some resource-rich countries have chosen to ring-fence upstream from
downstream activities. This option draws the ring-fence around certain
activities along the mining value chain. In the absence of such ring-fencing—
the profits (costs but also the revenues) from the downstream activities
might be taxable at the higher CIT rates—directed at taxing the higher
economic rents in form of the profits resulting from the upstream activities.
T axpayers may, in practice, prefer to structure the downstream activities in
separate legal entities, which will allow them to benefit from lower tax rates 3.0 THE BENEFITS
AND RISKS OF
RING -FENCING
4.0 DESIGNING
RING -FENCING
RULES
5.0 THE
IMPLEMENTATION
OF RING -FENCING
RULES
6.0 CONCLUSION 2.0 THE
FUNDAMENTALS
OF
|
[
"are",
"treated",
"as",
"a",
"separate",
"trade",
".",
"\n",
"“",
"If",
"a",
"company",
"carries",
"on",
"any",
"oil",
"-",
"related",
"activities",
"as",
"part",
"of",
"a",
"trade",
",",
"\n",
"those",
"activities",
"are",
"treated",
"for",
"the",
"purposes",
"of",
"the",
"charge",
"to",
"corporation",
"\n",
"tax",
"on",
"income",
"as",
"a",
"separate",
"trade",
",",
"distinct",
"from",
"all",
"other",
"activities",
"\n",
"carried",
"on",
"by",
"the",
"company",
"as",
"part",
"of",
"the",
"trade",
".",
"”",
"\n",
"Source",
":",
"Chapter",
"3",
",",
"Section",
"279",
":",
"Oil",
"-",
"Related",
"Activities",
"Deemed",
"as",
"Separate",
"Trade",
".",
"\n",
"Corporation",
"T",
"ax",
"Act",
"2010",
".",
"\n",
"However",
",",
"even",
"with",
"such",
"a",
"ring",
"-",
"fence",
"in",
"place",
",",
"companies",
"may",
"still",
"seek",
"\n",
"to",
"shift",
"elements",
"of",
"profit",
"(",
"income",
"or",
"costs",
")",
"between",
"the",
"ring",
"-",
"fenced",
"\n",
"activities",
"by",
"manipulating",
"the",
"internal",
"“",
"transfer",
"”",
"price",
"of",
"internal",
"dealings",
"\n",
"within",
"the",
"same",
"entity",
"responsible",
"for",
"downstream",
",",
"non",
"-",
"mining",
"activities",
",",
"\n",
"to",
"reduce",
"the",
"income",
"of",
"the",
"mine",
"with",
"the",
"costs",
"from",
"the",
"non",
"-",
"mining",
"and/",
"\n",
"or",
"upstream",
"activities",
".",
"Countries",
"can",
"address",
"this",
"risk",
"by",
"extending",
"the",
"\n",
"application",
"of",
"the",
"transfer",
"pricing",
"rules",
"to",
"these",
"internal",
"dealings",
"in",
"addition",
"\n",
"to",
"domestic",
"and",
"cross",
"-",
"border",
"-",
"related",
"-",
"party",
"transactions",
",",
"putting",
"in",
"place",
"\n",
"effective",
"monitoring",
"systems",
",",
"and",
"limiting",
"tax",
"incentives",
"(",
"see",
"Section",
"5",
"on",
"\n",
"Implementation",
")",
".",
"\n",
"4.3.3.1",
"Ring",
"-",
"Fencing",
"Upstream",
"Versus",
"Downstream",
"\n",
"Activities",
"\n",
"The",
"terms",
"“",
"upstream",
"”",
"and",
"“",
"downstream",
"”",
"are",
"more",
"commonly",
"used",
"in",
"oil",
"\n",
"and",
"gas",
"than",
"in",
"mining",
".",
"Upstream",
"activities",
"typically",
"relate",
"to",
"extraction",
"\n",
"and",
"production",
"processes",
",",
"while",
"downstream",
"activities",
"relate",
"to",
"refining",
",",
"\n",
"transportation",
",",
"and",
"supplying",
"consumers",
"with",
"end",
"-",
"user",
"products",
"(",
"Cameron",
"\n",
"&",
"Stanley",
",",
"2017",
",",
"p.",
"49",
")",
".",
"This",
"separation",
"is",
"often",
"reinforced",
"by",
"distinct",
"laws",
"for",
"\n",
"oil",
"exploration",
",",
"production",
",",
"and",
"refining",
".",
"Drawing",
"a",
"line",
"between",
"upstream",
"and",
"\n",
"downstream",
"activities",
"in",
"the",
"mining",
"sector",
"may",
"be",
"more",
"complex",
",",
"depending",
"\n",
"on",
"the",
"type",
"of",
"mineral",
"and",
"beneficiation",
"process",
".",
"In",
"general",
",",
"legislation",
"\n",
"should",
"follow",
"industry",
"practice",
"by",
"defining",
"upstream",
"mining",
"activities",
"as",
"\n",
"exploration",
",",
"development",
",",
"and",
"production",
"and",
"downstream",
"mining",
"activities",
"\n",
"as",
"processing",
",",
"refining",
",",
"transport",
",",
"and",
"marketing",
".",
"\n",
"Some",
"resource",
"-",
"rich",
"countries",
"have",
"chosen",
"to",
"ring",
"-",
"fence",
"upstream",
"from",
"\n",
"downstream",
"activities",
".",
"This",
"option",
"draws",
"the",
"ring",
"-",
"fence",
"around",
"certain",
"\n",
"activities",
"along",
"the",
"mining",
"value",
"chain",
".",
"In",
"the",
"absence",
"of",
"such",
"ring",
"-",
"fencing",
"—",
"\n",
"the",
"profits",
"(",
"costs",
"but",
"also",
"the",
"revenues",
")",
"from",
"the",
"downstream",
"activities",
"\n",
"might",
"be",
"taxable",
"at",
"the",
"higher",
"CIT",
"rates",
"—",
"directed",
"at",
"taxing",
"the",
"higher",
"\n",
"economic",
"rents",
"in",
"form",
"of",
"the",
"profits",
"resulting",
"from",
"the",
"upstream",
"activities",
".",
"\n",
"T",
"axpayers",
"may",
",",
"in",
"practice",
",",
"prefer",
"to",
"structure",
"the",
"downstream",
"activities",
"in",
"\n",
"separate",
"legal",
"entities",
",",
"which",
"will",
"allow",
"them",
"to",
"benefit",
"from",
"lower",
"tax",
"rates",
"3.0",
"THE",
"BENEFITS",
"\n",
"AND",
"RISKS",
"OF",
" \n",
"RING",
"-FENCING",
"\n",
"4.0",
"DESIGNING",
"\n",
"RING",
"-FENCING",
"\n",
"RULES",
"\n",
"5.0",
"THE",
"\n",
"IMPLEMENTATION",
"\n",
"OF",
"RING",
"-FENCING",
"\n",
"RULES",
"\n",
"6.0",
"CONCLUSION",
"2.0",
"THE",
"\n",
"FUNDAMENTALS",
" \n",
"OF"
] |
[
{
"end": 1484,
"label": "CITATION_REF",
"start": 1453
},
{
"end": 1471,
"label": "AUTHOR",
"start": 1453
},
{
"end": 1477,
"label": "YEAR",
"start": 1473
}
] |
30% in 2020-23.
- Some studies suggest that women achieve better learning outcomes than men as principals. In francophone Africa, students in primary schools led by female principals outperformed those in schools led by male principals in mathematics and reading by at least six months.
- While many women teach, far fewer lead schools. The share of female principals in primary and secondary education is on average at least 20 percentage points lower than the average share of female teachers. Only 11% of countries globally have measures in place to address gender diversity in principal recruitment.
## Many actors exercise leadership by influencing the direction of education systems.
- Teacher unions, student unions, business leaders, academics and civil society hold governments to account, lobby and raise awareness. Influence matters: In the United States, some think tanks score low on expertise but high on education discussions in Congress, with the reverse being the case for others.
- International organizations help frame and inform the global debate on education, as well as fund countries' education systems. However, competition for space and influence can distract them from the goal of education improvement and their legitimacy can be challenged by a lack of capacity or efficiency.
On 12 June 2023, a school principal, Rita Sokoy, surrounded by her students at Yayasan Pendidikan Kristen (YPK) Kanda Primary School in Waibu, Jayapura District, Papua Province Indonesia.
Credit: © UNICEF/UNI430754/Al Asad*
SD
S
<!-- image -->
CHAPTER
<!-- image -->
Introduction
<!-- image -->
## KEY MESSAGES
Leadership takes many forms and is hard to measure concretely, but it is critical for education success at all levels: institutional, systemic and political.
- In education, as in politics and business, leadership is a process of social influence aimed at maximizing joint efforts towards a common goal.
- Leadership styles differ depending on the context, personalities and organizational goals.
- The multiple forms of leadership - and its multiple outcomes - means it can be hard to demonstrate its impact on education, and why that impact is frequently overlooked.
- But there is virtually no documented instance of troubled schools being turned around without intervention by a good leader.
## Leaders need to define their purpose and plan how they will influence change, taking into account their capacity and context.
- While there is an emphasis on learning, leaders need
|
[
"30",
"%",
"in",
"2020",
"-",
"23",
".",
"\n",
"-",
"",
"Some",
"studies",
"suggest",
"that",
"women",
"achieve",
"better",
"learning",
"outcomes",
"than",
"men",
"as",
"principals",
".",
"In",
"francophone",
"Africa",
",",
"students",
"in",
"primary",
"schools",
"led",
"by",
"female",
"principals",
"outperformed",
"those",
"in",
"schools",
"led",
"by",
"male",
"principals",
"in",
"mathematics",
"and",
"reading",
"by",
"at",
"least",
"six",
"months",
".",
"\n",
"-",
"",
"While",
"many",
"women",
"teach",
",",
"far",
"fewer",
"lead",
"schools",
".",
"The",
"share",
"of",
"female",
"principals",
"in",
"primary",
"and",
"secondary",
"education",
"is",
"on",
"average",
"at",
"least",
"20",
"percentage",
"points",
"lower",
"than",
"the",
"average",
"share",
"of",
"female",
"teachers",
".",
"Only",
"11",
"%",
"of",
"countries",
"globally",
"have",
"measures",
"in",
"place",
"to",
"address",
"gender",
"diversity",
"in",
"principal",
"recruitment",
".",
"\n\n",
"#",
"#",
"Many",
"actors",
"exercise",
"leadership",
"by",
"influencing",
"the",
"direction",
"of",
"education",
"systems",
".",
"\n\n",
"-",
"",
"Teacher",
"unions",
",",
"student",
"unions",
",",
"business",
"leaders",
",",
"academics",
"and",
"civil",
"society",
"hold",
"governments",
"to",
"account",
",",
"lobby",
"and",
"raise",
"awareness",
".",
"Influence",
"matters",
":",
"In",
"the",
"United",
"States",
",",
"some",
"think",
"tanks",
"score",
"low",
"on",
"expertise",
"but",
"high",
"on",
"education",
"discussions",
"in",
"Congress",
",",
"with",
"the",
"reverse",
"being",
"the",
"case",
"for",
"others",
".",
"\n",
"-",
"",
"International",
"organizations",
"help",
"frame",
"and",
"inform",
"the",
"global",
"debate",
"on",
"education",
",",
"as",
"well",
"as",
"fund",
"countries",
"'",
"education",
"systems",
".",
"However",
",",
"competition",
"for",
"space",
"and",
"influence",
"can",
"distract",
"them",
"from",
"the",
"goal",
"of",
"education",
"improvement",
"and",
"their",
"legitimacy",
"can",
"be",
"challenged",
"by",
"a",
"lack",
"of",
"capacity",
"or",
"efficiency",
".",
"\n\n",
"On",
"12",
"June",
"2023",
",",
"a",
"school",
"principal",
",",
"Rita",
"Sokoy",
",",
"surrounded",
"by",
"her",
"students",
"at",
"Yayasan",
"Pendidikan",
"Kristen",
"(",
"YPK",
")",
"Kanda",
"Primary",
"School",
"in",
"Waibu",
",",
"Jayapura",
"District",
",",
"Papua",
"Province",
"Indonesia",
".",
"\n\n",
"Credit",
":",
"©",
"UNICEF",
"/",
"UNI430754",
"/",
"Al",
"Asad",
"*",
"\n\n",
"SD",
"\n\n",
"S",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"CHAPTER",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Introduction",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"#",
"#",
"KEY",
"MESSAGES",
"\n\n",
"Leadership",
"takes",
"many",
"forms",
"and",
"is",
"hard",
"to",
"measure",
"concretely",
",",
"but",
"it",
"is",
"critical",
"for",
"education",
"success",
"at",
"all",
"levels",
":",
"institutional",
",",
"systemic",
"and",
"political",
".",
"\n\n",
"-",
"",
"In",
"education",
",",
"as",
"in",
"politics",
"and",
"business",
",",
"leadership",
"is",
"a",
"process",
"of",
"social",
"influence",
"aimed",
"at",
"maximizing",
"joint",
"efforts",
"towards",
"a",
"common",
"goal",
".",
"\n",
"-",
"",
"Leadership",
"styles",
"differ",
"depending",
"on",
"the",
"context",
",",
"personalities",
"and",
"organizational",
"goals",
".",
"\n",
"-",
"",
"The",
"multiple",
"forms",
"of",
"leadership",
"-",
"and",
"its",
"multiple",
"outcomes",
"-",
"means",
"it",
"can",
"be",
"hard",
"to",
"demonstrate",
"its",
"impact",
"on",
"education",
",",
"and",
"why",
"that",
"impact",
"is",
"frequently",
"overlooked",
".",
"\n",
"-",
"",
"But",
"there",
"is",
"virtually",
"no",
"documented",
"instance",
"of",
"troubled",
"schools",
"being",
"turned",
"around",
"without",
"intervention",
"by",
"a",
"good",
"leader",
".",
"\n\n",
"#",
"#",
"Leaders",
"need",
"to",
"define",
"their",
"purpose",
"and",
"plan",
"how",
"they",
"will",
"influence",
"change",
",",
"taking",
"into",
"account",
"their",
"capacity",
"and",
"context",
".",
"\n\n",
"-",
"",
"While",
"there",
"is",
"an",
"emphasis",
"on",
"learning",
",",
"leaders",
"need"
] |
[] |
Denmark, Hungary, the Netherlands, Romania, Sweden, and Switzerland have improved forecasts of air temperature in the northern hemisphere.
More data are now being shared in real time
between ECMWF and all 37 countries participating in the Regional Integrated Multi-Hazard Early Warn-ing System for Africa and Asia (RIMES).
5 The Bangla-
desh Meteorological Department, for example, has increased from 10 to 32 the number of stations shar -
ing observational data taken every three hours and provided nearly 40 years of historical data. The total number of stations added by all RIMES members is now 500 and is expected to increase to 1,500 soon, leading to a significant improvement in the accuracy and lead time of weather forecasts.
However, these data are not categorized as essen-
tial data, as defined by the World Meteorological Organization,
6 and are not considered open data from
the perspective of their use and reuse. For this reason, RIMES needs to ensure that these data are protected by nondisclosure agreements. In return, ECMWF shares high-resolution digital forecast products with each participating country, with the aim of improving national forecasts and deepening the technical collab-oration between RIMES countries and ECMWF. With access to these high-resolution forecast products from ECMWF, countries can focus more efforts on
Gathering, sharing, and using better data | 151applying forecast information to the needs of their
population and on building skills in data analytics. 7
As map S4.1.1 shows, significant gaps in reporting
basic weather data still exist. Important steps to take are getting countries to recognize the value of sharing their data and to participate in improving the mod-els. In time, it is anticipated that open data policies similar to the European Union Directive will apply to meteorological data everywhere, characterizing these data as having high value for social and economic development. The German Meteorological Service, for example, has started openly sharing all of the data it uses for its public tasks.
8 Now more than 500 peta-
bytes of data are downloaded monthly and used by a wide range of industries in Germany to improve their economic performance. Map S4.1.1 Large gaps remain in global reporting on basic weather data
Source: World Bank map, based on data from WDQMS (WIGOS Data Quality Monitoring System) (webtool), World Meteorological Organization, Geneva,
https://wdqms.wmo.int. Data at http://bit.do/WDR2021-Map-S4_1_1.
Note: Snapshot of World Meteorological Organization Integrated Global Observing System interactive map showing observations of surface temperature
measured
|
[
"Denmark",
",",
"Hungary",
",",
"the",
"Netherlands",
",",
"Romania",
",",
"Sweden",
",",
"and",
"Switzerland",
"have",
"improved",
"forecasts",
"of",
"air",
"temperature",
"in",
"the",
"northern",
"hemisphere",
".",
"\n",
"More",
"data",
"are",
"now",
"being",
"shared",
"in",
"real",
"time",
"\n",
"between",
"ECMWF",
"and",
"all",
"37",
"countries",
"participating",
"in",
"the",
"Regional",
"Integrated",
"Multi",
"-",
"Hazard",
"Early",
"Warn",
"-",
"ing",
"System",
"for",
"Africa",
"and",
"Asia",
"(",
"RIMES",
")",
".",
"\n",
"5",
"The",
"Bangla-",
"\n",
"desh",
"Meteorological",
"Department",
",",
"for",
"example",
",",
"has",
"increased",
"from",
"10",
"to",
"32",
"the",
"number",
"of",
"stations",
"shar",
"-",
"\n",
"ing",
"observational",
"data",
"taken",
"every",
"three",
"hours",
"and",
"provided",
"nearly",
"40",
"years",
"of",
"historical",
"data",
".",
"The",
"total",
"number",
"of",
"stations",
"added",
"by",
"all",
"RIMES",
"members",
"is",
"now",
"500",
"and",
"is",
"expected",
"to",
"increase",
"to",
"1,500",
"soon",
",",
"leading",
"to",
"a",
"significant",
"improvement",
"in",
"the",
"accuracy",
"and",
"lead",
"time",
"of",
"weather",
"forecasts",
".",
"\n",
"However",
",",
"these",
"data",
"are",
"not",
"categorized",
"as",
"essen-",
"\n",
"tial",
"data",
",",
"as",
"defined",
"by",
"the",
"World",
"Meteorological",
"Organization",
",",
"\n",
"6",
"and",
"are",
"not",
"considered",
"open",
"data",
"from",
"\n",
"the",
"perspective",
"of",
"their",
"use",
"and",
"reuse",
".",
"For",
"this",
"reason",
",",
"RIMES",
"needs",
"to",
"ensure",
"that",
"these",
"data",
"are",
"protected",
"by",
"nondisclosure",
"agreements",
".",
"In",
"return",
",",
"ECMWF",
"shares",
"high",
"-",
"resolution",
"digital",
"forecast",
"products",
"with",
"each",
"participating",
"country",
",",
"with",
"the",
"aim",
"of",
"improving",
"national",
"forecasts",
"and",
"deepening",
"the",
"technical",
"collab",
"-",
"oration",
"between",
"RIMES",
"countries",
"and",
"ECMWF",
".",
"With",
"access",
"to",
"these",
"high",
"-",
"resolution",
"forecast",
"products",
"from",
"ECMWF",
",",
"countries",
"can",
"focus",
"more",
"efforts",
"on",
"\n",
"Gathering",
",",
"sharing",
",",
"and",
"using",
"better",
"data",
" ",
"|",
" ",
"151applying",
"forecast",
"information",
"to",
"the",
"needs",
"of",
"their",
"\n",
"population",
"and",
"on",
"building",
"skills",
"in",
"data",
"analytics",
".",
"7",
"\n",
"As",
"map",
"S4.1.1",
"shows",
",",
"significant",
"gaps",
"in",
"reporting",
"\n",
"basic",
"weather",
"data",
"still",
"exist",
".",
"Important",
"steps",
"to",
"take",
"are",
"getting",
"countries",
"to",
"recognize",
"the",
"value",
"of",
"sharing",
"their",
"data",
"and",
"to",
"participate",
"in",
"improving",
"the",
"mod",
"-",
"els",
".",
"In",
"time",
",",
"it",
"is",
"anticipated",
"that",
"open",
"data",
"policies",
"similar",
"to",
"the",
"European",
"Union",
"Directive",
"will",
"apply",
"to",
"meteorological",
"data",
"everywhere",
",",
"characterizing",
"these",
"data",
"as",
"having",
"high",
"value",
"for",
"social",
"and",
"economic",
"development",
".",
"The",
"German",
"Meteorological",
"Service",
",",
"for",
"example",
",",
"has",
"started",
"openly",
"sharing",
"all",
"of",
"the",
"data",
"it",
"uses",
"for",
"its",
"public",
"tasks",
".",
"\n",
"8",
"Now",
"more",
"than",
"500",
"peta-",
"\n",
"bytes",
"of",
"data",
"are",
"downloaded",
"monthly",
"and",
"used",
"by",
"a",
"wide",
"range",
"of",
"industries",
"in",
"Germany",
"to",
"improve",
"their",
"economic",
"performance",
".",
"Map",
"S4.1.1",
" ",
"Large",
"gaps",
"remain",
"in",
"global",
"reporting",
"on",
"basic",
"weather",
"data",
"\n",
"Source",
":",
"World",
"Bank",
"map",
",",
"based",
"on",
"data",
"from",
"WDQMS",
"(",
"WIGOS",
"Data",
"Quality",
"Monitoring",
"System",
")",
"(",
"webtool",
")",
",",
"World",
"Meteorological",
"Organization",
",",
"Geneva",
",",
"\n",
"https://wdqms.wmo.int",
".",
"Data",
"at",
"http://bit.do/WDR2021-Map-S4_1_1",
".",
"\n",
"Note",
":",
"Snapshot",
"of",
"World",
"Meteorological",
"Organization",
"Integrated",
"Global",
"Observing",
"System",
"interactive",
"map",
"showing",
"observations",
"of",
"surface",
"temperature",
"\n",
"measured"
] |
[
{
"end": 2510,
"label": "CITATION_SPAN",
"start": 2311
}
] |
Éditions CEPRODIF,
Éditions La Blancheur, Éditions Sankofa & Gurli or Le Figuier, Éditions du Lac and Promolangues. There are also around twenty young publishing houses specialising in comics, schoolbooks and, above all, self-publishing.
6
72
THE AFRICAN BOOK INDUSTRY • Trends, Challenges and Opportunities for GrowthDocumentary sources indicate a
production of 222 titles in 2022.7
In terms of languages of publication, French, the official language, plays a predominant role in literary production. Nevertheless, documentary research shows that efforts are emerging to integrate national languages such as Mooré, Jula and Fulfuldé, although this production is still in the minority.
8
DISTRIBUTION, SALES
AND PROMOTION CHANNELS
The national authority’s response to the
survey indicates the existence of two physical bookshops, while documentary research identifies three.
9 It also shows
that the most popular sales channels are retail outlets (department stores, stationery shops, supermarkets, etc.), followed by book fairs and literary festivals. Book distribution is based on three main channels: conventional bookshops, bookshops on the ground (librairies par terre)
10 and literary events
such as FILO.
Among the bookshops is Mercury, which has several outlets in the country and aims to become the first bookshop in sub-Saharan Africa to sell books entirely via its website. However, distribution remains concentrated in urban areas, leaving rural regions underserved.
In terms of employment, based on all
available data and additional research, an estimated 1,400 people were employed in the sector in 2023.
In the area of book promotion, a new
partnership was signed on 7 November 2024 between the Burkinabè online media platform Lefaso.net and Mercury to promote Burkina Faso’s literary output.
The BBDA protects creators from
the problems of photocopying and counterfeiting, which affect mainly school textbooks. With local production still insufficient, ASSEDIF is calling for greater collaboration between the State and private publishers.
11
According to the local press,12 the
BBDA is modernizing its tools – such as geolocation of exhibitors and electronic
payments – to improve the collection of royalties and ensure that authors are fairly remunerated.
READING HABITS AND
PROMOTION OF PUBLIC READING
The National Centre of Reading and
Cultural Animation (Centre National de Lecture et d’Animation Culturelle – CENALAC), set up in 2006 by the government of Burkina Faso, has initiated the structuring of public reading in Burkina Faso and actively organizes the operation of 34 Public Reading and Cultural Action Centres (Centres de Lecture Publique et d’Actions Culturelles – CELPAC)
|
[
"Éditions",
"CEPRODIF",
",",
"\n",
"Éditions",
"La",
"Blancheur",
",",
"Éditions",
"Sankofa",
"&",
"Gurli",
"or",
"Le",
"Figuier",
",",
"Éditions",
"du",
"Lac",
"and",
"Promolangues",
".",
"There",
"are",
"also",
"around",
"twenty",
"young",
"publishing",
"houses",
"specialising",
"in",
"comics",
",",
"schoolbooks",
"and",
",",
"above",
"all",
",",
"self",
"-",
"publishing",
".",
"\n",
"6",
"\n",
"72",
"\n",
"THE",
"AFRICAN",
"BOOK",
"INDUSTRY",
"•",
"Trends",
",",
"Challenges",
"and",
"Opportunities",
"for",
"GrowthDocumentary",
"sources",
"indicate",
"a",
"\n",
"production",
"of",
"222",
"titles",
"in",
"2022.7",
"\n",
"In",
" ",
"terms",
"of",
"languages",
"of",
"publication",
",",
"French",
",",
"the",
"official",
"language",
",",
"plays",
"a",
"predominant",
"role",
"in",
"literary",
"production",
".",
"Nevertheless",
",",
"documentary",
"research",
"shows",
"that",
"efforts",
"are",
"emerging",
"to",
"integrate",
"national",
"languages",
"such",
"as",
"Mooré",
",",
"Jula",
"and",
"Fulfuldé",
",",
"although",
"this",
"production",
"is",
"still",
"in",
"the",
"minority",
".",
"\n",
"8",
"\n",
"DISTRIBUTION",
",",
"SALES",
"\n",
"AND",
"PROMOTION",
"CHANNELS",
"\n",
"The",
"national",
"authority",
"’s",
"response",
"to",
"the",
"\n",
"survey",
"indicates",
"the",
"existence",
"of",
"two",
"physical",
"bookshops",
",",
"while",
"documentary",
"research",
"identifies",
"three",
".",
"\n",
"9",
"It",
"also",
"shows",
"\n",
"that",
"the",
"most",
"popular",
"sales",
"channels",
"are",
"retail",
"outlets",
"(",
"department",
"stores",
",",
"stationery",
"shops",
",",
"supermarkets",
",",
"etc",
".",
")",
",",
"followed",
"by",
"book",
"fairs",
"and",
"literary",
"festivals",
".",
"Book",
"distribution",
"is",
"based",
"on",
"three",
"main",
"channels",
":",
"conventional",
"bookshops",
",",
"bookshops",
"on",
"the",
"ground",
"(",
"librairies",
"par",
"terre",
")",
"\n",
"10",
"and",
"literary",
"events",
"\n",
"such",
"as",
"FILO",
".",
"\n",
"Among",
"the",
"bookshops",
"is",
"Mercury",
",",
"which",
"has",
"several",
"outlets",
"in",
"the",
"country",
"and",
"aims",
"to",
"become",
"the",
"first",
"bookshop",
"in",
"sub",
"-",
"Saharan",
"Africa",
"to",
"sell",
"books",
"entirely",
"via",
"its",
"website",
".",
"However",
",",
"distribution",
"remains",
"concentrated",
"in",
"urban",
"areas",
",",
"leaving",
"rural",
"regions",
"underserved",
".",
"\n",
"In",
"terms",
"of",
"employment",
",",
"based",
"on",
"all",
"\n",
"available",
"data",
"and",
"additional",
"research",
",",
"an",
"estimated",
"1,400",
"people",
"were",
"employed",
"in",
"the",
"sector",
"in",
"2023",
".",
"\n",
"In",
"the",
"area",
"of",
"book",
"promotion",
",",
"a",
"new",
"\n",
"partnership",
"was",
"signed",
"on",
"7",
"November",
"2024",
"between",
"the",
"Burkinabè",
"online",
"media",
"platform",
"Lefaso.net",
"and",
"Mercury",
"to",
"promote",
"Burkina",
"Faso",
"’s",
"literary",
" ",
"output",
".",
"\n",
"The",
"BBDA",
"protects",
"creators",
"from",
"\n",
"the",
"problems",
"of",
"photocopying",
"and",
"counterfeiting",
",",
"which",
"affect",
"mainly",
"school",
"textbooks",
".",
"With",
"local",
"production",
"still",
"insufficient",
",",
"ASSEDIF",
"is",
"calling",
"for",
"greater",
"collaboration",
"between",
"the",
"State",
"and",
"private",
"publishers",
".",
"\n",
"11",
"\n",
"According",
"to",
"the",
"local",
"press,12",
"the",
"\n",
"BBDA",
"is",
"modernizing",
"its",
"tools",
"–",
"such",
"as",
"geolocation",
"of",
"exhibitors",
"and",
"electronic",
"\n",
"payments",
"–",
"to",
"improve",
"the",
"collection",
"of",
"royalties",
"and",
"ensure",
"that",
"authors",
"are",
"fairly",
"remunerated",
".",
"\n",
"READING",
"HABITS",
"AND",
"\n",
"PROMOTION",
"OF",
"PUBLIC",
"READING",
"\n",
"The",
"National",
"Centre",
"of",
"Reading",
"and",
"\n",
"Cultural",
"Animation",
"(",
"Centre",
"National",
"de",
"Lecture",
"et",
"d’Animation",
"Culturelle",
"–",
"CENALAC",
")",
",",
"set",
"up",
"in",
"2006",
"by",
"the",
"government",
"of",
"Burkina",
"Faso",
",",
"has",
"initiated",
"the",
"structuring",
"of",
"public",
"reading",
"in",
"Burkina",
"Faso",
"and",
"actively",
"organizes",
"the",
"operation",
"of",
"34",
"Public",
"Reading",
"and",
"Cultural",
"Action",
"Centres",
"(",
"Centres",
"de",
"Lecture",
"Publique",
"et",
"d’Actions",
"Culturelles",
"–",
"CELPAC",
")"
] |
[] |
(SCFA).” He goes on to clarify the importance of these nutrients: “Vitamin B12 acts as a cofactor, aiding in multiple metabolic pathways in humans, while SCFA can help improve the integrity of the gut barrier and regulate the immune system.”
The research team reconstructed representative genomes of fruit- and vegetable-associated bacteria from 156 fruit and vegetable metagenomes. They then used the reconstructed genomes to investigate the prevalence of associated bacteria in close to 2 500 publicly available gut metagenomes. They found that bacterial genes involved in the production of vitamin B12 and SCFA were consistently present in the human gut, albeit at low levels (about 2.2 %). This quantity was influenced by the individual’s age, how often they ate vegetables and how diverse their plant consumption was.
“Fresh produce, including its microbiome, has the potential to influence the composition of the gut microbiome,” observes Dr Wicaksono. “By identifying personalized diets that can modify the microbiome or the metabolites produced by the microbiome, we may be able to prevent or control disease outcomes.” He goes on to emphasise: “This is particularly significant during early life when the immune system is developing. Additionally, fruits and vegetables-associated bacteria have shown promise as emerging probiotics in various applications.”
As the news item notes, this suggests that consuming fresh fruit and vegetables aids the development of a person’s immune system during their first few years of life as the intestinal microbiome develops. Furthermore, good gut bacteria diversity enhances the body’s resilience throughout a person’s life. “It simply influences everything,” remarks TU Graz Prof. Dr Gabriele Berg, who is the study’s senior author. “Diversity influences the resilience of the whole organism; higher diversity conveys more resilience.”
The HEDIMED (Human Exposomic Determinants of Immune Mediated Diseases) study provides conclusive proof – for the very first time – that microorganisms from fruits and vegetables can colonise the human gut. Because of this connection, practices such as farming, breeding and post-harvest treatments that affect these microorganisms may also directly or indirectly affect the composition of microorganisms in the gut. Food for thought, given that human activities have already been linked to changes in the diversity of microorganisms in plants, changes that ultimately impact our health.
For more information, please see:
HEDIMED project website
(opens in new window)
Keywords
HEDIMED
human
gut
bacteria
microbiome
fruit
vegetable
microorganism
Related projects
Project
Human Exposomic Determinants of Immune Mediated Diseases
HEDIMED
20 August
|
[
"(",
"SCFA",
")",
".",
"”",
"He",
"goes",
"on",
"to",
"clarify",
"the",
"importance",
"of",
"these",
"nutrients",
":",
"“",
"Vitamin",
"B12",
"acts",
"as",
"a",
"cofactor",
",",
"aiding",
"in",
"multiple",
"metabolic",
"pathways",
"in",
"humans",
",",
"while",
"SCFA",
"can",
"help",
"improve",
"the",
"integrity",
"of",
"the",
"gut",
"barrier",
"and",
"regulate",
"the",
"immune",
"system",
".",
"”",
"\n\n",
"The",
"research",
"team",
"reconstructed",
"representative",
"genomes",
"of",
"fruit-",
"and",
"vegetable",
"-",
"associated",
"bacteria",
"from",
"156",
"fruit",
"and",
"vegetable",
"metagenomes",
".",
"They",
"then",
"used",
"the",
"reconstructed",
"genomes",
"to",
"investigate",
"the",
"prevalence",
"of",
"associated",
"bacteria",
"in",
"close",
"to",
"2",
"500",
"publicly",
"available",
"gut",
"metagenomes",
".",
"They",
"found",
"that",
"bacterial",
"genes",
"involved",
"in",
"the",
"production",
"of",
"vitamin",
"B12",
"and",
"SCFA",
"were",
"consistently",
"present",
"in",
"the",
"human",
"gut",
",",
"albeit",
"at",
"low",
"levels",
"(",
"about",
"2.2",
"%",
")",
".",
"This",
"quantity",
"was",
"influenced",
"by",
"the",
"individual",
"’s",
"age",
",",
"how",
"often",
"they",
"ate",
"vegetables",
"and",
"how",
"diverse",
"their",
"plant",
"consumption",
"was",
".",
"\n\n",
"“",
"Fresh",
"produce",
",",
"including",
"its",
"microbiome",
",",
"has",
"the",
"potential",
"to",
"influence",
"the",
"composition",
"of",
"the",
"gut",
"microbiome",
",",
"”",
"observes",
"Dr",
"Wicaksono",
".",
"“",
"By",
"identifying",
"personalized",
"diets",
"that",
"can",
"modify",
"the",
"microbiome",
"or",
"the",
"metabolites",
"produced",
"by",
"the",
"microbiome",
",",
"we",
"may",
"be",
"able",
"to",
"prevent",
"or",
"control",
"disease",
"outcomes",
".",
"”",
"He",
"goes",
"on",
"to",
"emphasise",
":",
"“",
"This",
"is",
"particularly",
"significant",
"during",
"early",
"life",
"when",
"the",
"immune",
"system",
"is",
"developing",
".",
"Additionally",
",",
"fruits",
"and",
"vegetables",
"-",
"associated",
"bacteria",
"have",
"shown",
"promise",
"as",
"emerging",
"probiotics",
"in",
"various",
"applications",
".",
"”",
"\n\n",
"As",
"the",
"news",
"item",
"notes",
",",
"this",
"suggests",
"that",
"consuming",
"fresh",
"fruit",
"and",
"vegetables",
"aids",
"the",
"development",
"of",
"a",
"person",
"’s",
"immune",
"system",
"during",
"their",
"first",
"few",
"years",
"of",
"life",
"as",
"the",
"intestinal",
"microbiome",
"develops",
".",
"Furthermore",
",",
"good",
"gut",
"bacteria",
"diversity",
"enhances",
"the",
"body",
"’s",
"resilience",
"throughout",
"a",
"person",
"’s",
"life",
".",
"“",
"It",
"simply",
"influences",
"everything",
",",
"”",
"remarks",
"TU",
"Graz",
"Prof.",
"Dr",
"Gabriele",
"Berg",
",",
"who",
"is",
"the",
"study",
"’s",
"senior",
"author",
".",
"“",
"Diversity",
"influences",
"the",
"resilience",
"of",
"the",
"whole",
"organism",
";",
"higher",
"diversity",
"conveys",
"more",
"resilience",
".",
"”",
"\n\n",
"The",
"HEDIMED",
"(",
"Human",
"Exposomic",
"Determinants",
"of",
"Immune",
"Mediated",
"Diseases",
")",
"study",
"provides",
"conclusive",
"proof",
"–",
"for",
"the",
"very",
"first",
"time",
"–",
"that",
"microorganisms",
"from",
"fruits",
"and",
"vegetables",
"can",
"colonise",
"the",
"human",
"gut",
".",
"Because",
"of",
"this",
"connection",
",",
"practices",
"such",
"as",
"farming",
",",
"breeding",
"and",
"post",
"-",
"harvest",
"treatments",
"that",
"affect",
"these",
"microorganisms",
"may",
"also",
"directly",
"or",
"indirectly",
"affect",
"the",
"composition",
"of",
"microorganisms",
"in",
"the",
"gut",
".",
"Food",
"for",
"thought",
",",
"given",
"that",
"human",
"activities",
"have",
"already",
"been",
"linked",
"to",
"changes",
"in",
"the",
"diversity",
"of",
"microorganisms",
"in",
"plants",
",",
"changes",
"that",
"ultimately",
"impact",
"our",
"health",
".",
"\n\n",
"For",
"more",
"information",
",",
"please",
"see",
":",
"\n\n",
"HEDIMED",
"project",
"website",
"\n",
"(",
"opens",
"in",
"new",
"window",
")",
"\n\n\n\n\n",
"Keywords",
"\n\n\n\n\n\n\n",
"HEDIMED",
"\n\n\n\n\n\n\n",
"human",
"\n\n\n\n\n\n\n",
"gut",
"\n\n\n\n\n\n\n",
"bacteria",
"\n\n\n\n\n\n\n",
"microbiome",
"\n\n\n\n\n\n\n",
"fruit",
"\n\n\n\n\n\n\n",
"vegetable",
"\n\n\n\n\n\n\n",
"microorganism",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Related",
"projects",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n ",
"Project",
"\n \n\n\n\n\n\n\n\n\n\n ",
"Human",
"Exposomic",
"Determinants",
"of",
"Immune",
"Mediated",
"Diseases",
"\n \n\n\n\n\n",
"HEDIMED",
"\n\n\n",
"20",
"August"
] |
[] |
World Bank). At the beginning of the year, Kenya had ordered 24 million doses from COVAX and 11 million from AVATT (Reuters, 2021[30]). The first batch of 1.02 million doses was received from COVAX in March 2021. While Kenya also had plans to engage in direct bilateral purchases, the country received major vaccine donations through COVAX and bilaterally: from the United States, 12.32 million doses; Germany, 4.3 million the United Kingdom, 1.22 million doses; ; Canada, 1 million. There were also smaller donations from Japan, 0.2 million doses; France, 0.6 million; and Denmark, 0.35 million. China also pledged 12 million doses to Kenya (France Ministry for Europe and Foreign Affairs, 2022[31]; Ministry of Foreign Affairs of Japan, 2023[32]; Government of Canada, 2023[33]; UK Parliament, 2021[34]; US Department of State, 2023[35]; Bridge Beijing, 2022[36]; Blessing, 2021[37]; UNICEF, 2021[38]).
## The challenges of scaling up COVID-19 vaccinations
The National COVID-19 Vaccine Deployment and Vaccination (VDV) Steering Committee and Taskforce implemented Kenya's COVID -19 vaccination plan. The first dose of the COVID-19 vaccine was administered in March 2021, and by the end of 2021, Kenya had fully vaccinated 4.6 million people and 5.8 million partially -corresponding to 7% of its population. In 2022, Kenya launched an accelerated vaccination campaign including mass vaccination campaigns, the first of which, in February 2022, led to
the administration of 3.8 million doses in two weeks. During this time, the number of vaccine sites was increased from about 800 to 6 000. However, by mid-2021, Kenya had to contend with vaccine hesitancy, low awareness and community sensitisation. Limited logistics and distribution infrastructure also led to stockouts in vaccine sites despite availability at the national level.
Kenya launched an electronic vaccine registry platform to record individual vaccination data (World Bank, 2021[29]). Strong leadership and political will, along with continuous advocacy at county levels, innovative communication such as mobile vans, social media campaigns, and engagement of influencers led to a rapid uptick in the COVID-19 vaccination (WHO, 2022[39]). During the accelerated vaccination campaign, supported by the United Nations Children's Fund (UNICEF), Kenya focused on young people, the elderly and hard-to-reach populations. They used mobile vaccine sites and outreach locations in marketplaces, bus stops, places of worship and rural areas, specifically targeting elderly people in villages across Kenya's counties.
At various stages of the COVID-19 vaccination campaign, the government engaged with key stakeholders, including religious leaders and other organisations, which were
|
[
"World",
"Bank",
")",
".",
"At",
"the",
"beginning",
"of",
"the",
"year",
",",
"Kenya",
"had",
"ordered",
"24",
"million",
"doses",
"from",
"COVAX",
"and",
"11",
"million",
"from",
"AVATT",
"(",
"Reuters",
",",
"2021[30",
"]",
")",
".",
"The",
"first",
"batch",
"of",
"1.02",
"million",
"doses",
"was",
"received",
"from",
"COVAX",
"in",
"March",
"2021",
".",
"While",
"Kenya",
"also",
"had",
"plans",
"to",
"engage",
"in",
"direct",
"bilateral",
"purchases",
",",
"the",
"country",
"received",
"major",
"vaccine",
"donations",
"through",
"COVAX",
"and",
"bilaterally",
":",
"from",
"the",
"United",
"States",
",",
"12.32",
"million",
"doses",
";",
"Germany",
",",
"4.3",
"million",
" ",
"the",
"United",
"Kingdom",
",",
"1.22",
"million",
"doses",
";",
";",
"Canada",
",",
"1",
"million",
".",
"There",
"were",
"also",
"smaller",
"donations",
"from",
"Japan",
",",
"0.2",
"million",
"doses",
";",
"France",
",",
"0.6",
"million",
";",
"and",
"Denmark",
",",
"0.35",
"million",
".",
"China",
"also",
"pledged",
"12",
"million",
"doses",
"to",
"Kenya",
"(",
"France",
"Ministry",
"for",
"Europe",
"and",
"Foreign",
"Affairs",
",",
"2022[31",
"]",
";",
"Ministry",
"of",
"Foreign",
"Affairs",
"of",
"Japan",
",",
"2023[32",
"]",
";",
"Government",
"of",
"Canada",
",",
"2023[33",
"]",
";",
"UK",
"Parliament",
",",
"2021[34",
"]",
";",
"US",
"Department",
"of",
"State",
",",
"2023[35",
"]",
";",
"Bridge",
"Beijing",
",",
"2022[36",
"]",
";",
"Blessing",
",",
"2021[37",
"]",
";",
"UNICEF",
",",
"2021[38",
"]",
")",
".",
"\n\n",
"#",
"#",
"The",
"challenges",
"of",
"scaling",
"up",
"COVID-19",
"vaccinations",
"\n\n",
"The",
"National",
"COVID-19",
"Vaccine",
"Deployment",
"and",
"Vaccination",
"(",
"VDV",
")",
"Steering",
"Committee",
"and",
"Taskforce",
"implemented",
" ",
"Kenya",
"'s",
" ",
"COVID",
"-19",
" ",
"vaccination",
" ",
"plan",
".",
" ",
"The",
" ",
"first",
" ",
"dose",
" ",
"of",
" ",
"the",
" ",
"COVID-19",
" ",
"vaccine",
" ",
"was",
"administered",
"in",
"March",
"2021",
",",
"and",
"by",
"the",
"end",
"of",
"2021",
",",
"Kenya",
"had",
"fully",
"vaccinated",
"4.6",
"million",
"people",
"and",
"5.8",
"million",
" ",
"partially",
"-corresponding",
" ",
"to",
" ",
"7",
"%",
" ",
"of",
" ",
"its",
" ",
"population",
".",
" ",
"In",
" ",
"2022",
",",
" ",
"Kenya",
" ",
"launched",
" ",
"an",
" ",
"accelerated",
"vaccination",
"campaign",
"including",
"mass",
"vaccination",
"campaigns",
",",
"the",
"first",
"of",
"which",
",",
"in",
"February",
"2022",
",",
"led",
"to",
"\n\n",
"the",
"administration",
"of",
"3.8",
"million",
"doses",
"in",
"two",
"weeks",
".",
"During",
"this",
"time",
",",
"the",
"number",
"of",
"vaccine",
"sites",
"was",
"increased",
"from",
"about",
"800",
"to",
"6",
"000",
".",
"However",
",",
"by",
"mid-2021",
",",
"Kenya",
"had",
"to",
"contend",
"with",
"vaccine",
"hesitancy",
",",
"low",
"awareness",
"and",
"community",
"sensitisation",
".",
"Limited",
"logistics",
"and",
"distribution",
"infrastructure",
"also",
"led",
"to",
"stockouts",
"in",
"vaccine",
"sites",
"despite",
"availability",
"at",
"the",
"national",
"level",
".",
"\n\n",
"Kenya",
"launched",
"an",
"electronic",
"vaccine",
"registry",
"platform",
"to",
"record",
"individual",
"vaccination",
"data",
"(",
"World",
"Bank",
",",
"2021[29",
"]",
")",
".",
"Strong",
"leadership",
"and",
"political",
"will",
",",
"along",
"with",
"continuous",
"advocacy",
"at",
"county",
"levels",
",",
"innovative",
"communication",
"such",
"as",
"mobile",
"vans",
",",
"social",
"media",
"campaigns",
",",
"and",
"engagement",
"of",
"influencers",
"led",
"to",
"a",
"rapid",
"uptick",
"in",
"the",
"COVID-19",
"vaccination",
"(",
"WHO",
",",
"2022[39",
"]",
")",
".",
"During",
"the",
"accelerated",
"vaccination",
"campaign",
",",
"supported",
"by",
"the",
"United",
"Nations",
"Children",
"'s",
"Fund",
"(",
"UNICEF",
")",
",",
"Kenya",
"focused",
"on",
"young",
"people",
",",
"the",
"elderly",
"and",
"hard",
"-",
"to",
"-",
"reach",
"populations",
".",
"They",
"used",
"mobile",
"vaccine",
"sites",
"and",
"outreach",
"locations",
"in",
"marketplaces",
",",
"bus",
"stops",
",",
"places",
"of",
"worship",
"and",
"rural",
"areas",
",",
"specifically",
"targeting",
"elderly",
"people",
"in",
"villages",
"across",
"Kenya",
"'s",
"counties",
".",
"\n\n",
"At",
"various",
"stages",
"of",
"the",
"COVID-19",
"vaccination",
"campaign",
",",
"the",
"government",
"engaged",
"with",
"key",
"stakeholders",
",",
"including",
"religious",
"leaders",
"and",
"other",
"organisations",
",",
"which",
"were"
] |
[
{
"end": 133,
"label": "CITATION_REF",
"start": 116
},
{
"end": 123,
"label": "AUTHOR",
"start": 116
},
{
"end": 129,
"label": "YEAR",
"start": 125
},
{
"end": 132,
"label": "CITATION_ID",
"start": 130
},
{
"end": 700,
"label": "CITATION_REF",
"start": 644
},
{
"end": 748,
"label": "CITATION_REF",
"start": 702
},
{
"end": 780,
"label": "CITATION_REF",
"start": 750
},
{
"end": 805,
"label": "CITATION_REF",
"start": 782
},
{
"end": 839,
"label": "CITATION_REF",
"start": 807
},
{
"end": 865,
"label": "CITATION_REF",
"start": 841
},
{
"end": 885,
"label": "CITATION_REF",
"start": 867
},
{
"end": 903,
"label": "CITATION_REF",
"start": 887
},
{
"end": 690,
"label": "AUTHOR",
"start": 644
},
{
"end": 696,
"label": "YEAR",
"start": 692
},
{
"end": 699,
"label": "CITATION_ID",
"start": 697
},
{
"end": 738,
"label": "AUTHOR",
"start": 702
},
{
"end": 744,
"label": "YEAR",
"start": 740
},
{
"end": 747,
"label": "AUTHOR",
"start": 745
},
{
"end": 770,
"label": "AUTHOR",
"start": 750
},
{
"end": 776,
"label": "YEAR",
"start": 772
},
{
"end": 779,
"label": "CITATION_ID",
"start": 777
},
{
"end": 795,
"label": "AUTHOR",
"start": 782
},
{
"end": 801,
"label": "YEAR",
"start": 797
},
{
"end": 804,
"label": "CITATION_ID",
"start": 802
},
{
"end": 829,
"label": "AUTHOR",
"start": 807
},
{
"end": 835,
"label": "YEAR",
"start": 831
},
{
"end": 838,
"label": "CITATION_ID",
"start": 836
},
{
"end": 855,
"label": "AUTHOR",
"start": 841
},
{
"end": 861,
"label": "YEAR",
"start": 857
},
{
"end": 864,
"label": "CITATION_ID",
"start": 862
},
{
"end": 875,
"label": "AUTHOR",
"start": 867
},
{
"end": 881,
"label": "YEAR",
"start": 877
},
{
"end": 884,
"label": "CITATION_ID",
"start": 882
},
{
"end": 893,
"label": "AUTHOR",
"start": 887
},
{
"end": 899,
"label": "YEAR",
"start": 895
},
{
"end": 902,
"label": "CITATION_ID",
"start": 900
},
{
"end": 1978,
"label": "CITATION_REF",
"start": 1958
},
{
"end": 1968,
"label": "AUTHOR",
"start": 1958
},
{
"end": 1974,
"label": "YEAR",
"start": 1970
},
{
"end": 1977,
"label": "CITATION_ID",
"start": 1975
},
{
"end": 2232,
"label": "CITATION_REF",
"start": 2219
},
{
"end": 2222,
"label": "AUTHOR",
"start": 2219
},
{
"end": 2228,
"label": "YEAR",
"start": 2224
},
{
"end": 2231,
"label": "CITATION_ID",
"start": 2229
}
] |
| | A | A | A | A | B | Extent to which global citizenship |
|-----------------------|-------------------------|-------------------|------------------------------------------------------------------|--------------------|-------------------------------------------------------------|--------------------------------------|
| Country or territory | and Education policies/ | education for are | sustainable development mainstreamed In-service teacher training | Student assessment | % of schools providing life skills-based HIV/AIDS education | frameworks Curriculum |
| | | | | | 4.7.2 | |
| | | | | | | SDG indicator 4.7.1 |
| | | | | | 2023 | Reference year 2020 |
| Latin America and the | | | | | | Caribbean |
| Anguilla | … | … | … | … | 100 ₋₁ | |
| Antigua and | … | … | … | … | … | Barbuda |
| Argentina | … | … | … | … | … | |
| Aruba | … | … | … | … | … | |
| | … | … | … | … | … | Bahamas |
| | … | … | … | … | … | Barbados |
| Belize | … | … | … | … | … | |
| Bolivia, | … | … | 0.77 | 0.75 | … | P. S. |
| Brazil | 1 | 0.94 | 1 | 0.92 | … | |
| British | … | … | … | … | 100 ₋₁ | Virgin Islands |
| Cayman Islands | … | … | … | … | 100 | |
| Chile | 1 | | … | … | … | … … |
| | | 0.88 | 0.85 | 1 | … | Colombia |
| Costa | … | … | … | … | 80 ₋₃ | Rica |
| Cuba | 1 | 1 | 0.95 | 1 | 100 | |
| Curaçao | … | … | … | … | … | |
| | … | … | … | … | 100 ₋₁ | Dominica |
| Dominican | | 0.87 | 0.82 | 1 | - | Republic 0.97 |
| Ecuador | … | … | … | … | … | |
| El Salvador | … | … | … | … | … … | |
| Grenada | … | …
|
[
"|",
" ",
"|",
"A",
" ",
"|",
"A",
" ",
"|",
"A",
" ",
"|",
"A",
" ",
"|",
"B",
" ",
"|",
"Extent",
"to",
"which",
"global",
"citizenship",
" ",
"|",
"\n",
"|-----------------------|-------------------------|-------------------|------------------------------------------------------------------|--------------------|-------------------------------------------------------------|--------------------------------------|",
"\n",
"|",
"Country",
"or",
"territory",
" ",
"|",
"and",
"Education",
"policies/",
"|",
"education",
"for",
"are",
"|",
"sustainable",
"development",
"mainstreamed",
"In",
"-",
"service",
"teacher",
"training",
"|",
"Student",
"assessment",
"|",
"%",
"of",
"schools",
"providing",
"life",
"skills",
"-",
"based",
"HIV",
"/",
"AIDS",
"education",
"|",
"frameworks",
"Curriculum",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"4.7.2",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"SDG",
"indicator",
"4.7.1",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"2023",
" ",
"|",
"Reference",
"year",
"2020",
" ",
"|",
"\n",
"|",
"Latin",
"America",
"and",
"the",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"Caribbean",
" ",
"|",
"\n",
"|",
"Anguilla",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
"₋₁",
" ",
"|",
" ",
"|",
"\n",
"|",
"Antigua",
"and",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"Barbuda",
" ",
"|",
"\n",
"|",
"Argentina",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
"Aruba",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"Bahamas",
" ",
"|",
"\n",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"Barbados",
" ",
"|",
"\n",
"|",
"Belize",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
"Bolivia",
",",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"0.77",
" ",
"|",
"0.75",
" ",
"|",
"…",
" ",
"|",
"P.",
"S.",
" ",
"|",
"\n",
"|",
"Brazil",
" ",
"|",
"1",
" ",
"|",
"0.94",
" ",
"|",
"1",
" ",
"|",
"0.92",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
"British",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"Virgin",
"Islands",
" ",
"|",
"\n",
"|",
"Cayman",
"Islands",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
" ",
"|",
" ",
"|",
"\n",
"|",
"Chile",
" ",
"|",
"1",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
"0.88",
" ",
"|",
"0.85",
" ",
"|",
"1",
" ",
"|",
"…",
" ",
"|",
"Colombia",
" ",
"|",
"\n",
"|",
"Costa",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"80",
"₋₃",
" ",
"|",
"Rica",
" ",
"|",
"\n",
"|",
"Cuba",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"0.95",
" ",
"|",
"1",
" ",
"|",
"100",
" ",
"|",
" ",
"|",
"\n",
"|",
"Curaçao",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"Dominica",
" ",
"|",
"\n",
"|",
"Dominican",
" ",
"|",
" ",
"|",
"0.87",
" ",
"|",
"0.82",
" ",
"|",
"1",
" ",
"|",
"-",
" ",
"|",
"Republic",
"0.97",
" ",
"|",
"\n",
"|",
"Ecuador",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
"El",
"Salvador",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
" ",
"|",
"\n",
"|",
"Grenada",
" ",
"|",
"…",
" ",
"|",
"…",
" "
] |
[] |
according to the clinical classification of the WHO interim guidance (3). Non-severe patients were all patients in mild, moderate, or asymptomatic group, and severe patients were those in a critical or severe group (12, 13). All patients were managed according to the Moroccan protocol of the Ministry of Health (14).
## Clinical and laboratory data
In terms of epidemiological information, we con sidered patient demographic characteristics
including age and gender; comorbidities including hypertension, diabetes, cardiovascular disease, respiratory disease, and other disease; clinical symptoms including fever, general symptom, respiratory symptom, ear, nose and throat (ENT) symptom, and digestive symptom; and clinical outcomes including disease severity and death.
Nasal-pharyngeal swabs and venous blood samples were collected and examined by the National Reference Laboratory, Mohammed VI University of Health Sciences, Casablanca, Morocco. Laboratory confirmation of SARS-CoV-2 was achieved by the RTPCR assay conducted in accordance with the protocol established by the WHO. Laboratory tests on admission comprised complete blood count, blood chemistry, and biomarkers including leucocyte, neutrophil, lymphocyte, monocyte, eosinophil, hemoglobin, platelet, and CRP .
## Statistical analysis
For the descriptive analysis, we described continuous variables as medians with interquartile ranges (IQRs) and categorical variables as percentages and frequencies. Patients from severe and non-severe risk categories were compared in terms of demographics characteristics, comorbidities, clinical symptoms, and laboratory findings, using Mann-Whitney-Wilcoxon test for continuous variables and using the Fisher exact test for categorical variables.
To determine and compare the accuracy of hematological factors and CRP level on admission in severity prediction, the receiver operating characteristic (ROC) curve analysis was performed, and the difference in the area under the curve (AUC) was tested.
We finally examined the association between CRP level and severity of COVID-19 disease. First, univariate analysis was performed for all variables. Second, multivariate logistic regression was implemented to examine the independent association of CRP level with severity of COVID-19 disease. All significant variables in the univariate analysis were included in the multivariate logistic regression. We also performed stepwise multivariate analysis based on a bidirectional elimination in order to take into account the higher correlation that may exist between some variables particularly those of comorbidities and of laboratory markers. Results were reported as odds ratios (ORs) and 95% confidence intervals (CIs).
All statistical analyses were performed using STATA. All P-values were two-sided, and those < 0.05 were considered as statistically significant.
## Ethics
The study was approved by the institutional ethics board
|
[
"according",
"to",
"the",
"clinical",
"classification",
"of",
"the",
"WHO",
" ",
"interim",
" ",
"guidance",
" ",
"(",
"3",
")",
".",
" ",
"Non",
"-",
"severe",
"patients",
"were",
" ",
"all",
"patients",
"in",
"mild",
",",
"moderate",
",",
" ",
"or",
"asymptomatic",
"group",
",",
"and",
"severe",
"patients",
"were",
"those",
"in",
"a",
"critical",
"or",
"severe",
"group",
"(",
"12",
",",
"13",
")",
".",
"All",
"patients",
"were",
"managed",
"according",
"to",
"the",
"Moroccan",
"protocol",
"of",
"the",
"Ministry",
"of",
"Health",
"(",
"14",
")",
".",
"\n\n",
"#",
"#",
"Clinical",
"and",
"laboratory",
"data",
"\n\n",
"In",
" ",
"terms",
" ",
"of",
" ",
"epidemiological",
" ",
"information",
",",
" ",
"we",
"con",
" ",
"sidered",
"patient",
"demographic",
"characteristics",
"\n\n",
"including",
" ",
"age",
" ",
"and",
" ",
"gender",
";",
" ",
"comorbidities",
" ",
"including",
"hypertension",
",",
"diabetes",
",",
"cardiovascular",
"disease",
",",
"respiratory",
"disease",
",",
"and",
"other",
"disease",
";",
"clinical",
"symptoms",
"including",
" ",
"fever",
",",
" ",
"general",
" ",
"symptom",
",",
" ",
"respiratory",
" ",
"symptom",
",",
"ear",
",",
"nose",
"and",
"throat",
"(",
"ENT",
")",
"symptom",
",",
"and",
"digestive",
" ",
"symptom",
";",
" ",
"and",
" ",
"clinical",
" ",
"outcomes",
" ",
"including",
" ",
"disease",
"severity",
"and",
"death",
".",
"\n\n",
"Nasal",
"-",
"pharyngeal",
"swabs",
"and",
"venous",
"blood",
"samples",
" ",
"were",
" ",
"collected",
" ",
"and",
" ",
"examined",
" ",
"by",
" ",
"the",
" ",
"National",
"Reference",
" ",
"Laboratory",
",",
" ",
"Mohammed",
" ",
"VI",
" ",
"University",
" ",
"of",
"Health",
" ",
"Sciences",
",",
" ",
"Casablanca",
",",
" ",
"Morocco",
".",
" ",
"Laboratory",
"confirmation",
"of",
"SARS",
"-",
"CoV-2",
"was",
"achieved",
"by",
"the",
"RTPCR",
"assay",
"conducted",
"in",
"accordance",
"with",
"the",
"protocol",
"established",
"by",
"the",
"WHO",
".",
"Laboratory",
"tests",
"on",
"admission",
"comprised",
"complete",
"blood",
"count",
",",
"blood",
" ",
"chemistry",
",",
"and",
"biomarkers",
"including",
"leucocyte",
",",
"neutrophil",
",",
"lymphocyte",
",",
" ",
"monocyte",
",",
" ",
"eosinophil",
",",
" ",
"hemoglobin",
",",
"platelet",
",",
"and",
"CRP",
".",
"\n\n",
"#",
"#",
"Statistical",
"analysis",
"\n\n",
"For",
"the",
"descriptive",
"analysis",
",",
"we",
"described",
"continuous",
" ",
"variables",
" ",
"as",
" ",
"medians",
" ",
"with",
" ",
"interquartile",
" ",
"ranges",
"(",
"IQRs",
")",
"and",
"categorical",
"variables",
"as",
"percentages",
"and",
"frequencies",
".",
"Patients",
"from",
"severe",
"and",
"non",
"-",
"severe",
"risk",
"categories",
"were",
"compared",
"in",
"terms",
"of",
"demographics",
"characteristics",
",",
"comorbidities",
",",
"clinical",
"symptoms",
",",
"and",
"laboratory",
" ",
"findings",
",",
" ",
"using",
" ",
"Mann",
"-",
"Whitney",
"-",
"Wilcoxon",
"test",
" ",
"for",
" ",
"continuous",
" ",
"variables",
" ",
"and",
" ",
"using",
" ",
"the",
" ",
"Fisher",
"exact",
"test",
"for",
"categorical",
"variables",
".",
"\n\n",
"To",
"determine",
" ",
"and",
" ",
"compare",
" ",
"the",
" ",
"accuracy",
" ",
"of",
"hematological",
"factors",
"and",
"CRP",
"level",
"on",
"admission",
"in",
"severity",
"prediction",
",",
"the",
"receiver",
"operating",
"characteristic",
"(",
"ROC",
")",
"curve",
"analysis",
" ",
"was",
" ",
"performed",
",",
" ",
"and",
" ",
"the",
" ",
"difference",
"in",
"the",
"area",
"under",
"the",
"curve",
"(",
"AUC",
")",
"was",
"tested",
".",
"\n\n",
"We",
" ",
"finally",
" ",
"examined",
" ",
"the",
" ",
"association",
" ",
"between",
"CRP",
" ",
"level",
" ",
"and",
" ",
"severity",
" ",
"of",
" ",
"COVID-19",
" ",
"disease",
".",
" ",
"First",
",",
"univariate",
" ",
"analysis",
" ",
"was",
" ",
"performed",
" ",
"for",
" ",
"all",
" ",
"variables",
".",
"Second",
",",
" ",
"multivariate",
" ",
"logistic",
" ",
"regression",
" ",
"was",
" ",
"implemented",
" ",
"to",
" ",
"examine",
" ",
"the",
" ",
"independent",
" ",
"association",
" ",
"of",
"CRP",
"level",
"with",
"severity",
"of",
"COVID-19",
"disease",
".",
"All",
"significant",
"variables",
"in",
"the",
"univariate",
"analysis",
"were",
"included",
" ",
"in",
" ",
"the",
" ",
"multivariate",
" ",
"logistic",
" ",
"regression",
".",
" ",
"We",
"also",
" ",
"performed",
" ",
"stepwise",
" ",
"multivariate",
" ",
"analysis",
" ",
"based",
"on",
" ",
"a",
" ",
"bidirectional",
" ",
"elimination",
" ",
"in",
" ",
"order",
" ",
"to",
" ",
"take",
" ",
"into",
"account",
"the",
"higher",
"correlation",
"that",
"may",
"exist",
"between",
"some",
"variables",
"particularly",
"those",
"of",
"comorbidities",
"and",
"of",
"laboratory",
"markers",
".",
"Results",
"were",
"reported",
"as",
"odds",
"ratios",
"(",
"ORs",
")",
"and",
"95",
"%",
"confidence",
"intervals",
"(",
"CIs",
")",
".",
"\n\n",
"All",
" ",
"statistical",
" ",
"analyses",
" ",
"were",
" ",
"performed",
" ",
"using",
"STATA",
".",
" ",
"All",
" ",
"P",
"-",
"values",
" ",
"were",
" ",
"two",
"-",
"sided",
",",
" ",
"and",
" ",
"those",
" ",
"&",
"lt",
";",
"0.05",
"were",
"considered",
"as",
"statistically",
"significant",
".",
"\n\n",
"#",
"#",
"Ethics",
"\n\n",
"The",
" ",
"study",
" ",
"was",
" ",
"approved",
" ",
"by",
" ",
"the",
" ",
"institutional",
"ethics",
"board"
] |
[
{
"end": 74,
"label": "CITATION_REF",
"start": 73
},
{
"end": 321,
"label": "CITATION_REF",
"start": 319
}
] |
EaP countries ......... 55
Figure 2.3. Distribution of output in Manufacturing for five EaP countries ..................... 56
Figure 2.4. Distribution of goods exports (2012-2019) by SITC Rev. 4 one-digit class .. 64
Figure 2.5. Distribution of services exports (2011-2019) by EBOPS one-digit* ............ 79
Figure 3.1. A graphical representation of the results produced by topic modelling via
Latent Dirichlet Allocation .................................................................................................................... 147
Figure 3.2. Keyword cloud for Agrifood .......................................................................................... 151
Figure 3.3. Keyword cloud for Biotechnology .............................................................................. 151
Figure 3.4. Keyword cloud for Chemistry and chemical engineering ................................ 151
Figure 3.5. Keyword cloud for Electric and electronic technologies .................................. 151
Figure 3.6. Keyword cloud for Energy ............................................................................................. 151
Figure 3.7. Keyword cloud for Environmental sciences and industries ........................... 151
Figure 3.8. Keyword cloud for Fundamental physics and mathematics .......................... 151
Figure 3.9. Keyword cloud for Governance, culture, education and the economy ...... 151
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation259
Figure 3.10. Keyword cloud for Health and wellbeing ............................................................. 152
Figure 3.11. Keyword cloud for ICT and computer science ................................................... 152
Figure 3.12. Keyword cloud for Mechanical engineering and heavy machinery ......... 152
Figure 3.13. Keyword cloud for Nanotechnology and materials ......................................... 152
Figure 3.14. Keyword cloud for Optics and photonics ............................................................. 152
Figure 3.15. Keyword cloud for Transportation .......................................................................... 152
Figure 3.16. Number of records per labelled topic group (i.e. ‘domain’) in the EaP
region .............................................................................................................................................................. 155
Figure 3.17. Co-occurrence of S&T records in different domains across the whole EaP
region, colour-coded for the ratio with the total number of records in that domain
(column) ......................................................................................................................................................... 155
Figure 3.18. Share of records per S&T domain in the Eastern Partnership region .... 156
Figure 3.19. Share of records per S&T domain in the Eastern Partnership region,
calculated for each domain, relative to the total number of records per data
source ............................................................................................................................................... 157
Figure 3.20. Top 7 identified domains in each EaP country in publications (number of
identified publications in the domain | percentage of the total number of publications
analysed in the country) ......................................................................................................................... 167
Figure 3.21. Top 7 identified domains in each EaP country in patents (number of
identified patents in the domain | percentage of the total number of patents analysed
in the country) ............................................................................................................................................. 169
Figure 3.22. Top identified domains in each EaP country in EC projects (number of
identified EC projects in the domain | percentage of the total number
|
[
"EaP",
"countries",
".........",
"55",
"\n",
"Figure",
"2.3",
".",
"Distribution",
"of",
"output",
"in",
"Manufacturing",
"for",
"five",
"EaP",
"countries",
".....................",
"56",
"\n",
"Figure",
"2.4",
".",
"Distribution",
"of",
"goods",
"exports",
"(",
"2012",
"-",
"2019",
")",
"by",
"SITC",
"Rev.",
"4",
"one",
"-",
"digit",
"class",
"..",
"64",
"\n",
"Figure",
"2.5",
".",
"Distribution",
"of",
"services",
"exports",
"(",
"2011",
"-",
"2019",
")",
"by",
"EBOPS",
"one",
"-",
"digit",
"*",
"............",
"79",
"\n",
"Figure",
"3.1",
".",
"A",
"graphical",
"representation",
"of",
"the",
"results",
"produced",
"by",
"topic",
"modelling",
"via",
"\n",
"Latent",
"Dirichlet",
"Allocation",
" ",
"....................................................................................................................",
"147",
"\n",
"Figure",
"3.2",
".",
"Keyword",
"cloud",
"for",
"Agrifood",
"..........................................................................................",
"151",
"\n",
"Figure",
"3.3",
".",
"Keyword",
"cloud",
"for",
"Biotechnology",
"..............................................................................",
"151",
"\n",
"Figure",
"3.4",
".",
"Keyword",
"cloud",
"for",
"Chemistry",
"and",
"chemical",
"engineering",
"................................",
"151",
"\n",
"Figure",
"3.5",
".",
"Keyword",
"cloud",
"for",
"Electric",
"and",
"electronic",
"technologies",
"..................................",
"151",
"\n",
"Figure",
"3.6",
".",
"Keyword",
"cloud",
"for",
"Energy",
".............................................................................................",
"151",
"\n",
"Figure",
"3.7",
".",
"Keyword",
"cloud",
"for",
"Environmental",
"sciences",
"and",
"industries",
"...........................",
"151",
"\n",
"Figure",
"3.8",
".",
"Keyword",
"cloud",
"for",
"Fundamental",
"physics",
"and",
"mathematics",
"..........................",
"151",
"\n",
"Figure",
"3.9",
".",
"Keyword",
"cloud",
"for",
"Governance",
",",
"culture",
",",
"education",
"and",
"the",
"economy",
"......",
"151",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation259",
"\n",
"Figure",
"3.10",
".",
"Keyword",
"cloud",
"for",
"Health",
"and",
"wellbeing",
".............................................................",
"152",
"\n",
"Figure",
"3.11",
".",
"Keyword",
"cloud",
"for",
"ICT",
"and",
"computer",
"science",
"...................................................",
"152",
"\n",
"Figure",
"3.12",
".",
"Keyword",
"cloud",
"for",
"Mechanical",
"engineering",
"and",
"heavy",
"machinery",
".........",
"152",
"\n",
"Figure",
"3.13",
".",
"Keyword",
"cloud",
"for",
"Nanotechnology",
"and",
"materials",
".........................................",
"152",
"\n",
"Figure",
"3.14",
".",
"Keyword",
"cloud",
"for",
"Optics",
"and",
"photonics",
".............................................................",
"152",
"\n",
"Figure",
"3.15",
".",
"Keyword",
"cloud",
"for",
"Transportation",
"..........................................................................",
"152",
"\n",
"Figure",
"3.16",
".",
"Number",
"of",
"records",
"per",
"labelled",
"topic",
"group",
"(",
"i.e.",
"‘",
"domain",
"’",
")",
"in",
"the",
"EaP",
"\n",
"region",
"..............................................................................................................................................................",
"155",
"\n",
"Figure",
"3.17",
".",
"Co",
"-",
"occurrence",
"of",
"S&T",
"records",
"in",
"different",
"domains",
"across",
"the",
"whole",
"EaP",
"\n",
"region",
",",
"colour",
"-",
"coded",
"for",
"the",
"ratio",
"with",
"the",
"total",
"number",
"of",
"records",
"in",
"that",
"domain",
"\n",
"(",
"column",
")",
".........................................................................................................................................................",
"155",
"\n",
"Figure",
"3.18",
".",
"Share",
"of",
"records",
"per",
"S&T",
"domain",
"in",
"the",
"Eastern",
"Partnership",
"region",
"....",
"156",
"\n",
"Figure",
"3.19",
".",
"Share",
"of",
"records",
"per",
"S&T",
"domain",
"in",
"the",
"Eastern",
"Partnership",
"region",
",",
"\n",
"calculated",
"for",
"each",
"domain",
",",
"relative",
"to",
"the",
"total",
"number",
"of",
"records",
"per",
"data",
"\n",
"source",
"...............................................................................................................................................",
"157",
"\n",
"Figure",
"3.20",
".",
"Top",
"7",
"identified",
"domains",
"in",
"each",
"EaP",
"country",
"in",
"publications",
"(",
"number",
"of",
"\n",
"identified",
"publications",
"in",
"the",
"domain",
"|",
"percentage",
"of",
"the",
"total",
"number",
"of",
"publications",
"\n",
"analysed",
"in",
"the",
"country",
")",
".........................................................................................................................",
"167",
"\n",
"Figure",
"3.21",
".",
"Top",
"7",
"identified",
"domains",
"in",
"each",
"EaP",
"country",
"in",
"patents",
"(",
"number",
"of",
"\n",
"identified",
"patents",
"in",
"the",
"domain",
"|",
"percentage",
"of",
"the",
"total",
"number",
"of",
"patents",
"analysed",
"\n",
"in",
"the",
"country",
")",
".............................................................................................................................................",
"169",
"\n",
"Figure",
"3.22",
".",
"Top",
"identified",
"domains",
"in",
"each",
"EaP",
"country",
"in",
"EC",
"projects",
"(",
"number",
"of",
"\n",
"identified",
"EC",
"projects",
"in",
"the",
"domain",
"|",
"percentage",
"of",
"the",
"total",
"number"
] |
[] |
Sanders, W. L., Wright, S. P., & Horn, S. P. (1997). Teacher and classroom context effects on student achievement: Implications for teacher evaluation. Journal of Personnel Evaluation in Education , 11 (1), 57 -67.
Schickedanz, J. A., Tatum, A. W., & Wright, T. L. (2015). The importance of early literacy: Educational implications for closing the achievement gap. Journal of Early Childhood Literacy , 15 (3), 345 -367. https://doi.org/10.1177/1468798414554021
Schwartz, M. E., & Rothbart, M. K. (2017). Educational implications of developmental psychology. In J. H. Green & R. L. Balfour (Eds.), Handbook of educational psychology (pp. 331 -348). Springer.
Simon, R. (2021). Educational implications of strategies for closing the achievement gap in ELA: A comprehensive approach to effective teaching in Title I schools. Journal of Educational Research and Practice , 35 (2), 145 -159.
Siwatu, K. O. (2011). Preservice teachers culturally responsive teaching self-efficacy-forming ' experiences: A mixed methods study. The Journal of Educational Research , 104 (5), 360 -369.
Skinner, E. A. (2019a). Educational implications of research on student motivation. Educational Psychology Review , 31 (3), 405 -419. https://doi.org/10.1007/s10648-019-09429-7
Skinner, B. F. (2019b). The behavior of organisms: An experimental analysis. Journal of Experimental Psychology , 12 (3), 123 -139. Psychological Review Press.
Slade, S., & Prinsloo, P. (2015). Student privacy self-management: Implications for learning analytics. In Proceedings of the Fifth International Conference on Learning Analytics And Knowledge (pp. 83 -92). ACM. https://doi.org/10.1145/2723576.2723585
Sleeter, C. (2012). Confronting the marginalization of culturally responsive pedagogy. Urban Education , 47 (3), 562 -584.
Smith, J. (2005). Educational implications for closing the achievement gap: Strategies and practices. Journal of Educational Research , 98 (3), 150 -162.
Spady, W. G. (1994). Outcome-based education: Critical issues and answers . American Association of School Administrators. Retrieved from https://files.eric.ed.gov/fulltext/ED380910.pdf
Spradley, J. (1979). The ethnographic interview. Holt, Rinehart & Winston.
Thompson, B. (2004). The 'significance' crisis in psychology and education. The Journal of Socio-Economics, 33 (5), 607 -613.
UNESCO. (2015). Rethinking education: Towards a global common good? UNESCO. United Nations. (1948). Universal declaration of human rights . General Assembly Resolution
217 A (III). United Nations. https://www.un.org/en/universal-declaration-human-rights/
U.S. Department of Education. (1965). Elementary and Secondary Education Act of 1965 . Public Law 89-10, 79 Stat. 27. Retrieved from https://www2.ed.gov/policy/elsec/leg/esea02/107-110.pdf
- U.S. Department of Education. (2015). The condition of education 2015 (NCES 2015-144).
U.S. Department of Education, National Center for Education Statistics.
https://nces.ed.gov/pubs2015/2015144.pdf
U.S. Department of Health and Human Services. (2023). Educational implications and support strategies for closing the achievement gap . U.S. Department of Health and Human Services. Retrieved from https://www.hhs.gov
|
[
"Sanders",
",",
"W.",
"L.",
",",
"Wright",
",",
"S.",
"P.",
",",
"&",
"amp",
";",
"Horn",
",",
"S.",
"P.",
"(",
"1997",
")",
".",
"Teacher",
"and",
"classroom",
"context",
"effects",
"on",
"student",
"achievement",
":",
"Implications",
"for",
"teacher",
"evaluation",
".",
"Journal",
"of",
"Personnel",
"Evaluation",
"in",
"Education",
",",
"11",
"(",
"1",
")",
",",
"57",
"-67",
".",
"\n\n",
"Schickedanz",
",",
"J.",
"A.",
",",
"Tatum",
",",
"A.",
"W.",
",",
"&",
"amp",
";",
"Wright",
",",
"T.",
"L.",
"(",
"2015",
")",
".",
"The",
"importance",
"of",
"early",
"literacy",
":",
"Educational",
"implications",
"for",
"closing",
"the",
"achievement",
"gap",
".",
"Journal",
"of",
"Early",
"Childhood",
"Literacy",
",",
"15",
"(",
"3",
")",
",",
"345",
"-367",
".",
"https://doi.org/10.1177/1468798414554021",
"\n\n",
"Schwartz",
",",
"M.",
"E.",
",",
"&",
"amp",
";",
"Rothbart",
",",
"M.",
"K.",
"(",
"2017",
")",
".",
"Educational",
"implications",
"of",
"developmental",
"psychology",
".",
"In",
"J.",
"H.",
"Green",
"&",
"amp",
";",
"R.",
"L.",
"Balfour",
"(",
"Eds",
".",
")",
",",
"Handbook",
"of",
"educational",
"psychology",
"(",
"pp",
".",
"331",
"-348",
")",
".",
"Springer",
".",
"\n\n",
"Simon",
",",
"R.",
"(",
"2021",
")",
".",
"Educational",
"implications",
"of",
"strategies",
"for",
"closing",
"the",
"achievement",
"gap",
"in",
"ELA",
":",
"A",
"comprehensive",
"approach",
"to",
"effective",
"teaching",
"in",
"Title",
"I",
"schools",
".",
"Journal",
"of",
"Educational",
"Research",
"and",
"Practice",
",",
"35",
"(",
"2",
")",
",",
"145",
"-159",
".",
"\n\n",
"Siwatu",
",",
"K.",
"O.",
"(",
"2011",
")",
".",
"Preservice",
"teachers",
" ",
"culturally",
"responsive",
"teaching",
"self",
"-",
"efficacy",
"-",
"forming",
"'",
"experiences",
":",
"A",
"mixed",
"methods",
"study",
".",
"The",
"Journal",
"of",
"Educational",
"Research",
",",
"104",
"(",
"5",
")",
",",
"360",
"-369",
".",
"\n\n",
"Skinner",
",",
"E.",
"A.",
"(",
"2019a",
")",
".",
"Educational",
"implications",
"of",
"research",
"on",
"student",
"motivation",
".",
"Educational",
"Psychology",
"Review",
",",
"31",
"(",
"3",
")",
",",
"405",
"-419",
".",
"https://doi.org/10.1007/s10648-019-09429-7",
"\n\n",
"Skinner",
",",
"B.",
"F.",
"(",
"2019b",
")",
".",
"The",
"behavior",
"of",
"organisms",
":",
"An",
"experimental",
"analysis",
".",
"Journal",
"of",
"Experimental",
"Psychology",
",",
"12",
"(",
"3",
")",
",",
"123",
"-139",
".",
"Psychological",
"Review",
"Press",
".",
"\n\n",
"Slade",
",",
"S.",
",",
"&",
"amp",
";",
"Prinsloo",
",",
"P.",
"(",
"2015",
")",
".",
"Student",
"privacy",
"self",
"-",
"management",
":",
"Implications",
"for",
"learning",
"analytics",
".",
"In",
"Proceedings",
"of",
"the",
"Fifth",
"International",
"Conference",
"on",
"Learning",
"Analytics",
"And",
"Knowledge",
"(",
"pp",
".",
"83",
"-92",
")",
".",
"ACM",
".",
"https://doi.org/10.1145/2723576.2723585",
"\n\n",
"Sleeter",
",",
"C.",
"(",
"2012",
")",
".",
"Confronting",
"the",
"marginalization",
"of",
"culturally",
"responsive",
"pedagogy",
".",
"Urban",
"Education",
",",
"47",
"(",
"3",
")",
",",
"562",
"-584",
".",
"\n\n",
"Smith",
",",
"J.",
"(",
"2005",
")",
".",
"Educational",
"implications",
"for",
"closing",
"the",
"achievement",
"gap",
":",
"Strategies",
"and",
"practices",
".",
"Journal",
"of",
"Educational",
"Research",
",",
"98",
"(",
"3",
")",
",",
"150",
"-162",
".",
"\n\n",
"Spady",
",",
"W.",
"G.",
"(",
"1994",
")",
".",
"Outcome",
"-",
"based",
"education",
":",
"Critical",
"issues",
"and",
"answers",
".",
"American",
"Association",
"of",
"School",
"Administrators",
".",
"Retrieved",
"from",
"https://files.eric.ed.gov/fulltext/ED380910.pdf",
"\n\n",
"Spradley",
",",
"J.",
"(",
"1979",
")",
".",
"The",
"ethnographic",
"interview",
".",
"Holt",
",",
"Rinehart",
"&",
"amp",
";",
"Winston",
".",
"\n\n",
"Thompson",
",",
"B.",
"(",
"2004",
")",
".",
"The",
"'",
"significance",
"'",
"crisis",
"in",
"psychology",
"and",
"education",
".",
"The",
"Journal",
"of",
"Socio",
"-",
"Economics",
",",
"33",
"(",
"5",
")",
",",
"607",
"-613",
".",
"\n\n",
"UNESCO",
".",
"(",
"2015",
")",
".",
"Rethinking",
"education",
":",
"Towards",
"a",
"global",
"common",
"good",
"?",
"UNESCO",
".",
"United",
"Nations",
".",
"(",
"1948",
")",
".",
"Universal",
"declaration",
"of",
"human",
"rights",
".",
"General",
"Assembly",
"Resolution",
"\n\n",
"217",
"A",
"(",
"III",
")",
".",
"United",
"Nations",
".",
"https://www.un.org/en/universal-declaration-human-rights/",
"\n\n",
"U.S.",
"Department",
"of",
"Education",
".",
"(",
"1965",
")",
".",
"Elementary",
"and",
"Secondary",
"Education",
"Act",
"of",
"1965",
".",
"Public",
"Law",
"89",
"-",
"10",
",",
"79",
"Stat",
".",
"27",
".",
"Retrieved",
"from",
"https://www2.ed.gov/policy/elsec/leg/esea02/107-110.pdf",
"\n\n",
"-",
"U.S.",
"Department",
"of",
"Education",
".",
"(",
"2015",
")",
".",
"The",
"condition",
"of",
"education",
"2015",
"(",
"NCES",
"2015",
"-",
"144",
")",
".",
"\n\n",
"U.S.",
"Department",
"of",
"Education",
",",
"National",
"Center",
"for",
"Education",
"Statistics",
".",
"\n\n",
"https://nces.ed.gov/pubs2015/2015144.pdf",
"\n\n",
"U.S.",
"Department",
"of",
"Health",
"and",
"Human",
"Services",
".",
"(",
"2023",
")",
".",
"Educational",
"implications",
"and",
"support",
"strategies",
"for",
"closing",
"the",
"achievement",
"gap",
".",
"U.S.",
"Department",
"of",
"Health",
"and",
"Human",
"Services",
".",
"Retrieved",
"from",
"https://www.hhs.gov",
"\n\n"
] |
[
{
"end": 218,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 470,
"label": "CITATION_SPAN",
"start": 220
},
{
"end": 676,
"label": "CITATION_SPAN",
"start": 472
},
{
"end": 906,
"label": "CITATION_SPAN",
"start": 678
},
{
"end": 1098,
"label": "CITATION_SPAN",
"start": 908
},
{
"end": 1276,
"label": "CITATION_SPAN",
"start": 1100
},
{
"end": 1437,
"label": "CITATION_SPAN",
"start": 1278
},
{
"end": 1694,
"label": "CITATION_SPAN",
"start": 1439
},
{
"end": 1818,
"label": "CITATION_SPAN",
"start": 1696
},
{
"end": 1973,
"label": "CITATION_SPAN",
"start": 1820
},
{
"end": 2160,
"label": "CITATION_SPAN",
"start": 1975
},
{
"end": 2240,
"label": "CITATION_SPAN",
"start": 2162
},
{
"end": 2367,
"label": "CITATION_SPAN",
"start": 2242
},
{
"end": 2624,
"label": "CITATION_SPAN",
"start": 2369
},
{
"end": 2814,
"label": "CITATION_SPAN",
"start": 2626
},
{
"end": 2904,
"label": "CITATION_SPAN",
"start": 2818
},
{
"end": 3019,
"label": "CITATION_SPAN",
"start": 2906
},
{
"end": 3237,
"label": "CITATION_SPAN",
"start": 3021
}
] |
“In Search of the Data Revolution:
Has the Official Statistics Paradigm Shifted?” Statistical Journal of the IAOS 36 (4): 1075–94.
MacFeely, Steve, and Bojan Nastav. 2019. “You Say You
Want a [Data] Revolution: A Proposal to Use Unofficial Statistics for the SDG Global Indicator Framework.”
Statistical Journal of the IAOS 35 (3): 309–27.
Masaki, Takaaki, Samantha Custer, Agustina Eskenazi,
Alena Stern, and Rebecca Latourell. 2017. “Decoding Data Use: How Do Leaders Use Data and Use It to Accelerate Development?” AidData, Global Research Institute, Col-lege of William and Mary, Williamsburg, VA.
Misra, Archita, and Julia Schmidt. 2020. “Enhancing Trust
in Data—Participatory Data Ecosystems for the Post-COVID Society.” In Shaping the COVID-19 Recovery: Ideas from OECD’s Generation Y and Z. Paris: Organisation for Economic Co-operation and Development.
MKM (Ministry of Economic Affairs and Communications,
Estonia). 2018. “Digital Agenda 2020 for Estonia.” MKM, Tallinn, Estonia. https://www.mkm.ee/sites/default/files
/digital_agenda_2020_web_eng_04.06.19.pdf.
Moscoso, Sandra. 2016. “Increasing Data Literacy to Improve
Policy-Making in Sudan.” Governance for Development
(blog), March 15, 2016. https://blogs.worldbank.org
/governance/increasing-data-literacy-improve-policy
-making-sudan#.
Munshi, Neil. 2020. “Africa’s Cloud Computing Boom
Creates Data Centre Gold Rush.” Technology Sector (blog), March 2, 2020. https://www.ft.com/content/402a18c8
-5a32-11ea-abe5-8e03987b7b20.
OECD (Organisation for Economic Co-operation and Devel-
opment). 2002. Measuring the Non-Observed Economy: A Handbook. Paris: OECD. http://www.oecd.org/sdd/na
/1963116.pdf.
OECD (Organisation for Economic Co-operation and Devel-
opment). 2018. “Peer-to-Peer Learning to Strengthen Dissemination of PISA for Development Results.” PISA for Development Brief 27, OECD, Paris. https://www
.oecd.org/pisa/pisa-for-development/27_Peer_learning
_results_dissemination.pdf.
OECD (Organisation for Economic Co-operation and
Development). 2019a. Digital Government Review of Argentina: Accelerating the Digitalisation of the Public Sector. OECD Digital Government Studies Series. Paris: OECD. https://www.oecd-ilibrary.org/governance/digital
-government-review-of-argentina_354732cc-en.
OECD (Organisation for Economic Co-operation and Devel-
opment). 2019b. Open Government in Biscay. OECD Public Governance Reviews Series. Paris: OECD. https://doi
.org/10.1787/a70e8be3-en.
Piovesan, Federico. 2015. “Statistical Perspectives on Citizen-
Generated Data.” DataShift, Civicus, Johannesburg, South Africa. http://civicus.org/thedatashift/wp-content
/uploads/2015/07/statistical-perspectives-on-cgd_web
_single-page.pdf.
RBI (Reserve Bank of India). 2019. “Master Direction–
Non-Banking Financial Company–Account Aggregator (Reserve Bank) Directions.” Document RBI/DNBR/2016-17/46, Master Direction DNBR.PD.009/03.10.119/2016-17, RBI, Mumbai. https://www.rbi.org.in/Scripts/BS_View
MasDirections.aspx?id=10598.
Rosa, Fernanda R. 2018. “Internet Node as a Network of
Relationships: Sociotechnical Aspects of an Internet Exchange Point.” Paper presented at TPRC46: Research Conference on Communications, Information, and Internet Policy, Washington College of Law, American University, Washington, DC, September 21–22, 2018.
SSB (Statistisk sentralbyrå, Statistics Norway). 2020.
“Annual Report 2019: International Development Coop-eration in Statistics Norway.” Plans and Reports 2020/1,
326 | World Development Report 2021
SSB, Oslo. https://www.ssb.no/en/omssb/om-oss/vaar
-virksomhet/planer-og-meldinger/_attachment/416480?
_ts=1711b58ce28.
Stats NZ (Statistics New Zealand). 2018. “Data Strategy and
Roadmap.” Fact Sheet, Wellington, New Zealand. https://
www.data.govt.nz/assets/Uploads/fact-sheet-data-road
map-12422-oct-18.pdf.
|
[
"“",
"In",
"Search",
"of",
"the",
"Data",
"Revolution",
":",
"\n",
"Has",
"the",
"Official",
"Statistics",
"Paradigm",
"Shifted",
"?",
"”",
"Statistical",
"Journal",
"of",
"the",
"IAOS",
"36",
"(",
"4",
"):",
"1075–94",
".",
"\n",
"MacFeely",
",",
"Steve",
",",
"and",
"Bojan",
"Nastav",
".",
"2019",
".",
"“",
"You",
"Say",
"You",
"\n",
"Want",
"a",
"[",
"Data",
"]",
"Revolution",
":",
"A",
"Proposal",
"to",
"Use",
"Unofficial",
"Statistics",
"for",
"the",
"SDG",
"Global",
"Indicator",
"Framework",
".",
"”",
" \n",
"Statistical",
"Journal",
"of",
"the",
"IAOS",
"35",
"(",
"3",
"):",
"309–27",
".",
"\n",
"Masaki",
",",
"Takaaki",
",",
"Samantha",
"Custer",
",",
"Agustina",
"Eskenazi",
",",
"\n",
"Alena",
"Stern",
",",
"and",
"Rebecca",
"Latourell",
".",
"2017",
".",
"“",
"Decoding",
"Data",
"Use",
":",
"How",
"Do",
"Leaders",
"Use",
"Data",
"and",
"Use",
"It",
"to",
"Accelerate",
"Development",
"?",
"”",
"AidData",
",",
"Global",
"Research",
"Institute",
",",
"Col",
"-",
"lege",
"of",
"William",
"and",
"Mary",
",",
"Williamsburg",
",",
"VA",
".",
"\n",
"Misra",
",",
"Archita",
",",
"and",
"Julia",
"Schmidt",
".",
"2020",
".",
"“",
"Enhancing",
"Trust",
"\n",
"in",
"Data",
"—",
"Participatory",
"Data",
"Ecosystems",
"for",
"the",
"Post",
"-",
"COVID",
"Society",
".",
"”",
"In",
"Shaping",
"the",
"COVID-19",
"Recovery",
":",
"Ideas",
"from",
"OECD",
"’s",
"Generation",
"Y",
"and",
"Z.",
"Paris",
":",
"Organisation",
"for",
"Economic",
"Co",
"-",
"operation",
"and",
"Development",
".",
"\n",
"MKM",
"(",
"Ministry",
"of",
"Economic",
"Affairs",
"and",
"Communications",
",",
"\n",
"Estonia",
")",
".",
"2018",
".",
"“",
"Digital",
"Agenda",
"2020",
"for",
"Estonia",
".",
"”",
"MKM",
",",
"Tallinn",
",",
"Estonia",
".",
"https://www.mkm.ee/sites/default/files",
" \n",
"/digital_agenda_2020_web_eng_04.06.19.pdf",
".",
"\n",
"Moscoso",
",",
"Sandra",
".",
"2016",
".",
"“",
"Increasing",
"Data",
"Literacy",
"to",
"Improve",
"\n",
"Policy",
"-",
"Making",
"in",
"Sudan",
".",
"”",
"Governance",
"for",
"Development",
" \n",
"(",
"blog",
")",
",",
"March",
"15",
",",
"2016",
".",
"https://blogs.worldbank.org",
" \n",
"/governance",
"/",
"increasing",
"-",
"data",
"-",
"literacy",
"-",
"improve",
"-",
"policy",
" \n",
"-making",
"-",
"sudan",
"#",
".",
"\n",
"Munshi",
",",
"Neil",
".",
"2020",
".",
"“",
"Africa",
"’s",
"Cloud",
"Computing",
"Boom",
" \n",
"Creates",
"Data",
"Centre",
"Gold",
"Rush",
".",
"”",
"Technology",
"Sector",
"(",
"blog",
")",
",",
"March",
"2",
",",
"2020",
".",
"https://www.ft.com/content/402a18c8",
" \n",
"-5a32",
"-",
"11ea",
"-",
"abe5",
"-",
"8e03987b7b20",
".",
"\n",
"OECD",
"(",
"Organisation",
"for",
"Economic",
"Co",
"-",
"operation",
"and",
"Devel-",
"\n",
"opment",
")",
".",
"2002",
".",
"Measuring",
"the",
"Non",
"-",
"Observed",
"Economy",
":",
"A",
"Handbook",
".",
"Paris",
":",
"OECD",
".",
"http://www.oecd.org/sdd/na",
" \n",
"/1963116.pdf",
".",
"\n",
"OECD",
"(",
"Organisation",
"for",
"Economic",
"Co",
"-",
"operation",
"and",
"Devel-",
"\n",
"opment",
")",
".",
"2018",
".",
"“",
"Peer",
"-",
"to",
"-",
"Peer",
"Learning",
"to",
"Strengthen",
"Dissemination",
"of",
"PISA",
"for",
"Development",
"Results",
".",
"”",
"PISA",
"for",
"Development",
"Brief",
"27",
",",
"OECD",
",",
"Paris",
".",
"https://www",
" \n",
".oecd.org",
"/",
"pisa",
"/",
"pisa",
"-",
"for",
"-",
"development/27_Peer_learning",
" \n",
"_",
"results_dissemination.pdf",
".",
"\n",
"OECD",
"(",
"Organisation",
"for",
"Economic",
"Co",
"-",
"operation",
"and",
"\n",
"Development",
")",
".",
"2019a",
".",
"Digital",
"Government",
"Review",
"of",
"Argentina",
":",
"Accelerating",
"the",
"Digitalisation",
"of",
"the",
"Public",
"Sector",
".",
"OECD",
"Digital",
"Government",
"Studies",
"Series",
".",
"Paris",
":",
"OECD",
".",
"https://www.oecd-ilibrary.org/governance/digital",
" \n",
"-government",
"-",
"review",
"-",
"of",
"-",
"argentina_354732cc",
"-",
"en",
".",
" \n",
"OECD",
"(",
"Organisation",
"for",
"Economic",
"Co",
"-",
"operation",
"and",
"Devel-",
"\n",
"opment",
")",
".",
"2019b",
".",
"Open",
"Government",
"in",
"Biscay",
".",
"OECD",
"Public",
"Governance",
"Reviews",
"Series",
".",
"Paris",
":",
"OECD",
".",
"https://doi",
" \n",
".org/10.1787",
"/",
"a70e8be3",
"-",
"en",
".",
"\n",
"Piovesan",
",",
"Federico",
".",
"2015",
".",
"“",
"Statistical",
"Perspectives",
"on",
"Citizen-",
" \n",
"Generated",
"Data",
".",
"”",
"DataShift",
",",
"Civicus",
",",
"Johannesburg",
",",
"South",
"Africa",
".",
"http://civicus.org/thedatashift/wp-content",
" \n",
"/uploads/2015/07",
"/",
"statistical",
"-",
"perspectives",
"-",
"on",
"-",
"cgd_web",
" \n",
"_",
"single-page.pdf",
".",
"\n",
"RBI",
"(",
"Reserve",
"Bank",
"of",
"India",
")",
".",
"2019",
".",
"“",
"Master",
"Direction",
"–",
"\n",
"Non",
"-",
"Banking",
"Financial",
"Company",
"–",
"Account",
"Aggregator",
"(",
"Reserve",
"Bank",
")",
"Directions",
".",
"”",
"Document",
"RBI",
"/",
"DNBR/2016",
"-",
"17/46",
",",
"Master",
"Direction",
"DNBR.PD.009/03.10.119/2016",
"-",
"17",
",",
"RBI",
",",
"Mumbai",
".",
"https://www.rbi.org.in/Scripts/BS_View",
" \n",
"MasDirections.aspx?id=10598",
".",
"\n",
"Rosa",
",",
"Fernanda",
"R.",
"2018",
".",
"“",
"Internet",
"Node",
"as",
"a",
"Network",
"of",
"\n",
"Relationships",
":",
"Sociotechnical",
"Aspects",
"of",
"an",
"Internet",
"Exchange",
"Point",
".",
"”",
"Paper",
"presented",
"at",
"TPRC46",
":",
"Research",
"Conference",
"on",
"Communications",
",",
"Information",
",",
"and",
"Internet",
"Policy",
",",
"Washington",
"College",
"of",
"Law",
",",
"American",
"University",
",",
"Washington",
",",
"DC",
",",
"September",
"21–22",
",",
"2018",
".",
"\n",
"SSB",
"(",
"Statistisk",
"sentralbyrå",
",",
"Statistics",
"Norway",
")",
".",
"2020",
".",
"\n",
"“",
"Annual",
"Report",
"2019",
":",
"International",
"Development",
"Coop",
"-",
"eration",
"in",
"Statistics",
"Norway",
".",
"”",
"Plans",
"and",
"Reports",
"2020/1",
",",
"\n",
"326",
" ",
"|",
" ",
"World",
"Development",
"Report",
"2021",
"\n",
"SSB",
",",
"Oslo",
".",
"https://www.ssb.no/en/omssb/om-oss/vaar",
" \n",
"-virksomhet",
"/",
"planer",
"-",
"og",
"-",
"meldinger/_attachment/416480",
"?",
" \n",
"_",
"ts=1711b58ce28",
".",
"\n",
"Stats",
"NZ",
"(",
"Statistics",
"New",
"Zealand",
")",
".",
"2018",
".",
"“",
"Data",
"Strategy",
"and",
"\n",
"Roadmap",
".",
"”",
"Fact",
"Sheet",
",",
"Wellington",
",",
"New",
"Zealand",
".",
"https://",
"\n",
"www.data.govt.nz/assets/Uploads/fact-sheet-data-road",
" \n",
"map-12422-oct-18.pdf",
".",
"\n"
] |
[
{
"end": 344,
"label": "CITATION_SPAN",
"start": 133
},
{
"end": 131,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 607,
"label": "CITATION_SPAN",
"start": 345
},
{
"end": 868,
"label": "CITATION_SPAN",
"start": 608
},
{
"end": 1081,
"label": "CITATION_SPAN",
"start": 869
},
{
"end": 1320,
"label": "CITATION_SPAN",
"start": 1082
},
{
"end": 1515,
"label": "CITATION_SPAN",
"start": 1322
},
{
"end": 1690,
"label": "CITATION_SPAN",
"start": 1516
},
{
"end": 1988,
"label": "CITATION_SPAN",
"start": 1692
},
{
"end": 2303,
"label": "CITATION_SPAN",
"start": 1990
},
{
"end": 2496,
"label": "CITATION_SPAN",
"start": 2306
},
{
"end": 2745,
"label": "CITATION_SPAN",
"start": 2497
},
{
"end": 3037,
"label": "CITATION_SPAN",
"start": 2746
},
{
"end": 3351,
"label": "CITATION_SPAN",
"start": 3039
},
{
"end": 3683,
"label": "CITATION_SPAN",
"start": 3352
},
{
"end": 3878,
"label": "CITATION_SPAN",
"start": 3685
}
] |
5, 2020 —
Direct methanol fuel cells (DMFCs), which produce electricity using methanol, will be an alternative solution in the transition away from fossil fuels and toward a 'hydrogen' economy. ...
TRENDING AT
SCITECHDAILY.com
After 60 Years, Scientists Uncover Hidden Brain Pathway Behind Diabetes Drug Metformin
Common Pesticide Linked to “Remarkably Widespread” Brain Abnormalities in Children
Revolutionary Cortisol Test Lets You “See” Stress With a Smartphone Camera
How B Vitamins Could Slow Cognitive Decline and Protect Against Dementia
Print
Email
Share
Breaking
this hour
Rare Glimpse of a World Still Forming
Worm Turns Ocean Poison Into Golden Crystals
Ancient Oxygen Flood Changed Life Forever
Bumble Bees Balance Their Diets With Precision
Spacetime Crystals Made of Knotted Light
Tiny Hologram for Ultraprecise Light Control
High-Performance Iron Catalyst for Fuel Cells
Sharks’ Teeth Are Crumbling in Acid Seas
“Molten Rock Raindrops” Reveal ...
Capturing Sunshine in a Molecule for Clean Fuel
Trending Topics
this week
SPACE & TIME
Stars
Space Telescopes
Astrophysics
MATTER & ENERGY
Materials Science
Spintronics
Construction
COMPUTERS & MATH
Communications
Spintronics Research
Computers and Internet
Strange & Offbeat
SPACE & TIME
Strange New Shapes May Rewrite the Laws of Physics
Tiny Chip Could Unlock Gamma Ray Lasers, Cure Cancer, and Explore the Multiverse
What If Dark Matter Came from a Mirror Universe?
MATTER & ENERGY
Scientists Found a New Way to Turn Sunlight Into Fuel
Scientists Discover Crystal That Breathes Oxygen Like Lungs
Gold Refuses to Melt at Temperatures Hotter Than the Sun’s Surface
COMPUTERS & MATH
Why Tiny Bee Brains Could Hold the Key to Smarter AI
Why AI Emails Can Quietly Destroy Trust at Work
Pain Relief Without Pills? VR Nature Scenes Trigger the Brain’s Healing Switch
Toggle navigation
Menu
S
D
S
D
Home Page
Top Science News
Latest News
Home
Home Page
Top Science News
Latest News
Health
View all the latest
top news
in the health sciences,
or browse the topics below:
Health & Medicine
Allergy
Cancer
Cold and Flu
Diabetes
Heart Disease
...
more topics
Mind & Brain
ADD and ADHD
Alzheimer's
Headaches
Intelligence
Psychology
...
more topics
Living Well
Parenting
Child Development
Stress
Nutrition
Fitness
...
more topics
Tech
View all the latest
top news
in the physical sciences & technology,
or browse the topics below:
Matter & Energy
Chemistry
Fossil Fuels
Nanotechnology
Physics
Solar Energy
...
more topics
Space & Time
Black Holes
Dark Matter
Extrasolar Planets
Solar System
Space Telescopes
|
[
"5",
",",
"2020",
"—",
"\n ",
"Direct",
"methanol",
"fuel",
"cells",
"(",
"DMFCs",
")",
",",
"which",
"produce",
"electricity",
"using",
"methanol",
",",
"will",
"be",
"an",
"alternative",
"solution",
"in",
"the",
"transition",
"away",
"from",
"fossil",
"fuels",
"and",
"toward",
"a",
"'",
"hydrogen",
"'",
"economy",
".",
"...",
"\n\n\n\n\n",
"TRENDING",
"AT",
"\n",
"SCITECHDAILY.com",
"\n\n\n\n\n\n\n",
"After",
"60",
"Years",
",",
"Scientists",
"Uncover",
"Hidden",
"Brain",
"Pathway",
"Behind",
"Diabetes",
"Drug",
"Metformin",
"\n\n\n",
"Common",
"Pesticide",
"Linked",
"to",
"“",
"Remarkably",
"Widespread",
"”",
"Brain",
"Abnormalities",
"in",
"Children",
"\n\n\n",
"Revolutionary",
"Cortisol",
"Test",
"Lets",
"You",
"“",
"See",
"”",
"Stress",
"With",
"a",
"Smartphone",
"Camera",
"\n\n\n",
"How",
"B",
"Vitamins",
"Could",
"Slow",
"Cognitive",
"Decline",
"and",
"Protect",
"Against",
"Dementia",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n",
"Print",
"\n\n\n \n",
"Email",
"\n\n\n \n",
"Share",
"\n\n\n\n\n\n\n\n\n\n\n",
"Breaking",
"\n\n\n",
"this",
"hour",
"\n\n\n\n\n\n\n\n\n\n\n",
"Rare",
"Glimpse",
"of",
"a",
"World",
"Still",
"Forming",
"\n\n\n",
"Worm",
"Turns",
"Ocean",
"Poison",
"Into",
"Golden",
"Crystals",
"\n\n\n",
"Ancient",
"Oxygen",
"Flood",
"Changed",
"Life",
"Forever",
"\n\n\n",
"Bumble",
"Bees",
"Balance",
"Their",
"Diets",
"With",
"Precision",
"\n\n\n",
"Spacetime",
"Crystals",
"Made",
"of",
"Knotted",
"Light",
"\n\n\n",
"Tiny",
"Hologram",
"for",
"Ultraprecise",
"Light",
"Control",
"\n\n\n",
"High",
"-",
"Performance",
"Iron",
"Catalyst",
"for",
"Fuel",
"Cells",
"\n\n\n",
"Sharks",
"’",
"Teeth",
"Are",
"Crumbling",
"in",
"Acid",
"Seas",
"\n\n\n",
"“",
"Molten",
"Rock",
"Raindrops",
"”",
"Reveal",
"...",
"\n\n\n",
"Capturing",
"Sunshine",
"in",
"a",
"Molecule",
"for",
"Clean",
"Fuel",
"\n\n\n\n\n\n\n",
"Trending",
"Topics",
"\n\n\n",
"this",
"week",
"\n\n\n\n\n\n\n\n\n",
"SPACE",
"&",
"TIME",
"\n\n\n\n\n\n\n",
"Stars",
"\n\n\n",
"Space",
"Telescopes",
"\n\n\n",
"Astrophysics",
"\n\n\n\n\n",
"MATTER",
"&",
"ENERGY",
"\n\n\n\n\n\n\n",
"Materials",
"Science",
"\n\n\n",
"Spintronics",
"\n\n\n",
"Construction",
"\n\n\n\n\n",
"COMPUTERS",
"&",
"MATH",
"\n\n\n\n\n\n\n",
"Communications",
"\n\n\n",
"Spintronics",
"Research",
"\n\n\n",
"Computers",
"and",
"Internet",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Strange",
"&",
"Offbeat",
"\n\n\n \n\n\n\n\n\n\n\n\n",
"SPACE",
"&",
"TIME",
"\n\n\n\n\n\n\n",
"Strange",
"New",
"Shapes",
"May",
"Rewrite",
"the",
"Laws",
"of",
"Physics",
"\n\n\n",
"Tiny",
"Chip",
"Could",
"Unlock",
"Gamma",
"Ray",
"Lasers",
",",
"Cure",
"Cancer",
",",
"and",
"Explore",
"the",
"Multiverse",
"\n\n\n",
"What",
"If",
"Dark",
"Matter",
"Came",
"from",
"a",
"Mirror",
"Universe",
"?",
"\n\n\n\n\n",
"MATTER",
"&",
"ENERGY",
"\n\n\n\n\n\n\n",
"Scientists",
"Found",
"a",
"New",
"Way",
"to",
"Turn",
"Sunlight",
"Into",
"Fuel",
"\n\n\n",
"Scientists",
"Discover",
"Crystal",
"That",
"Breathes",
"Oxygen",
"Like",
"Lungs",
"\n\n\n",
"Gold",
"Refuses",
"to",
"Melt",
"at",
"Temperatures",
"Hotter",
"Than",
"the",
"Sun",
"’s",
"Surface",
"\n\n\n\n\n",
"COMPUTERS",
"&",
"MATH",
"\n\n\n\n\n\n\n",
"Why",
"Tiny",
"Bee",
"Brains",
"Could",
"Hold",
"the",
"Key",
"to",
"Smarter",
"AI",
"\n\n\n",
"Why",
"AI",
"Emails",
"Can",
"Quietly",
"Destroy",
"Trust",
"at",
"Work",
"\n\n\n",
"Pain",
"Relief",
"Without",
"Pills",
"?",
"VR",
"Nature",
"Scenes",
"Trigger",
"the",
"Brain",
"’s",
"Healing",
"Switch",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Toggle",
"navigation",
"\n\n\n",
"Menu",
" \n\n\n\n\n",
"S",
"\n",
"D",
"\n\n\n\n\n\n\n",
"S",
"\n",
"D",
"\n\n\n\n\n",
"Home",
"Page",
"\n\n\n\n\n\n\n",
"Top",
"Science",
"News",
"\n\n\n\n\n\n\n",
"Latest",
"News",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Home",
"\n\n\n\n\n",
"Home",
"Page",
"\n\n\n\n\n\n\n",
"Top",
"Science",
"News",
"\n\n\n\n\n\n\n",
"Latest",
"News",
"\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Health",
"\n\n\n\n\n\n\n\n\n",
"View",
"all",
"the",
"latest",
"\n",
"top",
"news",
"\n ",
"in",
"the",
"health",
"sciences",
",",
"\n",
"or",
"browse",
"the",
"topics",
"below",
":",
"\n\n\n\n\n\n\n",
"Health",
"&",
"Medicine",
"\n\n\n\n\n",
"Allergy",
"\n\n\n",
"Cancer",
"\n\n\n",
"Cold",
"and",
"Flu",
"\n\n\n",
"Diabetes",
"\n\n\n",
"Heart",
"Disease",
"\n\n\n",
"...",
"\n",
"more",
"topics",
"\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Mind",
"&",
"Brain",
"\n\n\n\n\n",
"ADD",
"and",
"ADHD",
"\n\n\n",
"Alzheimer",
"'s",
"\n\n\n",
"Headaches",
"\n\n\n",
"Intelligence",
"\n\n\n",
"Psychology",
"\n\n\n",
"...",
"\n",
"more",
"topics",
"\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Living",
"Well",
"\n\n\n\n\n",
"Parenting",
"\n\n\n",
"Child",
"Development",
"\n\n\n",
"Stress",
"\n\n\n",
"Nutrition",
"\n\n\n",
"Fitness",
"\n\n\n",
"...",
"\n",
"more",
"topics",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Tech",
"\n\n\n\n\n\n\n\n\n",
"View",
"all",
"the",
"latest",
"\n",
"top",
"news",
"\n ",
"in",
"the",
"physical",
"sciences",
"&",
"technology",
",",
"\n",
"or",
"browse",
"the",
"topics",
"below",
":",
"\n\n\n\n\n\n\n",
"Matter",
"&",
"Energy",
"\n\n\n\n\n",
"Chemistry",
"\n\n\n",
"Fossil",
"Fuels",
"\n\n\n",
"Nanotechnology",
"\n\n\n",
"Physics",
"\n\n\n",
"Solar",
"Energy",
"\n\n\n",
"...",
"\n",
"more",
"topics",
"\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Space",
"&",
"Time",
"\n\n\n\n\n",
"Black",
"Holes",
"\n\n\n",
"Dark",
"Matter",
"\n\n\n",
"Extrasolar",
"Planets",
"\n\n\n",
"Solar",
"System",
"\n\n\n",
"Space",
"Telescopes",
"\n\n\n"
] |
[] |
to access higher education in the metropole in ways
that were closed to many colonized women, but often faced insurmountable
challenges in securing degrees and building a career in science in metro -
politan scientific establishments . They also show how female scientists were
more likely to acquire visibility in the academia and beyond as masculinised
‘rebels’, rather than theorists and innovators in their own.
Kathryn Keeble’s chapter engages with scientific mobility in the context
of the British Empire, examining specifically the case of Johannesburg- born
scientist and teacher Reinet Maasdorp, who travelled to Britain in 1935 to
pursue postgraduate studies in physics, upon securing a Beit Railway Trust
Rhodesian Fellowship and a grant from Cape Town University. Maasdorp
joined Ernest Rutherford’s Cavendish Laboratory at Cambridge, the only
woman of fifty postgraduate students to do so, and worked alongside her
male peers, sometimes performing the most important parts of experiments.
Notwithstanding Rutherford’s support for women’s rights and their full
membership of the university, Maasdorp endured systematic gender- based
discrimination in Cambridge and found it difficult to continue her work
15
15
Introduction
despite having published two co- authored papers in the Proceedings of the
Royal Society . She ultimately failed to secure a degree and an academic car -
eer in science. As Keeble points out, Maasdorp’s professional trajectory as
a secondary- school science teacher was typical of many female Oxbridge
graduates of her generation, who were discriminated against in institutions
of higher education until the anti- discrimination and equal pay legislation
of the 1970s.
The fact that Maasdorp became involved in political activism together
with her husband John Fremlin reinforces the point that women’s scientific
careers are best examined through the lenses of inter- related domains of
activity. Maasdorp understood all too well that scientific and political invis -
ibility went hand in hand: there was little hope of changing one without
trying to change the other (in this connection, see also Pető’s chapter in
this volume). Political activism – in Maasdorp’s case, joining the Cambridge
Socialist Society and the Cambridge Scientists’ Anti- War Group – was not
only a way to compensate for her invisibility and lack of recognition in pro -
fessional science, but also an attempt to shape the political foundations of
science. As Keeble explains, ‘lateral thinking’, that is, the practice of inves -
tigating alternative scientific roles ascribed to or assumed by women, as
|
[
"to",
"access",
"higher",
"education",
"in",
"the",
"metropole",
"in",
"ways",
"\n",
"that",
"were",
"closed",
"to",
"many",
"colonized",
"women",
",",
"but",
"often",
"faced",
"insurmountable",
"\n",
"challenges",
"in",
"securing",
"degrees",
"and",
"building",
"a",
"career",
"in",
"science",
"in",
"metro",
"-",
"\n",
"politan",
"scientific",
"establishments",
".",
"They",
"also",
"show",
" ",
"how",
"female",
"scientists",
"were",
"\n",
"more",
"likely",
"to",
"acquire",
"visibility",
"in",
"the",
"academia",
"and",
"beyond",
"as",
"masculinised",
"\n",
"‘",
"rebels",
"’",
",",
"rather",
"than",
"theorists",
"and",
"innovators",
"in",
"their",
"own",
".",
"\n",
"Kathryn",
"Keeble",
"’s",
"chapter",
"engages",
"with",
"scientific",
"mobility",
"in",
"the",
"context",
"\n",
"of",
"the",
"British",
"Empire",
",",
"examining",
"specifically",
"the",
"case",
"of",
"Johannesburg-",
" ",
"born",
"\n",
"scientist",
"and",
"teacher",
"Reinet",
"Maasdorp",
",",
"who",
"travelled",
"to",
"Britain",
"in",
"1935",
"to",
"\n",
"pursue",
"postgraduate",
"studies",
"in",
"physics",
",",
"upon",
"securing",
"a",
"Beit",
"Railway",
"Trust",
"\n",
"Rhodesian",
"Fellowship",
"and",
"a",
"grant",
"from",
"Cape",
"Town",
"University",
".",
"Maasdorp",
"\n",
"joined",
"Ernest",
"Rutherford",
"’s",
"Cavendish",
"Laboratory",
"at",
"Cambridge",
",",
"the",
"only",
"\n",
"woman",
"of",
"fifty",
"postgraduate",
"students",
"to",
"do",
"so",
",",
"and",
"worked",
"alongside",
"her",
"\n",
"male",
"peers",
",",
"sometimes",
"performing",
"the",
"most",
"important",
"parts",
"of",
"experiments",
".",
"\n",
"Notwithstanding",
"Rutherford",
"’s",
"support",
"for",
"women",
"’s",
"rights",
"and",
"their",
"full",
"\n",
"membership",
"of",
"the",
"university",
",",
"Maasdorp",
"endured",
"systematic",
"gender-",
" ",
"based",
"\n",
"discrimination",
"in",
"Cambridge",
"and",
"found",
"it",
"difficult",
"to",
"continue",
"her",
"work",
" \n \n \n",
"15",
"\n",
"15",
"\n",
"Introduction",
"\n",
"despite",
"having",
"published",
"two",
"co-",
"authored",
"papers",
"in",
"the",
"Proceedings",
"of",
"the",
"\n",
"Royal",
"Society",
".",
"She",
"ultimately",
"failed",
"to",
"secure",
"a",
"degree",
"and",
"an",
"academic",
"car",
"-",
"\n",
"eer",
"in",
"science",
".",
"As",
"Keeble",
"points",
"out",
",",
"Maasdorp",
"’s",
"professional",
"trajectory",
"as",
"\n",
"a",
"secondary-",
"school",
"science",
"teacher",
"was",
"typical",
"of",
"many",
"female",
"Oxbridge",
"\n",
"graduates",
"of",
"her",
"generation",
",",
"who",
"were",
"discriminated",
"against",
"in",
"institutions",
"\n",
"of",
"higher",
"education",
"until",
"the",
"anti-",
"discrimination",
"and",
"equal",
"pay",
"legislation",
"\n",
"of",
"the",
"1970s",
".",
"\n",
"The",
"fact",
"that",
"Maasdorp",
"became",
"involved",
"in",
"political",
"activism",
"together",
"\n",
"with",
"her",
"husband",
"John",
"Fremlin",
"reinforces",
"the",
"point",
"that",
"women",
"’s",
"scientific",
"\n",
"careers",
"are",
"best",
"examined",
"through",
"the",
"lenses",
"of",
"inter-",
"related",
"domains",
"of",
"\n",
"activity",
".",
"Maasdorp",
"understood",
"all",
"too",
"well",
"that",
"scientific",
"and",
"political",
"invis",
"-",
"\n",
"ibility",
"went",
"hand",
"in",
"hand",
":",
"there",
"was",
"little",
"hope",
"of",
"changing",
"one",
"without",
"\n",
"trying",
"to",
"change",
"the",
"other",
"(",
"in",
"this",
"connection",
",",
"see",
"also",
"Pető",
"’s",
"chapter",
"in",
"\n",
"this",
"volume",
")",
".",
"Political",
"activism",
"–",
" ",
"in",
"Maasdorp",
"’s",
"case",
",",
"joining",
"the",
"Cambridge",
"\n",
"Socialist",
"Society",
"and",
"the",
"Cambridge",
"Scientists",
"’",
"Anti-",
"War",
"Group",
"–",
" ",
"was",
"not",
"\n",
"only",
"a",
"way",
"to",
"compensate",
"for",
"her",
"invisibility",
"and",
"lack",
"of",
"recognition",
"in",
"pro",
"-",
"\n",
"fessional",
"science",
",",
"but",
"also",
"an",
"attempt",
"to",
"shape",
"the",
"political",
"foundations",
"of",
"\n",
"science",
".",
"As",
"Keeble",
"explains",
",",
"‘",
"lateral",
"thinking",
"’",
",",
"that",
"is",
",",
"the",
"practice",
"of",
"inves",
"-",
"\n",
"tigating",
"alternative",
"scientific",
"roles",
"ascribed",
"to",
"or",
"assumed",
"by",
"women",
",",
"as"
] |
[] |
that material gains may at the same time be bearers of a deep harm. It may not feel or seem like that. On the one hand, for those living in poverty and deprivation, who struggle to make ends meet, those who live in luxury appear to be supremely fortunate. On the other hand, those who are wealthy cannot easily perceive the spiritual harms they themselves might be undergoing. They don t ' feel it. However, we have argued that harm does not need to be felt to be real. A multidimensional account of well-being allows for the idea that a person can be harmed without feeling this. Indeed, we would expect people not to feel spiritual harm if that harm is generated by the structural features of the economic system. It is part of the system one swims in. However, once again, material self-interest is not the same as wellbeing. The first concerns what is only instrumentally valuable and the second concerns what is non-instrumentally valuable. The concept of spiritual harm requires us to make this distinction.
## Towards Practice
The points made regarding the systemic have some general implications that pertain to the practice of collective healing. However, before that we need a quick detour. We should note that the term ' healing ' may be misconstrued as
suggesting that collective healing processes are to be conceived as being analogous with medical treatment, where patients who are ill need to be cured by expert doctors. These misleading implications are hereby cancelled. Collective healing processes are dialogical. The participants support and help each other, mainly by listening proactively and non-judgmentally. The collective process itself may help the people in the group to alleviate some of the traumas that come with dehumanization, and it may also help participants to overcome or repair some of the harms they have undergone. Sharing and hearing from others enables us to understand more deeply the harms of dehumanization. The primary job of the facilitators is to enable the collective processes to run smoothly by constructing the right kind of space for deep dialogue; they are not therapists or doctors. Here ends the detour.¹¹
In the previous section, we examined some of general reasons why the notion of spiritual harm is needed to characterize more completely the damaging effects of slavery and colonization. In this concluding section, we shall examine four implications of this for practice.
|
[
"that",
"material",
"gains",
"may",
"at",
"the",
"same",
"time",
"be",
"bearers",
"of",
"a",
"deep",
"harm",
".",
"It",
"may",
"not",
"feel",
"or",
"seem",
"like",
"that",
".",
"On",
"the",
"one",
"hand",
",",
"for",
"those",
"living",
"in",
"poverty",
"and",
"deprivation",
",",
"who",
"struggle",
"to",
"make",
"ends",
"meet",
",",
"those",
"who",
"live",
"in",
"luxury",
"appear",
"to",
"be",
"supremely",
"fortunate",
".",
"On",
"the",
"other",
"hand",
",",
"those",
"who",
"are",
"wealthy",
"can",
"not",
"easily",
"perceive",
"the",
"spiritual",
"harms",
"they",
"themselves",
"might",
"be",
"undergoing",
".",
"They",
"don",
"t",
"'",
"feel",
"it",
".",
"However",
",",
"we",
"have",
"argued",
"that",
"harm",
"does",
"not",
"need",
"to",
"be",
"felt",
"to",
"be",
"real",
".",
"A",
"multidimensional",
"account",
"of",
"well",
"-",
"being",
"allows",
"for",
"the",
"idea",
"that",
"a",
"person",
"can",
"be",
"harmed",
"without",
"feeling",
"this",
".",
"Indeed",
",",
"we",
"would",
"expect",
"people",
"not",
"to",
"feel",
"spiritual",
"harm",
"if",
"that",
"harm",
"is",
"generated",
"by",
"the",
"structural",
"features",
"of",
"the",
"economic",
"system",
".",
"It",
"is",
"part",
"of",
"the",
"system",
"one",
"swims",
"in",
".",
"However",
",",
"once",
"again",
",",
"material",
"self",
"-",
"interest",
"is",
"not",
"the",
"same",
"as",
"wellbeing",
".",
"The",
"first",
"concerns",
"what",
"is",
"only",
"instrumentally",
"valuable",
"and",
"the",
"second",
"concerns",
"what",
"is",
"non",
"-",
"instrumentally",
"valuable",
".",
"The",
"concept",
"of",
"spiritual",
"harm",
"requires",
"us",
"to",
"make",
"this",
"distinction",
".",
"\n\n",
"#",
"#",
"Towards",
"Practice",
"\n\n",
"The",
"points",
"made",
"regarding",
"the",
"systemic",
"have",
"some",
"general",
"implications",
"that",
"pertain",
"to",
"the",
"practice",
"of",
"collective",
"healing",
".",
"However",
",",
"before",
"that",
"we",
"need",
"a",
"quick",
"detour",
".",
"We",
"should",
"note",
"that",
"the",
"term",
"'",
"healing",
"'",
"may",
"be",
"misconstrued",
"as",
"\n\n",
"suggesting",
"that",
"collective",
"healing",
"processes",
"are",
"to",
"be",
"conceived",
"as",
"being",
"analogous",
"with",
"medical",
"treatment",
",",
"where",
"patients",
"who",
"are",
"ill",
"need",
"to",
"be",
"cured",
"by",
"expert",
"doctors",
".",
"These",
"misleading",
"implications",
"are",
"hereby",
"cancelled",
".",
"Collective",
"healing",
"processes",
"are",
"dialogical",
".",
"The",
"participants",
"support",
"and",
"help",
"each",
"other",
",",
"mainly",
"by",
"listening",
"proactively",
"and",
"non",
"-",
"judgmentally",
".",
"The",
"collective",
"process",
"itself",
"may",
"help",
"the",
"people",
"in",
"the",
"group",
"to",
"alleviate",
"some",
"of",
"the",
"traumas",
"that",
"come",
"with",
"dehumanization",
",",
"and",
"it",
"may",
"also",
"help",
"participants",
"to",
"overcome",
"or",
"repair",
"some",
"of",
"the",
"harms",
"they",
"have",
"undergone",
".",
"Sharing",
"and",
"hearing",
"from",
"others",
"enables",
"us",
"to",
"understand",
"more",
"deeply",
"the",
"harms",
"of",
"dehumanization",
".",
"The",
"primary",
"job",
"of",
"the",
"facilitators",
"is",
"to",
"enable",
"the",
"collective",
"processes",
"to",
"run",
"smoothly",
"by",
"constructing",
"the",
"right",
"kind",
"of",
"space",
"for",
"deep",
"dialogue",
";",
"they",
"are",
"not",
"therapists",
"or",
"doctors",
".",
"Here",
"ends",
"the",
"detour.¹¹",
"\n\n",
"In",
"the",
"previous",
"section",
",",
"we",
"examined",
"some",
"of",
"general",
"reasons",
"why",
"the",
"notion",
"of",
"spiritual",
"harm",
"is",
"needed",
"to",
"characterize",
"more",
"completely",
"the",
"damaging",
"effects",
"of",
"slavery",
"and",
"colonization",
".",
"In",
"this",
"concluding",
"section",
",",
"we",
"shall",
"examine",
"four",
"implications",
"of",
"this",
"for",
"practice",
".",
"\n\n"
] |
[
{
"end": 2164,
"label": "CITATION_ID",
"start": 2162
}
] |
NACE Innovation – Patents
23.9Man. of abrasive products and
non-metallic mineral productsX 24 Manufacture of basic metals X 14 Manufacture of wearing apparel
24.1Manufacture of basic iron and
steel and of ferro-alloysX 28 Manufacture of machinery and equipment n.e.c. X 24 Manufacture of basic metals
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation137 138
Part 2 Analysis of economic and innovation potential
24.2Man. of tubes, pipes, hollow
profiles and related fittingsX 29Manufacture of motor vehicles, trailers and semi-
trailersX 25.1 Manufacture of structural metal products
24.3Manufacture of other products of
first processing of steelX 30 Manufacture of other transport equipment X 25.3 Manufacture of steam generators
24.4Manufacture of basic precious and
other non-ferrous metalsX 25.9 Man. of other fabricated metal products
25.1Manufacture of structural metal
products X SITC Goods exports C E 26.4 Manufacture of consumer electronics
25.6Treatment and coating of metals;
machiningX X 1 Meat and meat preparations X 26.5 Man. of instruments and appliances for measuring
25.9Manufacture of other fabricated
metal productsX 4 Cereals and cereal preparations X X 27.3 Manufacture of wiring and wiring devices
27.1Manufacture of electric motors,
generators, etc.X 5 Vegetables and fruit X 27.9 Manufacture of other electrical equipment
28.1Manufacture of general-purpose
machineryX 6 Sugars, sugar preparations and honey X 28.4 Man. of metal forming machinery and machine tools
28.3Manufacture of agricultural and
forestry machineryX X 8Feeding stuff for animals (not including unmilled
cereals)X X 32.5 Manufacture of medical and dental instruments and supplies
28.9Manufacture of other special-
purpose machineryX 9 Miscellaneous edible products and preparations X X
29.1 Manufacture of motor vehicles X 11 Beverages X NACE Innovation – VC & start-ups
29.3Manufacture of parts and
accessories for motor vehiclesX 22 Oil-seeds and oleaginous fruits X X J62, J63 Software
30.2Manufacture of railway
locomotives and rolling stockX 24 Cork and wood X Professional services
30.3Manufacture of air and spacecraft
and related machineryX 27Crude fertilizers, other than those of division 56,
and crude mineralsX X C26 Hardware
33.1Repair of fabricated metal
products, machinery and
equipment X 32 Coal, coke and briquettes X G47, M73 Sales and marketing
35.1Electric power generation,
transmission and distributionX 42Fixed vegetable fats and oils, crude, refined or
fractionatedX X G46, G47 Commerce and shopping
35.3 Steam and air conditioning supply X X 52 Inorganic chemicals X X
41.1 Development of building projects X 53 Dyeing, tanning and colouring materials X Clusters
41.2Construction of residential and
|
[
"NACE",
"Innovation",
"–",
"Patents",
"\n",
"23.9Man",
".",
"of",
"abrasive",
"products",
"and",
"\n",
"non",
"-",
"metallic",
"mineral",
"productsX",
" ",
"24",
"Manufacture",
"of",
"basic",
"metals",
"X",
" ",
"14",
"Manufacture",
"of",
"wearing",
"apparel",
"\n",
"24.1Manufacture",
"of",
"basic",
"iron",
"and",
"\n",
"steel",
"and",
"of",
"ferro",
"-",
"alloysX",
" ",
"28",
"Manufacture",
"of",
"machinery",
"and",
"equipment",
"n.e.c",
".",
"X",
" ",
"24",
"Manufacture",
"of",
"basic",
"metals",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation137",
"138",
"\n ",
"Part",
"2",
"Analysis",
"of",
"economic",
"and",
"innovation",
"potential",
"\n",
"24.2Man",
".",
"of",
"tubes",
",",
"pipes",
",",
"hollow",
"\n",
"profiles",
"and",
"related",
"fittingsX",
" ",
"29Manufacture",
"of",
"motor",
"vehicles",
",",
"trailers",
"and",
"semi-",
"\n",
"trailersX",
" ",
"25.1",
"Manufacture",
"of",
"structural",
"metal",
"products",
"\n",
"24.3Manufacture",
"of",
"other",
"products",
"of",
"\n",
"first",
"processing",
"of",
"steelX",
" ",
"30",
"Manufacture",
"of",
"other",
"transport",
"equipment",
"X",
" ",
"25.3",
"Manufacture",
"of",
"steam",
"generators",
"\n",
"24.4Manufacture",
"of",
"basic",
"precious",
"and",
"\n",
"other",
"non",
"-",
"ferrous",
"metalsX",
" ",
"25.9",
"Man",
".",
"of",
"other",
"fabricated",
"metal",
"products",
"\n",
"25.1Manufacture",
"of",
"structural",
"metal",
"\n",
"products",
"X",
"SITC",
"Goods",
"exports",
"C",
"E",
"26.4",
"Manufacture",
"of",
"consumer",
"electronics",
"\n",
"25.6Treatment",
"and",
"coating",
"of",
"metals",
";",
"\n",
"machiningX",
"X",
"1",
"Meat",
"and",
"meat",
"preparations",
" ",
"X",
"26.5",
"Man",
".",
"of",
"instruments",
"and",
"appliances",
"for",
"measuring",
"\n",
"25.9Manufacture",
"of",
"other",
"fabricated",
"\n",
"metal",
"productsX",
" ",
"4",
"Cereals",
"and",
"cereal",
"preparations",
"X",
"X",
"27.3",
"Manufacture",
"of",
"wiring",
"and",
"wiring",
"devices",
"\n",
"27.1Manufacture",
"of",
"electric",
"motors",
",",
"\n",
"generators",
",",
"etc",
".",
"X",
" ",
"5",
"Vegetables",
"and",
"fruit",
" ",
"X",
"27.9",
"Manufacture",
"of",
"other",
"electrical",
"equipment",
"\n",
"28.1Manufacture",
"of",
"general",
"-",
"purpose",
"\n",
"machineryX",
" ",
"6",
"Sugars",
",",
"sugar",
"preparations",
"and",
"honey",
" ",
"X",
"28.4",
"Man",
".",
"of",
"metal",
"forming",
"machinery",
"and",
"machine",
"tools",
"\n",
"28.3Manufacture",
"of",
"agricultural",
"and",
"\n",
"forestry",
"machineryX",
"X",
"8Feeding",
"stuff",
"for",
"animals",
"(",
"not",
"including",
"unmilled",
"\n",
"cereals)X",
"X",
"32.5",
"Manufacture",
"of",
"medical",
"and",
"dental",
"instruments",
"and",
"supplies",
"\n",
"28.9Manufacture",
"of",
"other",
"special-",
"\n",
"purpose",
"machineryX",
" ",
"9",
"Miscellaneous",
"edible",
"products",
"and",
"preparations",
"X",
"X",
" \n",
"29.1",
"Manufacture",
"of",
"motor",
"vehicles",
"X",
" ",
"11",
"Beverages",
" ",
"X",
"NACE",
"Innovation",
"–",
"VC",
"&",
"start",
"-",
"ups",
"\n",
"29.3Manufacture",
"of",
"parts",
"and",
"\n",
"accessories",
"for",
"motor",
"vehiclesX",
" ",
"22",
"Oil",
"-",
"seeds",
"and",
"oleaginous",
"fruits",
"X",
"X",
"J62",
",",
"J63",
"Software",
"\n",
"30.2Manufacture",
"of",
"railway",
"\n",
"locomotives",
"and",
"rolling",
"stockX",
" ",
"24",
"Cork",
"and",
"wood",
"X",
" ",
"Professional",
"services",
"\n",
"30.3Manufacture",
"of",
"air",
"and",
"spacecraft",
"\n",
"and",
"related",
"machineryX",
" ",
"27Crude",
"fertilizers",
",",
"other",
"than",
"those",
"of",
"division",
"56",
",",
"\n",
"and",
"crude",
"mineralsX",
"X",
"C26",
"Hardware",
"\n",
"33.1Repair",
"of",
"fabricated",
"metal",
"\n",
"products",
",",
"machinery",
"and",
"\n",
"equipment",
"X",
"32",
"Coal",
",",
"coke",
"and",
"briquettes",
"X",
" ",
"G47",
",",
"M73",
"Sales",
"and",
"marketing",
"\n",
"35.1Electric",
"power",
"generation",
",",
"\n",
"transmission",
"and",
"distributionX",
" ",
"42Fixed",
"vegetable",
"fats",
"and",
"oils",
",",
"crude",
",",
"refined",
"or",
"\n",
"fractionatedX",
"X",
"G46",
",",
"G47",
"Commerce",
"and",
"shopping",
"\n",
"35.3",
"Steam",
"and",
"air",
"conditioning",
"supply",
"X",
"X",
"52",
"Inorganic",
"chemicals",
"X",
"X",
" \n",
"41.1",
"Development",
"of",
"building",
"projects",
" ",
"X",
"53",
"Dyeing",
",",
"tanning",
"and",
"colouring",
"materials",
" ",
"X",
" ",
"Clusters",
"\n",
"41.2Construction",
"of",
"residential",
"and",
"\n"
] |
[] |
másentre las chicas que entre los chicos...................................................................... | 242 |
| Figura 15.4 | Cada vez máspaíses sufren ataques contra la educación, aunque la mayoría de dichos ataques siguen concentrados en unos pocos países...............................................................................................................................................................................................................244 | |
| Figura 15.5 | La cobertura de las comidas escolares varía mucho de un país a otro................................................................................................................ | 246 |
| Figura 15.6 | La cobertura real de los programas de comidas escolares es mayor si se excluye a los alumnos de escuelas y centros privados.....................................................................................................................................................................................................................248 | |
| Figura 15.7 | En Brasil, las escuelas de las regiones máscálidas tienen menos probabilidades de contar con espacios verdes.......................... | 249 |
| Figura 15.8 | Las catástrofes naturales han causado daños importantes en infraestructuras críticas de los países insulares del | Pacífico...250 |
| Figura 16.1 | La COVID-19 afectó negativamente a la financiación de becas............................................................................................................................. | 255 |
| Figura 16.2 | Francia y Alemania destacan entre los países donantes.......................................................................................................................................... | 255 |
| Figura 16.3 | En Alemania, el número de estudiantes procedentes de países de ingresos bajos y medios-bajos se ha multiplicado casi por cinco en los últimos 20 años................................................................................................................................................................................ | 257 |
| Figura 16.4 | El número de estudiantes internacionales no ha dejado de aumentar desde 2000...................................................................................... | 257 |
| Figura 16.5 | La movilidad internacional de los estudiantes aumentó en algunos países y disminuyó en otros..........................................................258 | |
| Figura 16.6 | Aumentan las contribuciones de los países menos industrializados .................................................................................................................. | 259 |
| Figura 17.1 | En algunas regiones, el aumento del número de docentes supone un aumento de docentes no capacitados.................................. | 263 |
| Figura 17.2 | La baja proporción de capacitación docente aumenta la proporción de alumnos por docente capacitado.........................................264 | |
| Figura 17.3 | La evolución de la proporción de alumnos por docente capacitado puede reflejar cambios en la proporción de capacitación docente o en el número relativo de docentes................................................................................................................................................................ 265 | |
| Figura 17.4 | La proporción de alumnos por docente puede ser considerablemente mayor si se tienen en cuenta las horas de trabajo del profesorado..........................................................................................................................................................................................................................266 | |
| Figura 17.5 | El formato y contenido de las sesiones de formación continua tienen una gran importancia.................................................................. | 267 |
| Figura 17.6 | La impartición de un número mayor de sesiones de capacitación sobre un tema determinado suele estar asociada a una mayor necesidad de dicha capacitación...............................................................................................................................................................268 |
|
[
"másentre",
"las",
"chicas",
"que",
"entre",
"los",
"chicos",
"......................................................................",
" ",
"|",
"242",
" ",
"|",
"\n",
"|",
"Figura",
"15.4",
" ",
"|",
"Cada",
"vez",
"máspaíses",
"sufren",
"ataques",
"contra",
"la",
"educación",
",",
"aunque",
"la",
"mayoría",
"de",
"dichos",
"ataques",
"siguen",
"concentrados",
"en",
"unos",
"pocos",
"países",
"...............................................................................................................................................................................................................",
"244",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"15.5",
" ",
"|",
"La",
"cobertura",
"de",
"las",
"comidas",
"escolares",
"varía",
"mucho",
"de",
"un",
"país",
"a",
"otro",
"................................................................................................................",
" ",
"|",
"246",
" ",
"|",
"\n",
"|",
"Figura",
"15.6",
" ",
"|",
"La",
"cobertura",
"real",
"de",
"los",
"programas",
"de",
"comidas",
"escolares",
"es",
"mayor",
"si",
"se",
"excluye",
"a",
"los",
"alumnos",
"de",
"escuelas",
"y",
"centros",
"privados",
".....................................................................................................................................................................................................................",
"248",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"15.7",
" ",
"|",
"En",
"Brasil",
",",
"las",
"escuelas",
"de",
"las",
"regiones",
"máscálidas",
"tienen",
"menos",
"probabilidades",
"de",
"contar",
"con",
"espacios",
"verdes",
"..........................",
" ",
"|",
"249",
" ",
"|",
"\n",
"|",
"Figura",
"15.8",
" ",
"|",
"Las",
"catástrofes",
"naturales",
"han",
"causado",
"daños",
"importantes",
"en",
"infraestructuras",
"críticas",
"de",
"los",
"países",
"insulares",
"del",
" ",
"|",
"Pacífico",
"...",
"250",
" ",
"|",
"\n",
"|",
"Figura",
"16.1",
" ",
"|",
"La",
"COVID-19",
"afectó",
"negativamente",
"a",
"la",
"financiación",
"de",
"becas",
".............................................................................................................................",
" ",
"|",
"255",
" ",
"|",
"\n",
"|",
"Figura",
"16.2",
" ",
"|",
"Francia",
"y",
"Alemania",
"destacan",
"entre",
"los",
"países",
"donantes",
"..........................................................................................................................................",
" ",
"|",
"255",
" ",
"|",
"\n",
"|",
"Figura",
"16.3",
" ",
"|",
"En",
"Alemania",
",",
"el",
"número",
"de",
"estudiantes",
"procedentes",
"de",
"países",
"de",
"ingresos",
"bajos",
"y",
"medios",
"-",
"bajos",
"se",
"ha",
"multiplicado",
"casi",
"por",
"cinco",
"en",
"los",
"últimos",
"20",
"años",
"................................................................................................................................................................................",
" ",
"|",
"257",
" ",
"|",
"\n",
"|",
"Figura",
"16.4",
" ",
"|",
"El",
"número",
"de",
"estudiantes",
"internacionales",
"no",
"ha",
"dejado",
"de",
"aumentar",
"desde",
"2000",
"......................................................................................",
" ",
"|",
"257",
" ",
"|",
"\n",
"|",
"Figura",
"16.5",
" ",
"|",
"La",
"movilidad",
"internacional",
"de",
"los",
"estudiantes",
"aumentó",
"en",
"algunos",
"países",
"y",
"disminuyó",
"en",
"otros",
"..........................................................",
"258",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"16.6",
" ",
"|",
"Aumentan",
"las",
"contribuciones",
"de",
"los",
"países",
"menos",
"industrializados",
"..................................................................................................................",
" ",
"|",
"259",
" ",
"|",
"\n",
"|",
"Figura",
"17.1",
" ",
"|",
"En",
"algunas",
"regiones",
",",
"el",
"aumento",
"del",
"número",
"de",
"docentes",
"supone",
"un",
"aumento",
"de",
"docentes",
"no",
"capacitados",
"..................................",
" ",
"|",
"263",
" ",
"|",
"\n",
"|",
"Figura",
"17.2",
" ",
"|",
"La",
"baja",
"proporción",
"de",
"capacitación",
"docente",
"aumenta",
"la",
"proporción",
"de",
"alumnos",
"por",
"docente",
"capacitado",
".........................................",
"264",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"17.3",
" ",
"|",
"La",
"evolución",
"de",
"la",
"proporción",
"de",
"alumnos",
"por",
"docente",
"capacitado",
"puede",
"reflejar",
"cambios",
"en",
"la",
"proporción",
"de",
"capacitación",
"docente",
"o",
"en",
"el",
"número",
"relativo",
"de",
"docentes",
"................................................................................................................................................................",
"265",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"17.4",
" ",
"|",
"La",
"proporción",
"de",
"alumnos",
"por",
"docente",
"puede",
"ser",
"considerablemente",
"mayor",
"si",
"se",
"tienen",
"en",
"cuenta",
"las",
"horas",
"de",
"trabajo",
"del",
"profesorado",
"..........................................................................................................................................................................................................................",
"266",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"17.5",
" ",
"|",
"El",
"formato",
"y",
"contenido",
"de",
"las",
"sesiones",
"de",
"formación",
"continua",
"tienen",
"una",
"gran",
"importancia",
"..................................................................",
" ",
"|",
"267",
" ",
"|",
"\n",
"|",
"Figura",
"17.6",
" ",
"|",
"La",
"impartición",
"de",
"un",
"número",
"mayor",
"de",
"sesiones",
"de",
"capacitación",
"sobre",
"un",
"tema",
"determinado",
"suele",
"estar",
"asociada",
"a",
"una",
"mayor",
"necesidad",
"de",
"dicha",
"capacitación",
"...............................................................................................................................................................",
"268",
" ",
"|",
" "
] |
[] |
the , which includes configurations and/or data based on the inferences. Here, the AI/ is used by the to control various aspects of the MRF and/or update/configure and/or . For example, the operations sorting logic to configure and/or arrange the various MHUs and/or to operate as desired, and the AI/ may influence or guide the in how to adjust, update, or reconfigure of the sorting logic. The changes made to the sorting logic may then influence the control signaling provided to the various MHUs and/or . Additionally or alternatively, the provides AI/ to and/or for performing their respective functions.
Additionally or alternatively, the AI/ML system(s) provide trained AI/ML models to , , , , and those , , , execute or operate the trained AI/ML models to produce inferences, optimization parameters, and/or control data for performing their respective functions. In these implementations, the AI/ may be an AI/ML package including the models themselves and a model configuration. The model configuration can include information/data for compiling and/or configuring the models for provisioning and/or deployment, such as, for example, model host information (e.g., IDs and other information of the host/ , , , on which the model is to be deployed), requirements for operating the model (e.g., software and/or hardware requirements and/or capabilities), acceptable accuracy and/or loss thresholds, specific operations to be performed, and/or any other relevant information.
In any of the aforementioned implementations, the trained AI/ML models may be the same or different for , , , . In a first example, a first trained AI/ML model deployed on or otherwise associated with an may be different than a second trained AI/ML model deployed on or otherwise associated with a . In this example, the first and second trained AI/ML models may be the same type of models but trained with , and the first and second trained AI/ML models may be different types of AI/ML models trained on the same or . In a second example, a first trained AI/ML model deployed on or otherwise associated with a may be the same as a second trained AI/ML model deployed on or otherwise associated with a . In this example, the first and may be the same type of MHU and/or perform the same or similar functions, and the first and second trained AI/ML models may be trained on the same or . In a third example, a first trained AI/ML
|
[
"the",
" ",
",",
"which",
"includes",
"configurations",
"and/or",
"data",
"based",
"on",
"the",
"inferences",
".",
"Here",
",",
"the",
"AI/",
" ",
"is",
"used",
"by",
"the",
" ",
"to",
"control",
"various",
"aspects",
"of",
"the",
"MRF",
"and/or",
"update",
"/",
"configure",
" ",
"and/or",
" ",
".",
"For",
"example",
",",
"the",
" ",
"operations",
"sorting",
"logic",
"to",
"configure",
"and/or",
"arrange",
"the",
"various",
"MHUs",
" ",
"and/or",
" ",
"to",
"operate",
"as",
"desired",
",",
"and",
"the",
"AI/",
" ",
"may",
"influence",
"or",
"guide",
"the",
" ",
"in",
"how",
"to",
"adjust",
",",
"update",
",",
"or",
"reconfigure",
"of",
"the",
"sorting",
"logic",
".",
"The",
"changes",
"made",
"to",
"the",
"sorting",
"logic",
"may",
"then",
"influence",
"the",
"control",
"signaling",
" ",
"provided",
"to",
"the",
"various",
"MHUs",
" ",
"and/or",
" ",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
" ",
"provides",
"AI/",
" ",
"to",
" ",
"and/or",
" ",
"for",
"performing",
"their",
"respective",
"functions",
".",
"\n\n",
"Additionally",
"or",
"alternatively",
",",
"the",
"AI",
"/",
"ML",
"system(s",
")",
" ",
"provide",
"trained",
"AI",
"/",
"ML",
"models",
"to",
" ",
",",
",",
",",
",",
"and",
"those",
" ",
",",
",",
",",
" ",
"execute",
"or",
"operate",
"the",
"trained",
"AI",
"/",
"ML",
"models",
"to",
"produce",
"inferences",
",",
"optimization",
"parameters",
",",
"and/or",
"control",
"data",
"for",
"performing",
"their",
"respective",
"functions",
".",
"In",
"these",
"implementations",
",",
"the",
"AI/",
" ",
"may",
"be",
"an",
"AI",
"/",
"ML",
"package",
"including",
"the",
"models",
"themselves",
"and",
"a",
"model",
"configuration",
".",
"The",
"model",
"configuration",
"can",
"include",
"information",
"/",
"data",
"for",
"compiling",
"and/or",
"configuring",
"the",
"models",
"for",
"provisioning",
"and/or",
"deployment",
",",
"such",
"as",
",",
"for",
"example",
",",
"model",
"host",
"information",
"(",
"e.g.",
",",
"IDs",
"and",
"other",
"information",
"of",
"the",
"host/",
",",
",",
",",
" ",
"on",
"which",
"the",
"model",
"is",
"to",
"be",
"deployed",
")",
",",
"requirements",
"for",
"operating",
"the",
"model",
"(",
"e.g.",
",",
"software",
"and/or",
"hardware",
"requirements",
"and/or",
"capabilities",
")",
",",
"acceptable",
"accuracy",
"and/or",
"loss",
"thresholds",
",",
"specific",
"operations",
"to",
"be",
"performed",
",",
"and/or",
"any",
"other",
"relevant",
"information",
".",
"\n\n",
"In",
"any",
"of",
"the",
"aforementioned",
"implementations",
",",
"the",
"trained",
"AI",
"/",
"ML",
"models",
"may",
"be",
"the",
"same",
"or",
"different",
"for",
" ",
",",
",",
",",
".",
"In",
"a",
"first",
"example",
",",
"a",
"first",
"trained",
"AI",
"/",
"ML",
"model",
"deployed",
"on",
"or",
"otherwise",
"associated",
"with",
"an",
" ",
"may",
"be",
"different",
"than",
"a",
"second",
"trained",
"AI",
"/",
"ML",
"model",
"deployed",
"on",
"or",
"otherwise",
"associated",
"with",
"a",
" ",
".",
"In",
"this",
"example",
",",
"the",
"first",
"and",
"second",
"trained",
"AI",
"/",
"ML",
"models",
"may",
"be",
"the",
"same",
"type",
"of",
"models",
"but",
"trained",
"with",
" ",
",",
"and",
"the",
"first",
"and",
"second",
"trained",
"AI",
"/",
"ML",
"models",
"may",
"be",
"different",
"types",
"of",
"AI",
"/",
"ML",
"models",
"trained",
"on",
"the",
"same",
"or",
" ",
".",
"In",
"a",
"second",
"example",
",",
"a",
"first",
"trained",
"AI",
"/",
"ML",
"model",
"deployed",
"on",
"or",
"otherwise",
"associated",
"with",
"a",
" ",
"may",
"be",
"the",
"same",
"as",
"a",
"second",
"trained",
"AI",
"/",
"ML",
"model",
"deployed",
"on",
"or",
"otherwise",
"associated",
"with",
"a",
" ",
".",
"In",
"this",
"example",
",",
"the",
"first",
"and",
" ",
"may",
"be",
"the",
"same",
"type",
"of",
"MHU",
"and/or",
"perform",
"the",
"same",
"or",
"similar",
"functions",
",",
"and",
"the",
"first",
"and",
"second",
"trained",
"AI",
"/",
"ML",
"models",
"may",
"be",
"trained",
"on",
"the",
"same",
"or",
" ",
".",
"In",
"a",
"third",
"example",
",",
"a",
"first",
"trained",
"AI",
"/",
"ML"
] |
[] |
to secure a teaching position in an all- male institution of higher educa -
tion. Both were also very committed to being acknowledged not only in
traditional roles afforded to women – as educators – but also as researchers
or ‘recognized scientists’. As Nair points out, Eileen believed she ‘could do
more good for science in Research than in pure teaching’, a position Janaki
heartily endorsed. The analysis reveals the importance of female solidarity
as a strategy of survival for women in science: Eileen left the US for India
because she was unable to secure a job amid the worsening circumstances of
the Great Depression, while colonial scientists like Janaki developed a ‘crea -
tive counterculture’ by forging transnational connexions with other women
scientists outside South Asia to sustain scientific endeavours and advance
their careers. Although different in temperament and family background,
they used their friendship to support their careers and goals. This case study
also illustrates women scientists’ different perceptions of marriage and fam -
ily life: Janaki, like some of the Japanese scientists discussed in Ogawa’s
foreword, regarded marriage as an impediment to a career in science, while
for Eileen the two were not necessarily incompatible. Quite the contrary,
she believed that finding a spouse could contribute to a woman’s financial
independence and her mental and social well- being, ultimately benefiting
her career.
Macková’s chapter discusses Czech physician Vlasta Kálalová Di- Lotti’s
efforts to establish a medical and scientific career for herself in the Middle
East, revealing the alliances women forged with (powerful) men, in this case
the first Czechoslovak president, Tomáš Garrigue Masaryk, in their quest to
acquire visibility as scientists. Kálalová Di- Lotti, a graduate of the Faculty
of Medicine in Prague, belonged to the second generation of university-
educated women, who were generally expected to become physicians in
their hometowns upon graduation. Like Erlanson and Janaki Ammal, she
harboured the ambition of being recognized as a researcher, not only as a
medical practitioner. Keen to pursue research on the transmission and pre -
vention of tropical diseases like leishmaniasis, Kálalová Di- Lotti first moved
to Istanbul and later to Baghdad, with the intention of establishing an
18
Negotiating in/visibility
institute of research on tropical diseases there, to be linked to the National
Institute of Health in Prague.
In the event, she was unable to escape the patriarchal structures of sci -
ence in her home
|
[
"to",
"secure",
"a",
"teaching",
"position",
"in",
"an",
"all-",
"male",
"institution",
"of",
"higher",
"educa",
"-",
"\n",
"tion",
".",
"Both",
"were",
"also",
"very",
"committed",
"to",
"being",
"acknowledged",
"not",
"only",
"in",
"\n",
"traditional",
"roles",
"afforded",
"to",
"women",
"–",
" ",
"as",
"educators",
"–",
" ",
"but",
"also",
"as",
"researchers",
"\n",
"or",
"‘",
"recognized",
"scientists",
"’",
".",
"As",
"Nair",
"points",
"out",
",",
"Eileen",
"believed",
"she",
"‘",
"could",
"do",
"\n",
"more",
"good",
"for",
"science",
"in",
"Research",
"than",
"in",
"pure",
"teaching",
"’",
",",
"a",
"position",
"Janaki",
"\n",
"heartily",
"endorsed",
".",
"The",
"analysis",
"reveals",
"the",
"importance",
"of",
"female",
"solidarity",
"\n",
"as",
"a",
"strategy",
"of",
"survival",
"for",
"women",
"in",
"science",
":",
"Eileen",
"left",
"the",
"US",
"for",
"India",
"\n",
"because",
"she",
"was",
"unable",
"to",
"secure",
"a",
"job",
"amid",
"the",
"worsening",
"circumstances",
"of",
"\n",
"the",
"Great",
"Depression",
",",
"while",
"colonial",
"scientists",
"like",
"Janaki",
"developed",
"a",
"‘",
"crea",
"-",
"\n",
"tive",
"counterculture",
"’",
"by",
"forging",
"transnational",
"connexions",
"with",
"other",
"women",
"\n",
"scientists",
"outside",
"South",
"Asia",
"to",
"sustain",
"scientific",
"endeavours",
"and",
"advance",
"\n",
"their",
"careers",
".",
"Although",
"different",
"in",
"temperament",
"and",
"family",
"background",
",",
"\n",
"they",
"used",
"their",
"friendship",
"to",
"support",
"their",
"careers",
"and",
"goals",
".",
"This",
"case",
"study",
"\n",
"also",
"illustrates",
"women",
"scientists",
"’",
"different",
"perceptions",
"of",
"marriage",
"and",
"fam",
"-",
"\n",
"ily",
"life",
":",
"Janaki",
",",
"like",
"some",
"of",
"the",
"Japanese",
"scientists",
"discussed",
"in",
"Ogawa",
"’s",
"\n",
"foreword",
",",
"regarded",
"marriage",
"as",
"an",
"impediment",
"to",
"a",
"career",
"in",
"science",
",",
"while",
"\n",
"for",
"Eileen",
"the",
"two",
"were",
"not",
"necessarily",
"incompatible",
".",
"Quite",
"the",
"contrary",
",",
"\n",
"she",
"believed",
"that",
"finding",
"a",
"spouse",
"could",
"contribute",
"to",
"a",
"woman",
"’s",
"financial",
"\n",
"independence",
"and",
"her",
"mental",
"and",
"social",
"well-",
"being",
",",
"ultimately",
"benefiting",
"\n",
"her",
"career",
".",
"\n",
"Macková",
"’s",
"chapter",
"discusses",
"Czech",
"physician",
"Vlasta",
"Kálalová",
"Di-",
"Lotti",
"’s",
"\n",
"efforts",
"to",
"establish",
"a",
"medical",
"and",
"scientific",
"career",
"for",
"herself",
"in",
"the",
"Middle",
"\n",
"East",
",",
"revealing",
"the",
"alliances",
"women",
"forged",
"with",
"(",
"powerful",
")",
"men",
",",
"in",
"this",
"case",
"\n",
"the",
"first",
"Czechoslovak",
"president",
",",
"Tomáš",
"Garrigue",
"Masaryk",
",",
"in",
"their",
"quest",
"to",
"\n",
"acquire",
"visibility",
"as",
"scientists",
".",
"Kálalová",
"Di-",
"Lotti",
",",
"a",
"graduate",
"of",
"the",
"Faculty",
"\n",
"of",
"Medicine",
"in",
"Prague",
",",
"belonged",
"to",
"the",
"second",
"generation",
"of",
"university-",
"\n",
"educated",
"women",
",",
"who",
"were",
"generally",
"expected",
"to",
"become",
"physicians",
"in",
"\n",
"their",
"hometowns",
"upon",
"graduation",
".",
"Like",
"Erlanson",
"and",
"Janaki",
"Ammal",
",",
"she",
"\n",
"harboured",
"the",
"ambition",
"of",
"being",
"recognized",
"as",
"a",
"researcher",
",",
"not",
"only",
"as",
"a",
"\n",
"medical",
"practitioner",
".",
"Keen",
"to",
"pursue",
"research",
"on",
"the",
"transmission",
"and",
"pre",
"-",
"\n",
"vention",
"of",
"tropical",
"diseases",
"like",
"leishmaniasis",
",",
"Kálalová",
"Di-",
"Lotti",
"first",
"moved",
"\n",
"to",
"Istanbul",
"and",
"later",
"to",
"Baghdad",
",",
"with",
"the",
"intention",
"of",
"establishing",
"an",
"\n",
"18",
"\n ",
"Negotiating",
"in",
"/",
"visibility",
"\n",
"institute",
"of",
"research",
"on",
"tropical",
"diseases",
"there",
",",
"to",
"be",
"linked",
"to",
"the",
"National",
"\n",
"Institute",
"of",
"Health",
"in",
"Prague",
".",
"\n",
"In",
"the",
"event",
",",
"she",
"was",
"unable",
"to",
"escape",
"the",
"patriarchal",
"structures",
"of",
"sci",
"-",
"\n",
"ence",
"in",
"her",
"home"
] |
[] |
decisions, which is the result of rules that reflect cultural norms, frees leaders’ potential to exercise leadership, although leaders also work in constrained contexts.
In designing a leadership policy, attention needs to shift from exceptional individuals to systematic processes.
It is often difficult to distinguish a good leader from a good manager. Managing daily activities effectively to make time for future planning is at the heart of what leaders do.
Although being a change agent is what often distinguishes a leader, leadership may be more important for maintaining stability in some cases than for seeking change.
The focus of a leadership policy should be how to encourage and nurture diverse groups of people with good leadership potential to pursue such careers through appropriate institutional and organizational structures.
Four dimensions of school leadership are important for leadership at all levels of education.
Setting expectations, focusing on learning, fostering collaboration and developing people are important not only for school principals and teacher leaders, but also for system leaders.
1
6 CHAPTER 1 • INTRODUCTION
The role of education leaders is taken for granted.
Yet, often invisibly, they shape the direction of their
schools, universities, departments and ministries.
|
[
"decisions",
",",
"which",
"is",
"the",
"result",
"of",
"rules",
"that",
"reflect",
"cultural",
"norms",
",",
"frees",
"leaders",
"’",
"potential",
"to",
"exercise",
"leadership",
",",
"although",
"leaders",
"also",
"work",
"in",
"constrained",
"contexts",
".",
"\n",
"In",
"designing",
"a",
"leadership",
"policy",
",",
"attention",
"needs",
"to",
"shift",
"from",
"exceptional",
"individuals",
"to",
"systematic",
"processes",
".",
"\n ",
"",
"It",
"is",
"often",
"difficult",
"to",
"distinguish",
"a",
"good",
"leader",
"from",
"a",
"good",
"manager",
".",
"Managing",
"daily",
"activities",
"effectively",
"to",
"make",
"time",
"for",
"future",
"planning",
"is",
"at",
"the",
"heart",
"of",
"what",
"leaders",
"do",
".",
"\n ",
"",
"Although",
"being",
"a",
"change",
"agent",
"is",
"what",
"often",
"distinguishes",
"a",
"leader",
",",
"leadership",
"may",
"be",
"more",
"important",
"for",
"maintaining",
"stability",
"in",
"some",
"cases",
"than",
"for",
"seeking",
"change",
".",
"\n ",
"",
"The",
"focus",
"of",
"a",
"leadership",
"policy",
"should",
"be",
"how",
"to",
"encourage",
"and",
"nurture",
"diverse",
"groups",
"of",
"people",
"with",
"good",
"leadership",
"potential",
"to",
"pursue",
"such",
"careers",
"through",
"appropriate",
"institutional",
"and",
"organizational",
"structures",
".",
"\n",
"Four",
"dimensions",
"of",
"school",
"leadership",
"are",
"important",
"for",
"leadership",
"at",
"all",
"levels",
"of",
"education",
".",
"\n ",
"",
"Setting",
"expectations",
",",
"focusing",
"on",
"learning",
",",
"fostering",
"collaboration",
"and",
"developing",
"people",
"are",
"important",
"not",
"only",
"for",
"school",
"principals",
"and",
"teacher",
"leaders",
",",
"but",
"also",
"for",
"system",
"leaders",
".",
"\n",
"1",
"\n",
"6",
"CHAPTER",
" ",
"1",
"•",
"INTRODUCTION",
"\n",
"The",
"role",
"of",
"education",
"leaders",
"is",
"taken",
"for",
"granted",
".",
"\n",
"Yet",
",",
"often",
"invisibly",
",",
"they",
"shape",
"the",
"direction",
"of",
"their",
"\n",
"schools",
",",
"universities",
",",
"departments",
"and",
"ministries",
"."
] |
[] |
technologies. With planned investment in the EU more than tripling in 2023, the IEA projects that
the EU could meet its domestic demand for batteries by 2030. This capacity growth will increase Europe’s strategic
resilience and benefit adjacent sectors such as automotives by shortening supply chains. However, many of these
projects are at this stage still announcements, and actual development will depend on supporting policies from
permitting to financing. In addition, roughly half of the announced investment is from non-EU companies and, in most
cases, projects are not taking place in the form of joint ventures. As a result, the EU may be missing an opportunity
to combine openness to inward FDI with the development of critical know-how among European manufacturers.
47THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 3The challenges of asymmetric decarbonisation
“Hard-to-abate” industries are suffering not only from high energy prices, but also from lack of public support
to reach decarbonisation targets and investment in sustainable fuels [see the chapters on energy-intensive
industries, and transport] . Despite the massive investment needs facing Energy Intensive Industries (EIIs), and the
challenging business case for investment in “hard-to-abate” sectors, there is limited public support for the transition
in Europe. Only a residual share of current ETS resources is earmarked to EIIs, with priority given to residential effi -
ciency, renewables development or, recently, lowering energy bills. While EIIs in other regions face neither the same
decarbonisation targets nor require similar investments, they benefit from more generous state support. China, for
example, provides over 90% of the global USD 70 billion subsidies in the aluminium sector, as well as large subsidies
for steel. Decarbonisation is also a competitive disadvantage for the “hardest-to-abate” parts of the transport sector
(aviation and maritime). Extra-EU flights and sea journeys are partly excluded from the ETS, meaning the prices of
these journeys do not yet reflect their climate impact. Consequently, there is a risk of carbon leakage and business
diversion from transport hubs in the EU to those in the EU’s neighbourhood, unless effective solutions for ensuring
a level playing field are found at the international level. At the same time, although low-carbon fuels will be critical
for the decarbonisation of these industries, ramping up the marginal production capacity that exists today is chal -
lenging. In particular, the EU needs to start building a supply chain for alternative fuels, or the costs of
|
[
"technologies",
".",
"With",
"planned",
"investment",
"in",
"the",
"EU",
"more",
"than",
"tripling",
"in",
"2023",
",",
"the",
"IEA",
"projects",
"that",
"\n",
"the",
"EU",
"could",
"meet",
"its",
"domestic",
"demand",
"for",
"batteries",
"by",
"2030",
".",
"This",
"capacity",
"growth",
"will",
"increase",
"Europe",
"’s",
"strategic",
"\n",
"resilience",
"and",
"benefit",
"adjacent",
"sectors",
"such",
"as",
"automotives",
"by",
"shortening",
"supply",
"chains",
".",
"However",
",",
"many",
"of",
"these",
"\n",
"projects",
"are",
"at",
"this",
"stage",
"still",
"announcements",
",",
"and",
"actual",
"development",
"will",
"depend",
"on",
"supporting",
"policies",
"from",
"\n",
"permitting",
"to",
"financing",
".",
"In",
"addition",
",",
"roughly",
"half",
"of",
"the",
"announced",
"investment",
"is",
"from",
"non",
"-",
"EU",
"companies",
"and",
",",
"in",
"most",
"\n",
"cases",
",",
"projects",
"are",
"not",
"taking",
"place",
"in",
"the",
"form",
"of",
"joint",
"ventures",
".",
"As",
"a",
"result",
",",
"the",
"EU",
"may",
"be",
"missing",
"an",
"opportunity",
"\n",
"to",
"combine",
"openness",
"to",
"inward",
"FDI",
"with",
"the",
"development",
"of",
"critical",
"know",
"-",
"how",
"among",
"European",
"manufacturers",
".",
"\n",
"47THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"3The",
"challenges",
"of",
"asymmetric",
"decarbonisation",
"\n",
"“",
"Hard",
"-",
"to",
"-",
"abate",
"”",
"industries",
"are",
"suffering",
"not",
"only",
"from",
"high",
"energy",
"prices",
",",
"but",
"also",
"from",
"lack",
"of",
"public",
"support",
"\n",
"to",
"reach",
"decarbonisation",
"targets",
"and",
"investment",
"in",
"sustainable",
"fuels",
" ",
"[",
"see",
"the",
"chapters",
"on",
"energy",
"-",
"intensive",
"\n",
"industries",
",",
"and",
"transport",
"]",
".",
"Despite",
"the",
"massive",
"investment",
"needs",
"facing",
"Energy",
"Intensive",
"Industries",
"(",
"EIIs",
")",
",",
"and",
"the",
"\n",
"challenging",
"business",
"case",
"for",
"investment",
"in",
"“",
"hard",
"-",
"to",
"-",
"abate",
"”",
"sectors",
",",
"there",
"is",
"limited",
"public",
"support",
"for",
"the",
"transition",
"\n",
"in",
"Europe",
".",
"Only",
"a",
"residual",
"share",
"of",
"current",
"ETS",
"resources",
"is",
"earmarked",
"to",
"EIIs",
",",
"with",
"priority",
"given",
"to",
"residential",
"effi",
"-",
"\n",
"ciency",
",",
"renewables",
"development",
"or",
",",
"recently",
",",
"lowering",
"energy",
"bills",
".",
"While",
"EIIs",
"in",
"other",
"regions",
"face",
"neither",
"the",
"same",
"\n",
"decarbonisation",
"targets",
"nor",
"require",
"similar",
"investments",
",",
"they",
"benefit",
"from",
"more",
"generous",
"state",
"support",
".",
"China",
",",
"for",
"\n",
"example",
",",
"provides",
"over",
"90",
"%",
"of",
"the",
"global",
"USD",
"70",
"billion",
"subsidies",
"in",
"the",
"aluminium",
"sector",
",",
"as",
"well",
"as",
"large",
"subsidies",
"\n",
"for",
"steel",
".",
"Decarbonisation",
"is",
"also",
"a",
"competitive",
"disadvantage",
"for",
"the",
"“",
"hardest",
"-",
"to",
"-",
"abate",
"”",
"parts",
"of",
"the",
"transport",
"sector",
"\n",
"(",
"aviation",
"and",
"maritime",
")",
".",
"Extra",
"-",
"EU",
"flights",
"and",
"sea",
"journeys",
"are",
"partly",
"excluded",
"from",
"the",
"ETS",
",",
"meaning",
"the",
"prices",
"of",
"\n",
"these",
"journeys",
"do",
"not",
"yet",
"reflect",
"their",
"climate",
"impact",
".",
"Consequently",
",",
"there",
"is",
"a",
"risk",
"of",
"carbon",
"leakage",
"and",
"business",
"\n",
"diversion",
"from",
"transport",
"hubs",
"in",
"the",
"EU",
"to",
"those",
"in",
"the",
"EU",
"’s",
"neighbourhood",
",",
"unless",
"effective",
"solutions",
"for",
"ensuring",
"\n",
"a",
"level",
"playing",
"field",
"are",
"found",
"at",
"the",
"international",
"level",
".",
"At",
"the",
"same",
"time",
",",
"although",
"low",
"-",
"carbon",
"fuels",
"will",
"be",
"critical",
"\n",
"for",
"the",
"decarbonisation",
"of",
"these",
"industries",
",",
"ramping",
"up",
"the",
"marginal",
"production",
"capacity",
"that",
"exists",
"today",
"is",
"chal",
"-",
"\n",
"lenging",
".",
"In",
"particular",
",",
"the",
"EU",
"needs",
"to",
"start",
"building",
"a",
"supply",
"chain",
"for",
"alternative",
"fuels",
",",
"or",
"the",
"costs",
"of"
] |
[] |
% of students bullying | Inbound | Outbound | Inbound | Outbound Scholarships | Imputed student costs | Country | | |
| | | | | | | | 4.a.2 | 4.a.3 | | | | | | 4.b.1 | |
| 4.a.1 | | | | | | | | | | | | | | | |
| | | | | 2023 | | | | | | | | | | | |
| | | 100 ₋₁ | | | | | | | | | ₋₁ | | | | |
| | | | | | | 100 ₋₁ | | | … | | ᵢ | | | | |
| 100 ₋₁ | 100 ₋₁ | | 100 ₋₁ | 100 ₋₁ | 100 ₋₁ | … | | … | … | … | 0.1 | … | | … | AIA |
| … 91 ₋₄ | … … | … 74 ₋₁ | … 97 ₋₁ | … 62 ₋₁ | … 63 ₋₁ | … 62 ₋₁ | … 68 ₋₁ | … 2 4 | … … ₋₁ 0.3 ₋₁ ᵢ | … 137 ₋₁ | 1 ₋₁ ᵢ 12 ₋₁ ᵢ | … 8 | ATG ARG | … 4 | |
| … | … | … | … | … | … | | … | … … | … | … | 0.3 ₋₁ ᵢ … | … | ABW | | |
| … | … | … | … | … | … | … … | … | … … | … | … | 4 ₋₁ ᵢ … | … | BHS | | |
| 100 | 100 | 100 | 100 | … | … | … | … | … … | … | … | 1 ₋₁ ᵢ … | … | BRB | | |
| … | … … | … | … | … | … | … | … | … | 0.4 10 ₋₁ ᵢ | - | 1 ₋₁ ᵢ 0.3 | - | BLZ | | |
| … | | … | … | … | … | … | … | … | … … | … | 24 ₋₁ ᵢ 1 | 4 | BOL | | |
| 94 ₋₄ | …
|
[
"%",
"of",
"students",
"bullying",
"|",
"Inbound",
" ",
"|",
"Outbound",
" ",
"|",
"Inbound",
" ",
"|",
"Outbound",
"Scholarships",
"|",
"Imputed",
"student",
"costs",
" ",
"|",
"Country",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"4.a.2",
" ",
"|",
"4.a.3",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"4.b.1",
"|",
" ",
"|",
"\n",
"|",
"4.a.1",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"2023",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
"100",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"100",
"₋₁",
" ",
"|",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"ᵢ",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"100",
"₋₁",
" ",
"|",
"100",
"₋₁",
" ",
"|",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"100",
"₋₁",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"0.1",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"AIA",
"|",
"\n",
"|",
"…",
"91",
"₋₄",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"74",
"₋₁",
" ",
"|",
"…",
"97",
"₋₁",
" ",
"|",
"…",
"62",
"₋₁",
" ",
"|",
"…",
"63",
"₋₁",
" ",
"|",
"…",
"62",
"₋₁",
" ",
"|",
"…",
"68",
"₋₁",
" ",
"|",
"…",
"2",
"4",
" ",
"|",
"…",
"…",
"₋₁",
"0.3",
"₋₁",
"ᵢ",
" ",
"|",
"…",
"137",
"₋₁",
" ",
"|",
"1",
"₋₁",
"ᵢ",
"12",
"₋₁",
"ᵢ",
" ",
"|",
"…",
"8",
" ",
"|",
"ATG",
"ARG",
"|",
"…",
"4",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"0.3",
"₋₁",
"ᵢ",
"…",
" ",
"|",
"…",
" ",
"|",
"ABW",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"4",
"₋₁",
"ᵢ",
"…",
" ",
"|",
"…",
" ",
"|",
"BHS",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"100",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"1",
"₋₁",
"ᵢ",
"…",
" ",
"|",
"…",
" ",
"|",
"BRB",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"0.4",
"10",
"₋₁",
"ᵢ",
" ",
"|",
"-",
" ",
"|",
"1",
"₋₁",
"ᵢ",
"0.3",
" ",
"|",
"-",
" ",
"|",
"BLZ",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"…",
" ",
"|",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"24",
"₋₁",
"ᵢ",
"1",
" ",
"|",
"4",
" ",
"|",
"BOL",
" ",
"|",
" ",
"|",
" ",
"|",
"\n",
"|",
"94",
"₋₄",
" ",
"|",
"…",
" "
] |
[] |
cultural background, beliefs, or personality traits, are associated with good leadership and positive education outcomes.
However, such variables are not easy to measure, whether
inputs, such as the nature and qualities of leadership, or outcomes, especially if one goes beyond numeracy and literacy skills. For example, it is difficult to assess whether a school promotes equity and inclusion. While a particular school leader might promote a chosen ethos, such outcomes are not the result of one person but of a succession of people, each of whom have left their mark, cumulatively establishing a school culture that may attract like-minded individuals. Such compounding factors make it difficult to draw causal interpretations. Small-scale, ethnographic research may better suit such analyses, but its guidance will be limited as the conclusions are highly dependent on context.
Standards of good leadership have emerged, at least
partly informed by evidence. The report reviews the global prevalence of such standards and the extent to which they are related to various governance and accountability regimes. Standards can influence the development of professionalism, certification, initial and continuous education policies, and appraisal, although care has to be exercised for these not to constrain innovation and promote uniformity.
|
[
"cultural",
"background",
",",
"beliefs",
",",
"or",
"personality",
"traits",
",",
"are",
"associated",
"with",
"good",
"leadership",
"and",
"positive",
"education",
"outcomes",
".",
"\n",
"However",
",",
"such",
"variables",
"are",
"not",
"easy",
"to",
"measure",
",",
"whether",
"\n",
"inputs",
",",
"such",
"as",
"the",
"nature",
"and",
"qualities",
"of",
"leadership",
",",
"or",
"outcomes",
",",
"especially",
"if",
"one",
"goes",
"beyond",
"numeracy",
"and",
"literacy",
"skills",
".",
"For",
"example",
",",
"it",
"is",
"difficult",
"to",
"assess",
"whether",
"a",
"school",
"promotes",
"equity",
"and",
"inclusion",
".",
"While",
"a",
"particular",
"school",
"leader",
"might",
"promote",
"a",
"chosen",
"ethos",
",",
"such",
"outcomes",
"are",
"not",
"the",
"result",
"of",
"one",
"person",
"but",
"of",
"a",
"succession",
"of",
"people",
",",
"each",
"of",
"whom",
"have",
"left",
"their",
"mark",
",",
"cumulatively",
"establishing",
"a",
"school",
"culture",
"that",
"may",
"attract",
"like",
"-",
"minded",
"individuals",
".",
"Such",
"compounding",
"factors",
"make",
"it",
"difficult",
"to",
"draw",
"causal",
"interpretations",
".",
"Small",
"-",
"scale",
",",
"ethnographic",
"research",
"may",
"better",
"suit",
"such",
"analyses",
",",
"but",
"its",
"guidance",
"will",
"be",
"limited",
"as",
"the",
"conclusions",
"are",
"highly",
"dependent",
"on",
"context",
".",
"\n",
"Standards",
"of",
"good",
"leadership",
"have",
"emerged",
",",
"at",
"least",
"\n",
"partly",
"informed",
"by",
"evidence",
".",
"The",
"report",
"reviews",
"the",
"global",
"prevalence",
"of",
"such",
"standards",
"and",
"the",
"extent",
"to",
"which",
"they",
"are",
"related",
"to",
"various",
"governance",
"and",
"accountability",
"regimes",
".",
"Standards",
"can",
"influence",
"the",
"development",
"of",
"professionalism",
",",
"certification",
",",
"initial",
"and",
"continuous",
"education",
"policies",
",",
"and",
"appraisal",
",",
"although",
"care",
"has",
"to",
"be",
"exercised",
"for",
"these",
"not",
"to",
"constrain",
"innovation",
"and",
"promote",
"uniformity",
"."
] |
[] |
machine readable instructions and/or program(s) or data to create such machine readable instruction and/or programs regardless of the particular format or state of the machine readable instructions and/or program(s) when stored or otherwise at rest or in transit.
The computer program code for carrying out operations of the present disclosure, including, for example, programming instructions, computational logic , instructions , and/or instructions , may be written in any combination of one or more programming languages, including an object oriented programming language (e.g., Python, PyTorch, Ruby, Scala, Smalltalk, Java™, Java Servlets, Kotlin, C++, C#, and/or the like), a procedural programming language (e.g., the “C” programming language, Go (or “Golang”), and/or the like), a scripting language (e.g., ECMAScript, JavaScript, Server-Side JavaScript (SSJS), PHP, Pearl, Python, PyTorch, Ruby, Lua, Torch/Lua with Just-In Time compiler (LuaJIT), Accelerated Mobile Pages Script (AMPscript), VBScript, and/or the like), a markup language (e.g., hypertext markup language (HTML), extensible markup language (XML), wiki markup or Wikitext, User Interface Markup Language (UIML), and/or the like), a data interchange format/definition (e.g., Java Script Object Notion (JSON), Apache® MessagePack™, and/or the like), a stylesheet language (e.g., Cascading Stylesheets (CSS), extensible stylesheet language (XSL), and/or the like), an interface definition language (IDL) (e.g., Apache® Thrift, Abstract Syntax Notation One (ASN.1), Google® Protocol Buffers (protobuf), efficient XML interchange (EXI), and/or the like), a web framework (e.g., Active Server Pages Network Enabled Technologies (ASP.NET), Apache® Wicket, Asynchronous JavaScript and XML (Ajax) frameworks, Django, Jakarta Server Faces (JSF; formerly JavaServer Faces), Jakarta Server Pages (JSP; formerly JavaServer Pages), Ruby on Rails, web toolkit, and/or the like), a template language (e.g., Apache® Velocity, Tea, Django template language, Mustache, Template Attribute Language (TAL), Extensible Stylesheet Language Transformations (XSLT), Thymeleaf, Facelet view, and/or the like), and/or some other suitable programming languages including proprietary programming languages and/or development tools, or any other languages or tools such as those discussed herein. It should be noted that some of the aforementioned languages, tools, and/or technologies may be classified as belonging to multiple types of languages/technologies or otherwise classified differently than described previously. The computer program code for carrying out operations of the present disclosure may also be written in any combination of the programming languages discussed herein. The program code may execute entirely on the , partly on the as a stand-alone software package, partly on the and partly on a remote computer, or entirely on the remote computer. In the latter
|
[
"machine",
"readable",
"instructions",
"and/or",
"program(s",
")",
"or",
"data",
"to",
"create",
"such",
"machine",
"readable",
"instruction",
"and/or",
"programs",
"regardless",
"of",
"the",
"particular",
"format",
"or",
"state",
"of",
"the",
"machine",
"readable",
"instructions",
"and/or",
"program(s",
")",
"when",
"stored",
"or",
"otherwise",
"at",
"rest",
"or",
"in",
"transit",
".",
"\n\n",
"The",
"computer",
"program",
"code",
"for",
"carrying",
"out",
"operations",
"of",
"the",
"present",
"disclosure",
",",
"including",
",",
"for",
"example",
",",
"programming",
"instructions",
",",
"computational",
"logic",
" ",
",",
"instructions",
" ",
",",
"and/or",
"instructions",
" ",
",",
"may",
"be",
"written",
"in",
"any",
"combination",
"of",
"one",
"or",
"more",
"programming",
"languages",
",",
"including",
"an",
"object",
"oriented",
"programming",
"language",
"(",
"e.g.",
",",
"Python",
",",
"PyTorch",
",",
"Ruby",
",",
"Scala",
",",
"Smalltalk",
",",
"Java",
"™",
",",
"Java",
"Servlets",
",",
"Kotlin",
",",
"C++",
",",
"C",
"#",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"procedural",
"programming",
"language",
"(",
"e.g.",
",",
"the",
"“",
"C",
"”",
"programming",
"language",
",",
"Go",
"(",
"or",
"“",
"Golang",
"”",
")",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"scripting",
"language",
"(",
"e.g.",
",",
"ECMAScript",
",",
"JavaScript",
",",
"Server",
"-",
"Side",
"JavaScript",
"(",
"SSJS",
")",
",",
"PHP",
",",
"Pearl",
",",
"Python",
",",
"PyTorch",
",",
"Ruby",
",",
"Lua",
",",
"Torch",
"/",
"Lua",
"with",
"Just",
"-",
"In",
"Time",
"compiler",
"(",
"LuaJIT",
")",
",",
"Accelerated",
"Mobile",
"Pages",
"Script",
"(",
"AMPscript",
")",
",",
"VBScript",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"markup",
"language",
"(",
"e.g.",
",",
"hypertext",
"markup",
"language",
"(",
"HTML",
")",
",",
"extensible",
"markup",
"language",
"(",
"XML",
")",
",",
"wiki",
"markup",
"or",
"Wikitext",
",",
"User",
"Interface",
"Markup",
"Language",
"(",
"UIML",
")",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"data",
"interchange",
"format",
"/",
"definition",
"(",
"e.g.",
",",
"Java",
"Script",
"Object",
"Notion",
"(",
"JSON",
")",
",",
"Apache",
"®",
"MessagePack",
"™",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"stylesheet",
"language",
"(",
"e.g.",
",",
"Cascading",
"Stylesheets",
"(",
"CSS",
")",
",",
"extensible",
"stylesheet",
"language",
"(",
"XSL",
")",
",",
"and/or",
"the",
"like",
")",
",",
"an",
"interface",
"definition",
"language",
"(",
"IDL",
")",
"(",
"e.g.",
",",
"Apache",
"®",
"Thrift",
",",
"Abstract",
"Syntax",
"Notation",
"One",
"(",
"ASN.1",
")",
",",
"Google",
"®",
"Protocol",
"Buffers",
"(",
"protobuf",
")",
",",
"efficient",
"XML",
"interchange",
"(",
"EXI",
")",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"web",
"framework",
"(",
"e.g.",
",",
"Active",
"Server",
"Pages",
"Network",
"Enabled",
"Technologies",
"(",
"ASP.NET",
")",
",",
"Apache",
"®",
"Wicket",
",",
"Asynchronous",
"JavaScript",
"and",
"XML",
"(",
"Ajax",
")",
"frameworks",
",",
"Django",
",",
"Jakarta",
"Server",
"Faces",
"(",
"JSF",
";",
"formerly",
"JavaServer",
"Faces",
")",
",",
"Jakarta",
"Server",
"Pages",
"(",
"JSP",
";",
"formerly",
"JavaServer",
"Pages",
")",
",",
"Ruby",
"on",
"Rails",
",",
"web",
"toolkit",
",",
"and/or",
"the",
"like",
")",
",",
"a",
"template",
"language",
"(",
"e.g.",
",",
"Apache",
"®",
"Velocity",
",",
"Tea",
",",
"Django",
"template",
"language",
",",
"Mustache",
",",
"Template",
"Attribute",
"Language",
"(",
"TAL",
")",
",",
"Extensible",
"Stylesheet",
"Language",
"Transformations",
"(",
"XSLT",
")",
",",
"Thymeleaf",
",",
"Facelet",
"view",
",",
"and/or",
"the",
"like",
")",
",",
"and/or",
"some",
"other",
"suitable",
"programming",
"languages",
"including",
"proprietary",
"programming",
"languages",
"and/or",
"development",
"tools",
",",
"or",
"any",
"other",
"languages",
"or",
"tools",
"such",
"as",
"those",
"discussed",
"herein",
".",
"It",
"should",
"be",
"noted",
"that",
"some",
"of",
"the",
"aforementioned",
"languages",
",",
"tools",
",",
"and/or",
"technologies",
"may",
"be",
"classified",
"as",
"belonging",
"to",
"multiple",
"types",
"of",
"languages",
"/",
"technologies",
"or",
"otherwise",
"classified",
"differently",
"than",
"described",
"previously",
".",
"The",
"computer",
"program",
"code",
"for",
"carrying",
"out",
"operations",
"of",
"the",
"present",
"disclosure",
"may",
"also",
"be",
"written",
"in",
"any",
"combination",
"of",
"the",
"programming",
"languages",
"discussed",
"herein",
".",
"The",
"program",
"code",
"may",
"execute",
"entirely",
"on",
"the",
" ",
",",
"partly",
"on",
"the",
" ",
"as",
"a",
"stand",
"-",
"alone",
"software",
"package",
",",
"partly",
"on",
"the",
" ",
"and",
"partly",
"on",
"a",
"remote",
"computer",
",",
"or",
"entirely",
"on",
"the",
"remote",
"computer",
".",
"In",
"the",
"latter"
] |
[] |
male principals in mathematics and reading by at least six months.
While many women teach, far fewer lead schools. The share of female principals in primary and secondary education is on average at least 20 percentage points lower than the average share of female teachers. Only 11% of countries globally have measures in place to address gender diversity in principal recruitment.
Many actors exercise leadership by influencing the direction of education systems.
Teacher unions, student unions, business leaders, academics and civil society hold governments to account, lobby and raise awareness. Influence matters: In the United States, some think tanks score low on expertise but high on education
discussions in Congress, with the reverse being the case for others.
International organizations help frame and inform the global debate on education, as well as fund countries’ education systems. However, competition for space and influence can distract them from the goal of education improvement and
their legitimacy can be challenged by a lack of capacity or efficiency.
2024/5 • GLOBAL EDUCATION MONITORING REPORT
3
On 12 June 2023, a school principal, Rita Sokoy, surrounded by
her students at Yayasan Pendidikan Kristen (YPK) Kanda Primary School in Waibu, Jayapura District, Papua Province Indonesia.
Credit: © UNICEF/UNI430754/Al Asad*
CHAPTER1
Introduction
KEY MESSAGES
Leadership takes many forms and is hard to measure concretely, but it is critical for education success at all levels:
institutional, systemic and political.
In education, as in politics and business, leadership is a process of social influence aimed at maximizing joint efforts towards a common goal.
Leadership styles differ depending on the context, personalities and organizational goals.
The multiple forms of leadership – and its multiple outcomes – means it can be hard to demonstrate its impact on education, and why that impact is frequently overlooked.
But there is virtually no documented instance of troubled schools being turned around without intervention by a good leader.
Leaders need to define their purpose and plan how they will influence change, taking into account their capacity and context.
While there is an emphasis on learning, leaders need to think what learning outcomes to focus on as well as to deliver on a wide range of goals related to equity, quality and inclusion.
Influencing change has increasingly been associated with sharing leadership functions to achieve education goals – moving from perhaps too much emphasis on individuals.
Freedom to make
|
[
"male",
"principals",
"in",
"mathematics",
"and",
"reading",
"by",
"at",
"least",
"six",
"months",
".",
"\n ",
"While",
"many",
"women",
"teach",
",",
"far",
"fewer",
"lead",
"schools",
".",
"The",
"share",
"of",
"female",
"principals",
"in",
"primary",
"and",
"secondary",
"education",
"is",
"on",
"average",
"at",
"least",
"20",
"percentage",
"points",
"lower",
"than",
"the",
"average",
"share",
"of",
"female",
"teachers",
".",
"Only",
"11",
"%",
"of",
"countries",
"globally",
"have",
"measures",
"in",
"place",
"to",
"address",
"gender",
"diversity",
"in",
"principal",
"recruitment",
".",
"\n",
"Many",
"actors",
"exercise",
"leadership",
"by",
"influencing",
"the",
"direction",
"of",
"education",
"systems",
".",
"\n ",
"Teacher",
"unions",
",",
"student",
"unions",
",",
"business",
"leaders",
",",
"academics",
"and",
"civil",
"society",
"hold",
"governments",
"to",
"account",
",",
"lobby",
"and",
"raise",
"awareness",
".",
" ",
"Influence",
"matters",
":",
"In",
"the",
"United",
"States",
",",
"some",
"think",
"tanks",
"score",
"low",
"on",
"expertise",
"but",
"high",
"on",
"education",
"\n",
"discussions",
"in",
"Congress",
",",
"with",
"the",
"reverse",
"being",
"the",
"case",
"for",
"others",
".",
"\n ",
"International",
"organizations",
"help",
"frame",
"and",
"inform",
"the",
"global",
"debate",
"on",
"education",
",",
"as",
"well",
"as",
"fund",
"countries",
"’",
"education",
"systems",
".",
" ",
"However",
",",
"competition",
"for",
"space",
"and",
"influence",
"can",
"distract",
"them",
"from",
"the",
"goal",
"of",
"education",
"improvement",
"and",
"\n",
"their",
"legitimacy",
"can",
"be",
"challenged",
"by",
"a",
"lack",
"of",
"capacity",
"or",
"efficiency",
".",
"\n",
"2024/5",
"•",
"GLOBAL",
"EDUCATION",
"MONITORING",
"REPORT",
"\n",
"3",
"\n",
"On",
"12",
"June",
"2023",
",",
"a",
"school",
"principal",
",",
"Rita",
"Sokoy",
",",
"surrounded",
"by",
"\n",
"her",
"students",
"at",
"Yayasan",
"Pendidikan",
"Kristen",
"(",
"YPK",
")",
"Kanda",
"Primary",
"School",
"in",
"Waibu",
",",
"Jayapura",
"District",
",",
"Papua",
"Province",
"Indonesia",
".",
"\n",
"Credit",
":",
"©",
"UNICEF",
"/",
"UNI430754",
"/",
"Al",
"Asad",
"*",
"\n",
"CHAPTER1",
"\n",
"Introduction",
"\n",
"KEY",
"MESSAGES",
"\n",
"Leadership",
"takes",
"many",
"forms",
"and",
"is",
"hard",
"to",
"measure",
"concretely",
",",
"but",
"it",
"is",
"critical",
"for",
"education",
"success",
"at",
"all",
"levels",
":",
"\n",
"institutional",
",",
"systemic",
"and",
"political",
".",
"\n ",
"",
"In",
"education",
",",
"as",
"in",
"politics",
"and",
"business",
",",
"leadership",
"is",
"a",
"process",
"of",
"social",
"influence",
"aimed",
"at",
"maximizing",
"joint",
"efforts",
"towards",
"a",
"common",
"goal",
".",
"\n ",
"",
"Leadership",
"styles",
"differ",
"depending",
"on",
"the",
"context",
",",
"personalities",
"and",
"organizational",
"goals",
".",
"\n ",
"",
"The",
"multiple",
"forms",
"of",
"leadership",
"–",
"and",
"its",
"multiple",
"outcomes",
"–",
"means",
"it",
"can",
"be",
"hard",
"to",
"demonstrate",
"its",
"impact",
"on",
"education",
",",
"and",
"why",
"that",
"impact",
"is",
"frequently",
"overlooked",
".",
"\n ",
"",
"But",
"there",
"is",
"virtually",
"no",
"documented",
"instance",
"of",
"troubled",
"schools",
"being",
"turned",
"around",
"without",
"intervention",
"by",
"a",
"good",
"leader",
".",
"\n",
"Leaders",
"need",
"to",
"define",
"their",
"purpose",
"and",
"plan",
"how",
"they",
"will",
"influence",
"change",
",",
"taking",
"into",
"account",
"their",
"capacity",
" ",
"and",
"context",
".",
"\n ",
"",
"While",
"there",
"is",
"an",
"emphasis",
"on",
"learning",
",",
"leaders",
"need",
"to",
"think",
"what",
"learning",
"outcomes",
"to",
"focus",
"on",
"as",
"well",
"as",
"to",
"deliver",
"on",
"a",
"wide",
"range",
"of",
"goals",
"related",
"to",
"equity",
",",
"quality",
"and",
"inclusion",
".",
"\n ",
"",
"Influencing",
"change",
"has",
"increasingly",
"been",
"associated",
"with",
"sharing",
"leadership",
"functions",
"to",
"achieve",
"education",
"goals",
"–",
"moving",
"from",
"perhaps",
"too",
"much",
"emphasis",
"on",
"individuals",
".",
"\n ",
"",
"Freedom",
"to",
"make"
] |
[] |
2007).
Private sector providers without an MBBS may provide better health care despite their lower competence relative to public providers …. The amount of time, questions asked, examinations done and advice given is much lower for public MBBS doctors in primary health clinics than anyone else.
( Das and Hammer, 2007, p. 11)
Mystery clients or simulated standardised patients have been used in previous studies to assess quality (Sudhinaraset et al., 2013). Quality predictors can include provider knowledge and skills, adherence to clinical guidelines and patient satisfaction. We use the methodological tool developed by Das and Hammer (2005) to measure provider competence in our three neighbourhoods. Due to time and financial considerations, we selected a subset of two case stud -ies from the five considered by Das and Hammer (2005) . Pharyngitis, depression and pre-eclampsia were not considered in our experiment; we chose diarrhoea and tuberculosis. Due to poor hygiene and a lack of sanitation in informal settlements, cases of diarrhoea and tuberculosis are common. In India, the case fatality ratio for tuberculosis demonstrates a high number of morbidities. The World Health Organization Global Tuberculosis Report (2023) highlights that the rates of tuberculosis have declined. However, it remains a challenge for the Indian government, with estimates of over 350,000 people dying every year. Two symp -toms of the medical conditions were presented to the medical healthcare provider and their responses recorded. The following cases were presented to the medics, and they were requested to set out the questions they would ask the patient, what examination they would perform and the kind of treatment and/or medication they would offer. Of the 33 private medical providers that participated in this part of the study, ten had some form of medical qualification, MBBS, BAM or were working towards one. The other 23 providers had no formal medical qualifica -tion, but all indicated that they had been working in clinics and medical centres for over ten years.
The two cases that were asked in our experiment with 33 private medical pro -viders. were:
Case 1: A mother brings an eight-month-old child to your clinic. She tells you that her child has been suffering from diarrhoea for the last 2 days and she does not know what to do.
Case 2: A man comes to your clinic with a one-month history of weight loss, and low-grade fever and coughing. If the man then told you
|
[
"2007",
")",
".",
"\n\n",
"Private",
"sector",
"providers",
"without",
"an",
"MBBS",
"may",
"provide",
"better",
"health",
"care",
"despite",
"their",
"lower",
"competence",
"relative",
"to",
"public",
"providers",
"…",
".",
"The",
"amount",
"of",
"time",
",",
"questions",
"asked",
",",
"examinations",
"done",
"and",
"advice",
"given",
"is",
"much",
"lower",
"for",
"public",
"MBBS",
"doctors",
"in",
"primary",
"health",
"clinics",
"than",
"anyone",
"else",
".",
"\n\n",
"(",
"Das",
"and",
"Hammer",
",",
"2007",
",",
"p.",
"11",
")",
"\n\n",
"Mystery",
" ",
"clients",
" ",
"or",
" ",
"simulated",
" ",
"standardised",
" ",
"patients",
" ",
"have",
" ",
"been",
" ",
"used",
" ",
"in",
" ",
"previous",
"studies",
"to",
"assess",
"quality",
"(",
"Sudhinaraset",
"et",
"al",
".",
",",
"2013",
")",
".",
"Quality",
"predictors",
"can",
"include",
" ",
"provider",
" ",
"knowledge",
" ",
"and",
" ",
"skills",
",",
" ",
"adherence",
" ",
"to",
" ",
"clinical",
" ",
"guidelines",
" ",
"and",
"patient",
" ",
"satisfaction",
".",
" ",
"We",
" ",
"use",
" ",
"the",
" ",
"methodological",
" ",
"tool",
" ",
"developed",
" ",
"by",
" ",
"Das",
" ",
"and",
"Hammer",
"(",
"2005",
")",
"to",
"measure",
"provider",
"competence",
"in",
"our",
"three",
"neighbourhoods",
".",
"Due",
"to",
"time",
"and",
"financial",
"considerations",
",",
"we",
"selected",
"a",
"subset",
"of",
"two",
"case",
"stud",
"-ies",
"from",
"the",
"five",
"considered",
"by",
"Das",
"and",
"Hammer",
"(",
"2005",
")",
".",
"Pharyngitis",
",",
"depression",
"and",
"pre",
"-",
"eclampsia",
"were",
"not",
"considered",
"in",
"our",
"experiment",
";",
"we",
"chose",
"diarrhoea",
"and",
"tuberculosis",
".",
"Due",
"to",
"poor",
"hygiene",
"and",
"a",
"lack",
"of",
"sanitation",
"in",
"informal",
"settlements",
",",
"cases",
"of",
"diarrhoea",
"and",
"tuberculosis",
"are",
"common",
".",
"In",
"India",
",",
"the",
"case",
"fatality",
"ratio",
" ",
"for",
" ",
"tuberculosis",
" ",
"demonstrates",
" ",
"a",
" ",
"high",
" ",
"number",
" ",
"of",
" ",
"morbidities",
".",
" ",
"The",
" ",
"World",
"Health",
"Organization",
"Global",
"Tuberculosis",
"Report",
"(",
"2023",
")",
"highlights",
"that",
"the",
"rates",
"of",
"tuberculosis",
"have",
"declined",
".",
"However",
",",
"it",
"remains",
"a",
"challenge",
"for",
"the",
"Indian",
"government",
",",
"with",
"estimates",
"of",
"over",
"350,000",
"people",
"dying",
"every",
"year",
".",
"Two",
"symp",
"-toms",
"of",
"the",
"medical",
"conditions",
"were",
"presented",
"to",
"the",
"medical",
"healthcare",
"provider",
"and",
"their",
"responses",
"recorded",
".",
"The",
"following",
"cases",
"were",
"presented",
"to",
"the",
"medics",
",",
"and",
"they",
"were",
"requested",
"to",
"set",
"out",
"the",
"questions",
"they",
"would",
"ask",
"the",
"patient",
",",
"what",
"examination",
"they",
"would",
"perform",
"and",
"the",
"kind",
"of",
"treatment",
"and/or",
"medication",
"they",
"would",
"offer",
".",
"Of",
"the",
"33",
"private",
"medical",
"providers",
"that",
"participated",
"in",
"this",
"part",
"of",
"the",
"study",
",",
"ten",
"had",
"some",
"form",
"of",
"medical",
"qualification",
",",
"MBBS",
",",
"BAM",
"or",
"were",
"working",
"towards",
"one",
".",
"The",
"other",
"23",
"providers",
"had",
"no",
"formal",
"medical",
"qualifica",
"-tion",
",",
"but",
"all",
"indicated",
"that",
"they",
"had",
"been",
"working",
"in",
"clinics",
"and",
"medical",
"centres",
"for",
"over",
"ten",
"years",
".",
"\n\n",
"The",
"two",
"cases",
"that",
"were",
"asked",
"in",
"our",
"experiment",
"with",
"33",
"private",
"medical",
"pro",
"-viders",
".",
"were",
":",
"\n\n",
"Case",
"1",
":",
"A",
"mother",
"brings",
"an",
"eight",
"-",
"month",
"-",
"old",
"child",
"to",
"your",
"clinic",
".",
"She",
"tells",
"you",
"that",
"her",
"child",
"has",
"been",
"suffering",
"from",
"diarrhoea",
"for",
"the",
"last",
"2",
"days",
"and",
"she",
"does",
"not",
"know",
"what",
"to",
"do",
".",
"\n\n",
"Case",
"2",
":",
"A",
"man",
"comes",
"to",
"your",
"clinic",
"with",
"a",
"one",
"-",
"month",
"history",
"of",
"weight",
"loss",
",",
"and",
"low",
"-",
"grade",
"fever",
"and",
"coughing",
".",
"If",
"the",
"man",
"then",
"told",
"you"
] |
[
{
"end": 327,
"label": "CITATION_REF",
"start": 300
},
{
"end": 314,
"label": "AUTHOR",
"start": 300
},
{
"end": 320,
"label": "YEAR",
"start": 316
},
{
"end": 470,
"label": "CITATION_REF",
"start": 445
},
{
"end": 464,
"label": "AUTHOR",
"start": 445
},
{
"end": 470,
"label": "YEAR",
"start": 466
},
{
"end": 678,
"label": "CITATION_REF",
"start": 656
},
{
"end": 671,
"label": "AUTHOR",
"start": 656
},
{
"end": 677,
"label": "YEAR",
"start": 673
},
{
"end": 873,
"label": "CITATION_REF",
"start": 852
},
{
"end": 872,
"label": "YEAR",
"start": 868
},
{
"end": 866,
"label": "AUTHOR",
"start": 852
}
] |
rare-earth materials, composite magnet materials, and/or the like.
- control system 302
can control the amounts of current (or varying pulses of current) to the electromagnets in order to control the strength and direction of the magnetic fields.
- Different magnetic field strengths
can provide different oscillation/vibration frequencies for the electromagnets, which may provide various ways in which to separate out desirable materials from waste streams.
- Various oscillation frequencies
can be achieved using various combinations of current pulses, for example, using phase offset modulation, pulse-width modulation, and/or other like modulation schemes.
- Some of the MHUs 322
include pneumatic and/or air systems, which may include an air jet sorter or remover.
- the pneumatic and/or air systems
use relatively precise air jets to eject contaminants from a waste stream.
- the air systems
can be the same or similar as the air separator 12 (or include one or more air separators 12 ), which acts in conjunction with MHUs 322 or structures such as one or more sorters, conveyors, drums, and/or other components or devices such as any of those discussed herein, to provide rapid, relatively rough, sorting of recyclable materials from non-recyclable materials on the basis of weight and size.
- the air systems
are implemented as more precise air jet sorters, which may be triggered by the AI/ML mechanisms 312 , a set of sensors 321 , MHUs 322 (e.g., optical sorters, robotic sorters, and/or the like) to supply the air systems with locations for air jets to remove identified contaminants.
- multiple data sources
may feed data/triggers to individual air systems.
- other sensors 321
e.g., inductive, optical, weight, density and/or the like
- other data sources, and/or devices/systems
may be in communication with the air systems to identify contaminants for removal from a waste stream. These other sensors, data sources, and/or devices/systems may be part of other data stream sources and/or the like, as discussed herein.
- the air systems
act as air sources for other sorters (e.g., robotic sorters, robotic sorters, mechanical sorters, and/or the like), which may be pneumatically operated.
- the air systems
can communicate with the control system 302 to report status information 332 related to the air systems, which can include, for example, available air flow, compressed air tank data, pressure readings, various statistics (e.g., accuracy, number of objects removed and/or sorted over a time period, whether an object was
|
[
"rare",
"-",
"earth",
"materials",
",",
"composite",
"magnet",
"materials",
",",
"and/or",
"the",
"like",
".",
"\n",
"-",
"control",
"system",
"302",
"\n",
"can",
"control",
"the",
"amounts",
"of",
"current",
"(",
"or",
"varying",
"pulses",
"of",
"current",
")",
"to",
"the",
"electromagnets",
"in",
"order",
"to",
"control",
"the",
"strength",
"and",
"direction",
"of",
"the",
"magnetic",
"fields",
".",
"\n",
"-",
"Different",
"magnetic",
"field",
"strengths",
"\n",
"can",
"provide",
"different",
"oscillation",
"/",
"vibration",
"frequencies",
"for",
"the",
"electromagnets",
",",
"which",
"may",
"provide",
"various",
"ways",
"in",
"which",
"to",
"separate",
"out",
"desirable",
"materials",
"from",
"waste",
"streams",
".",
"\n",
"-",
"Various",
"oscillation",
"frequencies",
"\n",
"can",
"be",
"achieved",
"using",
"various",
"combinations",
"of",
"current",
"pulses",
",",
"for",
"example",
",",
"using",
"phase",
"offset",
"modulation",
",",
"pulse",
"-",
"width",
"modulation",
",",
"and/or",
"other",
"like",
"modulation",
"schemes",
".",
"\n",
"-",
"Some",
"of",
"the",
"MHUs",
"322",
"\n",
"include",
"pneumatic",
"and/or",
"air",
"systems",
",",
"which",
"may",
"include",
"an",
"air",
"jet",
"sorter",
"or",
"remover",
".",
"\n",
"-",
"the",
"pneumatic",
"and/or",
"air",
"systems",
"\n",
"use",
"relatively",
"precise",
"air",
"jets",
"to",
"eject",
"contaminants",
"from",
"a",
"waste",
"stream",
".",
"\n",
"-",
"the",
"air",
"systems",
"\n",
"can",
"be",
"the",
"same",
"or",
"similar",
"as",
"the",
"air",
"separator",
"12",
"(",
"or",
"include",
"one",
"or",
"more",
"air",
"separators",
"12",
")",
",",
"which",
"acts",
"in",
"conjunction",
"with",
"MHUs",
"322",
"or",
"structures",
"such",
"as",
"one",
"or",
"more",
"sorters",
",",
"conveyors",
",",
"drums",
",",
"and/or",
"other",
"components",
"or",
"devices",
"such",
"as",
"any",
"of",
"those",
"discussed",
"herein",
",",
"to",
"provide",
"rapid",
",",
"relatively",
"rough",
",",
"sorting",
"of",
"recyclable",
"materials",
"from",
"non",
"-",
"recyclable",
"materials",
"on",
"the",
"basis",
"of",
"weight",
"and",
"size",
".",
"\n",
"-",
"the",
"air",
"systems",
"\n",
"are",
"implemented",
"as",
"more",
"precise",
"air",
"jet",
"sorters",
",",
"which",
"may",
"be",
"triggered",
"by",
"the",
"AI",
"/",
"ML",
"mechanisms",
"312",
",",
"a",
"set",
"of",
"sensors",
"321",
",",
"MHUs",
"322",
"(",
"e.g.",
",",
"optical",
"sorters",
",",
"robotic",
"sorters",
",",
"and/or",
"the",
"like",
")",
"to",
"supply",
"the",
"air",
"systems",
"with",
"locations",
"for",
"air",
"jets",
"to",
"remove",
"identified",
"contaminants",
".",
"\n",
"-",
"multiple",
"data",
"sources",
"\n",
"may",
"feed",
"data",
"/",
"triggers",
"to",
"individual",
"air",
"systems",
".",
"\n",
"-",
"other",
"sensors",
"321",
"\n",
"e.g.",
",",
"inductive",
",",
"optical",
",",
"weight",
",",
"density",
"and/or",
"the",
"like",
"\n",
"-",
"other",
"data",
"sources",
",",
"and/or",
"devices",
"/",
"systems",
"\n",
"may",
"be",
"in",
"communication",
"with",
"the",
"air",
"systems",
"to",
"identify",
"contaminants",
"for",
"removal",
"from",
"a",
"waste",
"stream",
".",
"These",
"other",
"sensors",
",",
"data",
"sources",
",",
"and/or",
"devices",
"/",
"systems",
"may",
"be",
"part",
"of",
"other",
"data",
"stream",
"sources",
"and/or",
"the",
"like",
",",
"as",
"discussed",
"herein",
".",
"\n",
"-",
"the",
"air",
"systems",
"\n",
"act",
"as",
"air",
"sources",
"for",
"other",
"sorters",
"(",
"e.g.",
",",
"robotic",
"sorters",
",",
"robotic",
"sorters",
",",
"mechanical",
"sorters",
",",
"and/or",
"the",
"like",
")",
",",
"which",
"may",
"be",
"pneumatically",
"operated",
".",
"\n",
"-",
"the",
"air",
"systems",
"\n",
"can",
"communicate",
"with",
"the",
"control",
"system",
"302",
"to",
"report",
"status",
"information",
"332",
"related",
"to",
"the",
"air",
"systems",
",",
"which",
"can",
"include",
",",
"for",
"example",
",",
"available",
"air",
"flow",
",",
"compressed",
"air",
"tank",
"data",
",",
"pressure",
"readings",
",",
"various",
"statistics",
"(",
"e.g.",
",",
"accuracy",
",",
"number",
"of",
"objects",
"removed",
"and/or",
"sorted",
"over",
"a",
"time",
"period",
",",
"whether",
"an",
"object",
"was"
] |
[] |
algorithms may describe an individual (data) instance whose category is to be predicted using a feature vector. As an example, when the instance includes a collection (corpus) of text, each feature in a feature vector may be the frequency that specific words appear in the corpus of text. In ML classification, labels are assigned to instances, and models are trained to correctly predict the pre-assigned labels of from the training examples. ML algorithms for classification may be referred to as a “classifier.” Examples of classifiers include linear classifiers, k-nearest neighbor (kNN), decision trees, random forests, support vector machines (SVMs), Bayesian classifiers, convolutional neural networks (CNNs), among many others (note that some of these algorithms can be used for other ML tasks as well).
The term “computational graph” at least in some examples refers to a data structure that describes how an output is produced from one or more inputs.
The term “converge” or “convergence” at least in some examples refers to the stable point found at the end of a sequence of solutions via an iterative optimization algorithm. Additionally or alternatively, the term “converge” or “convergence” at least in some examples refers to the output of a function or algorithm getting closer to a specific value over multiple iterations of the function or algorithm.
The term “convolution” at least in some examples refers to a convolutional operation or a convolutional layer of a CNN. The term “convolutional layer” at least in some examples refers to a layer of a DNN in which a convolutional filter passes along an input matrix (e.g., a CNN). Additionally or alternatively, the term “convolutional layer” at least in some examples refers to a layer that includes a series of convolutional operations, each acting on a different slice of an input matrix. The term “convolutional neural network” or “CNN” at least in some examples refers to a neural network including at least one convolutional layer. Additionally or alternatively, the term “convolutional neural network” or “CNN” at least in some examples refers to a DNN designed to process structured arrays of data such as images.
The term “covariance” at least in some examples refers to a measure of the joint variability of two random variables, wherein the covariance is positive if the greater values of one variable mainly correspond with the greater values of the other variable (and the same holds for the lesser values such that
|
[
"algorithms",
"may",
"describe",
"an",
"individual",
"(",
"data",
")",
"instance",
"whose",
"category",
"is",
"to",
"be",
"predicted",
"using",
"a",
"feature",
"vector",
".",
"As",
"an",
"example",
",",
"when",
"the",
"instance",
"includes",
"a",
"collection",
"(",
"corpus",
")",
"of",
"text",
",",
"each",
"feature",
"in",
"a",
"feature",
"vector",
"may",
"be",
"the",
"frequency",
"that",
"specific",
"words",
"appear",
"in",
"the",
"corpus",
"of",
"text",
".",
"In",
"ML",
"classification",
",",
"labels",
"are",
"assigned",
"to",
"instances",
",",
"and",
"models",
"are",
"trained",
"to",
"correctly",
"predict",
"the",
"pre",
"-",
"assigned",
"labels",
"of",
"from",
"the",
"training",
"examples",
".",
"ML",
"algorithms",
"for",
"classification",
"may",
"be",
"referred",
"to",
"as",
"a",
"“",
"classifier",
".",
"”",
"Examples",
"of",
"classifiers",
"include",
"linear",
"classifiers",
",",
"k",
"-",
"nearest",
"neighbor",
"(",
"kNN",
")",
",",
"decision",
"trees",
",",
"random",
"forests",
",",
"support",
"vector",
"machines",
"(",
"SVMs",
")",
",",
"Bayesian",
"classifiers",
",",
"convolutional",
"neural",
"networks",
"(",
"CNNs",
")",
",",
"among",
"many",
"others",
"(",
"note",
"that",
"some",
"of",
"these",
"algorithms",
"can",
"be",
"used",
"for",
"other",
"ML",
"tasks",
"as",
"well",
")",
".",
"\n\n",
"The",
"term",
"“",
"computational",
"graph",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"data",
"structure",
"that",
"describes",
"how",
"an",
"output",
"is",
"produced",
"from",
"one",
"or",
"more",
"inputs",
".",
"\n\n",
"The",
"term",
"“",
"converge",
"”",
"or",
"“",
"convergence",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"the",
"stable",
"point",
"found",
"at",
"the",
"end",
"of",
"a",
"sequence",
"of",
"solutions",
"via",
"an",
"iterative",
"optimization",
"algorithm",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"term",
"“",
"converge",
"”",
"or",
"“",
"convergence",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"the",
"output",
"of",
"a",
"function",
"or",
"algorithm",
"getting",
"closer",
"to",
"a",
"specific",
"value",
"over",
"multiple",
"iterations",
"of",
"the",
"function",
"or",
"algorithm",
".",
"\n\n",
"The",
"term",
"“",
"convolution",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"convolutional",
"operation",
"or",
"a",
"convolutional",
"layer",
"of",
"a",
"CNN",
".",
"The",
"term",
"“",
"convolutional",
"layer",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"layer",
"of",
"a",
"DNN",
"in",
"which",
"a",
"convolutional",
"filter",
"passes",
"along",
"an",
"input",
"matrix",
"(",
"e.g.",
",",
"a",
"CNN",
")",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"term",
"“",
"convolutional",
"layer",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"layer",
"that",
"includes",
"a",
"series",
"of",
"convolutional",
"operations",
",",
"each",
"acting",
"on",
"a",
"different",
"slice",
"of",
"an",
"input",
"matrix",
".",
"The",
"term",
"“",
"convolutional",
"neural",
"network",
"”",
"or",
"“",
"CNN",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"neural",
"network",
"including",
"at",
"least",
"one",
"convolutional",
"layer",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"term",
"“",
"convolutional",
"neural",
"network",
"”",
"or",
"“",
"CNN",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"DNN",
"designed",
"to",
"process",
"structured",
"arrays",
"of",
"data",
"such",
"as",
"images",
".",
"\n\n",
"The",
"term",
"“",
"covariance",
"”",
"at",
"least",
"in",
"some",
"examples",
"refers",
"to",
"a",
"measure",
"of",
"the",
"joint",
"variability",
"of",
"two",
"random",
"variables",
",",
"wherein",
"the",
"covariance",
"is",
"positive",
"if",
"the",
"greater",
"values",
"of",
"one",
"variable",
"mainly",
"correspond",
"with",
"the",
"greater",
"values",
"of",
"the",
"other",
"variable",
"(",
"and",
"the",
"same",
"holds",
"for",
"the",
"lesser",
"values",
"such",
"that"
] |
[] |
used
to examine the decisions made by individual respondents when they are facing a
range of options.
The measures in our study were analysed using the estimated average marginal
components effect (AMCEs). The AMCE represents how the likelihood of each
attribute affects the average difference in the probability of being preferred as a
given slum settlement leader.
We consider a random sample of N respondents drawn from a population of
interest. Each respondent iN/g143/g125/g94/g961, ,is represented with k choices (ratings) tasks,
and for each of the tasks, the respondent chooses the most preferred of j profiles.
The average causal effect of changing factor l from level t0 to t1 for a given
Appendix 183
broker characteristic while averaging over the other characteristics in the brokers’
profile is given by,
/g87
/g87l ijk li jk
iktt
Yt
ijk li jk10
1,;Pr
,,, ,,
,, ,,tt
t
tt/g16/g16
/g11/g12/g11/g12 /g11/g12 /g32
/g16/g16/g166
iijk li jk ik ijk li jk ijk li Yt,, ,, ,, ,, ,, ,/g16/g16 /g16/g16 /g16 /g11/g12 /g16/g11/g12/g170/g172/g186/g188/g117 tt tt t0 Pr/g16/g16 /g11/g12 jk,
where tijkl,− is an (L-1) dimensional vector representing levels of all the factors
except the factor l of the j th profile in the k th task completed by respondent i,
tij k,,− denotes the levels of all factors for the remaining broker profiles other than
profile j, and τ is the support of Pr .,, ,, ttijk li jk /g16/g16/g11/g12 The expectation ( ) is over a
random sample of the respondents and item responses.
Conjoint analysis encompasses several iterative steps of redefining and verify -
ing attributes, interpretations and profiles to give statistical likelihood measures. To
gain a greater understanding of what this causal quantity represents, we will look at
a simplified version of broker selection. The AMCE of a broker in relation to where
they work – inside the settlement or outside. The analysis can be understood by
computing the probability that a broker who works inside the community is chosen
over another opposing broker with an otherwise identical set of attributes. Next,
compute the probability that another broker who works outside the community but
is otherwise identical to the first is chosen over the same opposing broker. Then
calculate the difference between the probability for the broker who works inside
the community to the one who works outside. Repeat this process, computing the
differences in relation to where the brokers work
|
[
"used",
"\n",
"to",
"examine",
"the",
"decisions",
"made",
"by",
"individual",
"respondents",
"when",
"they",
"are",
"facing",
"a",
"\n",
"range",
"of",
"options",
".",
"\n",
"The",
"measures",
"in",
"our",
"study",
"were",
"analysed",
"using",
"the",
"estimated",
"average",
"marginal",
"\n",
"components",
"effect",
"(",
"AMCEs",
")",
".",
"The",
"AMCE",
"represents",
"how",
"the",
"likelihood",
"of",
"each",
"\n",
"attribute",
"affects",
"the",
"average",
"difference",
"in",
"the",
"probability",
"of",
"being",
"preferred",
"as",
"a",
"\n",
"given",
"slum",
"settlement",
"leader",
".",
"\n",
"We",
"consider",
"a",
"random",
"sample",
"of",
"N",
"respondents",
"drawn",
"from",
"a",
"population",
"of",
"\n",
"interest",
".",
"Each",
"respondent",
"iN",
"/",
"g143",
"/",
"g125",
"/",
"g94",
"/",
"g961",
",",
",",
"is",
"represented",
"with",
"k",
"choices",
"(",
"ratings",
")",
"tasks",
",",
"\n",
"and",
"for",
"each",
"of",
"the",
"tasks",
",",
"the",
"respondent",
"chooses",
"the",
"most",
"preferred",
"of",
"j",
"profiles",
".",
"\n",
"The",
"average",
"causal",
"effect",
"of",
"changing",
"factor",
"l",
"from",
"level",
"t0",
"to",
"t1",
"for",
"a",
"given",
"\n",
"Appendix",
"183",
"\n",
"broker",
"characteristic",
"while",
"averaging",
"over",
"the",
"other",
"characteristics",
"in",
"the",
"brokers",
"’",
"\n",
"profile",
"is",
"given",
"by",
",",
"\n ",
"/g87",
"\n",
"/g87l",
"ijk",
"li",
"jk",
"\n",
"iktt",
"\n",
"Yt",
"\n",
"ijk",
"li",
"jk10",
"\n",
"1,;Pr",
"\n",
",",
",",
",",
",",
",",
"\n",
",",
",",
",",
",",
"tt",
"\n",
"t",
"\n",
"tt",
"/",
"g16",
"/",
"g16",
"\n",
"/g11",
"/",
"g12",
"/",
"g11",
"/",
"g12",
"/g11",
"/",
"g12",
"/g32",
"\n",
"/g16",
"/",
"g16",
"/",
"g166",
"\n",
"iijk",
"li",
"jk",
"ik",
"ijk",
"li",
"jk",
"ijk",
"li",
"Yt",
",",
",",
",",
",",
",",
",",
",",
",",
",",
",",
",",
"/g16",
"/",
"g16",
"/g16",
"/",
"g16",
"/g16",
"/g11",
"/",
"g12",
"/g16",
"/",
"g11",
"/",
"g12",
"/",
"g170",
"/",
"g172",
"/",
"g186",
"/",
"g188",
"/",
"g117",
"tt",
"tt",
"t0",
"Pr",
"/",
"g16",
"/",
"g16",
"/g11",
"/",
"g12",
"jk",
",",
"\n",
"where",
"tijkl,−",
"is",
"an",
"(",
"L-1",
")",
"dimensional",
"vector",
"representing",
"levels",
"of",
"all",
"the",
"factors",
"\n",
"except",
"the",
"factor",
"l",
"of",
"the",
"j",
"th",
"profile",
"in",
"the",
"k",
"th",
"task",
"completed",
"by",
"respondent",
"i",
",",
"\n",
"tij",
"k,,−",
"denotes",
"the",
"levels",
"of",
"all",
"factors",
"for",
"the",
"remaining",
"broker",
"profiles",
"other",
"than",
"\n",
"profile",
"j",
",",
"and",
"τ",
"is",
"the",
"support",
"of",
"Pr",
".",
",",
",",
",",
",",
"ttijk",
"li",
"jk",
"/g16",
"/",
"g16",
"/",
"g11",
"/",
"g12",
" ",
"The",
"expectation",
"(",
"",
")",
"is",
"over",
"a",
"\n",
"random",
"sample",
"of",
"the",
"respondents",
"and",
"item",
"responses",
".",
"\n",
"Conjoint",
"analysis",
"encompasses",
"several",
"iterative",
"steps",
"of",
"redefining",
"and",
"verify",
"-",
"\n",
"ing",
"attributes",
",",
"interpretations",
"and",
"profiles",
"to",
"give",
"statistical",
"likelihood",
"measures",
".",
"To",
"\n",
"gain",
"a",
"greater",
"understanding",
"of",
"what",
"this",
"causal",
"quantity",
"represents",
",",
"we",
"will",
"look",
"at",
"\n",
"a",
"simplified",
"version",
"of",
"broker",
"selection",
".",
"The",
"AMCE",
"of",
"a",
"broker",
"in",
"relation",
"to",
"where",
"\n",
"they",
"work",
"–",
"inside",
"the",
"settlement",
"or",
"outside",
".",
"The",
"analysis",
"can",
"be",
"understood",
"by",
"\n",
"computing",
"the",
"probability",
"that",
"a",
"broker",
"who",
"works",
"inside",
"the",
"community",
"is",
"chosen",
"\n",
"over",
"another",
"opposing",
"broker",
"with",
"an",
"otherwise",
"identical",
"set",
"of",
"attributes",
".",
"Next",
",",
"\n",
"compute",
"the",
"probability",
"that",
"another",
"broker",
"who",
"works",
"outside",
"the",
"community",
"but",
"\n",
"is",
"otherwise",
"identical",
"to",
"the",
"first",
"is",
"chosen",
"over",
"the",
"same",
"opposing",
"broker",
".",
"Then",
"\n",
"calculate",
"the",
"difference",
"between",
"the",
"probability",
"for",
"the",
"broker",
"who",
"works",
"inside",
"\n",
"the",
"community",
"to",
"the",
"one",
"who",
"works",
"outside",
".",
"Repeat",
"this",
"process",
",",
"computing",
"the",
"\n",
"differences",
"in",
"relation",
"to",
"where",
"the",
"brokers",
"work"
] |
[] |
Dewandel B, Lachassagne P, Bakalowicz M, Weng PH, Al-Malki A
(2003) Evaluation of aquifer thickness by analysing recession
hydrographs. Application to the Oman ophiolite hard-rockaquifer. J Hydrol 274:248 –269
Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods and low
flows in the United States: impact of spatial correlation. J Hydrol
240:90 –105102 W. Brutsaert
Gardiner V, Gregory KJ, Walling DE (1977) Further notes on the
drainage density —basin area relationship. Area 9:117 –121
Golubev VS, Lawrimore JH, Groisman PY, Speranskaya NA,
Zhuravin SA, Menne MJ, Peterson TC, Malone RW (2001)Evaporation changes over the contiguous United States and the
former USSR: a reassessment. Geophys Res Lett 28:2665 –2668
Gregory KJ, Gardiner V (1975) Drainage density and climate. Z
Geomorph 19:287 –298
Groisman PYa, Knight RW, Karl TR, Easterling DR, Sun B,
Lawrimore JH (2004) Contemporary changes of the hydrological
cycle over the contiguous United States: trends derived from insitu observations. J Hydromet 5:64 –85
Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006)
Global temperature change. Proc Nat Acad Sci 103:14288 –14293
Hobbins MT, Ramírez JA, Brown TC (2004) Trends in pan
evaporation and actual evapotranspiration across the contermi-
nous U.S.: paradoxical or complementary? Geophys Res Lett 31:
L13503. doi: 10.1029/2004GL019846
IPCC (2007) Climate Change 2007: the physical science basis.
Contribution of Working Group I to the fourth assessment report
of the intergovernmental panel on climate. Cambridge University
Press, Cambridge, UK (also: < http://ipcc-wg1.ucar.edu/wg1/wg1-
report.html >)
Jacob CE (1943) Correlation of ground-water levels and precipitation
on Long Island, N. Y.: Pt. 1. Theory. Trans Amer Geophys Un
24:564 –573
Juckem PF, Hunt RJ, Anderson MP, Robertson DM (2008) Effects of
climate and land management change on streamflow in the
driftless area of Wisconsin. J Hydrol 355:123 –130
Jutla AS, Small D, Islam S (2006) A precipitation dipole in eastern
North America. Geophys Res Lett 33:L21703. doi: 10.1029/
2006GL027500
Kahler DM, Brutsaert W (2006) Complementary relationship between
daily evaporation in the environment and pan evaporation. WaterResour Res 42:W05413. doi: 10.1029/2005WR004541
Lawrimore JH, Peterson TC (2000) Pan evaporation in dry and humid
regions of the United States. J Hydromet 1:543 –546
Lins H, Slack J (1999) Streamflow trends in the United States.
Geophys Res Lett 26:227 –230
Marani M, Belluco E, D ’Alpaos A, Defina A, Lanzoni S, Rinaldo A
(2003) On the drainage density of tidal networks. Water ResourRes 39:1040. doi: 10.1029/2001WR001051
Maritan A, Rinaldo A, Rigon R, Giacometti A, Rodríguez-Iturbe I
(1996) Scaling laws for river networks. Phys Rev E 53:1510 –1515
|
[
"Dewandel",
"B",
",",
"Lachassagne",
"P",
",",
"Bakalowicz",
"M",
",",
"Weng",
"PH",
",",
"Al",
"-",
"Malki",
"A",
"\n",
"(",
"2003",
")",
"Evaluation",
"of",
"aquifer",
"thickness",
"by",
"analysing",
"recession",
"\n",
"hydrographs",
".",
"Application",
"to",
"the",
"Oman",
"ophiolite",
"hard",
"-",
"rockaquifer",
".",
"J",
"Hydrol",
"274:248",
"–",
"269",
"\n",
"Douglas",
"EM",
",",
"Vogel",
"RM",
",",
"Kroll",
"CN",
"(",
"2000",
")",
"Trends",
"in",
"floods",
"and",
"low",
"\n",
"flows",
"in",
"the",
"United",
"States",
":",
"impact",
"of",
"spatial",
"correlation",
".",
"J",
"Hydrol",
"\n",
"240:90",
"–",
"105102",
"W.",
"Brutsaert",
"\n",
"Gardiner",
"V",
",",
"Gregory",
"KJ",
",",
"Walling",
"DE",
"(",
"1977",
")",
"Further",
"notes",
"on",
"the",
"\n",
"drainage",
"density",
"—",
"basin",
"area",
"relationship",
".",
"Area",
"9:117",
"–",
"121",
"\n",
"Golubev",
"VS",
",",
"Lawrimore",
"JH",
",",
"Groisman",
"PY",
",",
"Speranskaya",
"NA",
",",
"\n",
"Zhuravin",
"SA",
",",
"Menne",
"MJ",
",",
"Peterson",
"TC",
",",
"Malone",
"RW",
"(",
"2001)Evaporation",
"changes",
"over",
"the",
"contiguous",
"United",
"States",
"and",
"the",
"\n",
"former",
"USSR",
":",
"a",
"reassessment",
".",
"Geophys",
"Res",
"Lett",
"28:2665",
"–",
"2668",
"\n",
"Gregory",
"KJ",
",",
"Gardiner",
"V",
"(",
"1975",
")",
"Drainage",
"density",
"and",
"climate",
".",
"Z",
"\n",
"Geomorph",
"19:287",
"–",
"298",
"\n",
"Groisman",
"PYa",
",",
"Knight",
"RW",
",",
"Karl",
"TR",
",",
"Easterling",
"DR",
",",
"Sun",
"B",
",",
"\n",
"Lawrimore",
"JH",
"(",
"2004",
")",
"Contemporary",
"changes",
"of",
"the",
"hydrological",
"\n",
"cycle",
"over",
"the",
"contiguous",
"United",
"States",
":",
"trends",
"derived",
"from",
"insitu",
"observations",
".",
"J",
"Hydromet",
"5:64",
"–",
"85",
"\n",
"Hansen",
"J",
",",
"Sato",
"M",
",",
"Ruedy",
"R",
",",
"Lo",
"K",
",",
"Lea",
"DW",
",",
"Medina",
"-",
"Elizade",
"M",
"(",
"2006",
")",
"\n",
"Global",
"temperature",
"change",
".",
"Proc",
"Nat",
"Acad",
"Sci",
"103:14288",
"–",
"14293",
"\n",
"Hobbins",
"MT",
",",
"Ramírez",
"JA",
",",
"Brown",
"TC",
"(",
"2004",
")",
"Trends",
"in",
"pan",
"\n",
"evaporation",
"and",
"actual",
"evapotranspiration",
"across",
"the",
"contermi-",
"\n",
"nous",
"U.S.",
":",
"paradoxical",
"or",
"complementary",
"?",
"Geophys",
"Res",
"Lett",
"31",
":",
"\n",
"L13503",
".",
"doi",
":",
"10.1029/2004GL019846",
"\n",
"IPCC",
"(",
"2007",
")",
"Climate",
"Change",
"2007",
":",
"the",
"physical",
"science",
"basis",
".",
"\n",
"Contribution",
"of",
"Working",
"Group",
"I",
"to",
"the",
"fourth",
"assessment",
"report",
"\n",
"of",
"the",
"intergovernmental",
"panel",
"on",
"climate",
".",
"Cambridge",
"University",
"\n",
"Press",
",",
"Cambridge",
",",
"UK",
"(",
"also",
":",
"<",
"http://ipcc-wg1.ucar.edu/wg1/wg1-",
"\n",
"report.html",
">",
")",
"\n",
"Jacob",
"CE",
"(",
"1943",
")",
"Correlation",
"of",
"ground",
"-",
"water",
"levels",
"and",
"precipitation",
"\n",
"on",
"Long",
"Island",
",",
"N.",
"Y.",
":",
"Pt",
".",
"1",
".",
"Theory",
".",
"Trans",
"Amer",
"Geophys",
"Un",
"\n",
"24:564",
"–",
"573",
"\n",
"Juckem",
"PF",
",",
"Hunt",
"RJ",
",",
"Anderson",
"MP",
",",
"Robertson",
"DM",
"(",
"2008",
")",
"Effects",
"of",
"\n",
"climate",
"and",
"land",
"management",
"change",
"on",
"streamflow",
"in",
"the",
"\n",
"driftless",
"area",
"of",
"Wisconsin",
".",
"J",
"Hydrol",
"355:123",
"–",
"130",
"\n",
"Jutla",
"AS",
",",
"Small",
"D",
",",
"Islam",
"S",
"(",
"2006",
")",
"A",
"precipitation",
"dipole",
"in",
"eastern",
"\n",
"North",
"America",
".",
"Geophys",
"Res",
"Lett",
"33",
":",
"L21703",
".",
"doi",
":",
"10.1029/",
"\n",
"2006GL027500",
"\n",
"Kahler",
"DM",
",",
"Brutsaert",
"W",
"(",
"2006",
")",
"Complementary",
"relationship",
"between",
"\n",
"daily",
"evaporation",
"in",
"the",
"environment",
"and",
"pan",
"evaporation",
".",
"WaterResour",
"Res",
"42",
":",
"W05413",
".",
"doi",
":",
"10.1029/2005WR004541",
"\n",
"Lawrimore",
"JH",
",",
"Peterson",
"TC",
"(",
"2000",
")",
"Pan",
"evaporation",
"in",
"dry",
"and",
"humid",
"\n",
"regions",
"of",
"the",
"United",
"States",
".",
"J",
"Hydromet",
"1:543",
"–",
"546",
"\n",
"Lins",
"H",
",",
"Slack",
"J",
"(",
"1999",
")",
"Streamflow",
"trends",
"in",
"the",
"United",
"States",
".",
"\n",
"Geophys",
"Res",
"Lett",
"26:227",
"–",
"230",
"\n",
"Marani",
"M",
",",
"Belluco",
"E",
",",
"D",
"’",
"Alpaos",
"A",
",",
"Defina",
"A",
",",
"Lanzoni",
"S",
",",
"Rinaldo",
"A",
"\n",
"(",
"2003",
")",
"On",
"the",
"drainage",
"density",
"of",
"tidal",
"networks",
".",
"Water",
"ResourRes",
"39:1040",
".",
"doi",
":",
"10.1029/2001WR001051",
"\n",
"Maritan",
"A",
",",
"Rinaldo",
"A",
",",
"Rigon",
"R",
",",
"Giacometti",
"A",
",",
"Rodríguez",
"-",
"Iturbe",
"I",
"\n",
"(",
"1996",
")",
"Scaling",
"laws",
"for",
"river",
"networks",
".",
"Phys",
"Rev",
"E",
"53:1510",
"–",
"1515",
"\n"
] |
[
{
"end": 209,
"label": "CITATION_SPAN",
"start": 0
},
{
"end": 368,
"label": "CITATION_SPAN",
"start": 210
},
{
"end": 490,
"label": "CITATION_SPAN",
"start": 369
},
{
"end": 719,
"label": "CITATION_SPAN",
"start": 491
},
{
"end": 802,
"label": "CITATION_SPAN",
"start": 720
},
{
"end": 1021,
"label": "CITATION_SPAN",
"start": 803
},
{
"end": 1148,
"label": "CITATION_SPAN",
"start": 1022
},
{
"end": 1361,
"label": "CITATION_SPAN",
"start": 1149
},
{
"end": 1629,
"label": "CITATION_SPAN",
"start": 1362
},
{
"end": 1770,
"label": "CITATION_SPAN",
"start": 1630
},
{
"end": 1941,
"label": "CITATION_SPAN",
"start": 1771
},
{
"end": 2079,
"label": "CITATION_SPAN",
"start": 1942
},
{
"end": 2255,
"label": "CITATION_SPAN",
"start": 2080
},
{
"end": 2373,
"label": "CITATION_SPAN",
"start": 2256
},
{
"end": 2465,
"label": "CITATION_SPAN",
"start": 2374
},
{
"end": 2631,
"label": "CITATION_SPAN",
"start": 2466
},
{
"end": 2760,
"label": "CITATION_SPAN",
"start": 2632
}
] |
3105 Instrumentation 467 105.37%Table 3.7. The Scopus subject fields that appear more frequently within each domain in comparison with the average
publications
160
Part 3 Analysis of scientific and technological potential
Domain ASJC Description No recordsRelative
freq.
Energy2213 Safety, risk, reliability and quality 294 290.13%
2102 Energy engineering and power technology 1 140 263.71%
2104 Nuclear energy and engineering 516 189.43%
2200 General engineering 454 188.25%
2103 Fuel technology 84 166.34%
Environmental
sciences and
industries1105 Ecology, evolution, behavior and systematics 1 863 586.38%
2300 General environmental science 434 573.21%
1909 Geotechnical engineering and engineering geology 1 015 531.02%
1110 Plant science 612 392.73%
1900 General earth and planetary sciences 370 383.42%
Fundamental
physics and
mathematics2600 General mathematics 4 206 933.35%
3106 Nuclear and high energy physics 5 979 566.81%
2604 Applied mathematics 3 190 497.80%
3103 Astronomy and astrophysics 2 127 477.76%
2613 Statistics and probability 1 601 472.83%
Governance,
culture, education
and the economy1000 Multidisciplinary 200 247.62%
1405 Management of technology and innovation 585 203.41%
2000 General economics, econometrics and finance 1 023 199.42%
2002 Economics and econometrics 2 160 198.53%
3316 Cultural studies 189 197.91%
Health and
wellbeing2700 General medicine 4 361 624.00%
1311 Genetics 743 348.17%
1314 Physiology 470 283.70%
1300 General biochemistry, genetics and molecular biology 630 283.36%
1312 Molecular biology 220 275.69%
ICT and computer
science1710 Information systems 1 147 449.80%
1706 Computer science applications 1 809 406.87%
1705 Computer networks and communications 2 101 402.88%
2207 Control and systems engineering 1 431 305.99%
1700 General computer science 1 647 268.94%
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation161
Domain ASJC Description No recordsRelative
freq.
Mechanical
engineering and
heavy machinery2200 General engineering 684 283.62%
2210 Mechanical engineering 1 458 217.31%
2611 Modelling and simulation 19 165.22%
2502 Biomaterials 21 155.56%
2209 Industrial and manufacturing engineering 586 149.57%
Nanotechnology
and materials3104 Condensed matter physics 9 900 708.48%
2508 Surfaces, coatings and films 2 000 668.26%
2500 General materials science 6 602 552.43%
2504 Electronic, optical and magnetic materials 5 640 527.96%
1600 General chemistry 2 800 450.46%
Optics and
photonics3107 Atomic and molecular physics, and optics 1 456 220.61%
2504 Electronic, optical and magnetic materials 2 169 203.04%
2208 Electrical and electronic engineering 2 562 185.55%
3102 Acoustics and ultrasonics 44 166.04%
3109 Statistical and nonlinear physics 73 139.31%
Transportation2606 Control and optimization 138 267.10%
3313 Transportation 135 197.08%
2202 Aerospace
|
[
"3105",
"Instrumentation",
"467",
"105.37%Table",
"3.7",
".",
"The",
"Scopus",
"subject",
"fields",
"that",
"appear",
"more",
"frequently",
"within",
"each",
"domain",
"in",
"comparison",
"with",
"the",
"average",
"\n",
"publications",
"\n",
"160",
"\n ",
"Part",
"3",
"Analysis",
"of",
"scientific",
"and",
"technological",
"potential",
"\n",
"Domain",
"ASJC",
"Description",
"No",
"recordsRelative",
"\n",
"freq",
".",
"\n",
"Energy2213",
"Safety",
",",
"risk",
",",
"reliability",
"and",
"quality",
"294",
"290.13",
"%",
"\n",
"2102",
"Energy",
"engineering",
"and",
"power",
"technology",
"1",
"140",
"263.71",
"%",
"\n",
"2104",
"Nuclear",
"energy",
"and",
"engineering",
"516",
"189.43",
"%",
"\n",
"2200",
"General",
"engineering",
"454",
"188.25",
"%",
"\n",
"2103",
"Fuel",
"technology",
"84",
"166.34",
"%",
"\n",
"Environmental",
"\n",
"sciences",
"and",
"\n",
"industries1105",
"Ecology",
",",
"evolution",
",",
"behavior",
"and",
"systematics",
"1",
"863",
"586.38",
"%",
"\n",
"2300",
"General",
"environmental",
"science",
"434",
"573.21",
"%",
"\n",
"1909",
"Geotechnical",
"engineering",
"and",
"engineering",
"geology",
"1",
"015",
"531.02",
"%",
"\n",
"1110",
"Plant",
"science",
"612",
"392.73",
"%",
"\n",
"1900",
"General",
"earth",
"and",
"planetary",
"sciences",
"370",
"383.42",
"%",
"\n",
"Fundamental",
"\n",
"physics",
"and",
"\n",
"mathematics2600",
"General",
"mathematics",
"4",
"206",
"933.35",
"%",
"\n",
"3106",
"Nuclear",
"and",
"high",
"energy",
"physics",
"5",
"979",
"566.81",
"%",
"\n",
"2604",
"Applied",
"mathematics",
"3",
"190",
"497.80",
"%",
"\n",
"3103",
"Astronomy",
"and",
"astrophysics",
"2",
"127",
"477.76",
"%",
"\n",
"2613",
"Statistics",
"and",
"probability",
"1",
"601",
"472.83",
"%",
"\n",
"Governance",
",",
"\n",
"culture",
",",
"education",
"\n",
"and",
"the",
"economy1000",
"Multidisciplinary",
"200",
"247.62",
"%",
"\n",
"1405",
"Management",
"of",
"technology",
"and",
"innovation",
"585",
"203.41",
"%",
"\n",
"2000",
"General",
"economics",
",",
"econometrics",
"and",
"finance",
"1",
"023",
"199.42",
"%",
"\n",
"2002",
"Economics",
"and",
"econometrics",
"2",
"160",
"198.53",
"%",
"\n",
"3316",
"Cultural",
"studies",
"189",
"197.91",
"%",
"\n",
"Health",
"and",
"\n",
"wellbeing2700",
"General",
"medicine",
"4",
"361",
"624.00",
"%",
"\n",
"1311",
"Genetics",
"743",
"348.17",
"%",
"\n",
"1314",
"Physiology",
"470",
"283.70",
"%",
"\n",
"1300",
"General",
"biochemistry",
",",
"genetics",
"and",
"molecular",
"biology",
"630",
"283.36",
"%",
"\n",
"1312",
"Molecular",
"biology",
"220",
"275.69",
"%",
"\n",
"ICT",
"and",
"computer",
"\n",
"science1710",
"Information",
"systems",
"1",
"147",
"449.80",
"%",
"\n",
"1706",
"Computer",
"science",
"applications",
"1",
"809",
"406.87",
"%",
"\n",
"1705",
"Computer",
"networks",
"and",
"communications",
"2",
"101",
"402.88",
"%",
"\n",
"2207",
"Control",
"and",
"systems",
"engineering",
"1",
"431",
"305.99",
"%",
"\n",
"1700",
"General",
"computer",
"science",
"1",
"647",
"268.94",
"%",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation161",
"\n",
"Domain",
"ASJC",
"Description",
"No",
"recordsRelative",
"\n",
"freq",
".",
"\n",
"Mechanical",
"\n",
"engineering",
"and",
"\n",
"heavy",
"machinery2200",
"General",
"engineering",
"684",
"283.62",
"%",
"\n",
"2210",
"Mechanical",
"engineering",
"1",
"458",
"217.31",
"%",
"\n",
"2611",
"Modelling",
"and",
"simulation",
"19",
"165.22",
"%",
"\n",
"2502",
"Biomaterials",
"21",
"155.56",
"%",
"\n",
"2209",
"Industrial",
"and",
"manufacturing",
"engineering",
"586",
"149.57",
"%",
"\n",
"Nanotechnology",
"\n",
"and",
"materials3104",
"Condensed",
"matter",
"physics",
"9",
"900",
"708.48",
"%",
"\n",
"2508",
"Surfaces",
",",
"coatings",
"and",
"films",
"2",
"000",
"668.26",
"%",
"\n",
"2500",
"General",
"materials",
"science",
"6",
"602",
"552.43",
"%",
"\n",
"2504",
"Electronic",
",",
"optical",
"and",
"magnetic",
"materials",
"5",
"640",
"527.96",
"%",
"\n",
"1600",
"General",
"chemistry",
"2",
"800",
"450.46",
"%",
"\n",
"Optics",
"and",
"\n",
"photonics3107",
"Atomic",
"and",
"molecular",
"physics",
",",
"and",
"optics",
"1",
"456",
"220.61",
"%",
"\n",
"2504",
"Electronic",
",",
"optical",
"and",
"magnetic",
"materials",
"2",
"169",
"203.04",
"%",
"\n",
"2208",
"Electrical",
"and",
"electronic",
"engineering",
"2",
"562",
"185.55",
"%",
"\n",
"3102",
"Acoustics",
"and",
"ultrasonics",
"44",
"166.04",
"%",
"\n",
"3109",
"Statistical",
"and",
"nonlinear",
"physics",
"73",
"139.31",
"%",
"\n",
"Transportation2606",
"Control",
"and",
"optimization",
"138",
"267.10",
"%",
"\n",
"3313",
"Transportation",
"135",
"197.08",
"%",
"\n",
"2202",
"Aerospace"
] |
[] |
on China, one each on Romania, Hungary, the Czech Republic and Greece,
4
Negotiating in/visibility
two on the UK and three on the US. Mariko Ogawa’s foreword discusses
the changing contours of women’s engagement with professional science
in Japan against broader international developments in the field. Equally
importantly, many of the chapters engage with the history of women in
science, engineering and medicine from border- defying, trans- regional per -
spectives, demonstrating that the ‘science’ they document was itself a trans-
regional enterprise.
The volume combines individual and collective portraits of women in
science, engineering and medicine with discussions of institutional struc -
tures, work and associational cultures, medical practice and education,
science and domesticity, science communication and activism, and science
policy. By bringing together case studies that are not usually discussed
alongside each other, it seeks to expand the geography of research and
destabilize the conventional focus on North America and Western Europe
characteristic of much scholarly research on the topic. What do we learn
about the experiences of women in STEMM in the twentieth century when
we ponder examples from East Asia and South Asia alongside those from
Eastern, Central and Southern Europe and the Anglo- American world?
How can we rethink gender and science in the twentieth century when
we move away from a monolingual archive dominated by the English
language? To answer these questions, the chapters bring together a wide
range of material – official archives, personal collections, oral history
interviews, correspondence, press articles, memoirs, statistics, legislation,
lecture series – in languages as diverse as Chinese, Czech, English, Greek,
Hindi, Hungarian, Japanese and Romanian. This multilingual archive is
examined against the background of changing local and global contexts
that shaped the extent and ways in which women became in/ visible in
STEMM. The essays thus make important qualifications to the widespread
narrative that the twentieth century was a ‘century for women’ in science
by showing what exactly that meant in different geographical and socio-
political contexts and identifying, as J. Devika aptly proposed, ‘points of
contact’ between this kaleidoscope of experiences, rather than trying to fit
them into ‘a single unified history’.9
Numbers and the politics of in/ visibility
In a volume concerned with the experiences of women in STEMM, it seems
appropriate to discuss, albeit briefly, the paradoxical relationship between
numbers and in/ visibility. As many of us can attest, it is not uncommon for
|
[
"on",
"China",
",",
"one",
"each",
"on",
"Romania",
",",
"Hungary",
",",
"the",
"Czech",
"Republic",
"and",
"Greece",
",",
" \n \n",
"4",
"\n ",
"Negotiating",
"in",
"/",
"visibility",
"\n",
"two",
"on",
"the",
"UK",
"and",
"three",
" ",
"on",
"the",
"US",
".",
"Mariko",
"Ogawa",
"’s",
"foreword",
"discusses",
"\n",
"the",
"changing",
"contours",
"of",
"women",
"’s",
"engagement",
"with",
"professional",
"science",
"\n",
"in",
"Japan",
"against",
"broader",
"international",
"developments",
"in",
"the",
"field",
".",
"Equally",
"\n",
"importantly",
",",
"many",
"of",
"the",
"chapters",
"engage",
"with",
"the",
"history",
"of",
"women",
"in",
"\n",
"science",
",",
"engineering",
"and",
"medicine",
"from",
"border-",
" ",
"defying",
",",
"trans-",
" ",
"regional",
"per",
"-",
"\n",
"spectives",
",",
"demonstrating",
"that",
"the",
"‘",
"science",
"’",
"they",
"document",
"was",
"itself",
"a",
"trans-",
" \n",
"regional",
"enterprise",
".",
"\n",
"The",
"volume",
"combines",
"individual",
"and",
"collective",
"portraits",
"of",
"women",
"in",
"\n",
"science",
",",
"engineering",
"and",
"medicine",
"with",
"discussions",
"of",
"institutional",
"struc",
"-",
"\n",
"tures",
",",
"work",
"and",
"associational",
"cultures",
",",
"medical",
"practice",
"and",
"education",
",",
"\n",
"science",
"and",
"domesticity",
",",
"science",
"communication",
"and",
"activism",
",",
"and",
"science",
"\n",
"policy",
".",
"By",
"bringing",
"together",
"case",
"studies",
"that",
"are",
"not",
"usually",
"discussed",
"\n",
"alongside",
"each",
"other",
",",
"it",
"seeks",
"to",
"expand",
"the",
"geography",
"of",
"research",
"and",
"\n",
"destabilize",
"the",
"conventional",
"focus",
"on",
"North",
"America",
"and",
"Western",
"Europe",
"\n",
"characteristic",
"of",
"much",
"scholarly",
"research",
"on",
"the",
"topic",
".",
"What",
"do",
"we",
"learn",
"\n",
"about",
"the",
"experiences",
"of",
"women",
"in",
"STEMM",
"in",
"the",
"twentieth",
"century",
"when",
"\n",
"we",
"ponder",
"examples",
"from",
"East",
"Asia",
"and",
"South",
"Asia",
"alongside",
"those",
"from",
"\n",
"Eastern",
",",
"Central",
"and",
"Southern",
"Europe",
"and",
"the",
"Anglo-",
" ",
"American",
"world",
"?",
"\n",
"How",
"can",
"we",
"rethink",
"gender",
"and",
"science",
"in",
"the",
"twentieth",
"century",
"when",
"\n",
"we",
"move",
"away",
"from",
"a",
"monolingual",
"archive",
"dominated",
"by",
"the",
"English",
"\n",
"language",
"?",
"To",
"answer",
"these",
"questions",
",",
"the",
"chapters",
"bring",
"together",
"a",
"wide",
"\n",
"range",
"of",
"material",
"–",
" ",
"official",
"archives",
",",
"personal",
"collections",
",",
"oral",
"history",
"\n",
"interviews",
",",
"correspondence",
",",
"press",
"articles",
",",
"memoirs",
",",
"statistics",
",",
"legislation",
",",
"\n",
"lecture",
"series",
"–",
" ",
"in",
"languages",
"as",
"diverse",
"as",
"Chinese",
",",
"Czech",
",",
"English",
",",
"Greek",
",",
"\n",
"Hindi",
",",
"Hungarian",
",",
"Japanese",
"and",
"Romanian",
".",
"This",
"multilingual",
"archive",
"is",
"\n",
"examined",
"against",
"the",
"background",
"of",
"changing",
"local",
"and",
"global",
"contexts",
"\n",
"that",
"shaped",
"the",
"extent",
"and",
"ways",
"in",
"which",
"women",
"became",
"in/",
" ",
"visible",
"in",
"\n",
"STEMM",
".",
"The",
"essays",
"thus",
"make",
"important",
"qualifications",
"to",
"the",
"widespread",
"\n",
"narrative",
"that",
"the",
"twentieth",
"century",
"was",
"a",
"‘",
"century",
"for",
"women",
"’",
"in",
"science",
"\n",
"by",
"showing",
"what",
"exactly",
"that",
"meant",
"in",
"different",
"geographical",
"and",
"socio-",
" \n",
"political",
"contexts",
"and",
"identifying",
",",
"as",
"J.",
"Devika",
"aptly",
"proposed",
",",
"‘",
"points",
"of",
"\n",
"contact",
"’",
"between",
"this",
"kaleidoscope",
"of",
"experiences",
",",
"rather",
"than",
"trying",
"to",
"fit",
"\n",
"them",
"into",
"‘",
"a",
"single",
"unified",
"history’.9",
"\n",
"Numbers",
"and",
"the",
"politics",
"of",
"in/",
" ",
"visibility",
"\n",
"In",
"a",
"volume",
"concerned",
"with",
"the",
"experiences",
"of",
"women",
"in",
"STEMM",
",",
"it",
"seems",
"\n",
"appropriate",
"to",
"discuss",
",",
"albeit",
"briefly",
",",
"the",
"paradoxical",
"relationship",
"between",
"\n",
"numbers",
"and",
"in/",
" ",
"visibility",
".",
"As",
"many",
"of",
"us",
"can",
"attest",
",",
"it",
"is",
"not",
"uncommon",
"for",
"\n"
] |
[
{
"end": 2439,
"label": "CITATION_REF",
"start": 2438
}
] |
| Publication | Publication Date | Title |
|-----------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US11801535B2 (en) | 2023-10-31 | Autonomous data collection and system control for material recovery facilities |
| Qian et al. | 2020 | Orchestrating the development lifecycle of machine learning-based IoT applications: A taxonomy and survey |
| Sahoo et al. | 2023 | Deep learning applications in manufacturing operations: a review of trends and ways forward |
| CN116011511A (en) | 2023-04-25 | Machine Learning Model Scaling System for Power-Aware Hardware |
| CN110869918A (en) | 2020-03-06 | Intelligent endpoint system for managing endpoint data |
| Mohamed et al. | 2018 | Towards machine learning based IoT intrusion detection service |
| Kordos et al. | 2012 | Instance selection with neural networks for regression problems |
| CN106999989A (en) | 2017-08-01 | The high power capacity separation of raw ore mineral from waste mineral |
| EP4385632A1 (en) | 2024-06-19 | Autonomous data collection and system control for material recovery facilities |
| Johnston et al. | 2017 | Optimizing convolutional neural networks for cloud detection |
| Bebortta et al. | 2022 | An opportunistic ensemble learning framework for network traffic classification in iot environments |
| Saleh et al. | 2023 | A novel deep-learning model for remote driver monitoring in SDN-based internet of autonomous vehicles using 5G technologies |
| Chen et al. | 2015 | An Enhanced Artificial Bee Colony‐Based Support Vector Machine for Image‐Based Fault Detection |
| TWI879684B (en) | 2025-04-01 | High-performance resource and job scheduling |
| Ketineni et al. | 2024 | IoT-based waste management: hybrid optimal routing and waste classification model |
| PM et al. | 2024 | Advancements in anomaly detection techniques in network traffic: The role of artificial intelligence and machine learning |
| Shanahan et al. | 2023 | Robotics and artificial intelligence in the nuclear industry: from teleoperation to cyber physical systems |
| Nguyen et al. | 2024 | Advances in Computational Collective Intelligence: 16th International Conference, ICCCI 2024, Leipzig, Germany, September 9–11, 2024, Proceedings, Part II |
| Iqbal et al. | 2023 | Auto-differentiable transfer mapping architecture for physics-infused learning of acoustic field |
| Balega et al. | 2022 | IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms |
| Jaiswal et al. | 2014 | Analysis of early traffic processing and comparison of machine learning algorithms for real time internet traffic identification using statistical approach
|
[
"|",
"Publication",
" ",
"|",
"Publication",
"Date",
" ",
"|",
"Title",
" ",
"|",
"\n",
"|-----------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|",
"\n",
"|",
"US11801535B2",
" ",
"(",
"en",
")",
"|",
"2023",
"-",
"10",
"-",
"31",
" ",
"|",
"Autonomous",
"data",
"collection",
"and",
"system",
"control",
"for",
"material",
"recovery",
"facilities",
" ",
"|",
"\n",
"|",
"Qian",
"et",
"al",
".",
" ",
"|",
"2020",
" ",
"|",
"Orchestrating",
"the",
"development",
"lifecycle",
"of",
"machine",
"learning",
"-",
"based",
"IoT",
"applications",
":",
"A",
"taxonomy",
"and",
"survey",
" ",
"|",
"\n",
"|",
"Sahoo",
"et",
"al",
".",
" ",
"|",
"2023",
" ",
"|",
"Deep",
"learning",
"applications",
"in",
"manufacturing",
"operations",
":",
"a",
"review",
"of",
"trends",
"and",
"ways",
"forward",
" ",
"|",
"\n",
"|",
"CN116011511A",
" ",
"(",
"en",
")",
"|",
"2023",
"-",
"04",
"-",
"25",
" ",
"|",
"Machine",
"Learning",
"Model",
"Scaling",
"System",
"for",
"Power",
"-",
"Aware",
"Hardware",
" ",
"|",
"\n",
"|",
"CN110869918A",
" ",
"(",
"en",
")",
"|",
"2020",
"-",
"03",
"-",
"06",
" ",
"|",
"Intelligent",
"endpoint",
"system",
"for",
"managing",
"endpoint",
"data",
" ",
"|",
"\n",
"|",
"Mohamed",
"et",
"al",
".",
" ",
"|",
"2018",
" ",
"|",
"Towards",
"machine",
"learning",
"based",
"IoT",
"intrusion",
"detection",
"service",
" ",
"|",
"\n",
"|",
"Kordos",
"et",
"al",
".",
" ",
"|",
"2012",
" ",
"|",
"Instance",
"selection",
"with",
"neural",
"networks",
"for",
"regression",
"problems",
" ",
"|",
"\n",
"|",
"CN106999989A",
" ",
"(",
"en",
")",
"|",
"2017",
"-",
"08",
"-",
"01",
" ",
"|",
"The",
"high",
"power",
"capacity",
"separation",
"of",
"raw",
"ore",
"mineral",
"from",
"waste",
"mineral",
" ",
"|",
"\n",
"|",
"EP4385632A1",
" ",
"(",
"en",
")",
" ",
"|",
"2024",
"-",
"06",
"-",
"19",
" ",
"|",
"Autonomous",
"data",
"collection",
"and",
"system",
"control",
"for",
"material",
"recovery",
"facilities",
" ",
"|",
"\n",
"|",
"Johnston",
"et",
"al",
".",
" ",
"|",
"2017",
" ",
"|",
"Optimizing",
"convolutional",
"neural",
"networks",
"for",
"cloud",
"detection",
" ",
"|",
"\n",
"|",
"Bebortta",
"et",
"al",
".",
" ",
"|",
"2022",
" ",
"|",
"An",
"opportunistic",
"ensemble",
"learning",
"framework",
"for",
"network",
"traffic",
"classification",
"in",
"iot",
"environments",
" ",
"|",
"\n",
"|",
"Saleh",
"et",
"al",
".",
" ",
"|",
"2023",
" ",
"|",
"A",
"novel",
"deep",
"-",
"learning",
"model",
"for",
"remote",
"driver",
"monitoring",
"in",
"SDN",
"-",
"based",
"internet",
"of",
"autonomous",
"vehicles",
"using",
"5",
"G",
"technologies",
" ",
"|",
"\n",
"|",
"Chen",
"et",
"al",
".",
" ",
"|",
"2015",
" ",
"|",
"An",
"Enhanced",
"Artificial",
"Bee",
"Colony‐Based",
"Support",
"Vector",
"Machine",
"for",
"Image‐Based",
"Fault",
"Detection",
" ",
"|",
"\n",
"|",
"TWI879684B",
" ",
"(",
"en",
")",
" ",
"|",
"2025",
"-",
"04",
"-",
"01",
" ",
"|",
"High",
"-",
"performance",
"resource",
"and",
"job",
"scheduling",
" ",
"|",
"\n",
"|",
"Ketineni",
"et",
"al",
".",
" ",
"|",
"2024",
" ",
"|",
"IoT",
"-",
"based",
"waste",
"management",
":",
"hybrid",
"optimal",
"routing",
"and",
"waste",
"classification",
"model",
" ",
"|",
"\n",
"|",
"PM",
"et",
"al",
".",
" ",
"|",
"2024",
" ",
"|",
"Advancements",
"in",
"anomaly",
"detection",
"techniques",
"in",
"network",
"traffic",
":",
"The",
"role",
"of",
"artificial",
"intelligence",
"and",
"machine",
"learning",
" ",
"|",
"\n",
"|",
"Shanahan",
"et",
"al",
".",
" ",
"|",
"2023",
" ",
"|",
"Robotics",
"and",
"artificial",
"intelligence",
"in",
"the",
"nuclear",
"industry",
":",
"from",
"teleoperation",
"to",
"cyber",
"physical",
"systems",
" ",
"|",
"\n",
"|",
"Nguyen",
"et",
"al",
".",
" ",
"|",
"2024",
" ",
"|",
"Advances",
"in",
"Computational",
"Collective",
"Intelligence",
":",
"16th",
"International",
"Conference",
",",
"ICCCI",
"2024",
",",
"Leipzig",
",",
"Germany",
",",
"September",
"9–11",
",",
"2024",
",",
"Proceedings",
",",
"Part",
"II",
" ",
"|",
"\n",
"|",
"Iqbal",
"et",
"al",
".",
" ",
"|",
"2023",
" ",
"|",
"Auto",
"-",
"differentiable",
"transfer",
"mapping",
"architecture",
"for",
"physics",
"-",
"infused",
"learning",
"of",
"acoustic",
"field",
" ",
"|",
"\n",
"|",
"Balega",
"et",
"al",
".",
" ",
"|",
"2022",
" ",
"|",
"IoT",
"Anomaly",
"Detection",
"Using",
"a",
"Multitude",
"of",
"Machine",
"Learning",
"Algorithms",
" ",
"|",
"\n",
"|",
"Jaiswal",
"et",
"al",
".",
" ",
"|",
"2014",
" ",
"|",
"Analysis",
"of",
"early",
"traffic",
"processing",
"and",
"comparison",
"of",
"machine",
"learning",
"algorithms",
"for",
"real",
"time",
"internet",
"traffic",
"identification",
"using",
"statistical",
"approach"
] |
[
{
"end": 571,
"label": "CITATION_SPAN",
"start": 436
},
{
"end": 815,
"label": "CITATION_SPAN",
"start": 653
},
{
"end": 1018,
"label": "CITATION_SPAN",
"start": 870
},
{
"end": 1206,
"label": "CITATION_SPAN",
"start": 1087
},
{
"end": 1415,
"label": "CITATION_SPAN",
"start": 1304
},
{
"end": 1639,
"label": "CITATION_SPAN",
"start": 1521
},
{
"end": 1858,
"label": "CITATION_SPAN",
"start": 1738
},
{
"end": 2084,
"label": "CITATION_SPAN",
"start": 1955
},
{
"end": 2307,
"label": "CITATION_SPAN",
"start": 2172
},
{
"end": 2506,
"label": "CITATION_SPAN",
"start": 2389
},
{
"end": 2762,
"label": "CITATION_SPAN",
"start": 2606
},
{
"end": 3003,
"label": "CITATION_SPAN",
"start": 2823
},
{
"end": 3191,
"label": "CITATION_SPAN",
"start": 3040
},
{
"end": 3358,
"label": "CITATION_SPAN",
"start": 3257
},
{
"end": 3612,
"label": "CITATION_SPAN",
"start": 3474
},
{
"end": 3869,
"label": "CITATION_SPAN",
"start": 3691
},
{
"end": 4071,
"label": "CITATION_SPAN",
"start": 3908
},
{
"end": 4336,
"label": "CITATION_SPAN",
"start": 4125
},
{
"end": 4495,
"label": "CITATION_SPAN",
"start": 4342
},
{
"end": 4686,
"label": "CITATION_SPAN",
"start": 4559
},
{
"end": 4988,
"label": "CITATION_SPAN",
"start": 4776
}
] |
New step towards solving how proteins formed at life's origin | UCL News - UCL – University College London
Close
Study
Research
Engage
About
Give
UCL News
Home
Home
Latest news
UCL in the media
Services for media
Student news
Staff news
Tell us your story
Contact us
UCL Home
UCL News
New step towards solving how proteins formed at life's origin
Home
Latest news
UCL in the media
Services for media
Student news
Staff news
Tell us your story
Contact us
Home
Latest news
UCL in the media
Services for media
Student news
Staff news
Tell us your story
Contact us
UCL Home
UCL News
New step towards solving how proteins formed at life's origin
New step towards solving how proteins formed at life's origin
27 August 2025
Chemists at UCL have shown how two of biology’s most fundamental ingredients, RNA (ribonucleic acid) and amino acids, could have spontaneously joined together at the origin of life four billion years ago.
Amino acids are the building blocks of proteins, the “workhorses” of life essential to nearly every living process. But proteins cannot replicate or produce themselves – they require instructions. These instructions are provided by RNA, a close chemical cousin of DNA (deoxyribonucleic acid).
In a new study, published in
Nature
, researchers chemically linked life’s amino acids to RNA in conditions that could have occurred on the early Earth – an achievement that has eluded scientists since the early 1970s.
Senior author Professor Matthew Powner, based at UCL’s Department of Chemistry, said: “Life relies on the ability to synthesise proteins – they are life’s key functional molecules. Understanding the origin of protein synthesis is fundamental to understanding where life came from.
“Our study is a big step towards this goal, showing how RNA might have first come to control protein synthesis.
“Life today uses an immensely complex molecular machine, the ribosome, to synthesise proteins. This machine requires chemical instructions written in messenger RNA, which carries a gene’s sequence from a cell’s DNA to the ribosome. The ribosome then, like a factory assembly line, reads this RNA and links together amino acids, one by one, to create a protein.
“We have achieved the first part of that complex process, using very simple chemistry in water at neutral pH to link amino acids to RNA. The chemistry is spontaneous, selective and could have occurred on the early Earth.”
Previous attempts to
|
[
"New",
"step",
"towards",
"solving",
"how",
"proteins",
"formed",
"at",
"life",
"'s",
"origin",
"|",
"UCL",
"News",
"-",
"UCL",
"–",
"University",
"College",
"London",
"\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Close",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"Study",
"\n\n\n",
"Research",
"\n\n\n",
"Engage",
"\n\n\n",
"About",
"\n\n\n",
"Give",
"\n\n\n\n\n\n\n \n\n\n\n\n\n\n",
"UCL",
"News",
"\n\n\n",
"Home",
"\n\n\n\n\n\n\n\n\n",
"Home",
"\n",
"Latest",
"news",
"\n",
"UCL",
"in",
"the",
"media",
"\n",
"Services",
"for",
"media",
"\n",
"Student",
"news",
"\n",
"Staff",
"news",
"\n",
"Tell",
"us",
"your",
"story",
"\n",
"Contact",
"us",
"\n\n\n\n\n",
"UCL",
"Home",
"\n",
"UCL",
"News",
"\n",
"New",
"step",
"towards",
"solving",
"how",
"proteins",
"formed",
"at",
"life",
"'s",
"origin",
"\n",
"Home",
"\n\n\n",
"Latest",
"news",
"\n\n\n",
"UCL",
"in",
"the",
"media",
"\n\n\n",
"Services",
"for",
"media",
"\n\n\n",
"Student",
"news",
"\n\n\n",
"Staff",
"news",
"\n\n\n",
"Tell",
"us",
"your",
"story",
"\n\n\n",
"Contact",
"us",
"\n\n\n",
"Home",
"\n\n\n",
"Latest",
"news",
"\n\n\n",
"UCL",
"in",
"the",
"media",
"\n\n\n",
"Services",
"for",
"media",
"\n\n\n",
"Student",
"news",
"\n\n\n",
"Staff",
"news",
"\n\n\n",
"Tell",
"us",
"your",
"story",
"\n\n\n",
"Contact",
"us",
"\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\n\n\n",
"UCL",
"Home",
"\n",
"UCL",
"News",
"\n",
"New",
"step",
"towards",
"solving",
"how",
"proteins",
"formed",
"at",
"life",
"'s",
"origin",
"\n\n\n\n\n",
"New",
"step",
"towards",
"solving",
"how",
"proteins",
"formed",
"at",
"life",
"'s",
"origin",
"\n\n\n\n\n\n\n\n ",
"27",
"August",
"2025",
" \n\n\n\n\n\n\n\n\n\n\n\n ",
"Chemists",
"at",
"UCL",
"have",
"shown",
"how",
"two",
"of",
"biology",
"’s",
"most",
"fundamental",
"ingredients",
",",
"RNA",
"(",
"ribonucleic",
"acid",
")",
"and",
"amino",
"acids",
",",
"could",
"have",
"spontaneously",
"joined",
"together",
"at",
"the",
"origin",
"of",
"life",
"four",
"billion",
"years",
"ago",
".",
" \n\n\n\n\n\n\n",
"Amino",
"acids",
"are",
"the",
"building",
"blocks",
"of",
"proteins",
",",
"the",
"“",
"workhorses",
"”",
"of",
"life",
"essential",
"to",
"nearly",
"every",
"living",
"process",
".",
"But",
"proteins",
"can",
"not",
"replicate",
"or",
"produce",
"themselves",
"–",
"they",
"require",
"instructions",
".",
"These",
"instructions",
"are",
"provided",
"by",
"RNA",
",",
"a",
"close",
"chemical",
"cousin",
"of",
"DNA",
"(",
"deoxyribonucleic",
"acid",
")",
".",
"\n",
"In",
"a",
"new",
"study",
",",
"published",
"in",
"\n",
"Nature",
"\n",
",",
"researchers",
"chemically",
"linked",
"life",
"’s",
"amino",
"acids",
"to",
"RNA",
"in",
"conditions",
"that",
"could",
"have",
"occurred",
"on",
"the",
"early",
"Earth",
"–",
"an",
"achievement",
"that",
"has",
"eluded",
"scientists",
"since",
"the",
"early",
"1970s",
".",
"\n",
"Senior",
"author",
"Professor",
"Matthew",
"Powner",
",",
"based",
"at",
"UCL",
"’s",
"Department",
"of",
"Chemistry",
",",
"said",
":",
"“",
"Life",
"relies",
"on",
"the",
"ability",
"to",
"synthesise",
"proteins",
"–",
"they",
"are",
"life",
"’s",
"key",
"functional",
"molecules",
".",
"Understanding",
"the",
"origin",
"of",
"protein",
"synthesis",
"is",
"fundamental",
"to",
"understanding",
"where",
"life",
"came",
"from",
".",
"\n",
"“",
"Our",
"study",
"is",
"a",
"big",
"step",
"towards",
"this",
"goal",
",",
"showing",
"how",
"RNA",
"might",
"have",
"first",
"come",
"to",
"control",
"protein",
"synthesis",
".",
"\n",
"“",
"Life",
"today",
"uses",
"an",
"immensely",
"complex",
"molecular",
"machine",
",",
"the",
"ribosome",
",",
"to",
"synthesise",
"proteins",
".",
"This",
"machine",
"requires",
"chemical",
"instructions",
"written",
"in",
"messenger",
"RNA",
",",
"which",
"carries",
"a",
"gene",
"’s",
"sequence",
"from",
"a",
"cell",
"’s",
"DNA",
"to",
"the",
"ribosome",
".",
"The",
"ribosome",
"then",
",",
"like",
"a",
"factory",
"assembly",
"line",
",",
"reads",
"this",
"RNA",
"and",
"links",
"together",
"amino",
"acids",
",",
"one",
"by",
"one",
",",
"to",
"create",
"a",
"protein",
".",
"\n",
"“",
"We",
"have",
"achieved",
"the",
"first",
"part",
"of",
"that",
"complex",
"process",
",",
"using",
"very",
"simple",
"chemistry",
"in",
"water",
"at",
"neutral",
"pH",
"to",
"link",
"amino",
"acids",
"to",
"RNA",
".",
"The",
"chemistry",
"is",
"spontaneous",
",",
"selective",
"and",
"could",
"have",
"occurred",
"on",
"the",
"early",
"Earth",
".",
"”",
"\n",
"Previous",
"attempts",
"to"
] |
[] |
Figure 112: Contacts at step 1 in case MEPE42.
The red segments are the contact joints and the green segments indicate the direction of the
contact normals. The colored numbers are the indexes of the raw detected contacts. The size of the
descendant pinballs is somewhat shrunken so they t inside the respective element, in order to reduce
the cluttering of the Figure (their real size is shown in Figure 111).
Raw contact 1 occurs between descendants A2andB1. The corresponding contact normal is
inclined by 45 °. This contact is the redundant one, in the REDP sense, because the distance between
the centers is larger than that of the second contact ( A2B2), which shares the same rst descendant.
The measured penetration is p1= 0:2375 and is the maximum one, according to the .PIN le.
The raw contacs 2 and 3 occur between descendants A2andB2and between descendants A1
andB1, respectively. Their respective normals are perfectly vertical and the penetrations are equal
p2=p3= 0:2000. It is very surprising that such penetrations are smaller than that of the rst raw
contact. The reason for this should be investigated by re-considering in detail the procedure used to
compute the penetration, which is described in previous reports on the pinball contact algorithm.
This confusing result is perhaps not important at this point since the rst penetration would
be discarded by the REDP procedure, resulting in a (surviving) maximum penetration at step 1 of
0:200, which is lower than that at step 0 (0 :207), thus conrming the trend observed in test MEPE41
that the measured penetration tends to decrease with sliding, at least for moderate values of relative
displacement.
The observations stemming from the present example seem to reinforce the need for a revision
and re-formulation of the penetration measurement procedure.
99
Tuesday 12thAugust, 2025 @ 13:38
6.5.3 Case MEPE43
This test is equal to MEPE42 but we add the REDP option to get rid of the redundant contacts. The
results are shown in Figure 113 and the .PIN le is listed below.
(a) Step 0
(b) Step 1
(c) Step 2
(d) Step 3
(e) Step 4
(f) Step 5
(g) Step 6
(h) Step 7
(i) Step 8
(j) Step 9
(k) Step 10
Figure 113: Results of test MEPE43.
STEP T N_RAW N_NCOL N_RCEL N_REDP N_REDU N_REBO PENEMX PENEMAX PDOTMX PDOTMAX
0 0.00000E+00 2 2 2 2 2 2 2.071E-01
|
[
"Figure",
"112",
":",
"Contacts",
"at",
"step",
"1",
"in",
"case",
"MEPE42",
".",
"\n",
"The",
"red",
"segments",
"are",
"the",
"contact",
"joints",
"and",
"the",
"green",
"segments",
"indicate",
"the",
"direction",
"of",
"the",
"\n",
"contact",
"normals",
".",
"The",
"colored",
"numbers",
"are",
"the",
"indexes",
"of",
"the",
"raw",
"detected",
"contacts",
".",
"The",
"size",
"of",
"the",
"\n",
"descendant",
"pinballs",
"is",
"somewhat",
"shrunken",
"so",
"they",
"\f",
"t",
"inside",
"the",
"respective",
"element",
",",
"in",
"order",
"to",
"reduce",
"\n",
"the",
"cluttering",
"of",
"the",
"Figure",
"(",
"their",
"real",
"size",
"is",
"shown",
"in",
"Figure",
"111",
")",
".",
"\n",
"Raw",
"contact",
"1",
"occurs",
"between",
"descendants",
"A2andB1",
".",
"The",
"corresponding",
"contact",
"normal",
"is",
"\n",
"inclined",
"by",
"45",
"°",
".",
"This",
"contact",
"is",
"the",
"redundant",
"one",
",",
"in",
"the",
"REDP",
"sense",
",",
"because",
"the",
"distance",
"between",
"\n",
"the",
"centers",
"is",
"larger",
"than",
"that",
"of",
"the",
"second",
"contact",
"(",
"A2B2",
")",
",",
"which",
"shares",
"the",
"same",
"\f",
"rst",
"descendant",
".",
"\n",
"The",
"measured",
"penetration",
"is",
"p1=",
"0:2375",
"and",
"is",
"the",
"maximum",
"one",
",",
"according",
"to",
"the",
".PIN",
"\f",
"le",
".",
"\n",
"The",
"raw",
"contacs",
"2",
"and",
"3",
"occur",
"between",
"descendants",
"A2andB2and",
"between",
"descendants",
"A1",
"\n",
"andB1",
",",
"respectively",
".",
"Their",
"respective",
"normals",
"are",
"perfectly",
"vertical",
"and",
"the",
"penetrations",
"are",
"equal",
"\n",
"p2",
"=",
"p3=",
"0:2000",
".",
"It",
"is",
"very",
"surprising",
"that",
"such",
"penetrations",
"are",
"smaller",
"than",
"that",
"of",
"the",
"\f",
"rst",
"raw",
"\n",
"contact",
".",
"The",
"reason",
"for",
"this",
"should",
"be",
"investigated",
"by",
"re",
"-",
"considering",
"in",
"detail",
"the",
"procedure",
"used",
"to",
"\n",
"compute",
"the",
"penetration",
",",
"which",
"is",
"described",
"in",
"previous",
"reports",
"on",
"the",
"pinball",
"contact",
"algorithm",
".",
"\n",
"This",
"confusing",
"result",
"is",
"perhaps",
"not",
"important",
"at",
"this",
"point",
"since",
"the",
"\f",
"rst",
"penetration",
"would",
"\n",
"be",
"discarded",
"by",
"the",
"REDP",
"procedure",
",",
"resulting",
"in",
"a",
"(",
"surviving",
")",
"maximum",
"penetration",
"at",
"step",
"1",
"of",
"\n",
"0:200",
",",
"which",
"is",
"lower",
"than",
"that",
"at",
"step",
"0",
"(",
"0",
":",
"207",
")",
",",
"thus",
"con",
"\f",
"rming",
"the",
"trend",
"observed",
"in",
"test",
"MEPE41",
"\n",
"that",
"the",
"measured",
"penetration",
"tends",
"to",
"decrease",
"with",
"sliding",
",",
"at",
"least",
"for",
"moderate",
"values",
"of",
"relative",
"\n",
"displacement",
".",
"\n",
"The",
"observations",
"stemming",
"from",
"the",
"present",
"example",
"seem",
"to",
"reinforce",
"the",
"need",
"for",
"a",
"revision",
"\n",
"and",
"re",
"-",
"formulation",
"of",
"the",
"penetration",
"measurement",
"procedure",
".",
"\n",
"99",
"\n",
"Tuesday",
"12thAugust",
",",
"2025",
"@",
"13:38",
"\n",
"6.5.3",
"Case",
"MEPE43",
"\n",
"This",
"test",
"is",
"equal",
"to",
"MEPE42",
"but",
"we",
"add",
"the",
"REDP",
"option",
"to",
"get",
"rid",
"of",
"the",
"redundant",
"contacts",
".",
"The",
"\n",
"results",
"are",
"shown",
"in",
"Figure",
"113",
"and",
"the",
".PIN",
"\f",
"le",
"is",
"listed",
"below",
".",
"\n",
"(",
"a",
")",
"Step",
"0",
"\n ",
"(",
"b",
")",
"Step",
"1",
"\n ",
"(",
"c",
")",
"Step",
"2",
"\n ",
"(",
"d",
")",
"Step",
"3",
"\n",
"(",
"e",
")",
"Step",
"4",
"\n ",
"(",
"f",
")",
"Step",
"5",
"\n ",
"(",
"g",
")",
"Step",
"6",
"\n ",
"(",
"h",
")",
"Step",
"7",
"\n",
"(",
"i",
")",
"Step",
"8",
"\n ",
"(",
"j",
")",
"Step",
"9",
"\n ",
"(",
"k",
")",
"Step",
"10",
"\n",
"Figure",
"113",
":",
"Results",
"of",
"test",
"MEPE43",
".",
"\n",
"STEP",
"T",
"N_RAW",
"N_NCOL",
"N_RCEL",
"N_REDP",
"N_REDU",
"N_REBO",
"PENEMX",
"PENEMAX",
"PDOTMX",
"PDOTMAX",
"\n",
"0",
"0.00000E+00",
"2",
"2",
"2",
"2",
"2",
"2",
"2.071E-01"
] |
[] |
8. Chickering, D.M., Heckerman, D., Meek, C.: A Bayesian approach to learning Bayesian
networks with local structure. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of 13thConference on Uncertainty in Arti ficial Intelligence, pp. 80 –89 (1997)
9. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
10. Chen, S.F., Goodman, J.T.: An empirical study of smoothing techniques for language
modeling. In: Proceedings of 34th Annual Meeting of the Association for Computational
Linguistics (ACL), Santa Cruz, pp. 310 –318 (1996)
11. Honore, A.: Some simple measures of richness of vocabulary. Assoc. Lit. Linguist. Comput.
Bull. 7(2), 172 –177 (1979)
12. Sichel, H.: On a distribution law for word frequencies. J. Am. Stat. Assoc. 70, 542 –547
(1975)
13. Lavergne, T., Urvoy, T., Yvon, F.: Detecting fake content with relative entropy scoring. In:
PAN 2008 (2008)
14. Seymore, K., Rosenfeld, R.: Scalable backoff language models. In: ICSLP 1996,
Philadelphia, PA, vol. 1, pp. 232 –235 (1996)
15. Stolcke, A.: Entropy-based pruning of backoff language models (1998)
16. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing.
The MIT Press, Cambridge (1999)
17. Gyongyi, Z., Garcia-Molina, H.: Web spam taxonomy. In: 1st International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb 2005) (2005)
18. Heymann, P., Koutrika, G., Garcia-Molina, H.: Fighting spam on social web sites: a survey
of approaches and future challenges. IEEE Mag. Internet Comput. 11(6), 36 –45 (2007)
19. Labb é, C., Labb é, D.: Duplicate and fake publications in the scienti fic literature: how many
SCIgen papers in computer science? Scientometrics, Akad émiai Kiad ó, p. 10 (2012)426 D. Beresneva
|
[
"8",
".",
"Chickering",
",",
"D.M.",
",",
"Heckerman",
",",
"D.",
",",
"Meek",
",",
"C.",
":",
"A",
"Bayesian",
"approach",
"to",
"learning",
"Bayesian",
"\n",
"networks",
"with",
"local",
"structure",
".",
"In",
":",
"Geiger",
",",
"D.",
",",
"Shenoy",
",",
"P.P.",
"(",
"eds",
".",
")",
"Proceedings",
"of",
"13thConference",
"on",
"Uncertainty",
"in",
"Arti",
"ficial",
"Intelligence",
",",
"pp",
".",
"80",
"–",
"89",
"(",
"1997",
")",
"\n",
"9",
".",
"Vapnik",
",",
"V.N.",
":",
"The",
"Nature",
"of",
"Statistical",
"Learning",
"Theory",
".",
"Springer",
",",
"New",
"York",
"(",
"1995",
")",
"\n",
"10",
".",
"Chen",
",",
"S.F.",
",",
"Goodman",
",",
"J.T.",
":",
"An",
"empirical",
"study",
"of",
"smoothing",
"techniques",
"for",
"language",
"\n",
"modeling",
".",
"In",
":",
"Proceedings",
"of",
"34th",
"Annual",
"Meeting",
"of",
"the",
"Association",
"for",
"Computational",
"\n",
"Linguistics",
"(",
"ACL",
")",
",",
"Santa",
"Cruz",
",",
"pp",
".",
"310",
"–",
"318",
"(",
"1996",
")",
"\n",
"11",
".",
"Honore",
",",
"A.",
":",
"Some",
"simple",
"measures",
"of",
"richness",
"of",
"vocabulary",
".",
"Assoc",
".",
"Lit",
".",
"Linguist",
".",
"Comput",
".",
"\n",
"Bull",
".",
"7(2",
")",
",",
"172",
"–",
"177",
"(",
"1979",
")",
"\n",
"12",
".",
"Sichel",
",",
"H.",
":",
"On",
"a",
"distribution",
"law",
"for",
"word",
"frequencies",
".",
"J.",
"Am",
".",
"Stat",
".",
"Assoc",
".",
"70",
",",
"542",
"–",
"547",
"\n",
"(",
"1975",
")",
"\n",
"13",
".",
"Lavergne",
",",
"T.",
",",
"Urvoy",
",",
"T.",
",",
"Yvon",
",",
"F.",
":",
"Detecting",
"fake",
"content",
"with",
"relative",
"entropy",
"scoring",
".",
"In",
":",
"\n",
"PAN",
"2008",
"(",
"2008",
")",
"\n",
"14",
".",
"Seymore",
",",
"K.",
",",
"Rosenfeld",
",",
"R.",
":",
"Scalable",
"backoff",
"language",
"models",
".",
"In",
":",
"ICSLP",
"1996",
",",
"\n",
"Philadelphia",
",",
"PA",
",",
"vol",
".",
"1",
",",
"pp",
".",
"232",
"–",
"235",
"(",
"1996",
")",
"\n",
"15",
".",
"Stolcke",
",",
"A.",
":",
"Entropy",
"-",
"based",
"pruning",
"of",
"backoff",
"language",
"models",
"(",
"1998",
")",
"\n",
"16",
".",
"Manning",
",",
"C.D.",
",",
"Schutze",
",",
"H.",
":",
"Foundations",
"of",
"Statistical",
"Natural",
"Language",
"Processing",
".",
"\n",
"The",
"MIT",
"Press",
",",
"Cambridge",
"(",
"1999",
")",
"\n",
"17",
".",
"Gyongyi",
",",
"Z.",
",",
"Garcia",
"-",
"Molina",
",",
"H.",
":",
"Web",
"spam",
"taxonomy",
".",
"In",
":",
"1st",
"International",
"Workshop",
"on",
"\n",
"Adversarial",
"Information",
"Retrieval",
"on",
"the",
"Web",
"(",
"AIRWeb",
"2005",
")",
"(",
"2005",
")",
"\n",
"18",
".",
"Heymann",
",",
"P.",
",",
"Koutrika",
",",
"G.",
",",
"Garcia",
"-",
"Molina",
",",
"H.",
":",
"Fighting",
"spam",
"on",
"social",
"web",
"sites",
":",
"a",
"survey",
"\n",
"of",
"approaches",
"and",
"future",
"challenges",
".",
"IEEE",
"Mag",
".",
"Internet",
"Comput",
".",
"11(6",
")",
",",
"36",
"–",
"45",
"(",
"2007",
")",
"\n",
"19",
".",
"Labb",
"é",
",",
"C.",
",",
"Labb",
"é",
",",
"D.",
":",
"Duplicate",
"and",
"fake",
"publications",
"in",
"the",
"scienti",
"fic",
"literature",
":",
"how",
"many",
"\n",
"SCIgen",
"papers",
"in",
"computer",
"science",
"?",
"Scientometrics",
",",
"Akad",
"émiai",
"Kiad",
"ó",
",",
"p.",
"10",
"(",
"2012)426",
"D.",
"Beresneva"
] |
[
{
"end": 1,
"label": "CITATION_ID",
"start": 0
},
{
"end": 246,
"label": "CITATION_ID",
"start": 245
},
{
"end": 333,
"label": "CITATION_ID",
"start": 331
},
{
"end": 557,
"label": "CITATION_ID",
"start": 555
},
{
"end": 679,
"label": "CITATION_ID",
"start": 677
},
{
"end": 779,
"label": "CITATION_ID",
"start": 777
},
{
"end": 892,
"label": "CITATION_ID",
"start": 890
},
{
"end": 1020,
"label": "CITATION_ID",
"start": 1018
},
{
"end": 1093,
"label": "CITATION_ID",
"start": 1091
},
{
"end": 1213,
"label": "CITATION_ID",
"start": 1211
},
{
"end": 1368,
"label": "CITATION_ID",
"start": 1366
},
{
"end": 1547,
"label": "CITATION_ID",
"start": 1545
},
{
"end": 244,
"label": "CITATION_SPAN",
"start": 3
},
{
"end": 330,
"label": "CITATION_SPAN",
"start": 248
},
{
"end": 554,
"label": "CITATION_SPAN",
"start": 335
},
{
"end": 676,
"label": "CITATION_SPAN",
"start": 559
},
{
"end": 776,
"label": "CITATION_SPAN",
"start": 681
},
{
"end": 889,
"label": "CITATION_SPAN",
"start": 781
},
{
"end": 1017,
"label": "CITATION_SPAN",
"start": 894
},
{
"end": 1090,
"label": "CITATION_SPAN",
"start": 1022
},
{
"end": 1210,
"label": "CITATION_SPAN",
"start": 1095
},
{
"end": 1365,
"label": "CITATION_SPAN",
"start": 1215
},
{
"end": 1544,
"label": "CITATION_SPAN",
"start": 1370
},
{
"end": 1742,
"label": "CITATION_SPAN",
"start": 1549
}
] |
visit (R) |
| NCI16 (SOC) | A feeling of fellowship runs deep in this neighbourhood |
| NCI17 (SOC) | I regularly stop to talk with people in my neighbourhood |
| NCI18 (SOC) | Living in this neighbourhood gives me a sense of community |
| Subjective well-being (SWB) | Subjective well-being (SWB) |
| Item | Item Description |
| Satisfaction | Overall, how satisfied are you with life as a whole these days? (0 not at all satisfied to 10 completely satisfied) |
| Freedom | How much freedom of choice and control do you feel you have over the way your life turns out? (0 no freedom and control to 10 complete freedom and control) |
| Happiness | How happy did you feel yesterday? (0 not at all happy to 10 completely happy) |
| Purpose | Do you feel your life has important purpose or meaning? (0 not at all worthwhile to 10 completely worthwhile) |
| Trust | Trust |
| Trust | How much trust do you have in your neighbours? (0 do not trust at all to 4 trust completely) |
Now that we have set out the measures used, the next part of the chapter turns to the first hypothesis:
Hypothesis 1: Being able to choose your neighbourhood is beneficial to your well-being and contributes positively to attitudes around neighbourhood cohesion - A comparison of Sanjay (slum/JJ) and Bhalswa (Resettlement).
## Characteristics of participants - Well-being and neighbourhood cohesion
We collected socio-demographic information from 328 residents in Bhalswa and 311 from Sanjay colony, Okhla, Phase II between March and April 2022. The
Table 2.2 Social Capital (SC) scale
| Social Capital (SC) | Social Capital (SC) |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| SC1 | If a family here is short of money, or has a member who is sick or dies, will people here in the settlement help that family in need? |
| SC2 | If you were short of money and needed Rs 1,000, would your neighbours in the settlement lend you the money? |
| SC3 | In your opinion, would your neighbours in the settlement give time or money to improve the development of the settlement? |
| SC4 | If there were a big problem in the settlement, like no water or electricity for several days, would people in this settlement unite to solve the problem? |
|
[
" ",
"visit",
"(",
"R",
")",
" ",
"|",
"\n",
"|",
"NCI16",
"(",
"SOC",
")",
" ",
"|",
"A",
"feeling",
"of",
"fellowship",
"runs",
"deep",
"in",
"this",
"neighbourhood",
" ",
"|",
"\n",
"|",
"NCI17",
"(",
"SOC",
")",
" ",
"|",
"I",
"regularly",
"stop",
"to",
"talk",
"with",
"people",
"in",
"my",
"neighbourhood",
" ",
"|",
"\n",
"|",
"NCI18",
"(",
"SOC",
")",
" ",
"|",
"Living",
"in",
"this",
"neighbourhood",
"gives",
"me",
"a",
"sense",
"of",
"community",
" ",
"|",
"\n",
"|",
"Subjective",
"well",
"-",
"being",
"(",
"SWB",
")",
" ",
"|",
"Subjective",
"well",
"-",
"being",
"(",
"SWB",
")",
" ",
"|",
"\n",
"|",
"Item",
" ",
"|",
"Item",
"Description",
" ",
"|",
"\n",
"|",
"Satisfaction",
" ",
"|",
"Overall",
",",
"how",
"satisfied",
"are",
"you",
"with",
"life",
"as",
"a",
"whole",
"these",
"days",
"?",
"(",
"0",
"not",
"at",
"all",
"satisfied",
"to",
"10",
"completely",
"satisfied",
")",
" ",
"|",
"\n",
"|",
"Freedom",
" ",
"|",
"How",
"much",
"freedom",
"of",
"choice",
"and",
"control",
"do",
"you",
"feel",
"you",
"have",
"over",
"the",
"way",
"your",
"life",
"turns",
"out",
"?",
"(",
"0",
"no",
"freedom",
"and",
"control",
"to",
"10",
"complete",
"freedom",
"and",
"control",
")",
"|",
"\n",
"|",
"Happiness",
" ",
"|",
"How",
"happy",
"did",
"you",
"feel",
"yesterday",
"?",
"(",
"0",
"not",
"at",
"all",
"happy",
"to",
"10",
"completely",
"happy",
")",
" ",
"|",
"\n",
"|",
"Purpose",
" ",
"|",
"Do",
"you",
"feel",
"your",
"life",
"has",
"important",
"purpose",
"or",
"meaning",
"?",
"(",
"0",
"not",
"at",
"all",
"worthwhile",
"to",
"10",
"completely",
"worthwhile",
")",
" ",
"|",
"\n",
"|",
"Trust",
" ",
"|",
"Trust",
" ",
"|",
"\n",
"|",
"Trust",
" ",
"|",
"How",
"much",
"trust",
"do",
"you",
"have",
"in",
"your",
"neighbours",
"?",
"(",
"0",
"do",
"not",
"trust",
"at",
"all",
"to",
"4",
"trust",
"completely",
")",
" ",
"|",
"\n\n",
"Now",
"that",
"we",
"have",
"set",
"out",
"the",
"measures",
"used",
",",
"the",
"next",
"part",
"of",
"the",
"chapter",
"turns",
"to",
"the",
"first",
"hypothesis",
":",
"\n\n",
"Hypothesis",
"1",
":",
"Being",
"able",
"to",
"choose",
"your",
"neighbourhood",
"is",
"beneficial",
"to",
"your",
"well",
"-",
"being",
" ",
"and",
" ",
"contributes",
" ",
"positively",
" ",
"to",
" ",
"attitudes",
" ",
"around",
" ",
"neighbourhood",
"cohesion",
"-",
"A",
"comparison",
"of",
"Sanjay",
"(",
"slum",
"/",
"JJ",
")",
"and",
"Bhalswa",
"(",
"Resettlement",
")",
".",
"\n\n",
"#",
"#",
"Characteristics",
"of",
"participants",
"-",
"Well",
"-",
"being",
"and",
"neighbourhood",
"cohesion",
"\n\n",
"We",
"collected",
"socio",
"-",
"demographic",
"information",
"from",
"328",
"residents",
"in",
"Bhalswa",
"and",
"311",
" ",
"from",
" ",
"Sanjay",
" ",
"colony",
",",
" ",
"Okhla",
",",
" ",
"Phase",
" ",
"II",
" ",
"between",
" ",
"March",
" ",
"and",
" ",
"April",
" ",
"2022",
".",
" ",
"The",
"\n\n",
"Table",
"2.2",
"Social",
"Capital",
"(",
"SC",
")",
"scale",
"\n\n",
"|",
"Social",
"Capital",
"(",
"SC",
")",
" ",
"|",
"Social",
"Capital",
"(",
"SC",
")",
" ",
"|",
"\n",
"|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|",
"\n",
"|",
"SC1",
" ",
"|",
"If",
"a",
"family",
"here",
"is",
"short",
"of",
"money",
",",
"or",
"has",
"a",
"member",
"who",
"is",
"sick",
"or",
"dies",
",",
"will",
"people",
"here",
"in",
"the",
"settlement",
"help",
"that",
"family",
"in",
"need",
"?",
" ",
"|",
"\n",
"|",
"SC2",
" ",
"|",
"If",
"you",
"were",
"short",
"of",
"money",
"and",
"needed",
"Rs",
"1,000",
",",
"would",
"your",
"neighbours",
"in",
"the",
"settlement",
"lend",
"you",
"the",
"money",
"?",
" ",
"|",
"\n",
"|",
"SC3",
" ",
"|",
"In",
"your",
"opinion",
",",
"would",
"your",
"neighbours",
"in",
"the",
"settlement",
"give",
"time",
"or",
"money",
"to",
"improve",
"the",
"development",
"of",
"the",
"settlement",
"?",
" ",
"|",
"\n",
"|",
"SC4",
" ",
"|",
"If",
"there",
"were",
"a",
"big",
"problem",
"in",
"the",
"settlement",
",",
"like",
"no",
"water",
"or",
"electricity",
"for",
"several",
"days",
",",
"would",
"people",
"in",
"this",
"settlement",
"unite",
"to",
"solve",
"the",
"problem",
"?",
"|"
] |
[] |
This process of substitution was made
possible by their interaction with medical science. The opportunity to study
165
165
Female doctors in schools in interwar Romania
medicine and their determination to obtain their diplomas did not lead to
research- focused scientific careers, but as promoters of a new type of rela -
tion of high- school students with their own bodies, one based on sanitary
principles. Even though women were not involved in the drafting of the
medical assistance policy which promoted this culture of health, they served
as dissemination and control agents, thus actively contributing to state
efforts to modernize society. Their professional competence and dedication
were of utmost importance in this role, as demonstrated above.
Notes
1 Y. Knibiehler and C. Fouquet, La femme et les m édecins: Analyse historique
[The Woman and the Doctors: Historical Analysis ] (Paris: Hachette, 1983).
2 S. C. Martin and R. M. Arnold, ‘Ruth M. Parker, gender and medical socializa -
tion’, Journal of Health and Social Behaviour , 29: 4 (1988), 333– 43.
3 C. G. Borst and K. W. Jones, ‘As patients and healers: The history of women
and medicine’, OAH Magazine of History , 19: 5 (2005), 23– 26.
4 D. R. Mandelbaum, ‘Women in medicine’, Signs , 4: 1 (1978), 136– 45; M. W.
Carpenter, Health, Medicine and Society in Victorian England (Santa Barbara,
CA, Denver, CO and Oxford: Praeger, ABC Clio, 2009), pp. 166– 75; T. Appel,
‘Writing women into medical history in the 1930s’, Bulletin of the History of
Medicine , 88: 3 (2014), 457– 92; K. Jensen, ‘The “open way of opportunity”:
Colorado women physicians and World War I’, Western Historical Quarterly ,
27: 3 (1996), 327– 48.
5 H. P. Freidenreich, ‘Jewish women physicians in Central Europe in the early
twentieth century’, Contemporary Jewry , 17: 1 (1996), 79– 105. N. M. Theriot,
‘Women’s voices in nineteenth- century medical discourse: A step toward decon -
structing science’, Signs , 19: 1 (1993), 1– 31.
6 L. Trăușan- Matu, ‘The doctor and the midwife: A study of two medical pro -
fessions in the Romanian society of the 19th century (1831– 1874)’, in C.
Bărbulescu and A. Ciupală (eds), Medicine, Hygiene and Society from the
Eighteenth to the Twentieth Centuries (Cluj- Napoca: Mega, 2011), pp. 94– 99.
See also Edgerton- Tarpley’s chapter in this volume.
7 N. Roman, ‘Dezn ădăjduită muiere n- au fost ca mine’: Femei, onoare și păcat
în Valahia secolului al XIX- lea [‘There Has Never Lived a Hopeless Woman
Such as Myself’: Women, Honour and Sin in Nineteenth- Century Wallachia ]
(Bucharest: Humanitas, 2016), pp. 191– 211.
|
[
"This",
"process",
"of",
"substitution",
"was",
"made",
"\n",
"possible",
"by",
"their",
"interaction",
"with",
"medical",
"science",
".",
"The",
"opportunity",
"to",
"study",
" \n \n",
"165",
"\n",
"165",
"\n",
"Female",
"doctors",
"in",
"schools",
"in",
"interwar",
"Romania",
"\n",
"medicine",
"and",
"their",
"determination",
"to",
"obtain",
"their",
"diplomas",
"did",
"not",
"lead",
"to",
"\n",
"research-",
" ",
"focused",
"scientific",
"careers",
",",
"but",
"as",
"promoters",
"of",
"a",
"new",
"type",
"of",
"rela",
"-",
"\n",
"tion",
"of",
"high-",
" ",
"school",
"students",
"with",
"their",
"own",
"bodies",
",",
"one",
"based",
"on",
"sanitary",
"\n",
"principles",
".",
"Even",
"though",
"women",
"were",
"not",
"involved",
"in",
"the",
"drafting",
"of",
"the",
"\n",
"medical",
"assistance",
"policy",
"which",
"promoted",
"this",
"culture",
"of",
"health",
",",
"they",
"served",
"\n",
"as",
"dissemination",
"and",
"control",
"agents",
",",
"thus",
"actively",
"contributing",
"to",
"state",
"\n",
"efforts",
"to",
"modernize",
"society",
".",
"Their",
"professional",
"competence",
"and",
"dedication",
"\n",
"were",
"of",
"utmost",
"importance",
"in",
"this",
"role",
",",
"as",
"demonstrated",
"above",
".",
"\n",
"Notes",
"\n ",
"1",
"Y.",
"Knibiehler",
"and",
"C.",
"Fouquet",
",",
"La",
"femme",
"et",
"les",
"m",
"édecins",
":",
"Analyse",
"historique",
" \n",
"[",
"The",
"Woman",
"and",
"the",
"Doctors",
":",
"Historical",
"Analysis",
"]",
"(",
"Paris",
":",
"Hachette",
",",
"1983",
")",
".",
"\n ",
"2",
"S.",
"C.",
"Martin",
"and",
"R.",
"M.",
"Arnold",
",",
"‘",
"Ruth",
"M.",
"Parker",
",",
"gender",
"and",
"medical",
"socializa",
"-",
"\n",
"tion",
"’",
",",
"Journal",
"of",
"Health",
"and",
"Social",
"Behaviour",
",",
"29",
":",
"4",
"(",
"1988",
")",
",",
"333",
"–",
" ",
"43",
".",
"\n ",
"3",
"C.",
"G.",
"Borst",
"and",
"K.",
"W.",
"Jones",
",",
"‘",
"As",
"patients",
"and",
"healers",
":",
"The",
"history",
"of",
"women",
"\n",
"and",
"medicine",
"’",
",",
"OAH",
"Magazine",
"of",
"History",
",",
"19",
":",
"5",
"(",
"2005",
")",
",",
"23",
"–",
" ",
"26",
".",
"\n ",
"4",
"D.",
"R.",
"Mandelbaum",
",",
"‘",
"Women",
"in",
"medicine",
"’",
",",
"Signs",
",",
"4",
":",
"1",
"(",
"1978",
")",
",",
"136",
"–",
" ",
"45",
";",
"M.",
"W.",
"\n",
"Carpenter",
",",
"Health",
",",
"Medicine",
"and",
"Society",
"in",
"Victorian",
"England",
" ",
"(",
"Santa",
"Barbara",
",",
"\n",
"CA",
",",
"Denver",
",",
"CO",
"and",
"Oxford",
":",
"Praeger",
",",
"ABC",
"Clio",
",",
"2009",
")",
",",
"pp",
".",
"166",
"–",
" ",
"75",
";",
"T.",
"Appel",
",",
"\n",
"‘",
"Writing",
"women",
"into",
"medical",
"history",
"in",
"the",
"1930s",
"’",
",",
"Bulletin",
"of",
"the",
"History",
"of",
"\n",
"Medicine",
",",
"88",
":",
"3",
"(",
"2014",
")",
",",
"457",
"–",
" ",
"92",
";",
"K.",
"Jensen",
",",
"‘",
"The",
"“",
"open",
"way",
"of",
"opportunity",
"”",
":",
"\n",
"Colorado",
"women",
"physicians",
"and",
"World",
"War",
"I",
"’",
",",
"Western",
"Historical",
"Quarterly",
",",
"\n",
"27",
":",
"3",
"(",
"1996",
")",
",",
"327",
"–",
" ",
"48",
".",
"\n ",
"5",
"H.",
"P.",
"Freidenreich",
",",
"‘",
"Jewish",
"women",
"physicians",
"in",
"Central",
"Europe",
"in",
"the",
"early",
"\n",
"twentieth",
"century",
"’",
",",
"Contemporary",
"Jewry",
",",
"17",
":",
"1",
"(",
"1996",
")",
",",
"79",
"–",
" ",
"105",
".",
"N.",
"M.",
"Theriot",
",",
"\n",
"‘",
"Women",
"’s",
"voices",
"in",
"nineteenth-",
" ",
"century",
"medical",
"discourse",
":",
"A",
"step",
"toward",
"decon",
"-",
"\n",
"structing",
"science",
"’",
",",
"Signs",
",",
"19",
":",
"1",
"(",
"1993",
")",
",",
"1",
"–",
" ",
"31",
".",
"\n ",
"6",
"L.",
"Trăușan-",
" ",
"Matu",
",",
"‘",
"The",
"doctor",
"and",
"the",
"midwife",
":",
"A",
"study",
"of",
"two",
"medical",
"pro",
"-",
"\n",
"fessions",
"in",
"the",
"Romanian",
"society",
"of",
"the",
"19th",
"century",
"(",
"1831",
"–",
" ",
"1874",
")",
"’",
",",
"in",
"C.",
"\n",
"Bărbulescu",
"and",
"A.",
"Ciupală",
"(",
"eds",
")",
",",
"Medicine",
",",
"Hygiene",
"and",
"Society",
"from",
"the",
"\n",
"Eighteenth",
"to",
"the",
"Twentieth",
"Centuries",
" ",
"(",
"Cluj-",
" ",
"Napoca",
":",
"Mega",
",",
"2011",
")",
",",
"pp",
".",
"94",
"–",
" ",
"99",
".",
"\n",
"See",
"also",
"Edgerton-",
" ",
"Tarpley",
"’s",
"chapter",
"in",
"this",
"volume",
".",
"\n ",
"7",
"N.",
"Roman",
",",
"‘",
"Dezn",
"ădăjduită",
"muiere",
"n-",
" ",
"au",
"fost",
"ca",
"mine",
"’",
":",
"Femei",
",",
"onoare",
"și",
"păcat",
"\n",
"în",
"Valahia",
"secolului",
"al",
"XIX-",
" ",
"lea",
"[",
"‘",
"There",
"Has",
"Never",
"Lived",
"a",
"Hopeless",
"Woman",
"\n",
"Such",
"as",
"Myself",
"’",
":",
"Women",
",",
"Honour",
"and",
"Sin",
"in",
"Nineteenth-",
" ",
"Century",
"Wallachia",
"]",
"\n",
"(",
"Bucharest",
":",
"Humanitas",
",",
"2016",
")",
",",
"pp",
".",
"191",
"–",
" ",
"211",
".",
"\n "
] |
[
{
"end": 931,
"label": "CITATION_SPAN",
"start": 779
},
{
"end": 1085,
"label": "CITATION_SPAN",
"start": 935
},
{
"end": 1229,
"label": "CITATION_SPAN",
"start": 1089
},
{
"end": 2381,
"label": "CITATION_SPAN",
"start": 2020
},
{
"end": 2660,
"label": "CITATION_SPAN",
"start": 2385
},
{
"end": 1869,
"label": "CITATION_SPAN",
"start": 1728
},
{
"end": 2016,
"label": "CITATION_SPAN",
"start": 1870
},
{
"end": 1579,
"label": "CITATION_SPAN",
"start": 1456
},
{
"end": 1724,
"label": "CITATION_SPAN",
"start": 1581
},
{
"end": 1301,
"label": "CITATION_SPAN",
"start": 1233
},
{
"end": 1454,
"label": "CITATION_SPAN",
"start": 1303
},
{
"end": 778,
"label": "CITATION_ID",
"start": 777
},
{
"end": 934,
"label": "CITATION_ID",
"start": 933
},
{
"end": 1088,
"label": "CITATION_ID",
"start": 1087
},
{
"end": 1232,
"label": "CITATION_ID",
"start": 1231
},
{
"end": 1727,
"label": "CITATION_ID",
"start": 1726
},
{
"end": 2019,
"label": "CITATION_ID",
"start": 2018
},
{
"end": 2384,
"label": "CITATION_ID",
"start": 2383
}
] |
S&T specialisation domain in Azer-
baijan. Fundamental physics and mathematics is
the domain with the most records (with a total of
1 668), followed by Health and wellbeing (1 283),
Chemistry and chemical engineering (850), Nano-
technology and materials (714) and ICT and com-
puter science (594). The first one accounts for more
than one quarter of the total number of records
(26%). It must be noted, however, that the number
of patents obtained for Azerbaijan is rather small,
jeopardising any analysis and interpretation.
Publications account for the largest share of re-
cords in most domains, ranging from 90% to 99%
of the total records in most cases, as shown in
Figure 3.27. The exceptions are Energy (79%),
Biotechnology (58%) and Mechanical engineering
and heavy machinery (48%), which have a high
number of patents. In this last domain, in particu-
lar, the number of patents is higher than the num-
ber of publications.
EC projects in Azerbaijan are very highly concen-
trated in the domain of Governance, culture, ed-ucation and the economy, which may reflect the
policy and cooperation interests of the European
Commission and the country, rather than the en-
dogenous capabilities or international propensity
of the country’s S&T system.
The growth rate of publications in recent years, in
terms of the compound annual growth rate, is also
shown. All domains have a positive growth rate.
Azerbaijan’s publications are highly specialised in
Chemistry and chemical engineering (with an SI
of 1.7), Energy (1.6), ICT and computer sciences
(1.4), Health and wellbeing (1.2) and Mechanical
engineering and heavy machinery (1.2).
Overall, Azeri publications present a lower normal-
ised citation impact than the EaP average. Three
domains escape this rule: Fundamental physics
and mathematics (with an NCI of 1.2), Chemistry
and chemical engineering (1.1) and Mechanical
engineering and heavy machinery (1.1).
Thus, in terms of scientific publications, Chemis-
try and chemical engineering is a domain in which
Azerbaijan’s S&T ecosystem simultaneously pre-
sents a high critical mass, relative specialisation
Publications
(critical mass | CAGR)PatentsEC
projectsTotal
Fundamental physics and mathematics 1 663 8.7% 5 1 1 669
Health and wellbeing 1 131 15.5% 152 1 1 284
Chemistry and chemical engineering 806 5.7% 43 1 850
Nanotechnology and materials 682 18.9% 32 1 715
ICT and computer science 555 6.5% 37 2 594
Governance, culture, education and the
economy547 21.2% 1 14 562
Environmental sciences and industries 497 7.7% 28 3 528
|
[
"S&T",
"specialisation",
"domain",
"in",
"Azer-",
"\n",
"baijan",
".",
"Fundamental",
"physics",
"and",
"mathematics",
"is",
"\n",
"the",
"domain",
"with",
"the",
"most",
"records",
"(",
"with",
"a",
"total",
"of",
"\n",
"1",
"668",
")",
",",
"followed",
"by",
"Health",
"and",
"wellbeing",
"(",
"1",
"283",
")",
",",
"\n",
"Chemistry",
"and",
"chemical",
"engineering",
"(",
"850",
")",
",",
"Nano-",
"\n",
"technology",
"and",
"materials",
"(",
"714",
")",
"and",
"ICT",
"and",
"com-",
"\n",
"puter",
"science",
"(",
"594",
")",
".",
"The",
"first",
"one",
"accounts",
"for",
"more",
"\n",
"than",
"one",
"quarter",
"of",
"the",
"total",
"number",
"of",
"records",
"\n",
"(",
"26",
"%",
")",
".",
"It",
"must",
"be",
"noted",
",",
"however",
",",
"that",
"the",
"number",
"\n",
"of",
"patents",
"obtained",
"for",
"Azerbaijan",
"is",
"rather",
"small",
",",
"\n",
"jeopardising",
"any",
"analysis",
"and",
"interpretation",
".",
"\n",
"Publications",
"account",
"for",
"the",
"largest",
"share",
"of",
"re-",
"\n",
"cords",
"in",
"most",
"domains",
",",
"ranging",
"from",
"90",
"%",
"to",
"99",
"%",
"\n",
"of",
"the",
"total",
"records",
"in",
"most",
"cases",
",",
"as",
"shown",
"in",
"\n",
"Figure",
"3.27",
".",
"The",
"exceptions",
"are",
"Energy",
"(",
"79",
"%",
")",
",",
"\n",
"Biotechnology",
"(",
"58",
"%",
")",
"and",
"Mechanical",
"engineering",
"\n",
"and",
"heavy",
"machinery",
"(",
"48",
"%",
")",
",",
"which",
"have",
"a",
"high",
"\n",
"number",
"of",
"patents",
".",
"In",
"this",
"last",
"domain",
",",
"in",
"particu-",
"\n",
"lar",
",",
"the",
"number",
"of",
"patents",
"is",
"higher",
"than",
"the",
"num-",
"\n",
"ber",
"of",
"publications",
".",
"\n",
"EC",
"projects",
"in",
"Azerbaijan",
"are",
"very",
"highly",
"concen-",
"\n",
"trated",
"in",
"the",
"domain",
"of",
"Governance",
",",
"culture",
",",
"ed",
"-",
"ucation",
"and",
"the",
"economy",
",",
"which",
"may",
"reflect",
"the",
"\n",
"policy",
"and",
"cooperation",
"interests",
"of",
"the",
"European",
"\n",
"Commission",
"and",
"the",
"country",
",",
"rather",
"than",
"the",
"en-",
"\n",
"dogenous",
"capabilities",
"or",
"international",
"propensity",
"\n",
"of",
"the",
"country",
"’s",
"S&T",
"system",
".",
"\n",
"The",
"growth",
"rate",
"of",
"publications",
"in",
"recent",
"years",
",",
"in",
"\n",
"terms",
"of",
"the",
"compound",
"annual",
"growth",
"rate",
",",
"is",
"also",
"\n",
"shown",
".",
"All",
"domains",
"have",
"a",
"positive",
"growth",
"rate",
".",
"\n",
"Azerbaijan",
"’s",
"publications",
"are",
"highly",
"specialised",
"in",
"\n",
"Chemistry",
"and",
"chemical",
"engineering",
"(",
"with",
"an",
"SI",
"\n",
"of",
"1.7",
")",
",",
"Energy",
"(",
"1.6",
")",
",",
"ICT",
"and",
"computer",
"sciences",
"\n",
"(",
"1.4",
")",
",",
"Health",
"and",
"wellbeing",
"(",
"1.2",
")",
"and",
"Mechanical",
"\n",
"engineering",
"and",
"heavy",
"machinery",
"(",
"1.2",
")",
".",
"\n",
"Overall",
",",
"Azeri",
"publications",
"present",
"a",
"lower",
"normal-",
"\n",
"ised",
"citation",
"impact",
"than",
"the",
"EaP",
"average",
".",
"Three",
"\n",
"domains",
"escape",
"this",
"rule",
":",
"Fundamental",
"physics",
"\n",
"and",
"mathematics",
"(",
"with",
"an",
"NCI",
"of",
"1.2",
")",
",",
"Chemistry",
"\n",
"and",
"chemical",
"engineering",
"(",
"1.1",
")",
"and",
"Mechanical",
"\n",
"engineering",
"and",
"heavy",
"machinery",
"(",
"1.1",
")",
".",
"\n",
"Thus",
",",
"in",
"terms",
"of",
"scientific",
"publications",
",",
"Chemis-",
"\n",
"try",
"and",
"chemical",
"engineering",
"is",
"a",
"domain",
"in",
"which",
"\n",
"Azerbaijan",
"’s",
"S&T",
"ecosystem",
"simultaneously",
"pre-",
"\n",
"sents",
"a",
"high",
"critical",
"mass",
",",
"relative",
"specialisation",
"\n",
"Publications",
"\n",
"(",
"critical",
"mass",
"|",
"CAGR)PatentsEC",
"\n",
"projectsTotal",
"\n",
"Fundamental",
"physics",
"and",
"mathematics",
"1",
"663",
"8.7",
"%",
"5",
"1",
"1",
"669",
"\n",
"Health",
"and",
"wellbeing",
"1",
"131",
"15.5",
"%",
"152",
"1",
"1",
"284",
"\n",
"Chemistry",
"and",
"chemical",
"engineering",
"806",
"5.7",
"%",
"43",
"1",
"850",
"\n",
"Nanotechnology",
"and",
"materials",
"682",
"18.9",
"%",
"32",
"1",
"715",
"\n",
"ICT",
"and",
"computer",
"science",
"555",
"6.5",
"%",
"37",
"2",
"594",
"\n",
"Governance",
",",
"culture",
",",
"education",
"and",
"the",
"\n",
"economy547",
"21.2",
"%",
"1",
"14",
"562",
"\n",
"Environmental",
"sciences",
"and",
"industries",
"497",
"7.7",
"%",
"28",
"3",
"528",
"\n"
] |
[] |
(e.g., those discussed previously), clutches, and the like), projectile actuators/mechanisms (e.g., mechanisms that shoot or propel objects or elements), controllers of the compute node or components thereof (e.g., host controllers, cooling element controllers, baseboard management controller (BMC), platform controller hub (PCH), uncore components (e.g., shared last level cache (LLC) cache, caching agent (Cbo), integrated memory controller (IMC), home agent (HA), power control unit (PCU), configuration agent (Ubox), integrated I/O controller (IIO), and interconnect (IX) link interfaces and/or controllers), and/or any other components such as any of those discussed herein), audible sound generators, visual warning devices, virtual instrumentation and/or virtualized actuator devices, and/or other like components or devices. In some examples, such as when the is part of an , the actuator(s) can be emboddied as or otherwise represent one or more end effector tools, conveyor motors, and/or the like.
The includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a GNSS. Examples of such navigation satellite constellations include United States' GPS, Russia's Global Navigation System (GLONASS), the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., Navigation with Indian Constellation (NAVIC), Japan's Quasi-Zenith Satellite System (QZSS), France's Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), and the like), or the like. The comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some implementations, the may include a Micro-Technology for Positioning, Navigation, and Timing (Micro-PNT) IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The may also be part of, or interact with, the to communicate with the nodes and components of the positioning network. The may also provide position data and/or time data to the application circuitry, which may use the data to synchronize operations with various infrastructure (e.g., radio base stations), for turn-by-turn navigation, or the like.
The I/O device(s) may be present within, or connected to, the . The I/ include input device circuitry and output device circuitry including one or more user interfaces designed to enable user interaction with the and/or peripheral component interfaces designed to enable peripheral component interaction with the . The input device circuitry includes any physical or virtual means for accepting an input including, inter alia, one
|
[
"(",
"e.g.",
",",
"those",
"discussed",
"previously",
")",
",",
"clutches",
",",
"and",
"the",
"like",
")",
",",
"projectile",
"actuators",
"/",
"mechanisms",
"(",
"e.g.",
",",
"mechanisms",
"that",
"shoot",
"or",
"propel",
"objects",
"or",
"elements",
")",
",",
"controllers",
"of",
"the",
"compute",
"node",
" ",
"or",
"components",
"thereof",
"(",
"e.g.",
",",
"host",
"controllers",
",",
"cooling",
"element",
"controllers",
",",
"baseboard",
"management",
"controller",
"(",
"BMC",
")",
",",
"platform",
"controller",
"hub",
"(",
"PCH",
")",
",",
"uncore",
"components",
"(",
"e.g.",
",",
"shared",
"last",
"level",
"cache",
"(",
"LLC",
")",
"cache",
",",
"caching",
"agent",
"(",
"Cbo",
")",
",",
"integrated",
"memory",
"controller",
"(",
"IMC",
")",
",",
"home",
"agent",
"(",
"HA",
")",
",",
"power",
"control",
"unit",
"(",
"PCU",
")",
",",
"configuration",
"agent",
"(",
"Ubox",
")",
",",
"integrated",
"I",
"/",
"O",
"controller",
"(",
"IIO",
")",
",",
"and",
"interconnect",
"(",
"IX",
")",
"link",
"interfaces",
"and/or",
"controllers",
")",
",",
"and/or",
"any",
"other",
"components",
"such",
"as",
"any",
"of",
"those",
"discussed",
"herein",
")",
",",
"audible",
"sound",
"generators",
",",
"visual",
"warning",
"devices",
",",
"virtual",
"instrumentation",
"and/or",
"virtualized",
"actuator",
"devices",
",",
"and/or",
"other",
"like",
"components",
"or",
"devices",
".",
"In",
"some",
"examples",
",",
"such",
"as",
"when",
"the",
" ",
"is",
"part",
"of",
"an",
" ",
",",
"the",
"actuator(s",
")",
" ",
"can",
"be",
"emboddied",
"as",
"or",
"otherwise",
"represent",
"one",
"or",
"more",
"end",
"effector",
"tools",
",",
"conveyor",
"motors",
",",
"and/or",
"the",
"like",
".",
"\n\n",
"The",
" ",
"includes",
"circuitry",
"to",
"receive",
"and",
"decode",
"signals",
"transmitted",
"/",
"broadcasted",
"by",
"a",
"positioning",
"network",
"of",
"a",
"GNSS",
".",
"Examples",
"of",
"such",
"navigation",
"satellite",
"constellations",
"include",
"United",
"States",
"'",
"GPS",
",",
"Russia",
"'s",
"Global",
"Navigation",
"System",
"(",
"GLONASS",
")",
",",
"the",
"European",
"Union",
"'s",
"Galileo",
"system",
",",
"China",
"'s",
"BeiDou",
"Navigation",
"Satellite",
"System",
",",
"a",
"regional",
"navigation",
"system",
"or",
"GNSS",
"augmentation",
"system",
"(",
"e.g.",
",",
"Navigation",
"with",
"Indian",
"Constellation",
"(",
"NAVIC",
")",
",",
"Japan",
"'s",
"Quasi",
"-",
"Zenith",
"Satellite",
"System",
"(",
"QZSS",
")",
",",
"France",
"'s",
"Doppler",
"Orbitography",
"and",
"Radio",
"-",
"positioning",
"Integrated",
"by",
"Satellite",
"(",
"DORIS",
")",
",",
"and",
"the",
"like",
")",
",",
"or",
"the",
"like",
".",
"The",
" ",
"comprises",
"various",
"hardware",
"elements",
"(",
"e.g.",
",",
"including",
"hardware",
"devices",
"such",
"as",
"switches",
",",
"filters",
",",
"amplifiers",
",",
"antenna",
"elements",
",",
"and",
"the",
"like",
"to",
"facilitate",
"OTA",
"communications",
")",
"to",
"communicate",
"with",
"components",
"of",
"a",
"positioning",
"network",
",",
"such",
"as",
"navigation",
"satellite",
"constellation",
"nodes",
".",
"In",
"some",
"implementations",
",",
"the",
" ",
"may",
"include",
"a",
"Micro",
"-",
"Technology",
"for",
"Positioning",
",",
"Navigation",
",",
"and",
"Timing",
"(",
"Micro",
"-",
"PNT",
")",
"IC",
"that",
"uses",
"a",
"master",
"timing",
"clock",
"to",
"perform",
"position",
"tracking",
"/",
"estimation",
"without",
"GNSS",
"assistance",
".",
"The",
" ",
"may",
"also",
"be",
"part",
"of",
",",
"or",
"interact",
"with",
",",
"the",
" ",
"to",
"communicate",
"with",
"the",
"nodes",
"and",
"components",
"of",
"the",
"positioning",
"network",
".",
"The",
" ",
"may",
"also",
"provide",
"position",
"data",
"and/or",
"time",
"data",
"to",
"the",
"application",
"circuitry",
",",
"which",
"may",
"use",
"the",
"data",
"to",
"synchronize",
"operations",
"with",
"various",
"infrastructure",
"(",
"e.g.",
",",
"radio",
"base",
"stations",
")",
",",
"for",
"turn",
"-",
"by",
"-",
"turn",
"navigation",
",",
"or",
"the",
"like",
".",
"\n\n",
"The",
"I",
"/",
"O",
"device(s",
")",
" ",
"may",
"be",
"present",
"within",
",",
"or",
"connected",
"to",
",",
"the",
" ",
".",
"The",
"I/",
" ",
"include",
"input",
"device",
"circuitry",
"and",
"output",
"device",
"circuitry",
"including",
"one",
"or",
"more",
"user",
"interfaces",
"designed",
"to",
"enable",
"user",
"interaction",
"with",
"the",
" ",
"and/or",
"peripheral",
"component",
"interfaces",
"designed",
"to",
"enable",
"peripheral",
"component",
"interaction",
"with",
"the",
" ",
".",
"The",
"input",
"device",
"circuitry",
"includes",
"any",
"physical",
"or",
"virtual",
"means",
"for",
"accepting",
"an",
"input",
"including",
",",
"inter",
"alia",
",",
"one"
] |
[] |
indicating they would abandon a brand if they felt their data was not handled responsibly (PrivacyFirst Reports, 2021. "Consumer Trust in Data Privacy," Privacy and Security Journal, 9(1), 12-24).
Critical Elements of a Successful E-Commerce Strategy
(Direct Citations to Scholarly Works)
Product Selection and Market Fit
– Forbes (2023) discusses the importance of aligning products with consumer demand, stressing that market fit is crucial to e-commerce success (Forbes. (2023). "Consumer Behavior in E-Commerce," Forbes Digital Insights, 19(4), 27-41).
– A study by Digital Commerce (2022) supports this, showing that offering customized products can increase average order value by 18% (Digital Commerce. (2022). "Product Customization and Consumer Purchase Behavior," Journal of E-Commerce Research, 15(2), 102-118).
Seamless User Experience (UX) Design
– Thompson (2022) highlights that simplifying the purchase process directly reduces cart abandonment rates, which remain a critical challenge in online sales (Thompson, R. (2022). "Optimizing User Experience in E-Commerce," Journal of E-Commerce UX, 7(3), 55-68).
– Moreover, a study by UX Collective (2021) reveals that 40% of online shoppers abandon their carts due to poor or complex checkout procedures (UX Collective. (2021). "The Impact of Checkout Design on Cart Abandonment," Journal of User Experience Design, 3(1), 21-33).
Mobile Optimization
– TechCrunch (2022) confirms that over 55% of online sales now come from mobile platforms, underscoring the importance of mobile-friendly e-commerce sites (TechCrunch. (2022). "The Rise of Mobile E-Commerce," Digital Commerce Review, 17(3), 61-72).
– According to Digital Insights (2023), responsive and fast-loading mobile sites reduce bounce rates by up to 25% (Digital Insights. (2023). "Mobile Optimization and User Retention," Journal of Digital Marketing, 22(4), 11-24).
Omnichannel Marketing
– Nelson (2022) discusses that omnichannel marketing strategies are vital for achieving seamless customer experiences, noting a 30% increase in customer loyalty for brands that integrate digital and physical touchpoints (Nelson, H. (2022). "Omnichannel Strategies in Modern Retail," Retail Marketing Journal, 8(2), 98-112).
– Retail Today (2022) confirms that omnichannel businesses generate an average of 50% more revenue than those using only one channel (Retail Today. (2022). "Omnichannel Marketing in Retail," Journal of Retailing and Consumer Services, 29(1), 64-79).
Customer Retention Tactics
– Loyalty Experts (2021) show that implementing loyalty programs can boost repeat purchases by up to 20% (Loyalty Experts. (2021). "The Economics of Customer Loyalty Programs," Journal of Customer Loyalty, 12(3), 88-101).
– Marketing Science Review (2023) further supports this, stating that personalized email campaigns can increase customer retention by 15%
|
[
"indicating",
"they",
"would",
"abandon",
"a",
"brand",
"if",
"they",
"felt",
"their",
"data",
"was",
"not",
"handled",
"responsibly",
"(",
"PrivacyFirst",
"Reports",
",",
"2021",
".",
"\"",
"Consumer",
"Trust",
"in",
"Data",
"Privacy",
",",
"\"",
"Privacy",
"and",
"Security",
"Journal",
",",
"9(1",
")",
",",
"12",
"-",
"24",
")",
".",
"\n\n",
"Critical",
"Elements",
"of",
"a",
"Successful",
"E",
"-",
"Commerce",
"Strategy",
"\n",
"(",
"Direct",
"Citations",
"to",
"Scholarly",
"Works",
")",
"\n\n",
"Product",
"Selection",
"and",
"Market",
"Fit",
"\n",
"–",
"Forbes",
"(",
"2023",
")",
"discusses",
"the",
"importance",
"of",
"aligning",
"products",
"with",
"consumer",
"demand",
",",
"stressing",
"that",
"market",
"fit",
"is",
"crucial",
"to",
"e",
"-",
"commerce",
"success",
"(",
"Forbes",
".",
"(",
"2023",
")",
".",
"\"",
"Consumer",
"Behavior",
"in",
"E",
"-",
"Commerce",
",",
"\"",
"Forbes",
"Digital",
"Insights",
",",
"19(4",
")",
",",
"27",
"-",
"41",
")",
".",
"\n",
"–",
"A",
"study",
"by",
"Digital",
"Commerce",
"(",
"2022",
")",
"supports",
"this",
",",
"showing",
"that",
"offering",
"customized",
"products",
"can",
"increase",
"average",
"order",
"value",
"by",
"18",
"%",
"(",
"Digital",
"Commerce",
".",
"(",
"2022",
")",
".",
"\"",
"Product",
"Customization",
"and",
"Consumer",
"Purchase",
"Behavior",
",",
"\"",
"Journal",
"of",
"E",
"-",
"Commerce",
"Research",
",",
"15(2",
")",
",",
"102",
"-",
"118",
")",
".",
"\n\n",
"Seamless",
"User",
"Experience",
"(",
"UX",
")",
"Design",
"\n",
"–",
"Thompson",
"(",
"2022",
")",
"highlights",
"that",
"simplifying",
"the",
"purchase",
"process",
"directly",
"reduces",
"cart",
"abandonment",
"rates",
",",
"which",
"remain",
"a",
"critical",
"challenge",
"in",
"online",
"sales",
"(",
"Thompson",
",",
"R.",
"(",
"2022",
")",
".",
"\"",
"Optimizing",
"User",
"Experience",
"in",
"E",
"-",
"Commerce",
",",
"\"",
"Journal",
"of",
"E",
"-",
"Commerce",
"UX",
",",
"7(3",
")",
",",
"55",
"-",
"68",
")",
".",
"\n",
"–",
"Moreover",
",",
"a",
"study",
"by",
"UX",
"Collective",
"(",
"2021",
")",
"reveals",
"that",
"40",
"%",
"of",
"online",
"shoppers",
"abandon",
"their",
"carts",
"due",
"to",
"poor",
"or",
"complex",
"checkout",
"procedures",
"(",
"UX",
"Collective",
".",
"(",
"2021",
")",
".",
"\"",
"The",
"Impact",
"of",
"Checkout",
"Design",
"on",
"Cart",
"Abandonment",
",",
"\"",
"Journal",
"of",
"User",
"Experience",
"Design",
",",
"3(1",
")",
",",
"21",
"-",
"33",
")",
".",
"\n\n",
"Mobile",
"Optimization",
"\n",
"–",
"TechCrunch",
"(",
"2022",
")",
"confirms",
"that",
"over",
"55",
"%",
"of",
"online",
"sales",
"now",
"come",
"from",
"mobile",
"platforms",
",",
"underscoring",
"the",
"importance",
"of",
"mobile",
"-",
"friendly",
"e",
"-",
"commerce",
"sites",
"(",
"TechCrunch",
".",
"(",
"2022",
")",
".",
"\"",
"The",
"Rise",
"of",
"Mobile",
"E",
"-",
"Commerce",
",",
"\"",
"Digital",
"Commerce",
"Review",
",",
"17(3",
")",
",",
"61",
"-",
"72",
")",
".",
"\n",
"–",
"According",
"to",
"Digital",
"Insights",
"(",
"2023",
")",
",",
"responsive",
"and",
"fast",
"-",
"loading",
"mobile",
"sites",
"reduce",
"bounce",
"rates",
"by",
"up",
"to",
"25",
"%",
"(",
"Digital",
"Insights",
".",
"(",
"2023",
")",
".",
"\"",
"Mobile",
"Optimization",
"and",
"User",
"Retention",
",",
"\"",
"Journal",
"of",
"Digital",
"Marketing",
",",
"22(4",
")",
",",
"11",
"-",
"24",
")",
".",
"\n",
"Omnichannel",
"Marketing",
"\n",
"–",
"Nelson",
"(",
"2022",
")",
"discusses",
"that",
"omnichannel",
"marketing",
"strategies",
"are",
"vital",
"for",
"achieving",
"seamless",
"customer",
"experiences",
",",
"noting",
"a",
"30",
"%",
"increase",
"in",
"customer",
"loyalty",
"for",
"brands",
"that",
"integrate",
"digital",
"and",
"physical",
"touchpoints",
"(",
"Nelson",
",",
"H.",
"(",
"2022",
")",
".",
"\"",
"Omnichannel",
"Strategies",
"in",
"Modern",
"Retail",
",",
"\"",
"Retail",
"Marketing",
"Journal",
",",
"8(2",
")",
",",
"98",
"-",
"112",
")",
".",
"\n",
"–",
"Retail",
"Today",
"(",
"2022",
")",
"confirms",
"that",
"omnichannel",
"businesses",
"generate",
"an",
"average",
"of",
"50",
"%",
"more",
"revenue",
"than",
"those",
"using",
"only",
"one",
"channel",
"(",
"Retail",
"Today",
".",
"(",
"2022",
")",
".",
"\"",
"Omnichannel",
"Marketing",
"in",
"Retail",
",",
"\"",
"Journal",
"of",
"Retailing",
"and",
"Consumer",
"Services",
",",
"29(1",
")",
",",
"64",
"-",
"79",
")",
".",
"\n\n",
"Customer",
"Retention",
"Tactics",
"\n",
"–",
"Loyalty",
"Experts",
"(",
"2021",
")",
"show",
"that",
"implementing",
"loyalty",
"programs",
"can",
"boost",
"repeat",
"purchases",
"by",
"up",
"to",
"20",
"%",
"(",
"Loyalty",
"Experts",
".",
"(",
"2021",
")",
".",
"\"",
"The",
"Economics",
"of",
"Customer",
"Loyalty",
"Programs",
",",
"\"",
"Journal",
"of",
"Customer",
"Loyalty",
",",
"12(3",
")",
",",
"88",
"-",
"101",
")",
".",
"\n",
"–",
"Marketing",
"Science",
"Review",
"(",
"2023",
")",
"further",
"supports",
"this",
",",
"stating",
"that",
"personalized",
"email",
"campaigns",
"can",
"increase",
"customer",
"retention",
"by",
"15",
"%"
] |
[
{
"end": 1126,
"label": "CITATION_SPAN",
"start": 1022
},
{
"end": 1395,
"label": "CITATION_SPAN",
"start": 1271
},
{
"end": 556,
"label": "CITATION_SPAN",
"start": 468
},
{
"end": 822,
"label": "CITATION_SPAN",
"start": 694
},
{
"end": 194,
"label": "CITATION_SPAN",
"start": 91
},
{
"end": 339,
"label": "CITATION_REF",
"start": 326
},
{
"end": 338,
"label": "YEAR",
"start": 334
},
{
"end": 332,
"label": "AUTHOR",
"start": 326
},
{
"end": 595,
"label": "CITATION_REF",
"start": 572
},
{
"end": 594,
"label": "YEAR",
"start": 590
},
{
"end": 588,
"label": "AUTHOR",
"start": 572
},
{
"end": 880,
"label": "CITATION_REF",
"start": 865
},
{
"end": 879,
"label": "YEAR",
"start": 875
},
{
"end": 873,
"label": "AUTHOR",
"start": 865
},
{
"end": 1170,
"label": "CITATION_REF",
"start": 1150
},
{
"end": 1169,
"label": "YEAR",
"start": 1165
},
{
"end": 1163,
"label": "AUTHOR",
"start": 1150
},
{
"end": 1436,
"label": "CITATION_REF",
"start": 1419
},
{
"end": 1435,
"label": "YEAR",
"start": 1431
},
{
"end": 1429,
"label": "AUTHOR",
"start": 1419
},
{
"end": 1663,
"label": "CITATION_SPAN",
"start": 1573
},
{
"end": 1704,
"label": "CITATION_REF",
"start": 1681
},
{
"end": 1703,
"label": "YEAR",
"start": 1699
},
{
"end": 1697,
"label": "AUTHOR",
"start": 1681
},
{
"end": 1891,
"label": "CITATION_SPAN",
"start": 1781
},
{
"end": 1931,
"label": "CITATION_REF",
"start": 1918
},
{
"end": 1930,
"label": "YEAR",
"start": 1926
},
{
"end": 1924,
"label": "AUTHOR",
"start": 1918
},
{
"end": 2260,
"label": "CITATION_REF",
"start": 2242
},
{
"end": 2260,
"label": "YEAR",
"start": 2256
},
{
"end": 2254,
"label": "AUTHOR",
"start": 2242
},
{
"end": 2237,
"label": "CITATION_SPAN",
"start": 2137
},
{
"end": 2487,
"label": "CITATION_SPAN",
"start": 2374
},
{
"end": 2542,
"label": "CITATION_REF",
"start": 2520
},
{
"end": 2541,
"label": "YEAR",
"start": 2537
},
{
"end": 2535,
"label": "AUTHOR",
"start": 2520
},
{
"end": 2773,
"label": "CITATION_REF",
"start": 2742
},
{
"end": 2772,
"label": "YEAR",
"start": 2768
},
{
"end": 2766,
"label": "AUTHOR",
"start": 2742
},
{
"end": 2737,
"label": "CITATION_SPAN",
"start": 2624
}
] |
and wellbeing A61K; A61P
28Manufacture of
machinery and equipment
n.e.c.Energy E21B
28Manufacture of
machinery and equipment
n.e.c.Mechanical engineering and heavy
machineryE21B
32 Other manufacturing Biotechnology A61K; A61B
32 Other manufacturing Health and wellbeing A61K; A61B; A61F
32 Other manufacturingMechanical engineering and heavy
machineryA61B
42 Civil engineeringMechanical engineering and heavy
machineryE02B
GEORGIA
Concordances between NACE sectors and the intersection of IPC classes & S&T domains
NACE sector S&T domain Mapping
10Manufacture of food
productsAgrifood A23L; A21D
11Manufacture of
beveragesAgrifood A23L; C12G
20Manufacture of chemicals
and chemical productsAgrifood A61K
20Manufacture of chemicals
and chemical productsFundamental physics and
mathematicsA61K
334
Annexes
GEORGIA
Concordances between NACE sectors and the intersection of IPC classes & S&T domains
NACE sector S&T domain Mapping
20Manufacture of chemicals
and chemical productsHealth and wellbeing A61K
21Manufacture of basic
pharmaceutical products
and pharmaceutical
preparationsAgrifood A61K; A61P
21Manufacture of basic
pharmaceutical products
and pharmaceutical
preparationsFundamental physics and
mathematicsA61K
21Manufacture of basic
pharmaceutical products
and pharmaceutical
preparationsHealth and wellbeing A61K; A61P
24Manufacture of basic
metalsNanotechnology and materials C22C
28Manufacture of
machinery and equipment
n.e.c.Mechanical engineering and heavy
machineryA01D; A01G; F03B; A01B
29Manufacture of motor
vehicles, trailers and
semi-trailersMechanical engineering and heavy
machineryF02B
32 Other manufacturing Agrifood A61K
32 Other manufacturingFundamental physics and
mathematicsA61K
32 Other manufacturing Health and wellbeing A61K
MOLDOVA
Concordances between NACE sectors and the intersection of IPC classes & S&T domains
NACE sector S&T domain Mapping
11Manufacture of
beveragesAgrifood C12G
20Manufacture of chemicals
and chemical productsAgrifood C07C; A01N
20Manufacture of chemicals
and chemical productsBiotechnology A61K; C07C
20Manufacture of chemicals
and chemical productsChemistry and chemical engineering A61K; C07C; C07F
20Manufacture of chemicals
and chemical productsHealth and wellbeing A61K
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation335
MOLDOVA
Concordances between NACE sectors and the intersection of IPC classes & S&T domains
NACE sector S&T domain Mapping
20Manufacture of chemicals
and chemical productsNanotechnology and materials C01G
21Manufacture of basic
pharmaceutical products
and pharmaceutical
preparationsBiotechnology A61K; A61P; C12N
21Manufacture of basic
pharmaceutical products
and pharmaceutical
preparationsChemistry and chemical engineering A61K; A61P; C07D
21Manufacture of basic
pharmaceutical products
and pharmaceutical
preparationsHealth and wellbeing A61K; A61P
26Manufacture of computer,
electronic and optical
productsElectric and electronic technologies G01R
26Manufacture of computer,
electronic and optical
productsNanotechnology and materials H01L; C30B
27Manufacture of electrical
equipmentElectric and electronic technologies H02M; H02J
28Manufacture of
machinery and equipment
n.e.c.Agrifood A01G; A01C
28Manufacture of
machinery and equipment
n.e.c.Electric and electronic technologies B23H
28Manufacture of
machinery and equipment
|
[
"and",
"wellbeing",
"A61",
"K",
";",
"A61P",
"\n",
"28Manufacture",
"of",
"\n",
"machinery",
"and",
"equipment",
"\n",
"n.e.c",
".",
"Energy",
"E21B",
"\n",
"28Manufacture",
"of",
"\n",
"machinery",
"and",
"equipment",
"\n",
"n.e.c",
".",
"Mechanical",
"engineering",
"and",
"heavy",
"\n",
"machineryE21B",
"\n",
"32",
"Other",
"manufacturing",
"Biotechnology",
"A61",
"K",
";",
"A61B",
"\n",
"32",
"Other",
"manufacturing",
"Health",
"and",
"wellbeing",
"A61",
"K",
";",
"A61B",
";",
"A61F",
"\n",
"32",
"Other",
"manufacturingMechanical",
"engineering",
"and",
"heavy",
"\n",
"machineryA61B",
"\n",
"42",
"Civil",
"engineeringMechanical",
"engineering",
"and",
"heavy",
"\n",
"machineryE02B",
"\n",
"GEORGIA",
"\n",
"Concordances",
"between",
"NACE",
"sectors",
"and",
"the",
"intersection",
"of",
"IPC",
"classes",
"&",
"S&T",
"domains",
"\n",
"NACE",
"sector",
"S&T",
"domain",
"Mapping",
"\n",
"10Manufacture",
"of",
"food",
"\n",
"productsAgrifood",
"A23L",
";",
"A21D",
"\n",
"11Manufacture",
"of",
"\n",
"beveragesAgrifood",
"A23L",
";",
"C12",
"G",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsAgrifood",
"A61",
"K",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsFundamental",
"physics",
"and",
"\n",
"mathematicsA61",
"K",
"\n",
"334",
"\n",
"Annexes",
"\n",
"GEORGIA",
"\n",
"Concordances",
"between",
"NACE",
"sectors",
"and",
"the",
"intersection",
"of",
"IPC",
"classes",
"&",
"S&T",
"domains",
"\n",
"NACE",
"sector",
"S&T",
"domain",
"Mapping",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsHealth",
"and",
"wellbeing",
"A61",
"K",
"\n",
"21Manufacture",
"of",
"basic",
"\n",
"pharmaceutical",
"products",
"\n",
"and",
"pharmaceutical",
"\n",
"preparationsAgrifood",
"A61",
"K",
";",
"A61P",
"\n",
"21Manufacture",
"of",
"basic",
"\n",
"pharmaceutical",
"products",
"\n",
"and",
"pharmaceutical",
"\n",
"preparationsFundamental",
"physics",
"and",
"\n",
"mathematicsA61",
"K",
"\n",
"21Manufacture",
"of",
"basic",
"\n",
"pharmaceutical",
"products",
"\n",
"and",
"pharmaceutical",
"\n",
"preparationsHealth",
"and",
"wellbeing",
"A61",
"K",
";",
"A61P",
"\n",
"24Manufacture",
"of",
"basic",
"\n",
"metalsNanotechnology",
"and",
"materials",
"C22C",
"\n",
"28Manufacture",
"of",
"\n",
"machinery",
"and",
"equipment",
"\n",
"n.e.c",
".",
"Mechanical",
"engineering",
"and",
"heavy",
"\n",
"machineryA01D",
";",
"A01",
"G",
";",
"F03B",
";",
"A01B",
"\n",
"29Manufacture",
"of",
"motor",
"\n",
"vehicles",
",",
"trailers",
"and",
"\n",
"semi",
"-",
"trailersMechanical",
"engineering",
"and",
"heavy",
"\n",
"machineryF02B",
"\n",
"32",
"Other",
"manufacturing",
"Agrifood",
"A61",
"K",
"\n",
"32",
"Other",
"manufacturingFundamental",
"physics",
"and",
"\n",
"mathematicsA61",
"K",
"\n",
"32",
"Other",
"manufacturing",
"Health",
"and",
"wellbeing",
"A61",
"K",
"\n",
"MOLDOVA",
"\n",
"Concordances",
"between",
"NACE",
"sectors",
"and",
"the",
"intersection",
"of",
"IPC",
"classes",
"&",
"S&T",
"domains",
"\n",
"NACE",
"sector",
"S&T",
"domain",
"Mapping",
"\n",
"11Manufacture",
"of",
"\n",
"beveragesAgrifood",
"C12",
"G",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsAgrifood",
"C07C",
";",
"A01N",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsBiotechnology",
"A61",
"K",
";",
"C07C",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsChemistry",
"and",
"chemical",
"engineering",
"A61",
"K",
";",
"C07C",
";",
"C07F",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsHealth",
"and",
"wellbeing",
"A61",
"K",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation335",
"\n",
"MOLDOVA",
"\n",
"Concordances",
"between",
"NACE",
"sectors",
"and",
"the",
"intersection",
"of",
"IPC",
"classes",
"&",
"S&T",
"domains",
"\n",
"NACE",
"sector",
"S&T",
"domain",
"Mapping",
"\n",
"20Manufacture",
"of",
"chemicals",
"\n",
"and",
"chemical",
"productsNanotechnology",
"and",
"materials",
"C01",
"G",
"\n",
"21Manufacture",
"of",
"basic",
"\n",
"pharmaceutical",
"products",
"\n",
"and",
"pharmaceutical",
"\n",
"preparationsBiotechnology",
"A61",
"K",
";",
"A61P",
";",
"C12N",
"\n",
"21Manufacture",
"of",
"basic",
"\n",
"pharmaceutical",
"products",
"\n",
"and",
"pharmaceutical",
"\n",
"preparationsChemistry",
"and",
"chemical",
"engineering",
"A61",
"K",
";",
"A61P",
";",
"C07D",
"\n",
"21Manufacture",
"of",
"basic",
"\n",
"pharmaceutical",
"products",
"\n",
"and",
"pharmaceutical",
"\n",
"preparationsHealth",
"and",
"wellbeing",
"A61",
"K",
";",
"A61P",
"\n",
"26Manufacture",
"of",
"computer",
",",
"\n",
"electronic",
"and",
"optical",
"\n",
"productsElectric",
"and",
"electronic",
"technologies",
"G01R",
"\n",
"26Manufacture",
"of",
"computer",
",",
"\n",
"electronic",
"and",
"optical",
"\n",
"productsNanotechnology",
"and",
"materials",
"H01L",
";",
"C30B",
"\n",
"27Manufacture",
"of",
"electrical",
"\n",
"equipmentElectric",
"and",
"electronic",
"technologies",
"H02",
"M",
";",
"H02J",
"\n",
"28Manufacture",
"of",
"\n",
"machinery",
"and",
"equipment",
"\n",
"n.e.c",
".",
"Agrifood",
"A01",
"G",
";",
"A01C",
"\n",
"28Manufacture",
"of",
"\n",
"machinery",
"and",
"equipment",
"\n",
"n.e.c",
".",
"Electric",
"and",
"electronic",
"technologies",
"B23H",
"\n",
"28Manufacture",
"of",
"\n",
"machinery",
"and",
"equipment",
"\n"
] |
[] |
for gold and tonnes for copper), and even if there is a conversion to the same units, the values of minerals are very different. The result would be the allocation of more revenue by share of production to the copper mine that is warranted.
## Direct Revenues
Under this method, apportionment is based on the contribution of each licence area/business activity to total revenues from mining activities, assuming that mining and non-mining income is ring-fenced.
Advantage: It is easy to apply if production volumes per mine are monitored.
Disadvantage: It also requires a monitoring process of the price of the mineral in addition to production volumes. In addition, there is a disconnect between indirect exploration and development costs and direct revenues. Also, it would result in offsetting the expenditures against the revenue/profitgenerating mines, as explained under the Production item above, and thus, it also defeats the objectives of ring-fencing.
## CapEx
Under this method, apportionment is based on the contribution of each licence area/business activity to the total CapEx per project.
## Advantages:
- · For expenditures, it preserves the policy intent of the ring-fencing rules, which is to avoid the deferral of taxes where there is both a producing mine and a mine at the exploration or development stage. Basically, a mining investor is required to allocate a percentage of indirect and general costs to all projects, regardless of whether one is producing and generating profits. Some costs are allocated to the mine under exploration or in the development stage, as it presumably also benefits from the same shared costs and services. The result is that taxes owed by the producing mine are not substantially deferred compared to a situation where production is used as a proxy. It reflects the idea of taxing the underlying factor that generates profits.
- · For revenues, it considers that, in theory, a company that earns more spends more, contributing to total costs-a reasonable basis for apportioning revenues.
Disadvantage: The challenge would be to define what CapEx is for ringfencing purposes and audit whether the taxpayer has considered the right components when applying the method. Countries might wish to use the generally accepted accounting principles for CapEx, which state that CapEx is an item that has a useful life of more than 1 year.
## 1.0 INTRODUCTION
2.0 THE FUNDAMENTALS OF RING-FENCING
3.0 THE BENEFITS AND RISKS OF RING-FENCING
4.0 DESIGNING RING-FENCING RULES
|
[
"for",
"gold",
"and",
"tonnes",
"for",
"copper",
")",
",",
"and",
"even",
"if",
"there",
"is",
"a",
"conversion",
"to",
"the",
"same",
"units",
",",
"the",
"values",
"of",
"minerals",
"are",
"very",
"different",
".",
"The",
"result",
"would",
"be",
"the",
"allocation",
"of",
"more",
"revenue",
"by",
"share",
"of",
"production",
"to",
"the",
"copper",
"mine",
"that",
"is",
"warranted",
".",
"\n\n",
"#",
"#",
"Direct",
"Revenues",
"\n\n",
"Under",
"this",
"method",
",",
"apportionment",
"is",
"based",
"on",
"the",
"contribution",
"of",
"each",
"licence",
"area",
"/",
"business",
"activity",
"to",
"total",
"revenues",
"from",
"mining",
"activities",
",",
"assuming",
"that",
"mining",
"and",
"non",
"-",
"mining",
"income",
"is",
"ring",
"-",
"fenced",
".",
"\n\n",
"Advantage",
":",
"It",
"is",
"easy",
"to",
"apply",
"if",
"production",
"volumes",
"per",
"mine",
"are",
"monitored",
".",
"\n\n",
"Disadvantage",
":",
"It",
"also",
"requires",
"a",
"monitoring",
"process",
"of",
"the",
"price",
"of",
"the",
"mineral",
"in",
"addition",
"to",
"production",
"volumes",
".",
"In",
"addition",
",",
"there",
"is",
"a",
"disconnect",
"between",
"indirect",
"exploration",
"and",
"development",
"costs",
"and",
"direct",
"revenues",
".",
"Also",
",",
"it",
"would",
"result",
"in",
"offsetting",
"the",
"expenditures",
"against",
"the",
"revenue",
"/",
"profitgenerating",
"mines",
",",
"as",
"explained",
"under",
"the",
"Production",
"item",
"above",
",",
"and",
"thus",
",",
"it",
"also",
"defeats",
"the",
"objectives",
"of",
"ring",
"-",
"fencing",
".",
"\n\n",
"#",
"#",
"CapEx",
"\n\n",
"Under",
"this",
"method",
",",
"apportionment",
"is",
"based",
"on",
"the",
"contribution",
"of",
"each",
"licence",
"area",
"/",
"business",
"activity",
"to",
"the",
"total",
"CapEx",
"per",
"project",
".",
"\n\n",
"#",
"#",
"Advantages",
":",
"\n\n",
"-",
"·",
"For",
"expenditures",
",",
"it",
"preserves",
"the",
"policy",
"intent",
"of",
"the",
"ring",
"-",
"fencing",
"rules",
",",
"which",
"is",
"to",
"avoid",
"the",
"deferral",
"of",
"taxes",
"where",
"there",
"is",
"both",
"a",
"producing",
"mine",
"and",
"a",
"mine",
"at",
"the",
"exploration",
"or",
"development",
"stage",
".",
"Basically",
",",
"a",
"mining",
"investor",
"is",
"required",
"to",
"allocate",
"a",
"percentage",
"of",
"indirect",
"and",
"general",
"costs",
"to",
"all",
"projects",
",",
"regardless",
"of",
"whether",
"one",
"is",
"producing",
"and",
"generating",
"profits",
".",
"Some",
"costs",
"are",
"allocated",
"to",
"the",
"mine",
"under",
"exploration",
"or",
"in",
"the",
"development",
"stage",
",",
"as",
"it",
"presumably",
"also",
"benefits",
"from",
"the",
"same",
"shared",
"costs",
"and",
"services",
".",
"The",
"result",
"is",
"that",
"taxes",
"owed",
"by",
"the",
"producing",
"mine",
"are",
"not",
"substantially",
"deferred",
"compared",
"to",
"a",
"situation",
"where",
"production",
"is",
"used",
"as",
"a",
"proxy",
".",
"It",
"reflects",
"the",
"idea",
"of",
"taxing",
"the",
"underlying",
"factor",
"that",
"generates",
"profits",
".",
"\n",
"-",
"·",
"For",
"revenues",
",",
"it",
"considers",
"that",
",",
"in",
"theory",
",",
"a",
"company",
"that",
"earns",
"more",
"spends",
"more",
",",
"contributing",
"to",
"total",
"costs",
"-",
"a",
"reasonable",
"basis",
"for",
"apportioning",
"revenues",
".",
"\n\n",
"Disadvantage",
":",
"The",
"challenge",
"would",
"be",
"to",
"define",
"what",
"CapEx",
"is",
"for",
"ringfencing",
"purposes",
"and",
"audit",
"whether",
"the",
"taxpayer",
"has",
"considered",
"the",
"right",
"components",
"when",
"applying",
"the",
"method",
".",
"Countries",
"might",
"wish",
"to",
"use",
"the",
"generally",
"accepted",
"accounting",
"principles",
"for",
"CapEx",
",",
"which",
"state",
"that",
"CapEx",
"is",
"an",
"item",
"that",
"has",
"a",
"useful",
"life",
"of",
"more",
"than",
"1",
"year",
".",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"FUNDAMENTALS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"3.0",
"THE",
"BENEFITS",
"AND",
"RISKS",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n"
] |
[] |
empire as co- constituted, or a questioning of the moral and political
underpinnings of ‘Western science’.48 Recent work that investigates how the
implementation of a doctrine of ‘self- management’ – of scientific workers
and their labour – by Yugoslavian socialist elites was linked to the creation
of certain forms of scientific ‘independence’ from the ‘West’ represents a
similar attempt in this direction.49
In short, approaching the topic holistically, with a mind prepared to
question well- established orthodoxies of geography, science, discipline, gen -
der, race, labour and so on, is essential to considering the task at hand: piec -
ing together histories of women in science from fragmentary, often silent
archives.
|
[
"empire",
"as",
"co-",
" ",
"constituted",
",",
"or",
"a",
"questioning",
"of",
"the",
"moral",
"and",
"political",
"\n",
"underpinnings",
"of",
"‘",
"Western",
"science’.48",
"Recent",
"work",
"that",
"investigates",
"how",
"the",
"\n",
"implementation",
"of",
"a",
"doctrine",
"of",
"‘",
"self-",
" ",
"management",
"’",
"–",
" ",
"of",
"scientific",
"workers",
"\n",
"and",
"their",
"labour",
"–",
" ",
"by",
"Yugoslavian",
"socialist",
"elites",
"was",
"linked",
"to",
"the",
"creation",
"\n",
"of",
"certain",
"forms",
"of",
"scientific",
"‘",
"independence",
"’",
"from",
"the",
"‘",
"West",
"’",
"represents",
"a",
"\n",
"similar",
"attempt",
"in",
"this",
"direction.49",
"\n",
"In",
"short",
",",
"approaching",
"the",
"topic",
"holistically",
",",
"with",
"a",
"mind",
"prepared",
"to",
"\n",
"question",
"well-",
" ",
"established",
"orthodoxies",
"of",
"geography",
",",
"science",
",",
"discipline",
",",
"gen",
"-",
"\n",
"der",
",",
"race",
",",
"labour",
"and",
"so",
"on",
",",
"is",
"essential",
"to",
"considering",
"the",
"task",
"at",
"hand",
":",
"piec",
"-",
"\n",
"ing",
"together",
"histories",
"of",
"women",
"in",
"science",
"from",
"fragmentary",
",",
"often",
"silent",
"\n",
"archives",
"."
] |
[
{
"end": 110,
"label": "CITATION_REF",
"start": 108
},
{
"end": 422,
"label": "CITATION_REF",
"start": 420
}
] |
una quinta parte de los programas de preparación y formación de directores de centros escolares cubren las cuatro dimensiones del liderazgo........................................................................................................................................................................................................63 | |
| Figura 3.9 | El grado en que los países se centran en la certificación de las y los directores escolares varía según el país.....................................65 | |
| Figura 3.10 | Las y los directores de centros escolares de algunos países dedican al menos el doble de tiempo a tareas relacionadas con la enseñanza que los de otros países ..........................................................................................................................................................................68 | |
| Figura 3.11 | Las y los directores de centros escolares parecen estar muysatisfechos con su trabajo.............................................................................69 | |
| Figura 4.1 | En los equipos de administración escolar están representadas diversas partes interesadas....................................................................80 | |
| Figura 4.2 | La mayoría de los docentes que ocupan cargos directivos intermedios participan en la evaluación del profesorado.......................83 | |
| Figura 4.3 | Los padres y madres tienen másprobabilidades que los miembros de la comunidad de recibir el mandato de participar en los comités de administración escolar ..........................................................................................................................................................................91 | |
| Figura 4.4 | La participación de los padres y madres en la gobernanza escolar es alta en América Latina.....................................................................92 | |
| Figura 5.1 | En Letonia, un tercio de los funcionarios de los ministerios de Educación declararon tener altos niveles de desarrollo profesional en lo que respecta a la puesta en marcha y el uso de la investigación........................................................................................ | 104 |
| Figura 5.2 | En Letonia, la mitad de los funcionarios locales de educación declararon que necesitaban un alto nivel de desarrollo profesional en materia de apoyo metodológico y temático al profesorado...................................................................................................... | 104 |
| Figura 5.3 | La inspección escolar externa es cada vez menos común en los países de la OCDE..................................................................................... | 107 |
| Figura 6.1 | El énfasis en el currículo varía según el tipo de régimen político........................................................................................................................... | 118 |
| Figura 6.2 | La contratación y el despido del profesorado están influidos políticamente en muchos países ............................................................ | 120 |
| Figura 6.3 | El 51 % de las y los ministros de Educación abandona su puesto al cabo de dos años de su nombramiento...................................... | 123 |
| Figura 7.1 | Se utilizará un proceso dirigido por los países para tomar decisiones sobre las estadísticas de educación....................................... | 146 |
| Figura 7.2 | Algunos indicadores del ODS4hansido objeto de escrutinio debido a la escasa
|
[
"una",
"quinta",
"parte",
"de",
"los",
"programas",
"de",
"preparación",
"y",
"formación",
"de",
"directores",
"de",
"centros",
"escolares",
"cubren",
"las",
"cuatro",
"dimensiones",
"del",
"liderazgo",
"........................................................................................................................................................................................................",
"63",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"3.9",
" ",
"|",
"El",
"grado",
"en",
"que",
"los",
"países",
"se",
"centran",
"en",
"la",
"certificación",
"de",
"las",
"y",
"los",
"directores",
"escolares",
"varía",
"según",
"el",
"país",
".....................................",
"65",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"3.10",
" ",
"|",
"Las",
"y",
"los",
"directores",
"de",
"centros",
"escolares",
"de",
"algunos",
"países",
"dedican",
"al",
"menos",
"el",
"doble",
"de",
"tiempo",
"a",
"tareas",
"relacionadas",
"con",
"la",
"enseñanza",
"que",
"los",
"de",
"otros",
"países",
"..........................................................................................................................................................................",
"68",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"3.11",
" ",
"|",
"Las",
"y",
"los",
"directores",
"de",
"centros",
"escolares",
"parecen",
"estar",
"muysatisfechos",
"con",
"su",
"trabajo",
".............................................................................",
"69",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"4.1",
" ",
"|",
"En",
"los",
"equipos",
"de",
"administración",
"escolar",
"están",
"representadas",
"diversas",
"partes",
"interesadas",
"....................................................................",
"80",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"4.2",
" ",
"|",
"La",
"mayoría",
"de",
"los",
"docentes",
"que",
"ocupan",
"cargos",
"directivos",
"intermedios",
"participan",
"en",
"la",
"evaluación",
"del",
"profesorado",
".......................",
"83",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"4.3",
" ",
"|",
"Los",
"padres",
"y",
"madres",
"tienen",
"másprobabilidades",
"que",
"los",
"miembros",
"de",
"la",
"comunidad",
"de",
"recibir",
"el",
"mandato",
"de",
"participar",
"en",
"los",
"comités",
"de",
"administración",
"escolar",
"..........................................................................................................................................................................",
"91",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"4.4",
" ",
"|",
"La",
"participación",
"de",
"los",
"padres",
"y",
"madres",
"en",
"la",
"gobernanza",
"escolar",
"es",
"alta",
"en",
"América",
"Latina",
".....................................................................",
"92",
" ",
"|",
" ",
"|",
"\n",
"|",
"Figura",
"5.1",
" ",
"|",
"En",
"Letonia",
",",
"un",
"tercio",
"de",
"los",
"funcionarios",
"de",
"los",
"ministerios",
"de",
"Educación",
"declararon",
"tener",
"altos",
"niveles",
"de",
"desarrollo",
"profesional",
"en",
"lo",
"que",
"respecta",
"a",
"la",
"puesta",
"en",
"marcha",
"y",
"el",
"uso",
"de",
"la",
"investigación",
"........................................................................................",
" ",
"|",
"104",
" ",
"|",
"\n",
"|",
"Figura",
"5.2",
" ",
"|",
"En",
"Letonia",
",",
"la",
"mitad",
"de",
"los",
"funcionarios",
"locales",
"de",
"educación",
"declararon",
"que",
"necesitaban",
"un",
"alto",
"nivel",
"de",
"desarrollo",
"profesional",
"en",
"materia",
"de",
"apoyo",
"metodológico",
"y",
"temático",
"al",
"profesorado",
"......................................................................................................",
" ",
"|",
"104",
" ",
"|",
"\n",
"|",
"Figura",
"5.3",
" ",
"|",
"La",
"inspección",
"escolar",
"externa",
"es",
"cada",
"vez",
"menos",
"común",
"en",
"los",
"países",
"de",
"la",
"OCDE",
".....................................................................................",
" ",
"|",
"107",
" ",
"|",
"\n",
"|",
"Figura",
"6.1",
" ",
"|",
"El",
"énfasis",
"en",
"el",
"currículo",
"varía",
"según",
"el",
"tipo",
"de",
"régimen",
"político",
"...........................................................................................................................",
" ",
"|",
"118",
" ",
"|",
"\n",
"|",
"Figura",
"6.2",
" ",
"|",
"La",
"contratación",
"y",
"el",
"despido",
"del",
"profesorado",
"están",
"influidos",
"políticamente",
"en",
"muchos",
"países",
"............................................................",
" ",
"|",
"120",
" ",
"|",
"\n",
"|",
"Figura",
"6.3",
" ",
"|",
"El",
"51",
"%",
"de",
"las",
"y",
"los",
"ministros",
"de",
"Educación",
"abandona",
"su",
"puesto",
"al",
"cabo",
"de",
"dos",
"años",
"de",
"su",
"nombramiento",
"......................................",
" ",
"|",
"123",
" ",
"|",
"\n",
"|",
"Figura",
"7.1",
" ",
"|",
"Se",
"utilizará",
"un",
"proceso",
"dirigido",
"por",
"los",
"países",
"para",
"tomar",
"decisiones",
"sobre",
"las",
"estadísticas",
"de",
"educación",
".......................................",
" ",
"|",
"146",
" ",
"|",
"\n",
"|",
"Figura",
"7.2",
" ",
"|",
"Algunos",
"indicadores",
"del",
"ODS4hansido",
"objeto",
"de",
"escrutinio",
"debido",
"a",
"la",
"escasa"
] |
[] |
Furthermore, the , , , can be in communication with one another and/or one or more other systems, devices, and/or data sources. The communications among the , , , may be physical and/or logical connections using any other interconnect technologies and/or access technologies, such as any of those discussed herein. In some implementations, the is a central controller that acts as an intermediary or hub that manages the communication among the , , . In other implementations, , , , can directly communicate with one another. As will become apparent from the following discussion, a degree of overlap may exist between the different sources (e.g., machine vision may be utilized in conjunction with one or more of the sorters, and/or the like).
In some implementations, the various data streams can be fed into the AI/ or portions of . Depending on the particulars of a given AI/ , some data from the data streams can be used to train the AI/ . Additionally or alternatively, other datasets may be used to train the AI/ . Additionally or alternatively, the AI/ may include unsupervised learning mechanisms, perform self-training, and/or learn on-the-fly using real-time (or near-real-time) data collected from the various data streams. Additionally or alternatively, the AI/ can include backpropagation techniques for training or inference phases.
Some of the include robotic sorters. The robotic sorters are sorting machines that include any form of robotic sorting capabilities such as, for example, articulated robots (e.g., including one or more manipulator arms), gantry robots, cylindrical coordinate robots, spherical coordinate robots, six axis robots, selective compliance assembly robot arm (SCARA) robots, parallel robots, delta robots, serial manipulators, and/or another type of robot or robotic elements suitable to handle an intended material/waste stream. In some implementations, one or more robotic sorters include end-effectors or end-of-arm-tooling (EOAT), which involve a portion of the robot's kinematic chain (e.g., robotic arm or the like) capable of interacting with an environment. For example, an end effector may include a portion of a robot or robotic arm that has one or more attached tools, such as, for example, impactive tools (e.g., jaws, claws, tweezers, mechanical fingers, humaniform dexterous robotic hands, and/or other gripper mechanisms that physically grasp by direct impact upon an object), ingressive tools (e.g., pins, needles, or hackles that physically penetrate the surface of ab object), astrictive tools (e.g., magnets, vacuums, electroadhesion, and/or other elements that use attractive forces
|
[
"Furthermore",
",",
"the",
" ",
",",
",",
",",
" ",
"can",
"be",
"in",
"communication",
"with",
"one",
"another",
"and/or",
"one",
"or",
"more",
"other",
"systems",
",",
"devices",
",",
"and/or",
"data",
"sources",
".",
"The",
"communications",
"among",
"the",
" ",
",",
",",
",",
" ",
"may",
"be",
"physical",
"and/or",
"logical",
"connections",
"using",
"any",
"other",
"interconnect",
"technologies",
"and/or",
"access",
"technologies",
",",
"such",
"as",
"any",
"of",
"those",
"discussed",
"herein",
".",
"In",
"some",
"implementations",
",",
"the",
" ",
"is",
"a",
"central",
"controller",
"that",
"acts",
"as",
"an",
"intermediary",
"or",
"hub",
"that",
"manages",
"the",
"communication",
"among",
"the",
" ",
",",
",",
".",
"In",
"other",
"implementations",
",",
" ",
",",
",",
",",
" ",
"can",
"directly",
"communicate",
"with",
"one",
"another",
".",
"As",
"will",
"become",
"apparent",
"from",
"the",
"following",
"discussion",
",",
"a",
"degree",
"of",
"overlap",
"may",
"exist",
"between",
"the",
"different",
"sources",
"(",
"e.g.",
",",
"machine",
"vision",
"may",
"be",
"utilized",
"in",
"conjunction",
"with",
"one",
"or",
"more",
"of",
"the",
"sorters",
",",
"and/or",
"the",
"like",
")",
".",
"\n\n",
"In",
"some",
"implementations",
",",
"the",
"various",
"data",
"streams",
"can",
"be",
"fed",
"into",
"the",
"AI/",
" ",
"or",
"portions",
"of",
" ",
".",
"Depending",
"on",
"the",
"particulars",
"of",
"a",
"given",
"AI/",
",",
"some",
"data",
"from",
"the",
"data",
"streams",
"can",
"be",
"used",
"to",
"train",
"the",
"AI/",
".",
"Additionally",
"or",
"alternatively",
",",
"other",
"datasets",
"may",
"be",
"used",
"to",
"train",
"the",
"AI/",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"AI/",
" ",
"may",
"include",
"unsupervised",
"learning",
"mechanisms",
",",
"perform",
"self",
"-",
"training",
",",
"and/or",
"learn",
"on",
"-",
"the",
"-",
"fly",
"using",
"real",
"-",
"time",
"(",
"or",
"near",
"-",
"real",
"-",
"time",
")",
"data",
"collected",
"from",
"the",
"various",
"data",
"streams",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
"AI/",
" ",
"can",
"include",
"backpropagation",
"techniques",
"for",
"training",
"or",
"inference",
"phases",
".",
"\n\n",
"Some",
"of",
"the",
" ",
"include",
"robotic",
"sorters",
".",
"The",
"robotic",
"sorters",
"are",
"sorting",
"machines",
"that",
"include",
"any",
"form",
"of",
"robotic",
"sorting",
"capabilities",
"such",
"as",
",",
"for",
"example",
",",
"articulated",
"robots",
"(",
"e.g.",
",",
"including",
"one",
"or",
"more",
"manipulator",
"arms",
")",
",",
"gantry",
"robots",
",",
"cylindrical",
"coordinate",
"robots",
",",
"spherical",
"coordinate",
"robots",
",",
"six",
"axis",
"robots",
",",
"selective",
"compliance",
"assembly",
"robot",
"arm",
"(",
"SCARA",
")",
"robots",
",",
"parallel",
"robots",
",",
"delta",
"robots",
",",
"serial",
"manipulators",
",",
"and/or",
"another",
"type",
"of",
"robot",
"or",
"robotic",
"elements",
"suitable",
"to",
"handle",
"an",
"intended",
"material",
"/",
"waste",
"stream",
".",
"In",
"some",
"implementations",
",",
"one",
"or",
"more",
"robotic",
"sorters",
"include",
"end",
"-",
"effectors",
"or",
"end",
"-",
"of",
"-",
"arm",
"-",
"tooling",
"(",
"EOAT",
")",
",",
"which",
"involve",
"a",
"portion",
"of",
"the",
"robot",
"'s",
"kinematic",
"chain",
"(",
"e.g.",
",",
"robotic",
"arm",
"or",
"the",
"like",
")",
"capable",
"of",
"interacting",
"with",
"an",
"environment",
".",
"For",
"example",
",",
"an",
"end",
"effector",
"may",
"include",
"a",
"portion",
"of",
"a",
"robot",
"or",
"robotic",
"arm",
"that",
"has",
"one",
"or",
"more",
"attached",
"tools",
",",
"such",
"as",
",",
"for",
"example",
",",
"impactive",
"tools",
"(",
"e.g.",
",",
"jaws",
",",
"claws",
",",
"tweezers",
",",
"mechanical",
"fingers",
",",
"humaniform",
"dexterous",
"robotic",
"hands",
",",
"and/or",
"other",
"gripper",
"mechanisms",
"that",
"physically",
"grasp",
"by",
"direct",
"impact",
"upon",
"an",
"object",
")",
",",
"ingressive",
"tools",
"(",
"e.g.",
",",
"pins",
",",
"needles",
",",
"or",
"hackles",
"that",
"physically",
"penetrate",
"the",
"surface",
"of",
"ab",
"object",
")",
",",
"astrictive",
"tools",
"(",
"e.g.",
",",
"magnets",
",",
"vacuums",
",",
"electroadhesion",
",",
"and/or",
"other",
"elements",
"that",
"use",
"attractive",
"forces"
] |
[] |
Eastern Partnership region ... 158
Table 3.7. The Scopus subject fields that appear more frequently within each domain
in comparison with the average publications ............................................................................... 159
Table 3.8. Top IPC symbols per number of records associated with the patents classified
within each domain, at subclass level ............................................................................................. 162
Table 3.9. Number of records per S&T specialisation domain in Armenia ..................... 175
Table 3.10. Temporal evolution of Armenia’s S&T domains ................................................. 178
Table 3.11. Number of records per S&T specialisation domain in Azerbaijan ............. 179
Table 3.12. Temporal evolution of Azerbaijan’s S&T domains ............................................ 182
Table 3.13. Number of records per S&T specialisation domain in Georgia ................... 183
Table 3.14. Temporal evolution of Georgia’s S&T domains .................................................. 186
Table 3.15. Number of records per S&T specialisation domain in Moldova .................. 187
Table 3.16. Temporal evolution of Moldova’s S&T domains ................................................. 190
Table 3.17. Number of records per S&T specialisation domain in Ukraine ................... 191
Table 3.18. Temporal evolution of Ukraine’s S&T domains .................................................. 194
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation267
Table 3.19. Top private actors in Armenia by number of records, across all domains . 198
Table 3.20. Top private actors in Armenia by number of records, across all domains . 198
Table 3.21. Top public actors in Azerbaijan by number of records, across all
domains ............................................................................................................................................ 200
Table 3.22. Top private actors in Azerbaijan by number of records, across all
domains .................................................................................................................................................. 200
Table 3.23. Top public actors in Georgia by number of records, across all domains .... 202
Table 3.24. Top private actors in Georgia by number of records, across all domains .. 202
Table 3.25. Top public actors in Moldova by number of records, across all domains ... 204
Table 3.26. Top private actors in Moldova by number of records, across all domains 204
Table 3.27. Top public actors in Ukraine by number of records, across all domains ..... 206
Table 3.28. Top private actors in Ukraine by number of records, across all domains .. 206
Table 3.29. Selected S&T specialisation domains in Armenia ............................................. 219
Table 3.30. Selected S&T specialisation domains in Azerbaijan ......................................... 221
Table 3.31. Selected S&T specialisation domains in Georgia .............................................. 223
Table 3.32. Selected S&T specialisation domains in Moldova ............................................. 225
Table 3.33. Selected S&T specialisation domains in Ukraine ............................................... 227
Table 4.1. Means that could be exploited to derive concordances between S&T and E&I
domains.
|
[
"Eastern",
"Partnership",
"region",
"...",
"158",
"\n",
"Table",
"3.7",
".",
"The",
"Scopus",
"subject",
"fields",
"that",
"appear",
"more",
"frequently",
"within",
"each",
"domain",
"\n",
"in",
"comparison",
"with",
"the",
"average",
"publications",
"...............................................................................",
"159",
"\n",
"Table",
"3.8",
".",
"Top",
"IPC",
"symbols",
"per",
"number",
"of",
"records",
"associated",
"with",
"the",
"patents",
"classified",
"\n",
"within",
"each",
"domain",
",",
"at",
"subclass",
"level",
".............................................................................................",
"162",
"\n",
"Table",
"3.9",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Armenia",
".....................",
"175",
"\n",
"Table",
"3.10",
".",
"Temporal",
"evolution",
"of",
"Armenia",
"’s",
"S&T",
"domains",
".................................................",
"178",
"\n",
"Table",
"3.11",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Azerbaijan",
".............",
"179",
"\n",
"Table",
"3.12",
".",
"Temporal",
"evolution",
"of",
"Azerbaijan",
"’s",
"S&T",
"domains",
"............................................",
"182",
"\n",
"Table",
"3.13",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Georgia",
"...................",
"183",
"\n",
"Table",
"3.14",
".",
"Temporal",
"evolution",
"of",
"Georgia",
"’s",
"S&T",
"domains",
"..................................................",
"186",
"\n",
"Table",
"3.15",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Moldova",
"..................",
"187",
"\n",
"Table",
"3.16",
".",
"Temporal",
"evolution",
"of",
"Moldova",
"’s",
"S&T",
"domains",
".................................................",
"190",
"\n",
"Table",
"3.17",
".",
"Number",
"of",
"records",
"per",
"S&T",
"specialisation",
"domain",
"in",
"Ukraine",
"...................",
"191",
"\n",
"Table",
"3.18",
".",
"Temporal",
"evolution",
"of",
"Ukraine",
"’s",
"S&T",
"domains",
"..................................................",
"194",
"\n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation267",
"\n",
"Table",
"3.19",
".",
"Top",
"private",
"actors",
"in",
"Armenia",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
".",
"198",
"\n",
"Table",
"3.20",
".",
"Top",
"private",
"actors",
"in",
"Armenia",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
".",
"198",
"\n",
"Table",
"3.21",
".",
"Top",
"public",
"actors",
"in",
"Azerbaijan",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"\n",
"domains",
"............................................................................................................................................",
"200",
"\n",
"Table",
"3.22",
".",
"Top",
"private",
"actors",
"in",
"Azerbaijan",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"\n",
"domains",
"..................................................................................................................................................",
"200",
"\n",
"Table",
"3.23",
".",
"Top",
"public",
"actors",
"in",
"Georgia",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
"....",
"202",
"\n",
"Table",
"3.24",
".",
"Top",
"private",
"actors",
"in",
"Georgia",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
"..",
"202",
"\n",
"Table",
"3.25",
".",
"Top",
"public",
"actors",
"in",
"Moldova",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
"...",
"204",
"\n",
"Table",
"3.26",
".",
"Top",
"private",
"actors",
"in",
"Moldova",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
"204",
"\n",
"Table",
"3.27",
".",
"Top",
"public",
"actors",
"in",
"Ukraine",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
".....",
"206",
"\n",
"Table",
"3.28",
".",
"Top",
"private",
"actors",
"in",
"Ukraine",
"by",
"number",
"of",
"records",
",",
"across",
"all",
"domains",
"..",
"206",
"\n",
"Table",
"3.29",
".",
"Selected",
"S&T",
"specialisation",
"domains",
"in",
"Armenia",
".............................................",
"219",
"\n",
"Table",
"3.30",
".",
"Selected",
"S&T",
"specialisation",
"domains",
"in",
"Azerbaijan",
".........................................",
"221",
"\n",
"Table",
"3.31",
".",
"Selected",
"S&T",
"specialisation",
"domains",
"in",
"Georgia",
"..............................................",
"223",
"\n",
"Table",
"3.32",
".",
"Selected",
"S&T",
"specialisation",
"domains",
"in",
"Moldova",
".............................................",
"225",
"\n",
"Table",
"3.33",
".",
"Selected",
"S&T",
"specialisation",
"domains",
"in",
"Ukraine",
"...............................................",
"227",
"\n",
"Table",
"4.1",
".",
"Means",
"that",
"could",
"be",
"exploited",
"to",
"derive",
"concordances",
"between",
"S&T",
"and",
"E&I",
"\n",
"domains",
".",
" "
] |
[] |
… | … | 94 ₋₁ | 17 ₋₁ | 98 … | … | 4 ₋₂ | 0.77 ₋₃ | 75 ₋₄ ᵢ | 93 ₋₁ | 11 17 ₋₁ | … … | … | 0.77 ₋₃ | 73 ₋₄ ᵢ | CHL | CHL |
| Colombia | 47 ₋₁ | 40 ₋₁ | 97 ₋₁ | 97 ₋₁ | 10 ₋₂ | 181 ₋₁ | 23 ₋₁ | 98 ₋₁ | 98 ₋₁ | … 6 ₋₂ | 1.94 ₋₁ ᵢ | 73 ₋₄ ᵢ | 191 ₋₁ 37 | 25 ₋₁ 98 | ₋₁ 98 ₋₁ | 3 ₋₁ | 1.94 ₋₁ ᵢ | 95 ₋₁ ᵢ | COL | COL |
| Costa Rica | 12 ₋₁ | 11 ₋₁ | 90 ₋₃ 100 | 97 ₋₃ 70 | 2 ₋₃ | 43 ₋₁ | 11 ₋₁ | 94 ₋₃ | 98 ₋₃ | 10 ₋₃ | 0.97 ₋₁ | 66 ₋₄ ᵢ | ₋₁ 14 | ₋₁ 97 ₋₃ 100 | 99 ₋₃ 73 | 6 ₋₃ | 1.00 ₋₁ | 91 ₋₁ ᵢ | CRI | CRI |
| Cuba Curaçao | 20 … | 18 … | … | … | … … | 87 … | 8 … | 100 … | 72 … | 1 ₋₄ | … … | 88 ₋₄ ᵢ … | 84 … | 8 … … | … | 3 ₋₄ … | … … | … … | CUB CUW | CUB CUW |
| Dominica | 0.2 | 7 | 54 | 46 | 27 ₋₁ | 1 | 10 | 66 | 74 | … - ₋₁ | … | … | 1 | 9 44 | 57 | - ₋₁ | … | … | DMA | DMA |
| Dominican Republic | 19 | 17 | - | 100 | 39 ₋₂ | 79 | 15 | - | 100 | 8 ₋₂ | 1.49 ₋₁ ᵢ | 83 ₋₄ ᵢ | 81 | 11 | - | 100 … | 1.49 ₋₁ ᵢ | 98 ₋₁ ᵢ | DOM | DOM |
| Ecuador | 31 | 20 | 93 | 95 | 8 | 80 | 22 | 90 | 95 | 7 | 1.57 ₋₁ ᵢ | 80 ₋₄ ᵢ | 93 | 20 | 77 | 97 8 | 1.57 ₋₁ ᵢ | … …
|
[
"…",
" ",
"|",
"…",
" ",
"|",
"94",
"₋₁",
" ",
"|",
"17",
"₋₁",
" ",
"|",
"98",
"…",
" ",
"|",
"…",
" ",
"|",
"4",
"₋₂",
" ",
"|",
"0.77",
"₋₃",
" ",
"|",
"75",
"₋₄",
"ᵢ",
" ",
"|",
"93",
"₋₁",
" ",
"|",
"11",
"17",
"₋₁",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"0.77",
"₋₃",
" ",
"|",
"73",
"₋₄",
"ᵢ",
" ",
"|",
"CHL",
" ",
"|",
"CHL",
" ",
"|",
"\n",
"|",
"Colombia",
" ",
"|",
"47",
"₋₁",
" ",
"|",
"40",
"₋₁",
" ",
"|",
"97",
"₋₁",
" ",
"|",
"97",
"₋₁",
" ",
"|",
"10",
"₋₂",
" ",
"|",
"181",
"₋₁",
" ",
"|",
"23",
"₋₁",
" ",
"|",
"98",
"₋₁",
" ",
"|",
"98",
"₋₁",
" ",
"|",
"…",
"6",
"₋₂",
" ",
"|",
"1.94",
"₋₁",
"ᵢ",
" ",
"|",
"73",
"₋₄",
"ᵢ",
" ",
"|",
"191",
"₋₁",
"37",
" ",
"|",
"25",
"₋₁",
"98",
" ",
"|",
"₋₁",
"98",
"₋₁",
" ",
"|",
"3",
"₋₁",
" ",
"|",
"1.94",
"₋₁",
"ᵢ",
" ",
"|",
"95",
"₋₁",
"ᵢ",
" ",
"|",
"COL",
" ",
"|",
"COL",
" ",
"|",
"\n",
"|",
"Costa",
"Rica",
" ",
"|",
"12",
"₋₁",
" ",
"|",
"11",
"₋₁",
" ",
"|",
"90",
"₋₃",
"100",
" ",
"|",
"97",
"₋₃",
"70",
" ",
"|",
"2",
"₋₃",
" ",
"|",
"43",
"₋₁",
" ",
"|",
"11",
"₋₁",
" ",
"|",
"94",
"₋₃",
" ",
"|",
"98",
"₋₃",
" ",
"|",
"10",
"₋₃",
" ",
"|",
"0.97",
"₋₁",
" ",
"|",
"66",
"₋₄",
"ᵢ",
" ",
"|",
"₋₁",
"14",
" ",
"|",
"₋₁",
"97",
"₋₃",
"100",
" ",
"|",
"99",
"₋₃",
"73",
" ",
"|",
"6",
"₋₃",
" ",
"|",
"1.00",
"₋₁",
" ",
"|",
"91",
"₋₁",
"ᵢ",
" ",
"|",
"CRI",
" ",
"|",
"CRI",
" ",
"|",
"\n",
"|",
"Cuba",
"Curaçao",
" ",
"|",
"20",
"…",
" ",
"|",
"18",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"87",
"…",
" ",
"|",
"8",
"…",
" ",
"|",
"100",
"…",
" ",
"|",
"72",
"…",
" ",
"|",
"1",
"₋₄",
" ",
"|",
"…",
"…",
" ",
"|",
"88",
"₋₄",
"ᵢ",
"…",
" ",
"|",
"84",
"…",
" ",
"|",
"8",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"3",
"₋₄",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"CUB",
"CUW",
" ",
"|",
"CUB",
"CUW",
" ",
"|",
"\n",
"|",
"Dominica",
" ",
"|",
"0.2",
" ",
"|",
"7",
" ",
"|",
"54",
" ",
"|",
"46",
" ",
"|",
"27",
"₋₁",
" ",
"|",
"1",
" ",
"|",
"10",
" ",
"|",
"66",
" ",
"|",
"74",
" ",
"|",
"…",
"-",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"1",
" ",
"|",
"9",
"44",
" ",
"|",
"57",
" ",
"|",
"-",
"₋₁",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"DMA",
" ",
"|",
"DMA",
" ",
"|",
"\n",
"|",
"Dominican",
"Republic",
" ",
"|",
"19",
" ",
"|",
"17",
" ",
"|",
"-",
" ",
"|",
"100",
" ",
"|",
"39",
"₋₂",
" ",
"|",
"79",
" ",
"|",
"15",
" ",
"|",
"-",
" ",
"|",
"100",
" ",
"|",
"8",
"₋₂",
" ",
"|",
"1.49",
"₋₁",
"ᵢ",
" ",
"|",
"83",
"₋₄",
"ᵢ",
" ",
"|",
"81",
" ",
"|",
"11",
" ",
"|",
"-",
" ",
"|",
"100",
"…",
" ",
"|",
"1.49",
"₋₁",
"ᵢ",
" ",
"|",
"98",
"₋₁",
"ᵢ",
" ",
"|",
"DOM",
" ",
"|",
"DOM",
" ",
"|",
"\n",
"|",
"Ecuador",
" ",
"|",
"31",
" ",
"|",
"20",
" ",
"|",
"93",
" ",
"|",
"95",
" ",
"|",
"8",
" ",
"|",
"80",
" ",
"|",
"22",
" ",
"|",
"90",
" ",
"|",
"95",
" ",
"|",
"7",
" ",
"|",
"1.57",
"₋₁",
"ᵢ",
" ",
"|",
"80",
"₋₄",
"ᵢ",
" ",
"|",
"93",
" ",
"|",
"20",
" ",
"|",
"77",
" ",
"|",
"97",
"8",
" ",
"|",
"1.57",
"₋₁",
"ᵢ",
" ",
"|",
"…",
"…",
" "
] |
[] |
been recovered.
After encryption, we check all 120 pairs of ciphertexts to see if any of them are active in less than 16 S-boxes. If so, we increment the corresponding counter for the input pair to the S-box that was active in the plaintext.
We also carry out decryptions in order to obtain information about the inverse S-boxes.
## 4.2 S-Box Recovery Phase
Every once in a while, we stop collecting data and try identifying sets for each S-box. This is done by first sorting the counters for each number of active output S-boxes. We start with the lowest number of active output S-boxes. We check if the top eight counter values in the sorted list passes the cover filter. If so, we consider these eight pairs a slender set and add it to a collection of identified sets, unless the set is already present in the collection. When there are multiple sets in the collection, we check that they pass the bowtie filter. We then look at the next eight pairs and so forth. We stop adding sets when we have identified four sets, or we run into an inconsistency such as a failing bowtie test or non-disjoint sets. In case of an inconsistency, we give up identifying sets for this S-box.
The bowtie filter can also be used to filter out candidate sets that can be derived from existing sets. Consider as an example a situation where the following two candidate sets D e and D e ′ (passing the bowtie test) have been identified:
<!-- formula-not-decoded -->
<!-- formula-not-decoded -->
From these two sets we can derive the set D e ⊕ e ′ directly as
<!-- formula-not-decoded -->
As an example, S (0) ⊕ S (3) = ( S (0) ⊕ S (1)) ⊕ ( S (1) ⊕ S (3)) = e ⊕ e ′ . Hence, if we identify a set which can be derived from two sets already identified, then we should not add the third set to our collection (on the assumption that the first two sets are slender, which means the third is not).
We note that if one swaps two 'bowtie pairs' in two valid sets (e.g., the pairs { 0 1 , } and { 2 3 , } could be swapped with { 0 2 , } and { 1 3 , } in D e and D e
|
[
"been",
"recovered",
".",
"\n\n",
"After",
"encryption",
",",
"we",
"check",
"all",
"120",
"pairs",
"of",
"ciphertexts",
"to",
"see",
"if",
"any",
"of",
"them",
"are",
"active",
"in",
"less",
"than",
"16",
"S",
"-",
"boxes",
".",
"If",
"so",
",",
"we",
"increment",
"the",
"corresponding",
"counter",
"for",
"the",
"input",
"pair",
"to",
"the",
"S",
"-",
"box",
"that",
"was",
"active",
"in",
"the",
"plaintext",
".",
"\n\n",
"We",
"also",
"carry",
"out",
"decryptions",
"in",
"order",
"to",
"obtain",
"information",
"about",
"the",
"inverse",
"S",
"-",
"boxes",
".",
"\n\n",
"#",
"#",
"4.2",
"S",
"-",
"Box",
"Recovery",
"Phase",
"\n\n",
"Every",
"once",
"in",
"a",
"while",
",",
"we",
"stop",
"collecting",
"data",
"and",
"try",
"identifying",
"sets",
"for",
"each",
"S",
"-",
"box",
".",
"This",
"is",
"done",
"by",
"first",
"sorting",
"the",
"counters",
"for",
"each",
"number",
"of",
"active",
"output",
"S",
"-",
"boxes",
".",
"We",
"start",
"with",
"the",
"lowest",
"number",
"of",
"active",
"output",
"S",
"-",
"boxes",
".",
"We",
"check",
"if",
"the",
"top",
"eight",
"counter",
"values",
"in",
"the",
"sorted",
"list",
"passes",
"the",
"cover",
"filter",
".",
"If",
"so",
",",
"we",
"consider",
"these",
"eight",
"pairs",
"a",
"slender",
"set",
"and",
"add",
"it",
"to",
"a",
"collection",
"of",
"identified",
"sets",
",",
"unless",
"the",
"set",
"is",
"already",
"present",
"in",
"the",
"collection",
".",
"When",
"there",
"are",
"multiple",
"sets",
"in",
"the",
"collection",
",",
"we",
"check",
"that",
"they",
"pass",
"the",
"bowtie",
"filter",
".",
"We",
"then",
"look",
"at",
"the",
"next",
"eight",
"pairs",
"and",
"so",
"forth",
".",
"We",
"stop",
"adding",
"sets",
"when",
"we",
"have",
"identified",
"four",
"sets",
",",
"or",
"we",
"run",
"into",
"an",
"inconsistency",
"such",
"as",
"a",
"failing",
"bowtie",
"test",
"or",
"non",
"-",
"disjoint",
"sets",
".",
"In",
"case",
"of",
"an",
"inconsistency",
",",
"we",
"give",
"up",
"identifying",
"sets",
"for",
"this",
"S",
"-",
"box",
".",
"\n\n",
"The",
"bowtie",
"filter",
"can",
"also",
"be",
"used",
"to",
"filter",
"out",
"candidate",
"sets",
"that",
"can",
"be",
"derived",
"from",
"existing",
"sets",
".",
"Consider",
"as",
"an",
"example",
"a",
"situation",
"where",
"the",
"following",
"two",
"candidate",
"sets",
"D",
"e",
"and",
"D",
"e",
"′",
"(",
"passing",
"the",
"bowtie",
"test",
")",
"have",
"been",
"identified",
":",
"\n\n",
"<",
"!",
"--",
"formula",
"-",
"not",
"-",
"decoded",
"--",
">",
"\n\n",
"<",
"!",
"--",
"formula",
"-",
"not",
"-",
"decoded",
"--",
">",
"\n\n",
"From",
"these",
"two",
"sets",
"we",
"can",
"derive",
"the",
"set",
"D",
"e",
"⊕",
"e",
"′",
"directly",
"as",
"\n\n",
"<",
"!",
"--",
"formula",
"-",
"not",
"-",
"decoded",
"--",
">",
"\n\n",
"As",
"an",
"example",
",",
"S",
"(",
"0",
")",
"⊕",
"S",
"(",
"3",
")",
"=",
"(",
"S",
"(",
"0",
")",
"⊕",
"S",
"(",
"1",
")",
")",
"⊕",
"(",
"S",
"(",
"1",
")",
"⊕",
"S",
"(",
"3",
")",
")",
"=",
"e",
"⊕",
"e",
"′",
".",
"Hence",
",",
"if",
"we",
"identify",
"a",
"set",
"which",
"can",
"be",
"derived",
"from",
"two",
"sets",
"already",
"identified",
",",
"then",
"we",
"should",
"not",
"add",
"the",
"third",
"set",
"to",
"our",
"collection",
"(",
"on",
"the",
"assumption",
"that",
"the",
"first",
"two",
"sets",
"are",
"slender",
",",
"which",
"means",
"the",
"third",
"is",
"not",
")",
".",
"\n\n",
"We",
"note",
"that",
"if",
"one",
"swaps",
"two",
"'",
"bowtie",
"pairs",
"'",
"in",
"two",
"valid",
"sets",
"(",
"e.g.",
",",
"the",
"pairs",
"{",
"0",
"1",
",",
"}",
"and",
"{",
"2",
"3",
",",
"}",
"could",
"be",
"swapped",
"with",
"{",
"0",
"2",
",",
"}",
"and",
"{",
"1",
"3",
",",
"}",
"in",
"D",
"e",
"and",
"D",
"e"
] |
[] |
early-stage VC for hydrogen and fuel cells, but this share declined to 10% from 2020 to 2022. The clean tech
sector is suffering from the same barriers to innovation, commercialisation and scaling up in Europe that afflict the
digital sector: a total of 43% and 55% of medium and large companies, respectively, cite consistent regulation within
the Single Market as the main way to foster commercialisation, while 43% of small companies identify lack of finance
as an obstacle to growthix. As in the digital sector, the lower capacity of EU clean tech companies to scale up leads
to a gap between the EU and US in later-stage funding.
Europe’s innovation potential is not translating into manufacturing superiority for clean tech, despite the
size of its domestic market . The EU is the second largest market in terms of demand for solar PV, wind and EVs.
In many of these sectors, the EU has enjoyed an industrial “first-mover” advantage and has established leadership,
but it has not been able to maintain that lead consistently. In certain sectors, such as solar PV, the EU has already
lost its manufacturing capacities, with production now dominated by China [see Figure 7] . In others, such as wind
power generation equipment, Europe has a solid position but is facing increasing challenges. For example, although
Europe retains primacy in wind turbine assembly – serving 85% of domestic demand and acting as a net exporter –
it has lost significant market shares to China in last few years, declining from 58% in 2017 to 30% in 2022. In several
sectors the EU retains its technological edge, such as electrolysers and carbon capture and storage. But many EU
players still prefer to produce at scale in China owing to higher construction costs in Europe, permitting delays and
more restricted access to critical raw materials. For example, electrolyser production requires at least 40 raw materials
and the EU currently produces just 1-5% of these domestically. Overall, despite the EU’s ambition to maintain and
develop clean tech manufacturing capacity, there are multiple signs of an evolution in the opposite direction, with
EU companies announcing production cuts, shutdowns and partial or full relocation.
FIGURE 7
Clean technology manufacturing capacity by region
%, 2021
Source: European Commission, 2024. Based on IEA, Bruegel.
46THE FUTURE OF EUROPEAN COMPETITIVENESS — PART A | CHAPTER 3The threat to Europe’s position in clean tech owes mainly
|
[
"early",
"-",
"stage",
"VC",
"for",
"hydrogen",
"and",
"fuel",
"cells",
",",
"but",
"this",
"share",
"declined",
"to",
"10",
"%",
"from",
"2020",
"to",
"2022",
".",
"The",
"clean",
"tech",
"\n",
"sector",
"is",
"suffering",
"from",
"the",
"same",
"barriers",
"to",
"innovation",
",",
"commercialisation",
"and",
"scaling",
"up",
"in",
"Europe",
"that",
"afflict",
"the",
"\n",
"digital",
"sector",
":",
"a",
"total",
"of",
"43",
"%",
"and",
"55",
"%",
"of",
"medium",
"and",
"large",
"companies",
",",
"respectively",
",",
"cite",
"consistent",
"regulation",
"within",
"\n",
"the",
"Single",
"Market",
"as",
"the",
"main",
"way",
"to",
"foster",
"commercialisation",
",",
"while",
"43",
"%",
"of",
"small",
"companies",
"identify",
"lack",
"of",
"finance",
"\n",
"as",
"an",
"obstacle",
"to",
"growthix",
".",
"As",
"in",
"the",
"digital",
"sector",
",",
"the",
"lower",
"capacity",
"of",
"EU",
"clean",
"tech",
"companies",
"to",
"scale",
"up",
"leads",
"\n",
"to",
"a",
"gap",
"between",
"the",
"EU",
"and",
"US",
"in",
"later",
"-",
"stage",
"funding",
".",
"\n",
"Europe",
"’s",
"innovation",
"potential",
"is",
"not",
"translating",
"into",
"manufacturing",
"superiority",
"for",
"clean",
"tech",
",",
"despite",
"the",
"\n",
"size",
"of",
"its",
"domestic",
"market",
".",
"The",
"EU",
"is",
"the",
"second",
"largest",
"market",
"in",
"terms",
"of",
"demand",
"for",
"solar",
"PV",
",",
"wind",
"and",
"EVs",
".",
"\n",
"In",
"many",
"of",
"these",
"sectors",
",",
"the",
"EU",
"has",
"enjoyed",
"an",
"industrial",
"“",
"first",
"-",
"mover",
"”",
"advantage",
"and",
"has",
"established",
"leadership",
",",
"\n",
"but",
"it",
"has",
"not",
"been",
"able",
"to",
"maintain",
"that",
"lead",
"consistently",
".",
"In",
"certain",
"sectors",
",",
"such",
"as",
"solar",
"PV",
",",
"the",
"EU",
"has",
"already",
"\n",
"lost",
"its",
"manufacturing",
"capacities",
",",
"with",
"production",
"now",
"dominated",
"by",
"China",
"[",
"see",
"Figure",
"7",
"]",
".",
"In",
"others",
",",
"such",
"as",
"wind",
"\n",
"power",
"generation",
"equipment",
",",
"Europe",
"has",
"a",
"solid",
"position",
"but",
"is",
"facing",
"increasing",
"challenges",
".",
"For",
"example",
",",
"although",
"\n",
"Europe",
"retains",
"primacy",
"in",
"wind",
"turbine",
"assembly",
"–",
"serving",
"85",
"%",
"of",
"domestic",
"demand",
"and",
"acting",
"as",
"a",
"net",
"exporter",
"–",
"\n",
"it",
"has",
"lost",
"significant",
"market",
"shares",
"to",
"China",
"in",
"last",
"few",
"years",
",",
"declining",
"from",
"58",
"%",
"in",
"2017",
"to",
"30",
"%",
"in",
"2022",
".",
"In",
"several",
"\n",
"sectors",
"the",
"EU",
"retains",
"its",
"technological",
"edge",
",",
"such",
"as",
"electrolysers",
"and",
"carbon",
"capture",
"and",
"storage",
".",
"But",
"many",
"EU",
"\n",
"players",
"still",
"prefer",
"to",
"produce",
"at",
"scale",
"in",
"China",
"owing",
"to",
"higher",
"construction",
"costs",
"in",
"Europe",
",",
"permitting",
"delays",
"and",
"\n",
"more",
"restricted",
"access",
"to",
"critical",
"raw",
"materials",
".",
"For",
"example",
",",
"electrolyser",
"production",
"requires",
"at",
"least",
"40",
"raw",
"materials",
"\n",
"and",
"the",
"EU",
"currently",
"produces",
"just",
"1",
"-",
"5",
"%",
"of",
"these",
"domestically",
".",
"Overall",
",",
"despite",
"the",
"EU",
"’s",
"ambition",
"to",
"maintain",
"and",
"\n",
"develop",
"clean",
"tech",
"manufacturing",
"capacity",
",",
"there",
"are",
"multiple",
"signs",
"of",
"an",
"evolution",
"in",
"the",
"opposite",
"direction",
",",
"with",
"\n",
"EU",
"companies",
"announcing",
"production",
"cuts",
",",
"shutdowns",
"and",
"partial",
"or",
"full",
"relocation",
".",
"\n",
"FIGURE",
"7",
"\n",
"Clean",
"technology",
"manufacturing",
"capacity",
"by",
"region",
" \n",
"%",
",",
"2021",
"\n",
"Source",
":",
"European",
"Commission",
",",
"2024",
".",
"Based",
"on",
"IEA",
",",
"Bruegel",
".",
"\n",
"46THE",
"FUTURE",
"OF",
"EUROPEAN",
"COMPETITIVENESS",
" ",
"—",
"PART",
"A",
"|",
"CHAPTER",
"3The",
"threat",
"to",
"Europe",
"’s",
"position",
"in",
"clean",
"tech",
"owes",
"mainly"
] |
[] |
| 0.80 ₋₂ … | 78 ₋₂ ᵢ … | 77 ₋₁ 13 ₋₁ 65 ₋₁ 9 ₋₁ | … … | … … | … | … | … … | … | CHE |
Students and teacher are sitting and waiting for the school exam in the classroom on the March 25 2021 in Ratchaburi, Thailand.
Credit: Saksorn kumjit/Shutterstock.com*
H
## Aid tables
## INTRODUCTION
The data in the following four tables on official development assistance (ODA) are derived from the International Development Statistics (IDS) database of the Organisation for Economic Co-operation and Development (OECD). The IDS database records information provided annually by all members of the OECD Development Assistance Committee (DAC), as well as a growing number of non-DAC donors. The IDS database includes the DAC database and the Creditor Reporting System (CRS) database of individual projects. Figures for ODA come from the DAC database, while figures for aid to education come from the CRS database. Figures in the DAC and CRS databases are expressed in constant 2022 US dollars. The DAC and CRS databases are available at: www.oecd. org/dac/stats/idsonline.htm. In 2019, the methodology of defining ODA changed:
In 2019, the methodology of defining ODA changed:
- The cash-flow approach, used for Tables 2 to 4, includes both grants and loans that (a) are undertaken by the official sector, (b) have promotion of economic development and welfare as their main objective and, for loans, (c) are at concessional financial terms (having a grant element of at least 25%).
- The new grant-equivalent approach, which is used for Table 1, counts only grants and the grant element of concessional loans as ODA.
The DAC glossary of terms and concepts is available at: www.oecd.org/dac/financing-sustainable-development/ development-finance-data/dac-glossary.htm.
## AID RECIPIENTS AND DONORS
The DAC list of ODA recipients consists of all low- and middle-income countries, based on the World Bank income classification. For further information, see: www.oecd.org/development/financing-sustainab le-development/development-finance-standards/ historyofdaclistsofaidrecipientcountries.htm.
Bilateral donors are countries that provide development assistance directly to recipient countries. Most are DAC members. Bilateral donors also contribute substantially to the financing of multilateral donors through contributions recorded as multilateral ODA.
Multilateral donors are international institutions with government membership that conduct many or all of their activities supporting development and aid recipient countries. They include multilateral development banks (e.g. World Bank, regional development banks), United Nations agencies and regional agencies.
- Bilateral flows refers to bilateral donors
|
[
"|",
"0.80",
"₋₂",
"…",
" ",
"|",
"78",
"₋₂",
"ᵢ",
"…",
" ",
"|",
"77",
"₋₁",
"13",
"₋₁",
"65",
"₋₁",
"9",
"₋₁",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
" ",
"|",
"…",
"…",
" ",
"|",
"…",
" ",
"|",
"CHE",
" ",
"|",
"\n\n",
"Students",
"and",
"teacher",
"are",
"sitting",
"and",
"waiting",
"for",
"the",
"school",
"exam",
"in",
"the",
"classroom",
"on",
"the",
"March",
"25",
"2021",
"in",
"Ratchaburi",
",",
"Thailand",
".",
"\n\n",
"Credit",
":",
"Saksorn",
"kumjit",
"/",
"Shutterstock.com",
"*",
"\n\n",
"H",
"\n\n",
"#",
"#",
"Aid",
"tables",
"\n\n",
"#",
"#",
"INTRODUCTION",
"\n\n",
"The",
"data",
"in",
"the",
"following",
"four",
"tables",
"on",
"official",
"development",
"assistance",
"(",
"ODA",
")",
"are",
"derived",
"from",
"the",
"International",
"Development",
"Statistics",
"(",
"IDS",
")",
"database",
"of",
"the",
"Organisation",
"for",
"Economic",
"Co",
"-",
"operation",
"and",
"Development",
"(",
"OECD",
")",
".",
"The",
"IDS",
"database",
"records",
"information",
"provided",
"annually",
"by",
"all",
"members",
"of",
"the",
"OECD",
"Development",
"Assistance",
"Committee",
"(",
"DAC",
")",
",",
"as",
"well",
"as",
"a",
"growing",
"number",
"of",
"non",
"-",
"DAC",
"donors",
".",
"The",
"IDS",
"database",
"includes",
"the",
"DAC",
"database",
"and",
"the",
"Creditor",
"Reporting",
"System",
"(",
"CRS",
")",
"database",
"of",
"individual",
"projects",
".",
"Figures",
"for",
"ODA",
"come",
"from",
"the",
"DAC",
"database",
",",
"while",
"figures",
"for",
"aid",
"to",
"education",
"come",
"from",
"the",
"CRS",
"database",
".",
"Figures",
"in",
"the",
"DAC",
"and",
"CRS",
"databases",
"are",
"expressed",
"in",
"constant",
"2022",
"US",
"dollars",
".",
"The",
"DAC",
"and",
"CRS",
"databases",
"are",
"available",
"at",
":",
"www.oecd",
".",
"org",
"/",
"dac",
"/",
"stats",
"/",
"idsonline.htm",
".",
"In",
"2019",
",",
"the",
"methodology",
"of",
"defining",
"ODA",
"changed",
":",
"\n\n",
"In",
"2019",
",",
"the",
"methodology",
"of",
"defining",
"ODA",
"changed",
":",
"\n\n",
"-",
"",
"The",
"cash",
"-",
"flow",
"approach",
",",
"used",
"for",
"Tables",
"2",
"to",
"4",
",",
"includes",
"both",
"grants",
"and",
"loans",
"that",
"(",
"a",
")",
"are",
"undertaken",
"by",
"the",
"official",
"sector",
",",
"(",
"b",
")",
"have",
"promotion",
"of",
"economic",
"development",
"and",
"welfare",
"as",
"their",
"main",
"objective",
"and",
",",
"for",
"loans",
",",
"(",
"c",
")",
"are",
"at",
"concessional",
"financial",
"terms",
"(",
"having",
"a",
"grant",
"element",
"of",
"at",
"least",
"25",
"%",
")",
".",
"\n",
"-",
"",
"The",
"new",
"grant",
"-",
"equivalent",
"approach",
",",
"which",
"is",
"used",
"for",
"Table",
"1",
",",
"counts",
"only",
"grants",
"and",
"the",
"grant",
"element",
"of",
"concessional",
"loans",
"as",
"ODA",
".",
"\n\n",
"The",
"DAC",
"glossary",
"of",
"terms",
"and",
"concepts",
"is",
"available",
"at",
":",
"www.oecd.org/dac/financing-sustainable-development/",
"development",
"-",
"finance",
"-",
"data",
"/",
"dac",
"-",
"glossary.htm",
".",
"\n\n",
"#",
"#",
"AID",
"RECIPIENTS",
"AND",
"DONORS",
"\n\n",
"The",
"DAC",
"list",
"of",
"ODA",
"recipients",
"consists",
"of",
"all",
"low-",
"and",
"middle",
"-",
"income",
"countries",
",",
"based",
"on",
"the",
"World",
"Bank",
"income",
"classification",
".",
"For",
"further",
"information",
",",
"see",
":",
"www.oecd.org/development/financing-sustainab",
"le",
"-",
"development",
"/",
"development",
"-",
"finance",
"-",
"standards/",
"historyofdaclistsofaidrecipientcountries.htm",
".",
"\n\n",
"Bilateral",
"donors",
"are",
"countries",
"that",
"provide",
"development",
"assistance",
"directly",
"to",
"recipient",
"countries",
".",
"Most",
"are",
"DAC",
"members",
".",
"Bilateral",
"donors",
"also",
"contribute",
"substantially",
"to",
"the",
"financing",
"of",
"multilateral",
"donors",
"through",
"contributions",
"recorded",
"as",
"multilateral",
"ODA",
".",
"\n\n",
"Multilateral",
"donors",
"are",
"international",
"institutions",
"with",
"government",
"membership",
"that",
"conduct",
"many",
"or",
"all",
"of",
"their",
"activities",
"supporting",
"development",
"and",
"aid",
"recipient",
"countries",
".",
"They",
"include",
"multilateral",
"development",
"banks",
"(",
"e.g.",
"World",
"Bank",
",",
"regional",
"development",
"banks",
")",
",",
"United",
"Nations",
"agencies",
"and",
"regional",
"agencies",
".",
"\n\n",
"-",
"",
"Bilateral",
"flows",
"refers",
"to",
"bilateral",
"donors"
] |
[] |
are aware of our being, but then while doing the exercise, there was this moment where the trauma resurfaced … it took over you. And you have to find the energy to deal with it again. But this time, you have an entire community supporting you, holding that space for you, being there for you, and you re not alone. ' And when you process trauma as a collective, it has a certain power, it gives you a sense of belonging, which is not possible to experience without solidarity. And that experience is something that happened during the process of writing our poems from where we come. To understand how deeply our roots go down in history, in geography, in society. To acknowledge that we have so much history with us, and we all are there for it, and we all are witnessing that history and being there and holding it and accepting it together as a collective. It was healing for sure, there is no doubt about it. And I think this collective healing in an artistic process has led to very powerful outcomes, as the poems that then turned into a performance.
These discussions also encouraged participants to look back at their conversations with their elders, particularly their grandmothers, in order to better understand the trauma and resilience passed on within their families. This intergenerational reflection became a deep and recurring theme for the group, reverberating throughout the artistic and creative activities, and culminating in an art installation, Ancestors Roots , which was presented at the program s final exhibition. ' This interactive installation invited visitors to reflect on the themes of belonging, identity, migration and roots. Participants wrote a letter to their ancestor and associated it with a photo of significance to them. Written in many different languages, these letters were an opportunity to ask ancestors questions they had left unanswered and to unearth untold stories that had been lost. Visitors to the exhibition were then invited to write a letter to their ancestors on printed postcards. These are example of the anonymous letters:
You gathered so much knowledge. I feel you trying to show us the way. How do I tap into all you have learnt? How do I stop the cycles that go on?
To the ancestors I know and the ones I have been disconnected from; Thank you! Thank you for carrying me advising
|
[
"are",
"aware",
"of",
"our",
"being",
",",
"but",
"then",
"while",
"doing",
"the",
"exercise",
",",
"there",
"was",
"this",
"moment",
"where",
"the",
"trauma",
"resurfaced",
"…",
"it",
"took",
"over",
"you",
".",
"And",
"you",
"have",
"to",
"find",
"the",
"energy",
"to",
"deal",
"with",
"it",
"again",
".",
"But",
"this",
"time",
",",
"you",
"have",
"an",
"entire",
"community",
"supporting",
"you",
",",
"holding",
"that",
"space",
"for",
"you",
",",
"being",
"there",
"for",
"you",
",",
"and",
"you",
"re",
"not",
"alone",
".",
"'",
"And",
"when",
"you",
"process",
"trauma",
"as",
"a",
"collective",
",",
"it",
"has",
"a",
"certain",
"power",
",",
"it",
"gives",
"you",
"a",
"sense",
"of",
"belonging",
",",
"which",
"is",
"not",
"possible",
"to",
"experience",
"without",
"solidarity",
".",
"And",
"that",
"experience",
"is",
"something",
"that",
"happened",
"during",
"the",
"process",
"of",
"writing",
"our",
"poems",
"from",
"where",
"we",
"come",
".",
"To",
"understand",
"how",
"deeply",
"our",
"roots",
"go",
"down",
"in",
"history",
",",
"in",
"geography",
",",
"in",
"society",
".",
"To",
"acknowledge",
"that",
"we",
"have",
"so",
"much",
"history",
"with",
"us",
",",
"and",
"we",
"all",
"are",
"there",
"for",
"it",
",",
"and",
"we",
"all",
"are",
"witnessing",
"that",
"history",
"and",
"being",
"there",
"and",
"holding",
"it",
"and",
"accepting",
"it",
"together",
"as",
"a",
"collective",
".",
"It",
"was",
"healing",
"for",
"sure",
",",
"there",
"is",
"no",
"doubt",
"about",
"it",
".",
"And",
"I",
"think",
"this",
"collective",
"healing",
"in",
"an",
"artistic",
"process",
"has",
"led",
"to",
"very",
"powerful",
"outcomes",
",",
"as",
"the",
"poems",
"that",
"then",
"turned",
"into",
"a",
"performance",
".",
"\n\n",
"These",
"discussions",
"also",
"encouraged",
"participants",
"to",
"look",
"back",
"at",
"their",
"conversations",
"with",
"their",
"elders",
",",
"particularly",
"their",
"grandmothers",
",",
"in",
"order",
"to",
"better",
"understand",
"the",
"trauma",
"and",
"resilience",
"passed",
"on",
"within",
"their",
"families",
".",
"This",
"intergenerational",
"reflection",
"became",
"a",
"deep",
"and",
"recurring",
"theme",
"for",
"the",
"group",
",",
"reverberating",
"throughout",
"the",
"artistic",
"and",
"creative",
"activities",
",",
"and",
"culminating",
"in",
"an",
"art",
"installation",
",",
"Ancestors",
"Roots",
",",
"which",
"was",
"presented",
"at",
"the",
"program",
"s",
"final",
"exhibition",
".",
"'",
"This",
"interactive",
"installation",
"invited",
"visitors",
"to",
"reflect",
"on",
"the",
"themes",
"of",
"belonging",
",",
"identity",
",",
"migration",
"and",
"roots",
".",
"Participants",
"wrote",
"a",
"letter",
"to",
"their",
"ancestor",
"and",
"associated",
"it",
"with",
"a",
"photo",
"of",
"significance",
"to",
"them",
".",
"Written",
"in",
"many",
"different",
"languages",
",",
"these",
"letters",
"were",
"an",
"opportunity",
"to",
"ask",
"ancestors",
"questions",
"they",
"had",
"left",
"unanswered",
"and",
"to",
"unearth",
"untold",
"stories",
"that",
"had",
"been",
"lost",
".",
"Visitors",
"to",
"the",
"exhibition",
"were",
"then",
"invited",
"to",
"write",
"a",
"letter",
"to",
"their",
"ancestors",
"on",
"printed",
"postcards",
".",
"These",
"are",
"example",
"of",
"the",
"anonymous",
"letters",
":",
"\n\n",
"You",
"gathered",
"so",
"much",
"knowledge",
".",
"I",
"feel",
"you",
"trying",
"to",
"show",
"us",
"the",
"way",
".",
"How",
"do",
"I",
"tap",
"into",
"all",
"you",
"have",
"learnt",
"?",
"How",
"do",
"I",
"stop",
"the",
"cycles",
"that",
"go",
"on",
"?",
"\n\n",
"To",
"the",
"ancestors",
"I",
"know",
"and",
"the",
"ones",
"I",
"have",
"been",
"disconnected",
"from",
";",
"Thank",
"you",
"!",
"Thank",
"you",
"for",
"carrying",
"me",
"advising"
] |
[] |
latest mobile technologies and the demand-side barriers preventing potential users from taking up the service even when it becomes available. Moreover, because of the growing volumes of data underpinning economic and social activity, connectivity is meaningful only if it can be provided at affordable cost and adequate speed.
Unless countries have access to modern data
infrastructure, connectivity (even when available) will remain prohibitively expensive and slow. Such infrastructure begins with adequate international bandwidth to permit fluid and unconstrained access to the global internet commons. As traffic grows, local IXPs are needed to prevent domestic data transfers from being diverted across vast distances overseas. The addition of domestic colocation data centers—wholesale storage facilities that host other companies’ data—allows substantial volumes of popular overseas content to be stored locally, further improving internet performance. It may also permit direct access to cloud computing platforms, greatly enhancing data processing capabilities. Although almost all countries now enjoy access to global inter -
net submarine cables through either direct coastal access points or cross-border land connections, domestic data infrastructure—such as IXPs, coloca-tion data centers, and cloud computing platforms—remain nascent across low- and middle-income nations, leaving them to contend with low internet speeds and high data charges.
This chapter unpacks the underlying issues that
explain the data inequities faced by poor people and poor countries, with an emphasis on identifying appropriate policy responses. The chapter updates, complements, and extends the earlier treatment of related issues in World Development Report 2016:
Digital Dividends. For this reason, coverage of supply-
side issues is on a relatively high level, whereas the demand-side barriers, as well as the emerging chal-lenges posed by development of domestic data infra-structure, receive more attention.
160 | World Development Report 2021
Connecting poor people
Many individuals in low- and middle-income nations
use basic cellphones for applications such as text mes-saging and mobile money. These applications have had tremendous development impacts, even without using much data or requiring broadband internet access.
12 Beyond such basic telephony applications,
access to broadband internet, in combination with ownership of a feature phone or smartphone, greatly enriches an individual’s ability to use data for a better life. Social media connect family and friends; online government services and shopping websites save individuals time and money; online learning and tele-medicine provide new, accessible, and inexpensive ways of delivering education and health. The COVID-19 pandemic is reinforcing the importance of access to broadband internet
|
[
"latest",
"mobile",
"technologies",
"and",
"the",
"demand",
"-",
"side",
"barriers",
"preventing",
"potential",
"users",
"from",
"taking",
"up",
"the",
"service",
"even",
"when",
"it",
"becomes",
"available",
".",
"Moreover",
",",
"because",
"of",
"the",
"growing",
"volumes",
"of",
"data",
"underpinning",
"economic",
"and",
"social",
"activity",
",",
"connectivity",
"is",
"meaningful",
"only",
"if",
"it",
"can",
"be",
"provided",
"at",
"affordable",
"cost",
"and",
"adequate",
"speed",
".",
"\n",
"Unless",
"countries",
"have",
"access",
"to",
"modern",
"data",
"\n",
"infrastructure",
",",
"connectivity",
"(",
"even",
"when",
"available",
")",
"will",
"remain",
"prohibitively",
"expensive",
"and",
"slow",
".",
"Such",
"infrastructure",
"begins",
"with",
"adequate",
"international",
"bandwidth",
"to",
"permit",
"fluid",
"and",
"unconstrained",
"access",
"to",
"the",
"global",
"internet",
"commons",
".",
"As",
"traffic",
"grows",
",",
"local",
"IXPs",
"are",
"needed",
"to",
"prevent",
"domestic",
"data",
"transfers",
"from",
"being",
"diverted",
"across",
"vast",
"distances",
"overseas",
".",
"The",
"addition",
"of",
"domestic",
"colocation",
"data",
"centers",
"—",
"wholesale",
"storage",
"facilities",
"that",
"host",
"other",
"companies",
"’",
"data",
"—",
"allows",
"substantial",
"volumes",
"of",
"popular",
"overseas",
"content",
"to",
"be",
"stored",
"locally",
",",
"further",
"improving",
"internet",
"performance",
".",
"It",
"may",
"also",
"permit",
"direct",
"access",
"to",
"cloud",
"computing",
"platforms",
",",
"greatly",
"enhancing",
"data",
"processing",
"capabilities",
".",
"Although",
"almost",
"all",
"countries",
"now",
"enjoy",
"access",
"to",
"global",
"inter",
"-",
"\n",
"net",
"submarine",
"cables",
"through",
"either",
"direct",
"coastal",
"access",
"points",
"or",
"cross",
"-",
"border",
"land",
"connections",
",",
"domestic",
"data",
"infrastructure",
"—",
"such",
"as",
"IXPs",
",",
"coloca",
"-",
"tion",
"data",
"centers",
",",
"and",
"cloud",
"computing",
"platforms",
"—",
"remain",
"nascent",
"across",
"low-",
"and",
"middle",
"-",
"income",
"nations",
",",
"leaving",
"them",
"to",
"contend",
"with",
"low",
"internet",
"speeds",
"and",
"high",
"data",
"charges",
".",
"\n",
"This",
"chapter",
"unpacks",
"the",
"underlying",
"issues",
"that",
"\n",
"explain",
"the",
"data",
"inequities",
"faced",
"by",
"poor",
"people",
"and",
"poor",
"countries",
",",
"with",
"an",
"emphasis",
"on",
"identifying",
"appropriate",
"policy",
"responses",
".",
"The",
"chapter",
"updates",
",",
"complements",
",",
"and",
"extends",
"the",
"earlier",
"treatment",
"of",
"related",
"issues",
"in",
"World",
"Development",
"Report",
"2016",
":",
" \n",
"Digital",
"Dividends",
".",
"For",
"this",
"reason",
",",
"coverage",
"of",
"supply-",
" \n",
"side",
"issues",
"is",
"on",
"a",
"relatively",
"high",
"level",
",",
"whereas",
"the",
"demand",
"-",
"side",
"barriers",
",",
"as",
"well",
"as",
"the",
"emerging",
"chal",
"-",
"lenges",
"posed",
"by",
"development",
"of",
"domestic",
"data",
"infra",
"-",
"structure",
",",
"receive",
"more",
"attention",
".",
"\n",
"160",
" ",
"|",
" ",
"World",
"Development",
"Report",
"2021",
"\n",
"Connecting",
"poor",
"people",
"\n",
"Many",
"individuals",
"in",
"low-",
"and",
"middle",
"-",
"income",
"nations",
"\n",
"use",
"basic",
"cellphones",
"for",
"applications",
"such",
"as",
"text",
"mes",
"-",
"saging",
"and",
"mobile",
"money",
".",
"These",
"applications",
"have",
"had",
"tremendous",
"development",
"impacts",
",",
"even",
"without",
"using",
"much",
"data",
"or",
"requiring",
"broadband",
"internet",
"access",
".",
"\n",
"12",
"Beyond",
"such",
"basic",
"telephony",
"applications",
",",
"\n",
"access",
"to",
"broadband",
"internet",
",",
"in",
"combination",
"with",
"ownership",
"of",
"a",
"feature",
"phone",
"or",
"smartphone",
",",
"greatly",
"enriches",
"an",
"individual",
"’s",
"ability",
"to",
"use",
"data",
"for",
"a",
"better",
"life",
".",
"Social",
"media",
"connect",
"family",
"and",
"friends",
";",
"online",
"government",
"services",
"and",
"shopping",
"websites",
"save",
"individuals",
"time",
"and",
"money",
";",
"online",
"learning",
"and",
"tele",
"-",
"medicine",
"provide",
"new",
",",
"accessible",
",",
"and",
"inexpensive",
"ways",
"of",
"delivering",
"education",
"and",
"health",
".",
"The",
"COVID-19",
"pandemic",
"is",
"reinforcing",
"the",
"importance",
"of",
"access",
"to",
"broadband",
"internet"
] |
[] |
and intermittent
(single) contacts until the end.
STEP T N_RAW N_NCOL N_RCEL N_REDP N_REDU N_REBO PENEMX PENEMAX PDOTMX PDOTMAX
0 0.00000E+00 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 1.00000E-01 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 2.00000E-01 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 3.00000E-01 0 0 0 0 0 0 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4 4.00000E-01 4 4 4 4 1 1 3.553E-03 3.553E-03 1.000E+00 1.000E+00
5 5.00000E-01 10 10 10 4 1 1 1.036E-01 1.036E-01 1.000E+00 1.000E+00
6 6.00000E-01 10 10 10 4 1 1 2.036E-01 2.036E-01 1.000E+00 1.000E+00
7 7.00000E-01 14 14 14 6 1 1 2.647E-01 2.647E-01 6.667E-01 1.000E+00
8 8.00000E-01 18 18 18 6 1 1 3.662E-01 3.662E-01 6.667E-01 1.000E+00
9 9.00000E-01 24 24 24 8 1 1 3.079E-01 3.662E-01 2.500E-01 1.000E+00
10 1.00000E+00 22 22 22 8 1 1 3.600E-01 3.662E-01 1.768E-01 1.000E+00
11 1.10000E+00 22 22 22 8 1 0 3.600E-01 3.662E-01 1.768E-01 1.000E+00
12 1.20000E+00 30 30 30 12 1 1 2.558E-01 3.662E-01 6.179E-01 1.000E+00
13 1.30000E+00 38 38 38 12 1 1 2.440E-01 3.662E-01 3.333E-01 1.000E+00
14 1.40000E+00 40 40 40 12 1 1 2.536E-01 3.662E-01 1.000E+00 1.000E+00
15 1.50000E+00 40 40 40 12 1 0 2.536E-01 3.662E-01 1.000E+00 1.000E+00
16 1.60000E+00 40 40 40 12 1 0 2.536E-01 3.662E-01 1.000E+00 1.000E+00
17 1.70000E+00 38 38 38 12 1 0 2.536E-01 3.662E-01 1.000E+00 1.000E+00
18 1.80000E+00 30 30 30 12 1 0 2.536E-01 3.662E-01 1.000E+00 1.000E+00
19 1.90000E+00 22 22 22 8 1 1 3.958E-01 3.958E-01 0.000E+00 1.000E+00
20 2.00000E+00 24 24 24 8 1 0 3.958E-01 3.958E-01 0.000E+00 1.000E+00
92
Tuesday 12thAugust, 2025 @ 13:38
6.4.6 Case MEPE25
This test is a repetition of case MEPE05 by adding the REDP and REDU options. Unexpectedly, the
test crashes with a zero Jacobian in element 3 at step 6.
From the .PIN le and from Figure 108 below we see that rst contact occurs at step 3 like in
case MEPE05. None of the four detected raw contacts is redundant in the sense of REDP , so the REDP
procedure has no eect. Then, the REDU procedure averages each couple of contacts, ending up with
two surviving contacts as it could have been expected.
(a) Step 0
(b) Step 3
(c) Step 4
(d) Step 5
(e) Step 0
(f) Step 3
(g) Step 4
(h) Step 5
(i)
|
[
"and",
"intermittent",
"\n",
"(",
"single",
")",
"contacts",
"until",
"the",
"end",
".",
"\n",
"STEP",
"T",
"N_RAW",
"N_NCOL",
"N_RCEL",
"N_REDP",
"N_REDU",
"N_REBO",
"PENEMX",
"PENEMAX",
"PDOTMX",
"PDOTMAX",
"\n",
"0",
"0.00000E+00",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"1",
"1.00000E-01",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"2",
"2.00000E-01",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"3",
"3.00000E-01",
"0",
"0",
"0",
"0",
"0",
"0",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"0.000E+00",
"\n",
"4",
"4.00000E-01",
"4",
"4",
"4",
"4",
"1",
"1",
"3.553E-03",
"3.553E-03",
"1.000E+00",
"1.000E+00",
"\n",
"5",
"5.00000E-01",
"10",
"10",
"10",
"4",
"1",
"1",
"1.036E-01",
"1.036E-01",
"1.000E+00",
"1.000E+00",
"\n",
"6",
"6.00000E-01",
"10",
"10",
"10",
"4",
"1",
"1",
"2.036E-01",
"2.036E-01",
"1.000E+00",
"1.000E+00",
"\n",
"7",
"7.00000E-01",
"14",
"14",
"14",
"6",
"1",
"1",
"2.647E-01",
"2.647E-01",
"6.667E-01",
"1.000E+00",
"\n",
"8",
"8.00000E-01",
"18",
"18",
"18",
"6",
"1",
"1",
"3.662E-01",
"3.662E-01",
"6.667E-01",
"1.000E+00",
"\n",
"9",
"9.00000E-01",
"24",
"24",
"24",
"8",
"1",
"1",
"3.079E-01",
"3.662E-01",
"2.500E-01",
"1.000E+00",
"\n",
"10",
"1.00000E+00",
"22",
"22",
"22",
"8",
"1",
"1",
"3.600E-01",
"3.662E-01",
"1.768E-01",
"1.000E+00",
"\n",
"11",
"1.10000E+00",
"22",
"22",
"22",
"8",
"1",
"0",
"3.600E-01",
"3.662E-01",
"1.768E-01",
"1.000E+00",
"\n",
"12",
"1.20000E+00",
"30",
"30",
"30",
"12",
"1",
"1",
"2.558E-01",
"3.662E-01",
"6.179E-01",
"1.000E+00",
"\n",
"13",
"1.30000E+00",
"38",
"38",
"38",
"12",
"1",
"1",
"2.440E-01",
"3.662E-01",
"3.333E-01",
"1.000E+00",
"\n",
"14",
"1.40000E+00",
"40",
"40",
"40",
"12",
"1",
"1",
"2.536E-01",
"3.662E-01",
"1.000E+00",
"1.000E+00",
"\n",
"15",
"1.50000E+00",
"40",
"40",
"40",
"12",
"1",
"0",
"2.536E-01",
"3.662E-01",
"1.000E+00",
"1.000E+00",
"\n",
"16",
"1.60000E+00",
"40",
"40",
"40",
"12",
"1",
"0",
"2.536E-01",
"3.662E-01",
"1.000E+00",
"1.000E+00",
"\n",
"17",
"1.70000E+00",
"38",
"38",
"38",
"12",
"1",
"0",
"2.536E-01",
"3.662E-01",
"1.000E+00",
"1.000E+00",
"\n",
"18",
"1.80000E+00",
"30",
"30",
"30",
"12",
"1",
"0",
"2.536E-01",
"3.662E-01",
"1.000E+00",
"1.000E+00",
"\n",
"19",
"1.90000E+00",
"22",
"22",
"22",
"8",
"1",
"1",
"3.958E-01",
"3.958E-01",
"0.000E+00",
"1.000E+00",
"\n",
"20",
"2.00000E+00",
"24",
"24",
"24",
"8",
"1",
"0",
"3.958E-01",
"3.958E-01",
"0.000E+00",
"1.000E+00",
"\n",
"92",
"\n",
"Tuesday",
"12thAugust",
",",
"2025",
"@",
"13:38",
"\n",
"6.4.6",
"Case",
"MEPE25",
"\n",
"This",
"test",
"is",
"a",
"repetition",
"of",
"case",
"MEPE05",
"by",
"adding",
"the",
"REDP",
"and",
"REDU",
"options",
".",
"Unexpectedly",
",",
"the",
"\n",
"test",
"crashes",
"with",
"a",
"zero",
"Jacobian",
"in",
"element",
"3",
"at",
"step",
"6",
".",
"\n",
"From",
"the",
".PIN",
"\f",
"le",
"and",
"from",
"Figure",
"108",
"below",
"we",
"see",
"that",
"\f",
"rst",
"contact",
"occurs",
"at",
"step",
"3",
"like",
"in",
"\n",
"case",
"MEPE05",
".",
"None",
"of",
"the",
"four",
"detected",
"raw",
"contacts",
"is",
"redundant",
"in",
"the",
"sense",
"of",
"REDP",
",",
"so",
"the",
"REDP",
"\n",
"procedure",
"has",
"no",
"e",
"\u000b",
"ect",
".",
"Then",
",",
"the",
"REDU",
"procedure",
"averages",
"each",
"couple",
"of",
"contacts",
",",
"ending",
"up",
"with",
"\n",
"two",
"surviving",
"contacts",
"as",
"it",
"could",
"have",
"been",
"expected",
".",
"\n",
"(",
"a",
")",
"Step",
"0",
"\n ",
"(",
"b",
")",
"Step",
"3",
"\n ",
"(",
"c",
")",
"Step",
"4",
"\n ",
"(",
"d",
")",
"Step",
"5",
"\n",
"(",
"e",
")",
"Step",
"0",
"\n ",
"(",
"f",
")",
"Step",
"3",
"\n ",
"(",
"g",
")",
"Step",
"4",
"\n ",
"(",
"h",
")",
"Step",
"5",
"\n",
"(",
"i",
")"
] |
[] |
to be exercised for these not to constrain innovation and promote uniformity.
Chapter 3 on school leadership selection, training and conditions starts from the premise that, although research from around the world links school leadership to positive education outcomes, many countries' policies appear to pay insufficient attention to school leaders. In many countries, principals are still expected primarily to focus on administrative matters. Selection, preparation and development processes are often not designed well enough to create the conditions for good school leadership. The implementation of such policies varies considerably.
<!-- image -->
Selection, preparation and development processes are often not designed well enough to create the conditions for good school leadership
<!-- image -->
The appointment of school leaders tends to be related to seniority. In some cases, recruitment decisions are politically motivated, based on patronage rather than a transparent selection process. Selection may involve explicit or tacit discriminatory bias, which may manifest in the under-representation of women and ethnic minorities in leadership positions. The report reviews hiring practices around the world, including the extent to which school directors are exclusively selected from the teacher pool or to which alternative paths are available for other professionals. Aspiring principals are typically identified through self-selection or professional recommendation. Talent management systems that
identify leadership potential early in the career and provide targeted leadership development opportunities are rare, revealing limited expectations about the role of the school director as a leader with a mission to improve education. The chapter also examines the role of school boards and local and central authorities in appointment decisions. Multiple criteria may apply, including performance in interviews and tests, portfolios, certification, or even actively practising a faith. School directors' working conditions include workplace satisfaction, turnover, incentives and appraisal mechanisms.
Initial preparation programmes sometimes start from encouraging teachers to follow a career path into school leadership, creating a talent pool from which the best can be selected. School leader preparation programmes vary by characteristics including duration, timing (before or after recruitment), sector (public or private), location (universities, associations or other providers), modality (on site or distance) and content (management or pedagogy). The content of such programmes should be aligned with emerging standards. Sufficient incentives should be provided for aspiring or practising school directors to invest in training. Coaching and mentoring programmes for first-year principals are needed. The programme quality relates to processes (e.g. opportunity to practise, learn from others,
|
[
"to",
"be",
"exercised",
"for",
"these",
"not",
"to",
"constrain",
"innovation",
"and",
"promote",
"uniformity",
".",
"\n\n",
"Chapter",
"3",
"on",
"school",
"leadership",
"selection",
",",
"training",
"and",
"conditions",
"starts",
"from",
"the",
"premise",
"that",
",",
"although",
"research",
"from",
"around",
"the",
"world",
"links",
"school",
"leadership",
"to",
"positive",
"education",
"outcomes",
",",
"many",
"countries",
"'",
"policies",
"appear",
"to",
"pay",
"insufficient",
"attention",
"to",
"school",
"leaders",
".",
"In",
"many",
"countries",
",",
"principals",
"are",
"still",
"expected",
"primarily",
"to",
"focus",
"on",
"administrative",
"matters",
".",
"Selection",
",",
"preparation",
"and",
"development",
"processes",
"are",
"often",
"not",
"designed",
"well",
"enough",
"to",
"create",
"the",
"conditions",
"for",
"good",
"school",
"leadership",
".",
"The",
"implementation",
"of",
"such",
"policies",
"varies",
"considerably",
".",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Selection",
",",
"preparation",
"and",
"development",
"processes",
"are",
"often",
"not",
"designed",
"well",
"enough",
"to",
"create",
"the",
"conditions",
"for",
"good",
"school",
"leadership",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"The",
"appointment",
"of",
"school",
"leaders",
"tends",
"to",
"be",
"related",
"to",
"seniority",
".",
"In",
"some",
"cases",
",",
"recruitment",
"decisions",
"are",
"politically",
"motivated",
",",
"based",
"on",
"patronage",
"rather",
"than",
"a",
"transparent",
"selection",
"process",
".",
"Selection",
"may",
"involve",
"explicit",
"or",
"tacit",
"discriminatory",
"bias",
",",
"which",
"may",
"manifest",
"in",
"the",
"under",
"-",
"representation",
"of",
"women",
"and",
"ethnic",
"minorities",
"in",
"leadership",
"positions",
".",
"The",
"report",
"reviews",
"hiring",
"practices",
"around",
"the",
"world",
",",
"including",
"the",
"extent",
"to",
"which",
"school",
"directors",
"are",
"exclusively",
"selected",
"from",
"the",
"teacher",
"pool",
"or",
"to",
"which",
"alternative",
"paths",
"are",
"available",
"for",
"other",
"professionals",
".",
"Aspiring",
"principals",
"are",
"typically",
"identified",
"through",
"self",
"-",
"selection",
"or",
"professional",
"recommendation",
".",
"Talent",
"management",
"systems",
"that",
"\n\n",
"identify",
"leadership",
"potential",
"early",
"in",
"the",
"career",
"and",
"provide",
"targeted",
"leadership",
"development",
"opportunities",
"are",
"rare",
",",
"revealing",
"limited",
"expectations",
"about",
"the",
"role",
"of",
"the",
"school",
"director",
"as",
"a",
"leader",
"with",
"a",
"mission",
"to",
"improve",
"education",
".",
"The",
"chapter",
"also",
"examines",
"the",
"role",
"of",
"school",
"boards",
"and",
"local",
"and",
"central",
"authorities",
"in",
"appointment",
"decisions",
".",
"Multiple",
"criteria",
"may",
"apply",
",",
"including",
"performance",
"in",
"interviews",
"and",
"tests",
",",
"portfolios",
",",
"certification",
",",
"or",
"even",
"actively",
"practising",
"a",
"faith",
".",
"School",
"directors",
"'",
"working",
"conditions",
"include",
"workplace",
"satisfaction",
",",
"turnover",
",",
"incentives",
"and",
"appraisal",
"mechanisms",
".",
"\n\n",
"Initial",
"preparation",
"programmes",
"sometimes",
"start",
"from",
"encouraging",
"teachers",
"to",
"follow",
"a",
"career",
"path",
"into",
"school",
"leadership",
",",
"creating",
"a",
"talent",
"pool",
"from",
"which",
"the",
"best",
"can",
"be",
"selected",
".",
"School",
"leader",
"preparation",
"programmes",
"vary",
"by",
"characteristics",
"including",
"duration",
",",
"timing",
"(",
"before",
"or",
"after",
"recruitment",
")",
",",
"sector",
"(",
"public",
"or",
"private",
")",
",",
"location",
"(",
"universities",
",",
"associations",
"or",
"other",
"providers",
")",
",",
"modality",
"(",
"on",
"site",
"or",
"distance",
")",
"and",
"content",
"(",
"management",
"or",
"pedagogy",
")",
".",
"The",
"content",
"of",
"such",
"programmes",
"should",
"be",
"aligned",
"with",
"emerging",
"standards",
".",
"Sufficient",
"incentives",
"should",
"be",
"provided",
"for",
"aspiring",
"or",
"practising",
"school",
"directors",
"to",
"invest",
"in",
"training",
".",
"Coaching",
"and",
"mentoring",
"programmes",
"for",
"first",
"-",
"year",
"principals",
"are",
"needed",
".",
"The",
"programme",
"quality",
"relates",
"to",
"processes",
"(",
"e.g.",
"opportunity",
"to",
"practise",
",",
"learn",
"from",
"others",
","
] |
[] |
114,
130, 163, 171
economic freedom 14, 161
empowerment 6, 59, 140
entrepreneurship 5, 20, 22, 138, 168–169,
181; barber 12, 22, 114, 127, 169;
dynamism 55; gym 123, 169; ice dealer
12, 120–121; markets 13, 15, 22, 57,
65, 114, 169; recycling 55, 119–121,
127; spirit 23, 121, 125, 161, 169; street
vendors 22, 81, 114, 117, 169; tags
121–122; textile 22, 114, 119, 121
factor analysis 65, 67–69, 71–72, 176, 180;
see also Structural equation modelling
freedom of choice 30–31, 37, 56, 70,
165; free to choose 5, 163; see also
well-being
garbage 7, 58, 63, 68–69, 74, 81, 86–87,
113
governance 6, 18–21, 23, 56, 81, 85;
see also Ostrom, Elinor
Government Delhi: Delhi Development
Authority 7–8, 60, 129, 131, 169;
Delhi Jal Board 7, 64, 165; Delhi
Urban Shelter Improvement Board 10;
Municipal Corporation of Delhi 69,
141; National Capital Territory of Delhi
(NCT) 6
grassroots 5, 82, 85, 126, 163 Index
Index 187Index
happiness 28, 30–31, 37–38, 70–71, 73,
162, 166; see also well-being
Hardin, G. 11, 18
Hayek, Friedrich. 14–17; freedom 163;
knowledge 15–17, 19, 163; Nobel
Prize 15; respect 17; rule of law 15, 17;
spontaneous order 10–11, 154
household survey 20, 23, 57, 65, 85, 89–91,
165–167; in situ 8–9, 128–131
Institutional Analysis and Development
framework (IAD) 57, 64–65, 67, 69, 71,
74, 167, 171, 176, 180; see also Ostrom,
Elinor
Item Response Theory (IRT) 149, 151–152
Jacobs, Jane. 12–14, 125–128; alleviating
poverty 13, 22, 58, 114; ballet 22, 49,
113, 124, 125, 127, 164, 169; Boston
13; eyes on the streets 126–127, 132,
163, 169, 172; fractal 11; Greenwich
village 12; mixed use spaces 14; organic
growth 13, 22, 56, 114, 169; respect 28;
self-organisation 12, 163; sidewalks 22,
27, 48–49, 113, 124–125; trust 14, 21,
27, 114; unslumming 14, 169; Vogue
12, 126
JJ cluster 7, 9–10, 129, 131, 164
Kalkaji 115, 129–132, 169–170
Keynes, Maynard. 11, 15
Kirzner, Israel. 22, 138
knowledge see Hayek, Friedrich
liberty 15, 17, 162
master plans for Delhi 8, 129; see also
Government Delhi
medical: healthcare providers 22–23, 138,
141–142, 145–146, 154, 170; diarrhoea
145–146, 149–153, 171; government
hospitals 60, 140–141, 153, 170;
tuberculosis 145–146, 148–153, 171;
see also private healthcare
megacities 8, 40, 161, 164
migration 6, 8, 81, 90–91
Mises, von Ludwig. 15–16, 163
moral agents 22, 56
Moses, R. 11, 13
myths 82, 126
neighbourhood cohesion 20–21, 28–31,
34–48, 132, 164–165,
|
[
"114",
",",
"\n",
"130",
",",
"163",
",",
"171",
"\n",
"economic",
"freedom",
"14",
",",
"161",
"\n",
"empowerment",
"6",
",",
"59",
",",
"140",
"\n",
"entrepreneurship",
"5",
",",
"20",
",",
"22",
",",
"138",
",",
"168–169",
",",
"\n",
"181",
";",
"barber",
"12",
",",
"22",
",",
"114",
",",
"127",
",",
"169",
";",
"\n",
"dynamism",
"55",
";",
"gym",
"123",
",",
"169",
";",
"ice",
"dealer",
"\n",
"12",
",",
"120–121",
";",
"markets",
"13",
",",
"15",
",",
"22",
",",
"57",
",",
"\n",
"65",
",",
"114",
",",
"169",
";",
"recycling",
"55",
",",
"119–121",
",",
"\n",
"127",
";",
"spirit",
"23",
",",
"121",
",",
"125",
",",
"161",
",",
"169",
";",
"street",
"\n",
"vendors",
"22",
",",
"81",
",",
"114",
",",
"117",
",",
"169",
";",
"tags",
"\n",
"121–122",
";",
"textile",
"22",
",",
"114",
",",
"119",
",",
"121",
"\n",
"factor",
"analysis",
"65",
",",
"67–69",
",",
"71–72",
",",
"176",
",",
"180",
";",
"\n",
"see",
"also",
"Structural",
"equation",
"modelling",
"\n",
"freedom",
"of",
"choice",
"30–31",
",",
"37",
",",
"56",
",",
"70",
",",
"\n",
"165",
";",
"free",
"to",
"choose",
"5",
",",
"163",
";",
"see",
"also",
"\n",
"well",
"-",
"being",
"\n",
"garbage",
"7",
",",
"58",
",",
"63",
",",
"68–69",
",",
"74",
",",
"81",
",",
"86–87",
",",
"\n",
"113",
"\n",
"governance",
"6",
",",
"18–21",
",",
"23",
",",
"56",
",",
"81",
",",
"85",
";",
"\n",
"see",
"also",
"Ostrom",
",",
"Elinor",
"\n",
"Government",
"Delhi",
":",
"Delhi",
"Development",
"\n",
"Authority",
"7–8",
",",
"60",
",",
"129",
",",
"131",
",",
"169",
";",
"\n",
"Delhi",
"Jal",
"Board",
"7",
",",
"64",
",",
"165",
";",
"Delhi",
"\n",
"Urban",
"Shelter",
"Improvement",
"Board",
"10",
";",
"\n",
"Municipal",
"Corporation",
"of",
"Delhi",
"69",
",",
"\n",
"141",
";",
"National",
"Capital",
"Territory",
"of",
"Delhi",
"\n",
"(",
"NCT",
")",
"6",
"\n",
"grassroots",
"5",
",",
"82",
",",
"85",
",",
"126",
",",
"163",
"Index",
"\n \n",
"Index",
"187Index",
"\n",
"happiness",
"28",
",",
"30–31",
",",
"37–38",
",",
"70–71",
",",
"73",
",",
"\n",
"162",
",",
"166",
";",
"see",
"also",
"well",
"-",
"being",
"\n",
"Hardin",
",",
"G.",
"11",
",",
"18",
"\n",
"Hayek",
",",
"Friedrich",
".",
"14–17",
";",
"freedom",
"163",
";",
"\n",
"knowledge",
"15–17",
",",
"19",
",",
"163",
";",
"Nobel",
"\n",
"Prize",
"15",
";",
"respect",
"17",
";",
"rule",
"of",
"law",
"15",
",",
"17",
";",
"\n",
"spontaneous",
"order",
"10–11",
",",
"154",
"\n",
"household",
"survey",
"20",
",",
"23",
",",
"57",
",",
"65",
",",
"85",
",",
"89–91",
",",
"\n",
"165–167",
";",
"in",
"situ",
"8–9",
",",
"128–131",
"\n",
"Institutional",
"Analysis",
"and",
"Development",
"\n",
"framework",
"(",
"IAD",
")",
"57",
",",
"64–65",
",",
"67",
",",
"69",
",",
"71",
",",
"\n",
"74",
",",
"167",
",",
"171",
",",
"176",
",",
"180",
";",
"see",
"also",
"Ostrom",
",",
"\n",
"Elinor",
"\n",
"Item",
"Response",
"Theory",
"(",
"IRT",
")",
"149",
",",
"151–152",
"\n",
"Jacobs",
",",
"Jane",
".",
"12–14",
",",
"125–128",
";",
"alleviating",
"\n",
"poverty",
"13",
",",
"22",
",",
"58",
",",
"114",
";",
"ballet",
"22",
",",
"49",
",",
"\n",
"113",
",",
"124",
",",
"125",
",",
"127",
",",
"164",
",",
"169",
";",
"Boston",
"\n",
"13",
";",
"eyes",
"on",
"the",
"streets",
"126–127",
",",
"132",
",",
"\n",
"163",
",",
"169",
",",
"172",
";",
"fractal",
"11",
";",
"Greenwich",
"\n",
"village",
"12",
";",
"mixed",
"use",
"spaces",
"14",
";",
"organic",
"\n",
"growth",
"13",
",",
"22",
",",
"56",
",",
"114",
",",
"169",
";",
"respect",
"28",
";",
"\n",
"self",
"-",
"organisation",
"12",
",",
"163",
";",
"sidewalks",
"22",
",",
"\n",
"27",
",",
"48–49",
",",
"113",
",",
"124–125",
";",
"trust",
"14",
",",
"21",
",",
"\n",
"27",
",",
"114",
";",
"unslumming",
"14",
",",
"169",
";",
"Vogue",
" \n",
"12",
",",
"126",
"\n",
"JJ",
"cluster",
"7",
",",
"9–10",
",",
"129",
",",
"131",
",",
"164",
"\n",
"Kalkaji",
"115",
",",
"129–132",
",",
"169–170",
"\n",
"Keynes",
",",
"Maynard",
".",
"11",
",",
"15",
"\n",
"Kirzner",
",",
"Israel",
".",
"22",
",",
"138",
"\n",
"knowledge",
"see",
"Hayek",
",",
"Friedrich",
"\n",
"liberty",
"15",
",",
"17",
",",
"162",
"\n",
"master",
"plans",
"for",
"Delhi",
"8",
",",
"129",
";",
"see",
"also",
"\n",
"Government",
"Delhi",
"\n",
"medical",
":",
"healthcare",
"providers",
"22–23",
",",
"138",
",",
"\n",
"141–142",
",",
"145–146",
",",
"154",
",",
"170",
";",
"diarrhoea",
"\n",
"145–146",
",",
"149–153",
",",
"171",
";",
"government",
"\n",
"hospitals",
"60",
",",
"140–141",
",",
"153",
",",
"170",
";",
"\n",
"tuberculosis",
"145–146",
",",
"148–153",
",",
"171",
";",
"\n",
"see",
"also",
"private",
"healthcare",
"\n",
"megacities",
"8",
",",
"40",
",",
"161",
",",
"164",
"\n",
"migration",
"6",
",",
"8",
",",
"81",
",",
"90–91",
"\n",
"Mises",
",",
"von",
"Ludwig",
".",
"15–16",
",",
"163",
"\n",
"moral",
"agents",
"22",
",",
"56",
"\n",
"Moses",
",",
"R.",
"11",
",",
"13",
"\n",
"myths",
"82",
",",
"126",
"\n",
"neighbourhood",
"cohesion",
"20–21",
",",
"28–31",
",",
"\n",
"34–48",
",",
"132",
",",
"164–165",
","
] |
[] |
our knowledge, does not affect the outcome of the experiment.
4. Charge Retention of Portable NiMH Batteries
The charge retention test of portable NiMH batteries is performed by following the
procedure in standard IEC 61951-2 clause 7.4. The results are presented in Figure 8. The
test protocol consists of the following:
1. The battery is first discharged to 1 V at 0.2 C.
2. The battery is then charged for 16 h at 0.1 C.
3. After charging, the battery is stored for 28 days in a temperature-controlled chamber
at 21◦C±2◦C
4. Following the storage period, the battery is discharged at a 0.2 C until 1 V , and the
discharge duration is measured to determine the remaining capacity.
A battery is considered to pass the IEC test if the discharge lasts for longer than 3 h
before reaching the cut-off voltage. This means that the battery still held at least 60% of its
initial charge after the 28-day storage period.
Figure 8a,b shows the discharge of AAA and AA batteries after 28 days of storage,
with their corresponding initial discharge and charging steps. The AAA and AA batteries
have similar voltage profiles. However, as expected, the capacity of AAA and AA is
different, with 646 mAh and 2101 mAh, respectively. The voltage and current profiles
in the C and D portable NiMH batteries are shown in Figure 8c,d. The C battery has a
capacity of 4319 mAh, and the D battery has a capacity of 7477 mAh. In the case of the 9V
(Figure 8e), the battery shows a discharge voltage curve like the one observed in the other
NiMH battery sizes, but at an average voltage of 8.4 V . Furthermore, all NiMH batteries
tested during the charge retention experiment show a discharge current curve longer than
3 h (minimum for IEC 61951-2 clause 7.4), and in terms of columbic efficiency, the highest
observed value is 70% for the D size and the lowest observed value is 58% for the 9V battery.
Further discussion of these results is presented in Section 7.
Batteries 2025, 11, x FOR PEER REVIEW 13 of 21
Figure 8. NiMH charge (capacity) retention analysis according to IEC 61951-2 with the pre-charged
test for (a) AAA Duracell, (b) AA Agfaphoto, (c) C Ansmann, (d) D Ansmann, and (e) 9V Energizer
batteries.
5. Charge (Capacity) Recovery of Portable NiMH Batteries
The charge recovery test is
|
[
"our",
"knowledge",
",",
"does",
"not",
"affect",
"the",
"outcome",
"of",
"the",
"experiment",
".",
"\n",
"4",
".",
"Charge",
"Retention",
"of",
"Portable",
"NiMH",
"Batteries",
"\n",
"The",
"charge",
"retention",
"test",
"of",
"portable",
"NiMH",
"batteries",
"is",
"performed",
"by",
"following",
"the",
"\n",
"procedure",
"in",
"standard",
"IEC",
"61951",
"-",
"2",
"clause",
"7.4",
".",
"The",
"results",
"are",
"presented",
"in",
"Figure",
"8",
".",
"The",
"\n",
"test",
"protocol",
"consists",
"of",
"the",
"following",
":",
"\n",
"1",
".",
"The",
"battery",
"is",
"first",
"discharged",
"to",
"1",
"V",
"at",
"0.2",
"C.",
"\n",
"2",
".",
"The",
"battery",
"is",
"then",
"charged",
"for",
"16",
"h",
"at",
"0.1",
"C.",
"\n",
"3",
".",
"After",
"charging",
",",
"the",
"battery",
"is",
"stored",
"for",
"28",
"days",
"in",
"a",
"temperature",
"-",
"controlled",
"chamber",
"\n",
"at",
"21",
"◦",
"C±2",
"◦",
"C",
"\n",
"4",
".",
"Following",
"the",
"storage",
"period",
",",
"the",
"battery",
"is",
"discharged",
"at",
"a",
"0.2",
"C",
"until",
"1",
"V",
",",
"and",
"the",
"\n",
"discharge",
"duration",
"is",
"measured",
"to",
"determine",
"the",
"remaining",
"capacity",
".",
"\n",
"A",
"battery",
"is",
"considered",
"to",
"pass",
"the",
"IEC",
"test",
"if",
"the",
"discharge",
"lasts",
"for",
"longer",
"than",
"3",
"h",
"\n",
"before",
"reaching",
"the",
"cut",
"-",
"off",
"voltage",
".",
"This",
"means",
"that",
"the",
"battery",
"still",
"held",
"at",
"least",
"60",
"%",
"of",
"its",
"\n",
"initial",
"charge",
"after",
"the",
"28",
"-",
"day",
"storage",
"period",
".",
"\n",
"Figure",
"8a",
",",
"b",
"shows",
"the",
"discharge",
"of",
"AAA",
"and",
"AA",
"batteries",
"after",
"28",
"days",
"of",
"storage",
",",
"\n",
"with",
"their",
"corresponding",
"initial",
"discharge",
"and",
"charging",
"steps",
".",
"The",
"AAA",
"and",
"AA",
"batteries",
"\n",
"have",
"similar",
"voltage",
"profiles",
".",
"However",
",",
"as",
"expected",
",",
"the",
"capacity",
"of",
"AAA",
"and",
"AA",
"is",
"\n",
"different",
",",
"with",
"646",
"mAh",
"and",
"2101",
"mAh",
",",
"respectively",
".",
"The",
"voltage",
"and",
"current",
"profiles",
"\n",
"in",
"the",
"C",
"and",
"D",
"portable",
"NiMH",
"batteries",
"are",
"shown",
"in",
"Figure",
"8c",
",",
"d.",
"The",
"C",
"battery",
"has",
"a",
"\n",
"capacity",
"of",
"4319",
"mAh",
",",
"and",
"the",
"D",
"battery",
"has",
"a",
"capacity",
"of",
"7477",
"mAh",
".",
"In",
"the",
"case",
"of",
"the",
"9V",
"\n",
"(",
"Figure",
"8e",
")",
",",
"the",
"battery",
"shows",
"a",
"discharge",
"voltage",
"curve",
"like",
"the",
"one",
"observed",
"in",
"the",
"other",
"\n",
"NiMH",
"battery",
"sizes",
",",
"but",
"at",
"an",
"average",
"voltage",
"of",
"8.4",
"V",
".",
"Furthermore",
",",
"all",
"NiMH",
"batteries",
"\n",
"tested",
"during",
"the",
"charge",
"retention",
"experiment",
"show",
"a",
"discharge",
"current",
"curve",
"longer",
"than",
"\n",
"3",
"h",
"(",
"minimum",
"for",
"IEC",
"61951",
"-",
"2",
"clause",
"7.4",
")",
",",
"and",
"in",
"terms",
"of",
"columbic",
"efficiency",
",",
"the",
"highest",
"\n",
"observed",
"value",
"is",
"70",
"%",
"for",
"the",
"D",
"size",
"and",
"the",
"lowest",
"observed",
"value",
"is",
"58",
"%",
"for",
"the",
"9V",
"battery",
".",
"\n",
"Further",
"discussion",
"of",
"these",
"results",
"is",
"presented",
"in",
"Section",
"7",
".",
"\n",
"Batteries",
" ",
"2025",
",",
" ",
"11",
",",
" ",
"x",
" ",
"FOR",
" ",
"PEER",
" ",
"REVIEW",
" ",
"13",
" ",
"of",
" ",
"21",
" \n \n \n",
"Figure",
" ",
"8",
".",
" ",
"NiMH",
" ",
"charge",
" ",
"(",
"capacity",
")",
" ",
"retention",
" ",
"analysis",
" ",
"according",
" ",
"to",
" ",
"IEC",
" ",
"61951",
"-",
"2",
" ",
"with",
" ",
"the",
" ",
"pre",
"-",
"charged",
" \n",
"test",
" ",
"for",
" ",
"(",
"a",
")",
" ",
"AAA",
" ",
"Duracell",
",",
" ",
"(",
"b",
")",
" ",
"AA",
" ",
"Agfaphoto",
",",
" ",
"(",
"c",
")",
" ",
"C",
" ",
"Ansmann",
",",
" ",
"(",
"d",
")",
" ",
"D",
" ",
"Ansmann",
",",
" ",
"and",
" ",
"(",
"e",
")",
" ",
"9V",
" ",
"Energizer",
" \n",
"batteries",
".",
" \n",
"5",
".",
" ",
"Charge",
" ",
"(",
"Capacity",
")",
" ",
"Recovery",
" ",
"of",
" ",
"Portable",
" ",
"NiMH",
" ",
"Batteries",
" \n",
"The",
" ",
"charge",
" ",
"recovery",
" ",
"test",
" ",
"is",
" "
] |
[] |
Prevention and social hygiene were
essential to the new era of medical interventionism and hygiene classes were
designed to train and prepare doctors for such tasks.35
But how did one become a school doctor and, most importantly, how
did women enter secondary schools as both physicians and hygiene teach -
ers? Based on the available documents, schools hired female doctors either
because they knew them or had already been working with them, or because
they were appointed by the Ministry of Public Instruction, at their own
request. Still, in the second case, the appointment was made upon the
approval of the School Committee, as the new teaching staff member had to
be accepted by the principal and their colleagues.
The real problem for women was that the Ministry of Public Instruction
would not pay the salary for the school doctors unless they had tenure;
until then they had to be paid by the School Committees, from their own
incomes. Since schools were already struggling to cope with the numerous
tasks the Ministry had placed upon them, it was more convenient to keep
collaborating with male doctors who already held a position in the public
health administration to avoid depending entirely on their school income.
This situation occurred mostly in smaller, underfunded schools.
The entire legal and social context generated a massive correspondence
between female doctors, who knew they were entitled to the medical posi -
tions in girls’ schools, and the Ministry of Public Instruction. In demanding
155
155
Female doctors in schools in interwar Romania
their right to occupy the available positions, female and male physicians
were caught up in a spiral of accusations against those doctors who held
them without a proper diploma or who were working in girls’ schools.
Surprisingly enough, the Ministry of Instruction did nothing to stop such
denunciatory practices: on the contrary, it seemed to have encouraged them,
to survey the situation in secondary schools in the country.36
On 9 September 1929, Alexandrina Ungureanu, a graduate of the
School Hygiene course from Cluj, asked to be appointed as a doctor in
one of the city’s girls’ secondary schools. ‘Because no such positions are
available at the moment’, the petitioner wrote, ‘I therefore ask you to
appoint me in one of the many positions held by others, especially since
I possess a School Hygiene diploma’.37 Although she did not divulge any
names, her letter was
|
[
"Prevention",
"and",
"social",
"hygiene",
"were",
"\n",
"essential",
"to",
"the",
"new",
"era",
"of",
"medical",
"interventionism",
"and",
"hygiene",
"classes",
"were",
"\n",
"designed",
"to",
"train",
"and",
"prepare",
"doctors",
"for",
"such",
"tasks.35",
"\n",
"But",
"how",
"did",
"one",
"become",
"a",
"school",
"doctor",
"and",
",",
"most",
"importantly",
",",
"how",
"\n",
"did",
"women",
"enter",
"secondary",
"schools",
"as",
"both",
"physicians",
"and",
"hygiene",
"teach",
"-",
"\n",
"ers",
"?",
"Based",
"on",
"the",
"available",
"documents",
",",
"schools",
"hired",
"female",
"doctors",
"either",
"\n",
"because",
"they",
"knew",
"them",
"or",
"had",
"already",
"been",
"working",
"with",
"them",
",",
"or",
"because",
"\n",
"they",
"were",
"appointed",
"by",
"the",
"Ministry",
"of",
"Public",
"Instruction",
",",
"at",
"their",
"own",
"\n",
"request",
".",
"Still",
",",
"in",
"the",
"second",
"case",
",",
"the",
"appointment",
"was",
"made",
"upon",
"the",
"\n",
"approval",
"of",
"the",
"School",
"Committee",
",",
"as",
"the",
"new",
"teaching",
"staff",
"member",
"had",
"to",
"\n",
"be",
"accepted",
"by",
"the",
"principal",
"and",
"their",
"colleagues",
".",
"\n",
"The",
"real",
"problem",
"for",
"women",
"was",
"that",
"the",
"Ministry",
"of",
"Public",
"Instruction",
"\n",
"would",
"not",
"pay",
"the",
"salary",
"for",
"the",
"school",
"doctors",
"unless",
"they",
"had",
"tenure",
";",
"\n",
"until",
"then",
"they",
"had",
"to",
"be",
"paid",
"by",
"the",
"School",
"Committees",
",",
"from",
"their",
"own",
"\n",
"incomes",
".",
"Since",
"schools",
"were",
"already",
"struggling",
"to",
"cope",
"with",
"the",
"numerous",
"\n",
"tasks",
"the",
"Ministry",
"had",
"placed",
"upon",
"them",
",",
"it",
"was",
"more",
"convenient",
"to",
"keep",
"\n",
"collaborating",
"with",
"male",
"doctors",
"who",
"already",
"held",
"a",
"position",
"in",
"the",
"public",
"\n",
"health",
"administration",
"to",
"avoid",
"depending",
"entirely",
"on",
"their",
"school",
"income",
".",
"\n",
"This",
"situation",
"occurred",
"mostly",
"in",
"smaller",
",",
"underfunded",
"schools",
".",
"\n",
"The",
"entire",
"legal",
"and",
"social",
"context",
"generated",
"a",
"massive",
"correspondence",
"\n",
"between",
"female",
"doctors",
",",
"who",
"knew",
"they",
"were",
"entitled",
"to",
"the",
"medical",
"posi",
"-",
"\n",
"tions",
"in",
"girls",
"’",
"schools",
",",
"and",
"the",
"Ministry",
"of",
"Public",
"Instruction",
".",
"In",
"demanding",
" \n",
"155",
"\n",
"155",
"\n",
"Female",
"doctors",
"in",
"schools",
"in",
"interwar",
"Romania",
"\n",
"their",
"right",
"to",
"occupy",
"the",
"available",
"positions",
",",
"female",
"and",
"male",
"physicians",
"\n",
"were",
"caught",
"up",
"in",
"a",
"spiral",
"of",
"accusations",
"against",
"those",
"doctors",
"who",
"held",
"\n",
"them",
"without",
"a",
"proper",
"diploma",
"or",
"who",
"were",
"working",
"in",
"girls",
"’",
"schools",
".",
"\n",
"Surprisingly",
"enough",
",",
"the",
"Ministry",
"of",
"Instruction",
"did",
"nothing",
"to",
"stop",
"such",
"\n",
"denunciatory",
"practices",
":",
"on",
"the",
"contrary",
",",
"it",
"seemed",
"to",
"have",
"encouraged",
"them",
",",
"\n",
"to",
"survey",
"the",
"situation",
"in",
"secondary",
"schools",
"in",
"the",
"country.36",
"\n",
"On",
"9",
"September",
"1929",
",",
"Alexandrina",
"Ungureanu",
",",
"a",
"graduate",
"of",
"the",
"\n",
"School",
"Hygiene",
"course",
"from",
"Cluj",
",",
"asked",
"to",
"be",
"appointed",
"as",
"a",
"doctor",
"in",
"\n",
"one",
"of",
"the",
"city",
"’s",
"girls",
"’",
"secondary",
"schools",
".",
"‘",
"Because",
"no",
"such",
"positions",
"are",
"\n",
"available",
"at",
"the",
"moment",
"’",
",",
"the",
"petitioner",
"wrote",
",",
"‘",
"I",
"therefore",
"ask",
"you",
"to",
"\n",
"appoint",
"me",
"in",
"one",
"of",
"the",
"many",
"positions",
"held",
"by",
"others",
",",
"especially",
"since",
"\n",
"I",
"possess",
"a",
"School",
"Hygiene",
"diploma’.37",
"Although",
"she",
"did",
"not",
"divulge",
"any",
"\n",
"names",
",",
"her",
"letter",
"was"
] |
[
{
"end": 169,
"label": "CITATION_REF",
"start": 167
},
{
"end": 2022,
"label": "CITATION_REF",
"start": 2020
},
{
"end": 2418,
"label": "CITATION_REF",
"start": 2416
}
] |
the and/or other data, measurements, and/or metrics can be used by the AI/ML system(s) to autonomously control (or cause the to control) the output of different recovered materials into different bales or packaging machines. Here, the provided by the AI/ML system(s) to the can cause the to queuing different material bales based on material composition (e.g., purity percentages and the like) and/or market conditions based on from and/or based on from . In these ways, the MRF system can allow for mixing bale purities on a shipment to achieve and target value.
Additionally or alternatively, this example can include certification of commodity bales based on data from processing system and sorting activities. Here, a unique identifier (UID) can be attached to or otherwise associated with a bale attached to bale allowing material composition data of the bale to be made available at the next point of commerce. The UID may be stored in association with relevant data about the bale (e.g., material type, bale creation date, purity levels/percentages, and/or the like).
In some examples, the UID may be in the form of, or otherwise included in, a machine readable element (MRE). An MRE is any element that contains information about a bale or other package of commodity. In these example, the or an generates an MRE for each bale, for example, by encoding the UID in the MRE when the MRE is a quick response (QR) code (e.g., 1 QR code, a micro QR code, a secure QR code (SQR), a Swiss QR code, an IQR code, a frame QR code, a High Capacity Colored 2-Dimensional (CC2D) code, a Just Another Barcode (JAB) code, and/or other QR code variants), a linear barcode (e.g., Codablock F, PDF417, a code 3 of 9 (code 3/9), Universal Product Code (UPC) bar code, CodaBar, and/or the like), data matrix code, DotCode, Han Xin code, MaxiCode, SnapTag, Aztec code, SPARQCode, Touchtag, GS1 DataBar, an Electronic Bar Code (EPC) as defined by the EPCglobal Tag Data Standard, a radio-frequency identification (RFID) tag (e.g., including EPC RFID tags), a Bluetooth beacon/circuit, an near-field communication (NFC) circuit, a universal integrated circuit card (UICC) and/or subscriber identity module (SIM), and/or other like machine-readable element. When the MRE of a bale is scanned by a suitable scanner device (e.g., an RFID tag reader, a barcode scanning application on a mobile device, an NFC reader, and/or the like), the scanner device
|
[
"the",
" ",
"and/or",
"other",
"data",
",",
"measurements",
",",
"and/or",
"metrics",
"can",
"be",
"used",
"by",
"the",
"AI",
"/",
"ML",
"system(s",
")",
" ",
"to",
"autonomously",
"control",
"(",
"or",
"cause",
"the",
" ",
"to",
"control",
")",
"the",
"output",
"of",
"different",
"recovered",
"materials",
"into",
"different",
"bales",
"or",
"packaging",
"machines",
".",
"Here",
",",
"the",
" ",
"provided",
"by",
"the",
"AI",
"/",
"ML",
"system(s",
")",
" ",
"to",
"the",
" ",
"can",
"cause",
"the",
" ",
"to",
"queuing",
"different",
"material",
"bales",
"based",
"on",
"material",
"composition",
"(",
"e.g.",
",",
"purity",
"percentages",
"and",
"the",
"like",
")",
"and/or",
"market",
"conditions",
"based",
"on",
" ",
"from",
" ",
"and/or",
"based",
"on",
" ",
"from",
" ",
".",
"In",
"these",
"ways",
",",
"the",
"MRF",
"system",
"can",
"allow",
"for",
"mixing",
"bale",
"purities",
"on",
"a",
"shipment",
"to",
"achieve",
"and",
"target",
"value",
".",
"\n\n",
"Additionally",
"or",
"alternatively",
",",
"this",
"example",
"can",
"include",
"certification",
"of",
"commodity",
"bales",
"based",
"on",
"data",
"from",
"processing",
"system",
"and",
"sorting",
"activities",
".",
"Here",
",",
"a",
"unique",
"identifier",
"(",
"UID",
")",
"can",
"be",
"attached",
"to",
"or",
"otherwise",
"associated",
"with",
"a",
"bale",
"attached",
"to",
"bale",
"allowing",
"material",
"composition",
"data",
"of",
"the",
"bale",
"to",
"be",
"made",
"available",
"at",
"the",
"next",
"point",
"of",
"commerce",
".",
"The",
"UID",
"may",
"be",
"stored",
"in",
"association",
"with",
"relevant",
"data",
"about",
"the",
"bale",
"(",
"e.g.",
",",
"material",
"type",
",",
"bale",
"creation",
"date",
",",
"purity",
"levels",
"/",
"percentages",
",",
"and/or",
"the",
"like",
")",
".",
"\n\n",
"In",
"some",
"examples",
",",
"the",
"UID",
"may",
"be",
"in",
"the",
"form",
"of",
",",
"or",
"otherwise",
"included",
"in",
",",
"a",
"machine",
"readable",
"element",
"(",
"MRE",
")",
".",
"An",
"MRE",
"is",
"any",
"element",
"that",
"contains",
"information",
"about",
"a",
"bale",
"or",
"other",
"package",
"of",
"commodity",
".",
"In",
"these",
"example",
",",
"the",
" ",
"or",
"an",
" ",
"generates",
"an",
"MRE",
"for",
"each",
"bale",
",",
"for",
"example",
",",
"by",
"encoding",
"the",
"UID",
"in",
"the",
"MRE",
"when",
"the",
"MRE",
"is",
"a",
"quick",
"response",
"(",
"QR",
")",
"code",
"(",
"e.g.",
",",
" ",
"1",
"QR",
"code",
",",
"a",
"micro",
"QR",
"code",
",",
"a",
"secure",
"QR",
"code",
"(",
"SQR",
")",
",",
"a",
"Swiss",
"QR",
"code",
",",
"an",
"IQR",
"code",
",",
"a",
"frame",
"QR",
"code",
",",
"a",
"High",
"Capacity",
"Colored",
"2",
"-",
"Dimensional",
"(",
"CC2D",
")",
"code",
",",
"a",
"Just",
"Another",
"Barcode",
"(",
"JAB",
")",
"code",
",",
"and/or",
"other",
"QR",
"code",
"variants",
")",
",",
"a",
"linear",
"barcode",
"(",
"e.g.",
",",
"Codablock",
"F",
",",
"PDF417",
",",
"a",
"code",
"3",
"of",
"9",
"(",
"code",
"3/9",
")",
",",
"Universal",
"Product",
"Code",
"(",
"UPC",
")",
"bar",
"code",
",",
"CodaBar",
",",
"and/or",
"the",
"like",
")",
",",
"data",
"matrix",
"code",
",",
"DotCode",
",",
"Han",
"Xin",
"code",
",",
"MaxiCode",
",",
"SnapTag",
",",
"Aztec",
"code",
",",
"SPARQCode",
",",
"Touchtag",
",",
"GS1",
"DataBar",
",",
"an",
"Electronic",
"Bar",
"Code",
"(",
"EPC",
")",
"as",
"defined",
"by",
"the",
"EPCglobal",
"Tag",
"Data",
"Standard",
",",
"a",
"radio",
"-",
"frequency",
"identification",
"(",
"RFID",
")",
"tag",
"(",
"e.g.",
",",
"including",
"EPC",
"RFID",
"tags",
")",
",",
"a",
"Bluetooth",
"beacon",
"/",
"circuit",
",",
"an",
"near",
"-",
"field",
"communication",
"(",
"NFC",
")",
"circuit",
",",
"a",
"universal",
"integrated",
"circuit",
"card",
"(",
"UICC",
")",
"and/or",
"subscriber",
"identity",
"module",
"(",
"SIM",
")",
",",
"and/or",
"other",
"like",
"machine",
"-",
"readable",
"element",
".",
"When",
"the",
"MRE",
"of",
"a",
"bale",
"is",
"scanned",
"by",
"a",
"suitable",
"scanner",
"device",
"(",
"e.g.",
",",
"an",
"RFID",
"tag",
"reader",
",",
"a",
"barcode",
"scanning",
"application",
"on",
"a",
"mobile",
"device",
",",
"an",
"NFC",
"reader",
",",
"and/or",
"the",
"like",
")",
",",
"the",
"scanner",
"device"
] |
[] |
on such systems for simultaneous produc tion
in various applications. For example, Liu and Hong [4] compare ground source heat pumps to variable
refrigerant flow systems, both able to provide heat ing and cooling energies to four perimeter zones an d one core
zone of a simulated small office building. White et al. [5] expose the advantageous performance of a t ranscritical
CO2 heat pump for simultaneous refrigeration and water heating. Gong et al. [6] present an air-conditioni ng/heat-
pump system recovering heat for domestic hot water production. All these heat pumps demand more resear ch
and development but consume less energy than conven tional systems.
The second objective is to propose an answer to red uce the performance loss of air-source heat pumps d uring
winter. This aspect depends on the dynamic behaviou r of the HPS which is dealt with in part 2 of this article [1].
A HPS prototype was built and tested. The aim of th e first part of the study is to verify that the per formance in
each mode of operation (heating, cooling and simult aneous modes) is correct.
2 HPS concepts
2.1 Components
The HPS prototype (Fig. 1) produces hot and chilled water using plate heat exchangers. A balancing air coil
works either as a condenser for heat rejection in a cooling mode or as an evaporator for heat suction in a heating
mode. The air evaporator and the air condenser are never used at the same time. These functions have b een
assembled in the same three-fluid air coil (air, hi gh pressure refrigerant and low pressure refrigeran t) in order to
decrease the finned surface area compared to separa te air condenser and evaporator. When the tubes of the air
evaporator are used the surface of the fins near th e tubes of the air condenser are also used and vice versa. A
subcooler is connected to the cold water loop to ca rry out a short-time heat storage during winter seq uences.
Depending on the mode of operation, the electric co mponents (compressor, fan and electronic valves nam ed Evr)
are managed automatically by a programmable control ler or manually by the operator. The thermostatic
expansion valves are named TEV1 (connected to the w ater evaporator) and TEV2 (connected to the air
evaporator). Table 1 shows the general specificatio ns of the components. The chosen refrigerant is R40 7C,
|
[
"on",
"such",
"systems",
"for",
"simultaneous",
"produc",
"tion",
"\n",
"in",
"various",
"applications",
".",
"For",
"example",
",",
"Liu",
"and",
"Hong",
"[",
"4",
"]",
"compare",
"ground",
"source",
"heat",
"pumps",
"to",
"variable",
"\n",
"refrigerant",
"flow",
"systems",
",",
"both",
"able",
"to",
"provide",
"heat",
"ing",
"and",
"cooling",
"energies",
"to",
"four",
"perimeter",
"zones",
"an",
"d",
"one",
"core",
"\n",
"zone",
"of",
"a",
"simulated",
"small",
"office",
"building",
".",
"White",
"et",
" ",
"al",
".",
"[",
"5",
"]",
"expose",
"the",
"advantageous",
"performance",
"of",
"a",
"t",
"ranscritical",
"\n",
"CO2",
"heat",
"pump",
"for",
"simultaneous",
"refrigeration",
"and",
"water",
" ",
"heating",
".",
"Gong",
"et",
"al",
".",
"[",
"6",
"]",
"present",
"an",
"air",
"-",
"conditioni",
"ng",
"/",
"heat-",
"\n",
"pump",
"system",
"recovering",
"heat",
"for",
"domestic",
"hot",
"water",
"production",
".",
"All",
"these",
"heat",
"pumps",
"demand",
"more",
"resear",
"ch",
"\n",
"and",
"development",
"but",
"consume",
"less",
"energy",
"than",
"conven",
"tional",
"systems",
".",
"\n",
"The",
"second",
"objective",
"is",
"to",
"propose",
"an",
"answer",
"to",
"red",
"uce",
"the",
"performance",
"loss",
"of",
"air",
"-",
"source",
"heat",
"pumps",
"d",
"uring",
"\n",
"winter",
".",
"This",
"aspect",
"depends",
"on",
"the",
"dynamic",
"behaviou",
"r",
"of",
"the",
"HPS",
"which",
"is",
"dealt",
"with",
"in",
"part",
"2",
"of",
"this",
"article",
"[",
"1",
"]",
".",
"\n",
"A",
"HPS",
"prototype",
"was",
"built",
"and",
"tested",
".",
"The",
"aim",
"of",
"th",
"e",
"first",
"part",
"of",
"the",
"study",
"is",
"to",
"verify",
"that",
"the",
"per",
"formance",
"in",
"\n",
"each",
"mode",
"of",
"operation",
"(",
"heating",
",",
"cooling",
"and",
"simult",
"aneous",
"modes",
")",
"is",
"correct",
".",
"\n \n",
"2",
"HPS",
"concepts",
"\n",
"2.1",
"Components",
"\n",
"The",
"HPS",
"prototype",
"(",
"Fig",
".",
"1",
")",
"produces",
"hot",
"and",
"chilled",
" ",
"water",
"using",
"plate",
"heat",
"exchangers",
".",
"A",
"balancing",
"air",
" ",
"coil",
"\n",
"works",
"either",
"as",
"a",
"condenser",
"for",
"heat",
"rejection",
"in",
"a",
" ",
"cooling",
"mode",
"or",
"as",
"an",
"evaporator",
"for",
"heat",
"suction",
"in",
"a",
"heating",
"\n",
"mode",
".",
"The",
"air",
"evaporator",
"and",
"the",
"air",
"condenser",
"are",
"never",
"used",
"at",
"the",
"same",
"time",
".",
"These",
"functions",
"have",
"b",
"een",
"\n",
"assembled",
"in",
"the",
"same",
"three",
"-",
"fluid",
"air",
"coil",
"(",
"air",
",",
"hi",
"gh",
"pressure",
"refrigerant",
"and",
"low",
"pressure",
"refrigeran",
"t",
")",
"in",
"order",
"to",
"\n",
"decrease",
"the",
"finned",
"surface",
"area",
"compared",
"to",
"separa",
"te",
"air",
"condenser",
"and",
"evaporator",
".",
"When",
"the",
"tubes",
"of",
"the",
"air",
"\n",
"evaporator",
"are",
"used",
"the",
"surface",
"of",
"the",
"fins",
"near",
"th",
"e",
"tubes",
"of",
"the",
"air",
"condenser",
"are",
"also",
"used",
"and",
"vice",
" ",
"versa",
".",
"A",
"\n",
"subcooler",
"is",
"connected",
"to",
"the",
"cold",
"water",
"loop",
"to",
"ca",
"rry",
"out",
"a",
"short",
"-",
"time",
"heat",
"storage",
"during",
"winter",
"seq",
"uences",
".",
"\n",
"Depending",
"on",
"the",
"mode",
"of",
"operation",
",",
"the",
"electric",
"co",
"mponents",
"(",
"compressor",
",",
"fan",
"and",
"electronic",
"valves",
"nam",
"ed",
"Evr",
")",
"\n",
"are",
"managed",
"automatically",
"by",
"a",
"programmable",
"control",
"ler",
"or",
"manually",
"by",
"the",
"operator",
".",
"The",
"thermostatic",
"\n",
"expansion",
"valves",
"are",
"named",
"TEV1",
"(",
"connected",
"to",
"the",
"w",
"ater",
"evaporator",
")",
"and",
"TEV2",
"(",
"connected",
"to",
"the",
"air",
"\n",
"evaporator",
")",
".",
"Table",
"1",
"shows",
"the",
"general",
"specificatio",
"ns",
"of",
"the",
"components",
".",
"The",
"chosen",
"refrigerant",
"is",
"R40",
"7C",
",",
"\n"
] |
[
{
"end": 323,
"label": "CITATION_REF",
"start": 306
},
{
"end": 461,
"label": "CITATION_REF",
"start": 446
},
{
"end": 100,
"label": "CITATION_REF",
"start": 84
},
{
"end": 96,
"label": "AUTHOR",
"start": 84
},
{
"end": 99,
"label": "CITATION_ID",
"start": 98
},
{
"end": 319,
"label": "AUTHOR",
"start": 306
},
{
"end": 322,
"label": "CITATION_ID",
"start": 321
},
{
"end": 457,
"label": "AUTHOR",
"start": 446
},
{
"end": 460,
"label": "CITATION_ID",
"start": 459
},
{
"end": 897,
"label": "CITATION_REF",
"start": 896
}
] |
Performing Arts. UB also houses the Writers’ Workshop, a literary training platform for fiction authors. The University of Botswana’s Department of Library and Information Studies offers programmes in the book sector. No programmes exist for training writers and publishing professionals, nor are there training programmes focused on digitalization in book publishing, digital marketing, or associated digital activities.
The Tertiary Education Statistics Report
(2021) produced by the Human Resource Development Council and Statistics Botswana reflects ‘the potential supply of trained and qualified human resources in different spaces and specialisations’.
14
The report offers data on training institutions in the country and their respective qualifications. As the data show, there is no specialised training for human resources for the book sector by any of the tertiary institutions.
PROFESSIONAL ASSOCIATIONS
Professional associations in the civil society space do exist, and they mobilize the sector’s developmental aspirations. They include the Botswana Library Association (BLA), the Botswana Library Consortium (BLC), the Botswana Editors NOTES
1. Rachel Raditsebe, Poor Eyecare Blamed for Cases of
Sudden Blindness, Botswana Guardian, 17 August 2022. https://guardiansun.co.bw/news/poor-eyecare-blamed-for-cases-on-sudden-blindness/news
2. Kamwi Mazunga (National authority at BNLS),
interviewed by author, Gaborone, 1 August 2024.
3. Vincent Phemelo Rapoo (Copyright Specialist at CIPA)
interviewed by author, Gaborone, 13 September 2024.
4. Ibid.5. Naledi Kgolo-Lotshwao (Author and previous winner of
the CIPA Literary Award) interviewed by author, Gaborone, 12 September, 2024.
6. Botswana National Library Service Act. Government
Printers, 2021.
7. University of Botswana Annual Research Report
(2023/24), Accessed 10 November 2024, at www.ub.ac.bw/UB-Annual-Research-Report-2024_Final_24102024
8. Vanschaik.com/page/about-us/
9. Boitshoko King (General Manager of the Botswana Book
Centre) interviewed by author, Gaborone, 16 August 2024.
10. Lorato Tshoswane (General Manager of Exclusive Books)
interviewed by author, Gaborone, 16 August 2024,
11. Gaboronebookfestival.co.bw 12. writingafrica.com/Botswana-literature-awards
13. United Nations, UN Comtrade Database: Botswana
Imports of Printed Books, Brochures, Leaflets, and Similar Printed Matter (HS 490199), 2023, accessed Feb. 24, 2025.
14. Human Resource Development Council. Tertiary Education Statistics Report. HRDC, 2021, v.Forum (BEF), the Gaborone Book
Festival, and the Fiction, Academic and Non-Fiction Association of Botswana (FANFABO), previously known as the Writers Association of Botswana (WABO). These organizations promote the rights of practitioners in the book and publishing space, advocate for the sector, and organize conferences on library matters and trends in library services. There is also the Copyright Society of Botswana (COSBOTS), the country’s only collective management organization. Regarding stakeholders’ participation in policy decision-making, the BNLS Act provides for
|
[
"Performing",
"Arts",
".",
"UB",
"also",
"houses",
"the",
"Writers",
"’",
"Workshop",
",",
"a",
"literary",
"training",
"platform",
"for",
"fiction",
"authors",
".",
"The",
"University",
"of",
"Botswana",
"’s",
"Department",
"of",
"Library",
"and",
"Information",
"Studies",
"offers",
"programmes",
"in",
"the",
"book",
"sector",
".",
"No",
"programmes",
"exist",
"for",
"training",
"writers",
"and",
"publishing",
"professionals",
",",
"nor",
"are",
"there",
"training",
"programmes",
"focused",
"on",
"digitalization",
"in",
"book",
"publishing",
",",
"digital",
"marketing",
",",
"or",
"associated",
"digital",
"activities",
".",
"\n",
"The",
"Tertiary",
"Education",
"Statistics",
"Report",
"\n",
"(",
"2021",
")",
"produced",
"by",
"the",
"Human",
"Resource",
"Development",
"Council",
"and",
"Statistics",
"Botswana",
"reflects",
"‘",
"the",
"potential",
"supply",
"of",
"trained",
"and",
"qualified",
"human",
"resources",
"in",
"different",
"spaces",
"and",
"specialisations",
"’",
".",
"\n",
"14",
"\n",
"The",
" ",
"report",
"offers",
"data",
"on",
"training",
"institutions",
"in",
"the",
"country",
"and",
"their",
"respective",
"qualifications",
".",
"As",
"the",
"data",
"show",
",",
"there",
"is",
"no",
"specialised",
"training",
"for",
"human",
"resources",
"for",
"the",
"book",
"sector",
"by",
"any",
"of",
"the",
"tertiary",
"institutions",
".",
"\n",
"PROFESSIONAL",
"ASSOCIATIONS",
"\n",
"Professional",
"associations",
"in",
"the",
"civil",
"society",
"space",
"do",
"exist",
",",
"and",
"they",
"mobilize",
"the",
"sector",
"’s",
"developmental",
"aspirations",
".",
"They",
" ",
"include",
"the",
"Botswana",
"Library",
"Association",
"(",
"BLA",
")",
",",
"the",
"Botswana",
"Library",
"Consortium",
"(",
"BLC",
")",
",",
"the",
"Botswana",
"Editors",
"NOTES",
"\n",
"1",
".",
"Rachel",
"Raditsebe",
",",
"Poor",
"Eyecare",
"Blamed",
"for",
"Cases",
"of",
"\n",
"Sudden",
"Blindness",
",",
"Botswana",
"Guardian",
",",
"17",
"August",
"2022",
".",
"https://guardiansun.co.bw/news/poor-eyecare-blamed-for-cases-on-sudden-blindness/news",
"\n",
"2",
".",
"Kamwi",
"Mazunga",
"(",
"National",
"authority",
"at",
"BNLS",
")",
",",
"\n",
"interviewed",
"by",
"author",
",",
"Gaborone",
",",
"1",
"August",
"2024",
".",
"\n",
"3",
".",
"Vincent",
"Phemelo",
"Rapoo",
"(",
"Copyright",
"Specialist",
"at",
"CIPA",
")",
"\n",
"interviewed",
"by",
"author",
",",
"Gaborone",
",",
"13",
"September",
"2024",
".",
"\n",
"4",
".",
"Ibid.5",
".",
"Naledi",
"Kgolo",
"-",
"Lotshwao",
"(",
"Author",
"and",
"previous",
"winner",
"of",
"\n",
"the",
"CIPA",
"Literary",
"Award",
")",
"interviewed",
"by",
"author",
",",
"Gaborone",
",",
"12",
"September",
",",
"2024",
".",
"\n",
"6",
".",
"Botswana",
"National",
"Library",
"Service",
"Act",
".",
"Government",
"\n",
"Printers",
",",
"2021",
".",
"\n",
"7",
".",
"University",
"of",
"Botswana",
"Annual",
"Research",
"Report",
"\n",
"(",
"2023/24",
")",
",",
"Accessed",
"10",
"November",
"2024",
",",
"at",
"www.ub.ac.bw/UB-Annual-Research-Report-2024_Final_24102024",
" \n",
"8",
".",
"Vanschaik.com/page/about-us/",
"\n",
"9",
".",
"Boitshoko",
"King",
"(",
"General",
"Manager",
"of",
"the",
"Botswana",
"Book",
"\n",
"Centre",
")",
"interviewed",
"by",
"author",
",",
"Gaborone",
",",
"16",
"August",
"2024",
".",
"\n",
"10",
".",
"Lorato",
"Tshoswane",
"(",
"General",
"Manager",
"of",
"Exclusive",
"Books",
")",
"\n",
"interviewed",
"by",
"author",
",",
"Gaborone",
",",
"16",
"August",
"2024",
",",
"\n",
"11",
".",
"Gaboronebookfestival.co.bw",
"12",
".",
"writingafrica.com/Botswana-literature-awards",
"\n",
"13",
".",
"United",
"Nations",
",",
"UN",
"Comtrade",
"Database",
":",
"Botswana",
"\n",
"Imports",
"of",
"Printed",
"Books",
",",
"Brochures",
",",
"Leaflets",
",",
"and",
"Similar",
"Printed",
"Matter",
"(",
"HS",
"490199",
")",
",",
"2023",
",",
"accessed",
"Feb.",
"24",
",",
"2025",
".",
"\n",
"14",
".",
"Human",
"Resource",
"Development",
"Council",
".",
"Tertiary",
"Education",
"Statistics",
"Report",
".",
"HRDC",
",",
"2021",
",",
"v.",
"Forum",
"(",
"BEF",
")",
",",
"the",
"Gaborone",
"Book",
"\n",
"Festival",
",",
"and",
"the",
"Fiction",
",",
"Academic",
"and",
"Non",
"-",
"Fiction",
"Association",
"of",
"Botswana",
"(",
"FANFABO",
")",
",",
"previously",
"known",
"as",
"the",
"Writers",
"Association",
"of",
"Botswana",
"(",
"WABO",
")",
".",
"These",
"organizations",
"promote",
"the",
"rights",
"of",
"practitioners",
"in",
"the",
"book",
"and",
"publishing",
"space",
",",
"advocate",
"for",
"the",
"sector",
",",
"and",
"organize",
"conferences",
"on",
"library",
"matters",
"and",
"trends",
"in",
"library",
"services",
".",
"There",
"is",
"also",
"the",
"Copyright",
"Society",
"of",
"Botswana",
"(",
"COSBOTS",
")",
",",
"the",
"country",
"’s",
"only",
"collective",
"management",
"organization",
".",
"Regarding",
"stakeholders",
"’",
"participation",
"in",
"policy",
"decision",
"-",
"making",
",",
"the",
"BNLS",
"Act",
"provides",
"for"
] |
[
{
"end": 1159,
"label": "CITATION_ID",
"start": 1158
},
{
"end": 1353,
"label": "CITATION_ID",
"start": 1352
},
{
"end": 1351,
"label": "CITATION_SPAN",
"start": 1161
},
{
"end": 1447,
"label": "CITATION_SPAN",
"start": 1355
},
{
"end": 1449,
"label": "CITATION_ID",
"start": 1448
},
{
"end": 1558,
"label": "CITATION_ID",
"start": 1557
},
{
"end": 1566,
"label": "CITATION_ID",
"start": 1565
},
{
"end": 1701,
"label": "CITATION_ID",
"start": 1700
},
{
"end": 1771,
"label": "CITATION_ID",
"start": 1770
},
{
"end": 1923,
"label": "CITATION_ID",
"start": 1922
},
{
"end": 1955,
"label": "CITATION_ID",
"start": 1954
},
{
"end": 2070,
"label": "CITATION_ID",
"start": 2068
},
{
"end": 2178,
"label": "CITATION_ID",
"start": 2176
},
{
"end": 2258,
"label": "CITATION_ID",
"start": 2256
},
{
"end": 2427,
"label": "CITATION_ID",
"start": 2425
},
{
"end": 1556,
"label": "CITATION_SPAN",
"start": 1451
},
{
"end": 1564,
"label": "CITATION_SPAN",
"start": 1560
},
{
"end": 1699,
"label": "CITATION_SPAN",
"start": 1568
},
{
"end": 1769,
"label": "CITATION_SPAN",
"start": 1703
},
{
"end": 1921,
"label": "CITATION_SPAN",
"start": 1773
},
{
"end": 1953,
"label": "CITATION_SPAN",
"start": 1925
},
{
"end": 2067,
"label": "CITATION_SPAN",
"start": 1957
},
{
"end": 2175,
"label": "CITATION_SPAN",
"start": 2072
},
{
"end": 2206,
"label": "CITATION_SPAN",
"start": 2180
},
{
"end": 2255,
"label": "CITATION_SPAN",
"start": 2211
},
{
"end": 2209,
"label": "CITATION_ID",
"start": 2207
},
{
"end": 2424,
"label": "CITATION_SPAN",
"start": 2260
}
] |
X | | |
## 2.3. Export performance for goods
The UN Comtrade Database 32 on exports of goods contains up to five-digit export data according to the Standard International Trade Classification (SITC) product classification. Specialisation in export performance can be used to identify those goods categories in which countries perform above average and are able to compete successfully on international markets.
## Data availability
The UN Comtrade Database includes data on export values for 278 three-digit goods using the SITC Rev. 4 classification 33 . For all Eastern Partnership countries, data on export values are available up until 2019, except for Ukraine where 2019 data are not available. For Ukraine, 2019 data have been substituted with 2018 data.
32 https://comtrade.un.org/
33 https://unstats.un.org/unsd/trade/sitcrev4.htm
Eight years have been used (2012-2019) for the mapping analysis data, divided into three periods for measuring changes over time similar to the economic mapping using Orbis data, i.e. 20122015, 2014-2017 and 2016-2019. Countries do not have exports for all goods categories. Ukraine has the largest number of goods categories with exports; Azerbaijan has the lowest number, which has been increasing over time. For several goods categories for the EaP, averages will thus not be calculated using data for all countries but only for countries for which there are exports.
Goods exports are available for 10 one-digit SITC Rev. 4 classes: 0 Food and live animals; 1 Beverages and tobacco; 2 Crude materials, inedible, except fuels; 3 Mineral fuels, lubricants and related materials; 4 Animal and vegetable oils, fats and waxes; 5 Chemicals and related products, n.e.s 34 .; 6 Manufactured goods classified chiefly by material; 7 Machinery and transport equipment; 8 Miscellaneous manufactured articles; and 9 Commodities and transactions not classified elsewhere in the SITC.
Part
There are large differences in the share of these export classes throughout the EaP countries. More than 90% of goods exports in Azerbaijan are in Mineral fuels, lubricants and related materials, a share which is much higher than in any of the other countries. For Amenia, the largest export classes include Crude materials, inedible, except fuels (25%); Manufactured goods classified chief- ly by material (21%); and Beverages and tobacco (20%). For Georgia, the largest export class is Machinery and transport equipment (21%). For Moldova, the largest export classes include Food and live animals (23.5%) and Miscellaneous manufactured articles (22%). For Ukraine, the largest export class is Mineral fuels, lubricants and
|
[
"X",
" ",
"|",
" ",
"|",
" ",
"|",
"\n\n",
"#",
"#",
"2.3",
".",
"Export",
"performance",
"for",
"goods",
"\n\n",
"The",
"UN",
"Comtrade",
"Database",
"32",
" ",
"on",
"exports",
"of",
"goods",
"contains",
"up",
"to",
"five",
"-",
"digit",
"export",
"data",
"according",
"to",
"the",
" ",
"Standard",
" ",
"International",
" ",
"Trade",
" ",
"Classification",
"(",
"SITC",
")",
"product",
"classification",
".",
"Specialisation",
"in",
"export",
" ",
"performance",
" ",
"can",
" ",
"be",
" ",
"used",
" ",
"to",
" ",
"identify",
" ",
"those",
"goods",
"categories",
"in",
"which",
"countries",
"perform",
"above",
"average",
"and",
"are",
"able",
"to",
"compete",
"successfully",
"on",
"international",
"markets",
".",
"\n\n",
"#",
"#",
"Data",
"availability",
"\n\n",
"The",
"UN",
"Comtrade",
"Database",
"includes",
"data",
"on",
"export",
" ",
"values",
" ",
"for",
" ",
"278",
" ",
"three",
"-",
"digit",
" ",
"goods",
" ",
"using",
" ",
"the",
"SITC",
"Rev.",
"4",
"classification",
"33",
".",
"For",
"all",
"Eastern",
"Partnership",
"countries",
",",
"data",
"on",
"export",
"values",
"are",
"available",
"up",
"until",
"2019",
",",
"except",
"for",
"Ukraine",
"where",
"2019",
"data",
"are",
" ",
"not",
" ",
"available",
".",
" ",
"For",
" ",
"Ukraine",
",",
" ",
"2019",
" ",
"data",
" ",
"have",
"been",
"substituted",
"with",
"2018",
"data",
".",
"\n\n",
"32",
"https://comtrade.un.org/",
"\n\n",
"33",
"https://unstats.un.org/unsd/trade/sitcrev4.htm",
"\n\n",
"Eight",
"years",
"have",
"been",
"used",
"(",
"2012",
"-",
"2019",
")",
"for",
"the",
"mapping",
"analysis",
"data",
",",
"divided",
"into",
"three",
"periods",
"for",
" ",
"measuring",
" ",
"changes",
" ",
"over",
" ",
"time",
" ",
"similar",
" ",
"to",
" ",
"the",
"economic",
" ",
"mapping",
" ",
"using",
" ",
"Orbis",
" ",
"data",
",",
" ",
"i.e.",
" ",
"20122015",
",",
"2014",
"-",
"2017",
"and",
"2016",
"-",
"2019",
".",
"Countries",
"do",
"not",
"have",
"exports",
"for",
"all",
"goods",
"categories",
".",
"Ukraine",
"has",
"the",
"largest",
"number",
"of",
"goods",
"categories",
"with",
"exports",
";",
"Azerbaijan",
"has",
"the",
"lowest",
"number",
",",
"which",
"has",
"been",
"increasing",
"over",
"time",
".",
"For",
"several",
"goods",
"categories",
"for",
"the",
"EaP",
",",
"averages",
"will",
"thus",
"not",
"be",
"calculated",
"using",
"data",
"for",
"all",
"countries",
"but",
"only",
"for",
"countries",
"for",
"which",
"there",
"are",
"exports",
".",
"\n\n",
"Goods",
"exports",
"are",
"available",
"for",
"10",
"one",
"-",
"digit",
"SITC",
"Rev.",
"4",
"classes",
":",
"0",
"Food",
"and",
"live",
"animals",
";",
"1",
"Beverages",
"and",
"tobacco",
";",
"2",
"Crude",
"materials",
",",
"inedible",
",",
"except",
"fuels",
";",
"3",
"Mineral",
"fuels",
",",
"lubricants",
"and",
"related",
"materials",
";",
"4",
"Animal",
"and",
"vegetable",
"oils",
",",
"fats",
"and",
"waxes",
";",
"5",
"Chemicals",
"and",
"related",
"products",
",",
"n.e.s",
"34",
".",
";",
"6",
"Manufactured",
" ",
"goods",
" ",
"classified",
" ",
"chiefly",
" ",
"by",
" ",
"material",
";",
" ",
"7",
"Machinery",
"and",
"transport",
"equipment",
";",
"8",
"Miscellaneous",
"manufactured",
"articles",
";",
"and",
"9",
"Commodities",
"and",
"transactions",
"not",
"classified",
"elsewhere",
"in",
"the",
"SITC",
".",
"\n\n",
"Part",
"\n\n",
"There",
"are",
"large",
"differences",
"in",
"the",
"share",
"of",
"these",
"export",
"classes",
"throughout",
"the",
"EaP",
"countries",
".",
"More",
"than",
"90",
"%",
"of",
"goods",
"exports",
"in",
"Azerbaijan",
"are",
"in",
"Mineral",
" ",
"fuels",
",",
" ",
"lubricants",
" ",
"and",
" ",
"related",
" ",
"materials",
",",
"a",
"share",
"which",
"is",
"much",
"higher",
"than",
"in",
"any",
"of",
"the",
"other",
" ",
"countries",
".",
" ",
"For",
" ",
"Amenia",
",",
" ",
"the",
" ",
"largest",
" ",
"export",
"classes",
" ",
"include",
" ",
"Crude",
" ",
"materials",
",",
" ",
"inedible",
",",
" ",
"except",
"fuels",
"(",
"25",
"%",
")",
";",
"Manufactured",
"goods",
"classified",
"chief-",
"ly",
" ",
"by",
" ",
"material",
"(",
"21",
"%",
")",
";",
"and",
"Beverages",
"and",
"tobacco",
"(",
"20",
"%",
")",
".",
"For",
"Georgia",
",",
"the",
"largest",
"export",
"class",
"is",
"Machinery",
" ",
"and",
" ",
"transport",
" ",
"equipment",
" ",
"(",
"21",
"%",
")",
".",
" ",
"For",
"Moldova",
",",
"the",
"largest",
"export",
"classes",
"include",
"Food",
"and",
"live",
"animals",
"(",
"23.5",
"%",
")",
"and",
"Miscellaneous",
"manufactured",
"articles",
"(",
"22",
"%",
")",
".",
"For",
"Ukraine",
",",
"the",
"largest",
"export",
"class",
"is",
"Mineral",
"fuels",
",",
"lubricants",
"and"
] |
[
{
"end": 124,
"label": "CITATION_REF",
"start": 122
},
{
"end": 626,
"label": "CITATION_REF",
"start": 624
},
{
"end": 844,
"label": "CITATION_ID",
"start": 842
},
{
"end": 873,
"label": "CITATION_ID",
"start": 871
},
{
"end": 869,
"label": "CITATION_SPAN",
"start": 845
},
{
"end": 920,
"label": "CITATION_SPAN",
"start": 874
}
] |
From an investor's point of view, if a project is
unsuccessful, it is entirely reasonable to utilize these losses against other
operations, as this is the true reflection of their economic position in the
jurisdiction as a whole. Special rules may be considered to find a balanced
solution (see the discussion in Section 3.2.3 below).
BOX 5. HOW RING -FENCING PROTECTS THE TAX BASE FROM
PERMANENT LOSSES DERIVED FROM UNSUCCESSFUL MINES
In the simplified example below, a mining investor holds a producing mine
and has abandoned an unsuccessful exploration project. Row 1 in T able 2
shows the revenue the government would have collected if ring-fencing
rules were not applied, and vice versa for row 2.
Where ring-fencing rules are applied, the government’s total revenue
is USD 3.664 billion; in comparison, where consolidation is applied, it is
USD 2.718 billion. In this scenario, USD 946 million in possible government
revenue is permanently lost.
TABLE 2. Government revenues during the life of the mines
(in USD million)
YEAR 0–567 8 9 10 11 12 13 14 15 TOTAL
Consolidation 0 00 0 0 0 1,110 1,478 2,609 1,178 953 7,328
Ring-fencing 0 00488 668 443 593 593 2,412 1,178 953 7,328
Consolidation 0 00 0 210 443 593 593 293 293 293 2,718
Ring-fencing 0 00488 668 443 593 593 293 293 293 3,664
Source: Author's elaboration.3.0 THE BENEFITS
AND RISKS OF
RING -FENCING
4.0 DESIGNING
RING -FENCING
RULES
5.0 THE
IMPLEMENTATION
OF RING -FENCING
RULES
6.0 CONCLUSION 2.0 THE
FUNDAMENTALS
OF RING -FENCING 1.0 INTRODUCTION
16
Ring-Fencing Mining Income: A toolkit for tax administrators and policy-makers3.1.2.2 Risks Playing Out in Other Non-Mining Commercial
Activities
In the absence of ring-fencing rules, a mining investor who controls either
some key stages or all of the mining value chain from upstream (exploration,
development, and exploitation) to downstream (processing, transport, and
marketing) or who is also involved in non-mining activities (e.g., construction
of buildings or investments made into innovative pharmaceutical research)
may offset revenues and losses from different stages along the value chain
and/or in other commercial activities. Downstream activities could be
undertaken offshore, e.g., in a centralized logistical/commercial hub. These
activities are intrinsically ring-fenced if they are undertaken by different
entities in separate jurisdictions. However, there are scenarios where different
upstream and downstream activities happen within the same jurisdiction. In
scenarios where there are mining and non-mining activities undertaken in a
jurisdiction, and
|
[
"From",
"an",
"investor",
"'s",
"point",
"of",
"view",
",",
"if",
"a",
"project",
"is",
"\n",
"unsuccessful",
",",
"it",
"is",
"entirely",
"reasonable",
"to",
"utilize",
"these",
"losses",
"against",
"other",
"\n",
"operations",
",",
"as",
"this",
"is",
"the",
"true",
"reflection",
"of",
"their",
"economic",
"position",
"in",
"the",
"\n",
"jurisdiction",
"as",
"a",
"whole",
".",
"Special",
"rules",
"may",
"be",
"considered",
"to",
"find",
"a",
"balanced",
"\n",
"solution",
"(",
"see",
"the",
"discussion",
"in",
"Section",
"3.2.3",
"below",
")",
".",
"\n",
"BOX",
"5",
".",
"HOW",
"RING",
"-FENCING",
"PROTECTS",
"THE",
"TAX",
"BASE",
"FROM",
"\n",
"PERMANENT",
"LOSSES",
"DERIVED",
"FROM",
"UNSUCCESSFUL",
"MINES",
"\n",
"In",
"the",
"simplified",
"example",
"below",
",",
"a",
"mining",
"investor",
"holds",
"a",
"producing",
"mine",
"\n",
"and",
"has",
"abandoned",
"an",
"unsuccessful",
"exploration",
"project",
".",
"Row",
"1",
"in",
"T",
"able",
"2",
"\n",
"shows",
"the",
"revenue",
"the",
"government",
"would",
"have",
"collected",
"if",
"ring",
"-",
"fencing",
"\n",
"rules",
"were",
"not",
"applied",
",",
"and",
"vice",
"versa",
"for",
"row",
"2",
".",
"\n",
"Where",
"ring",
"-",
"fencing",
"rules",
"are",
"applied",
",",
"the",
"government",
"’s",
"total",
"revenue",
"\n",
"is",
"USD",
"3.664",
"billion",
";",
"in",
"comparison",
",",
"where",
"consolidation",
"is",
"applied",
",",
"it",
"is",
"\n",
"USD",
"2.718",
"billion",
".",
"In",
"this",
"scenario",
",",
"USD",
"946",
"million",
"in",
"possible",
"government",
"\n",
"revenue",
"is",
"permanently",
"lost",
".",
"\n",
"TABLE",
"2",
".",
" ",
"Government",
"revenues",
"during",
"the",
"life",
"of",
"the",
"mines",
" \n",
"(",
"in",
"USD",
"million",
")",
"\n",
"YEAR",
"0–567",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"TOTAL",
"\n",
"Consolidation",
"0",
"00",
"0",
"0",
"0",
"1,110",
"1,478",
"2,609",
"1,178",
"953",
"7,328",
"\n",
"Ring",
"-",
"fencing",
"0",
"00488",
"668",
"443",
"593",
"593",
"2,412",
"1,178",
"953",
"7,328",
"\n",
"Consolidation",
"0",
"00",
"0",
"210",
"443",
"593",
"593",
"293",
"293",
"293",
"2,718",
"\n",
"Ring",
"-",
"fencing",
"0",
"00488",
"668",
"443",
"593",
"593",
"293",
"293",
"293",
"3,664",
"\n",
"Source",
":",
"Author",
"'s",
"elaboration.3.0",
"THE",
"BENEFITS",
"\n",
"AND",
"RISKS",
"OF",
" \n",
"RING",
"-FENCING",
"\n",
"4.0",
"DESIGNING",
"\n",
"RING",
"-FENCING",
"\n",
"RULES",
"\n",
"5.0",
"THE",
"\n",
"IMPLEMENTATION",
"\n",
"OF",
"RING",
"-FENCING",
"\n",
"RULES",
"\n",
"6.0",
"CONCLUSION",
"2.0",
"THE",
"\n",
"FUNDAMENTALS",
" \n",
"OF",
"RING",
"-FENCING",
"1.0",
"INTRODUCTION",
"\n",
"16",
"\n",
"Ring",
"-",
"Fencing",
"Mining",
"Income",
":",
"A",
"toolkit",
"for",
"tax",
"administrators",
"and",
"policy",
"-",
"makers3.1.2.2",
"Risks",
"Playing",
"Out",
"in",
"Other",
"Non",
"-",
"Mining",
"Commercial",
"\n",
"Activities",
"\n",
"In",
"the",
"absence",
"of",
"ring",
"-",
"fencing",
"rules",
",",
"a",
"mining",
"investor",
"who",
"controls",
"either",
"\n",
"some",
"key",
"stages",
"or",
"all",
"of",
"the",
"mining",
"value",
"chain",
"from",
"upstream",
"(",
"exploration",
",",
"\n",
"development",
",",
"and",
"exploitation",
")",
"to",
"downstream",
"(",
"processing",
",",
"transport",
",",
"and",
"\n",
"marketing",
")",
"or",
"who",
"is",
"also",
"involved",
"in",
"non",
"-",
"mining",
"activities",
"(",
"e.g.",
",",
"construction",
"\n",
"of",
"buildings",
"or",
"investments",
"made",
"into",
"innovative",
"pharmaceutical",
"research",
")",
"\n",
"may",
"offset",
"revenues",
"and",
"losses",
"from",
"different",
"stages",
"along",
"the",
"value",
"chain",
"\n",
"and/or",
"in",
"other",
"commercial",
"activities",
".",
"Downstream",
"activities",
"could",
"be",
"\n",
"undertaken",
"offshore",
",",
"e.g.",
",",
"in",
"a",
"centralized",
"logistical",
"/",
"commercial",
"hub",
".",
"These",
"\n",
"activities",
"are",
"intrinsically",
"ring",
"-",
"fenced",
"if",
"they",
"are",
"undertaken",
"by",
"different",
"\n",
"entities",
"in",
"separate",
"jurisdictions",
".",
"However",
",",
"there",
"are",
"scenarios",
"where",
"different",
"\n",
"upstream",
"and",
"downstream",
"activities",
"happen",
"within",
"the",
"same",
"jurisdiction",
".",
"In",
"\n",
"scenarios",
"where",
"there",
"are",
"mining",
"and",
"non",
"-",
"mining",
"activities",
"undertaken",
"in",
"a",
"\n",
"jurisdiction",
",",
"and"
] |
[] |
462.
- 28 Law 1609/ 1986. Greek literature related to the issue of birth control is mostly focused on the emergence of the feminist movements of the period (1970s1980s), to which the feminist birth control movement belonged. See Catalog, Ο φε μ ινισ μ ός στα χρόνια της μ ετα π ολίτευσης 1974- 1990: Ιδέες , συλλογικότητες , διεκδικήσεις [Feminism during the era of the democratic transition 1974- 1990: Ideas, collectivities, claims] (Athens: The Hellenic Parliament Foundation for Parliamentarism and Democracy, n.d.); Nt. Vaiou and Ag. Psarra, ' Εισαγωγικό ση μ είω μ α ε π μ ι ελητριών ' [Editors' introductory note] in Nt. Vaiou and A. Psarra (eds), Εννοιολογήσεις και π ρακτικές του φε μ ινισ μ ού : Μετα π ολίτευση και «μ ετά » [ Meanings and Practices of Feminism: Democratic Transition and Onwards ] (Athens: The Hellenic Parliament Foundation for Parliamentarism and Democracy, 2018), pp. ix- 1. An introduction to the feminist birth control movement in Greece can be found in the feminist magazine Dini published right after the decriminalization of abortion in 1986: E. Avdela, M. Papagiannaki and K. Sklaveniti, Έκτρωση 1976- 1986: Το χρονικό μ ιας διεκδίκησης [Abortion 1976- 1986: The timeline of a claim], Dini Feminist Magazine , 1 (1986), 4- 29.
Abortion and contraception in Greece are an understudied area. However, crucial aspects of those phenomena and practices have been examined from a sociological, statistical, anthropological, biopolitical and ethnographical point of view. See A. Barmpouti, 'Issues of biopolitics of reproduction in postwar Greece', Studies in History and Philosophy of Biological and Biomedical Sciences , 83 (2020); A. Chalkia, Το άδειο λίκνο της δη μ οκρατίας . Σεξ , έκτρωση και εθνικισ μ ός στην σύγχρονη Ελλάδα [ The empty cradle of democracy: Sex, abortion and nationalism in modern Greece ] (Athens: Alexandreia Publications, 2007); E. Georges, Bodies of Knowledge: The Medicalization of Reproduction in Greece (Nashville, TN: Vanderbilt University Press, 2008); V. Hionidou, Abortion and Contraception in Modern Greece, 1830- 1967: Medicine, Sexuality and Popular Culture (Cham: Palgrave Macmillan, 2020); E. Zaragkali, Οι βουβές π ληγές . Η αντι σύλληψη και η έκτρωση ως βίω -μ α και ως π ράξη [ Silent Wounds: Contraception and Abortion as an Experience and Praxis ] (Athens: Nisos Academic Publishing, 2010).
- 29 Τ he analysis of the archival material related to the popular press included magazines and newspapers of general interest for the
|
[
" ",
"462",
".",
"\n",
"-",
"28",
" ",
"Law",
"1609/",
" ",
"1986",
".",
"Greek",
"literature",
"related",
"to",
"the",
"issue",
"of",
"birth",
"control",
"is",
"mostly",
"focused",
"on",
"the",
"emergence",
"of",
"the",
"feminist",
"movements",
"of",
"the",
"period",
"(",
"1970s1980s",
")",
",",
"to",
"which",
"the",
"feminist",
"birth",
"control",
"movement",
"belonged",
".",
"See",
"Catalog",
",",
"Ο",
"φε",
"μ",
"ινισ",
"μ",
"ός",
"στα",
"χρόνια",
"της",
"μ",
"ετα",
"π",
"ολίτευσης",
"1974-",
" ",
"1990",
":",
"Ιδέες",
",",
"συλλογικότητες",
",",
"διεκδικήσεις",
"[",
"Feminism",
"during",
"the",
"era",
"of",
"the",
"democratic",
"transition",
"1974-",
" ",
"1990",
":",
"Ideas",
",",
"collectivities",
",",
"claims",
"]",
"(",
"Athens",
":",
"The",
"Hellenic",
"Parliament",
"Foundation",
"for",
"Parliamentarism",
"and",
"Democracy",
",",
"n.d",
".",
")",
";",
"Nt",
".",
"Vaiou",
"and",
"Ag",
".",
"Psarra",
",",
"'",
"Εισαγωγικό",
"ση",
"μ",
"είω",
"μ",
"α",
"ε",
"π",
"μ",
"ι",
"ελητριών",
"'",
"[",
"Editors",
"'",
" ",
"introductory",
" ",
"note",
"]",
" ",
"in",
" ",
"Nt",
".",
" ",
"Vaiou",
" ",
"and",
" ",
"A.",
"Psarra",
" ",
"(",
"eds",
")",
",",
"Εννοιολογήσεις",
"και",
"π",
"ρακτικές",
"του",
"φε",
"μ",
"ινισ",
"μ",
"ού",
":",
"Μετα",
"π",
"ολίτευση",
"και",
"«",
"μ",
"ετά",
"»",
"[",
"Meanings",
" ",
"and",
" ",
"Practices",
" ",
"of",
" ",
"Feminism",
":",
" ",
"Democratic",
" ",
"Transition",
" ",
"and",
"Onwards",
"]",
"(",
"Athens",
":",
"The",
"Hellenic",
"Parliament",
"Foundation",
"for",
"Parliamentarism",
"and",
"Democracy",
",",
"2018",
")",
",",
"pp",
".",
"ix-",
" ",
"1",
".",
"An",
"introduction",
"to",
"the",
"feminist",
"birth",
"control",
"movement",
"in",
"Greece",
"can",
"be",
"found",
"in",
"the",
"feminist",
"magazine",
"Dini",
"published",
"right",
"after",
"the",
"decriminalization",
"of",
"abortion",
"in",
"1986",
":",
"E.",
"Avdela",
",",
"M.",
"Papagiannaki",
"and",
"K.",
"Sklaveniti",
",",
"Έκτρωση",
"1976-",
" ",
"1986",
":",
"Το",
"χρονικό",
"μ",
"ιας",
"διεκδίκησης",
"[",
"Abortion",
"1976-",
" ",
"1986",
":",
"The",
"timeline",
"of",
"a",
"claim",
"]",
",",
"Dini",
"Feminist",
"Magazine",
",",
"1",
"(",
"1986",
")",
",",
"4-",
" ",
"29",
".",
"\n\n",
"Abortion",
" ",
"and",
" ",
"contraception",
" ",
"in",
" ",
"Greece",
" ",
"are",
" ",
"an",
" ",
"understudied",
" ",
"area",
".",
" ",
"However",
",",
"crucial",
"aspects",
"of",
"those",
"phenomena",
"and",
"practices",
"have",
"been",
"examined",
"from",
"a",
" ",
"sociological",
",",
" ",
"statistical",
",",
" ",
"anthropological",
",",
" ",
"biopolitical",
" ",
"and",
" ",
"ethnographical",
"point",
"of",
"view",
".",
"See",
"A.",
"Barmpouti",
",",
"'",
"Issues",
"of",
"biopolitics",
"of",
"reproduction",
"in",
"postwar",
"Greece",
"'",
",",
"Studies",
"in",
"History",
"and",
"Philosophy",
"of",
"Biological",
"and",
"Biomedical",
"Sciences",
",",
"83",
"(",
"2020",
")",
";",
"A.",
"Chalkia",
",",
"Το",
"άδειο",
"λίκνο",
"της",
"δη",
"μ",
"οκρατίας",
".",
"Σεξ",
",",
"έκτρωση",
"και",
"εθνικισ",
"μ",
"ός",
"στην",
"σύγχρονη",
"Ελλάδα",
"[",
"The",
"empty",
"cradle",
"of",
"democracy",
":",
"Sex",
",",
"abortion",
"and",
"nationalism",
"in",
"modern",
"Greece",
"]",
"(",
"Athens",
":",
"Alexandreia",
"Publications",
",",
"2007",
")",
";",
"E.",
"Georges",
",",
"Bodies",
"of",
"Knowledge",
":",
"The",
"Medicalization",
"of",
"Reproduction",
"in",
"Greece",
"(",
"Nashville",
",",
" ",
"TN",
":",
" ",
"Vanderbilt",
" ",
"University",
" ",
"Press",
",",
" ",
"2008",
")",
";",
" ",
"V.",
" ",
"Hionidou",
",",
"Abortion",
"and",
"Contraception",
"in",
"Modern",
"Greece",
",",
"1830-",
" ",
"1967",
":",
"Medicine",
",",
"Sexuality",
"and",
"Popular",
"Culture",
"(",
"Cham",
":",
"Palgrave",
"Macmillan",
",",
"2020",
")",
";",
"E.",
"Zaragkali",
",",
"Οι",
"βουβές",
"π",
"ληγές",
".",
"Η",
"αντι",
"σύλληψη",
"και",
"η",
"έκτρωση",
"ως",
"βίω",
"-μ",
"α",
"και",
"ως",
"π",
"ράξη",
"[",
"Silent",
"Wounds",
":",
"Contraception",
" ",
"and",
" ",
"Abortion",
" ",
"as",
" ",
"an",
" ",
"Experience",
" ",
"and",
" ",
"Praxis",
"]",
" ",
"(",
"Athens",
":",
" ",
"Nisos",
"Academic",
"Publishing",
",",
"2010",
")",
".",
"\n\n",
"-",
"29",
"Τ",
"he",
" ",
"analysis",
" ",
"of",
" ",
"the",
" ",
"archival",
" ",
"material",
" ",
"related",
" ",
"to",
" ",
"the",
" ",
"popular",
" ",
"press",
" ",
"included",
"magazines",
" ",
"and",
" ",
"newspapers",
" ",
"of",
" ",
"general",
" ",
"interest",
" ",
"for",
" ",
"the"
] |
[
{
"end": 3,
"label": "CITATION_ID",
"start": 1
},
{
"end": 1280,
"label": "CITATION_SPAN",
"start": 5
},
{
"end": 1695,
"label": "CITATION_SPAN",
"start": 1539
},
{
"end": 1918,
"label": "CITATION_SPAN",
"start": 1697
},
{
"end": 2053,
"label": "CITATION_SPAN",
"start": 1920
},
{
"end": 2416,
"label": "CITATION_SPAN",
"start": 2056
},
{
"end": 2422,
"label": "CITATION_ID",
"start": 2420
}
] |
to 77% in 2022 in high-income countries.
Effective principals ensure their schools are safe, healthy and inclusive. Preventing bullying and ensuring student safety are key objectives for school leaders. In the United States, principals adapted the curriculum to prioritize social and emotional well-being during the COVID-19 pandemic. In Malta, principals worked with communities to develop an inclusive school culture for migrants with language support.
Effective leadership demands fair hiring practices, trust and growth opportunities.
Talent recruitment and retention requires open and competitive hiring processes. Limiting political discretion in appointing school principals improves school outcomes. Yet globally, only 63% of countries have open and competitive school principal recruitment processes in primary and secondary education.
The best teachers do not necessarily make the best principals. But while 76% of countries require principals to be fully qualified teachers, some 3 in 10 also specify management experience.
Autonomy can unlock leaders’ potential. Higher-performing education systems tend to grant greater autonomy to
principals over decisions on human and financial resources. But in richer countries, less than half of principals are responsible for course content or establishing teacher salary levels. And almost 40% of countries do not recognize higher education institutions’ autonomy by law.
Professional leaders need preparation and training. School leadership standards can help guide training by outlining
the required competencies, which almost all countries have set. However, almost half of principals in richer countries do not receive any training before appointment and only 31% of all countries have regulations for the induction of new principals. Practical skills like data use, financial management and digital literacy are also essential, yet a quarter of principals in richer countries lack adequate training in such areas.
School leaders are expected to do too much with too little.
There are too many demands on school operations to leave enough time for principals to set a vision. Expectations of principals are often too high. Principals are key to effective implementation of reforms. In some countries, they are also under intense scrutiny due to new accountability mechanisms. Yet a survey of principals in 14 middle-income countries showed that 68% of their time is spent on routine management tasks. About one third of public school principals and one fifth of private school principals in OECD countries reported lacking sufficient time for instructional leadership.
2 KEY MESSAGES
School leaders should not be heroes. Sharing leadership builds better schools.
Sharing leadership throughout the school
|
[
"to",
"77",
"%",
"in",
"2022",
"in",
"high",
"-",
"income",
"countries",
".",
"\n ",
"Effective",
"principals",
"ensure",
"their",
"schools",
"are",
"safe",
",",
"healthy",
"and",
"inclusive",
".",
"Preventing",
"bullying",
"and",
"ensuring",
"student",
"safety",
"are",
"key",
"objectives",
"for",
"school",
"leaders",
".",
"In",
"the",
"United",
"States",
",",
"principals",
"adapted",
"the",
"curriculum",
"to",
"prioritize",
"social",
"and",
"emotional",
"well",
"-",
"being",
"during",
"the",
"COVID-19",
"pandemic",
".",
"In",
"Malta",
",",
"principals",
"worked",
"with",
"communities",
"to",
"develop",
"an",
"inclusive",
"school",
"culture",
"for",
"migrants",
"with",
"language",
"support",
".",
"\n",
"Effective",
"leadership",
"demands",
"fair",
"hiring",
"practices",
",",
"trust",
"and",
"growth",
"opportunities",
".",
"\n ",
"Talent",
"recruitment",
"and",
"retention",
"requires",
"open",
"and",
"competitive",
"hiring",
"processes",
".",
"Limiting",
"political",
"discretion",
"in",
"appointing",
"school",
"principals",
"improves",
"school",
"outcomes",
".",
"Yet",
"globally",
",",
"only",
"63",
"%",
"of",
"countries",
"have",
"open",
"and",
"competitive",
"school",
"principal",
"recruitment",
"processes",
"in",
"primary",
"and",
"secondary",
"education",
".",
"\n ",
"The",
"best",
"teachers",
"do",
"not",
"necessarily",
"make",
"the",
"best",
"principals",
".",
"But",
"while",
"76",
"%",
"of",
"countries",
"require",
"principals",
"to",
"be",
"fully",
"qualified",
"teachers",
",",
"some",
"3",
"in",
"10",
"also",
"specify",
"management",
"experience",
".",
"\n ",
"Autonomy",
"can",
"unlock",
"leaders",
"’",
"potential",
".",
" ",
"Higher",
"-",
"performing",
"education",
"systems",
"tend",
"to",
"grant",
"greater",
"autonomy",
"to",
"\n",
"principals",
"over",
"decisions",
"on",
"human",
"and",
"financial",
"resources",
".",
"But",
"in",
"richer",
"countries",
",",
"less",
"than",
"half",
"of",
"principals",
"are",
"responsible",
"for",
"course",
"content",
"or",
"establishing",
"teacher",
"salary",
"levels",
".",
"And",
"almost",
"40",
"%",
"of",
"countries",
"do",
"not",
"recognize",
"higher",
"education",
"institutions",
"’",
"autonomy",
"by",
"law",
".",
"\n ",
"Professional",
"leaders",
"need",
"preparation",
"and",
"training",
".",
" ",
"School",
"leadership",
"standards",
"can",
"help",
"guide",
"training",
"by",
"outlining",
"\n",
"the",
"required",
"competencies",
",",
"which",
"almost",
"all",
"countries",
"have",
"set",
".",
"However",
",",
"almost",
"half",
"of",
"principals",
"in",
"richer",
"countries",
"do",
"not",
"receive",
"any",
"training",
"before",
"appointment",
"and",
"only",
"31",
"%",
"of",
"all",
"countries",
"have",
"regulations",
"for",
"the",
"induction",
"of",
"new",
"principals",
".",
"Practical",
"skills",
"like",
"data",
"use",
",",
"financial",
"management",
"and",
"digital",
"literacy",
"are",
"also",
"essential",
",",
"yet",
"a",
"quarter",
"of",
"principals",
"in",
"richer",
"countries",
"lack",
"adequate",
"training",
"in",
"such",
"areas",
".",
"\n",
"School",
"leaders",
"are",
"expected",
"to",
"do",
"too",
"much",
"with",
"too",
"little",
".",
"\n ",
"There",
"are",
"too",
"many",
"demands",
"on",
"school",
"operations",
"to",
"leave",
"enough",
"time",
"for",
"principals",
"to",
"set",
"a",
"vision",
".",
"Expectations",
"of",
"principals",
"are",
"often",
"too",
"high",
".",
"Principals",
"are",
"key",
"to",
"effective",
"implementation",
"of",
"reforms",
".",
"In",
"some",
"countries",
",",
"they",
"are",
"also",
"under",
"intense",
"scrutiny",
"due",
"to",
"new",
"accountability",
"mechanisms",
".",
"Yet",
"a",
"survey",
"of",
"principals",
"in",
"14",
"middle",
"-",
"income",
"countries",
"showed",
"that",
"68",
"%",
"of",
"their",
"time",
"is",
"spent",
"on",
"routine",
"management",
"tasks",
".",
"About",
"one",
"third",
"of",
"public",
"school",
"principals",
"and",
"one",
"fifth",
"of",
"private",
"school",
"principals",
"in",
"OECD",
"countries",
"reported",
"lacking",
"sufficient",
"time",
"for",
"instructional",
"leadership",
".",
"\n",
"2",
"KEY",
"MESSAGES",
"\n",
"School",
"leaders",
"should",
"not",
"be",
"heroes",
".",
"Sharing",
"leadership",
"builds",
"better",
"schools",
".",
"\n ",
"Sharing",
"leadership",
"throughout",
"the",
"school"
] |
[] |
mining taxpayer, and gains are booked by the beneficial owner or its controlled company (see Box 6).
## BOX 6. AN ILLUSTRATION OF THE EROSION OF THE TAX BASE DURING FINANCIAL DERIVATIVES ARRANGEMENTS
Company A is a mining company in Country A. It has entered into a long-term financial derivative instrument arrangement with an overseas-based independent Investment Bank Z:
- · whereby if the market price of the commodity extracted by Company A falls below a set price of USD 100, Investment Bank Z will pay Company A the difference between the set price (USD 100) and the actual market price.
- · whereby if the market price of the commodity rises above the set price, Company A pays the difference to Investment Bank Z.
Based on the facts of the case, the price was set at USD 100, while the market demand trends and longer-term prognosis indicated that the commodity price would be mostly rising in the coming 5 years to USD 120, USD 130, USD 150, USD 170, and USD 200, respectively, with a very low risk that the price drops below USD 100. As a result of this arrangement, most of the profits earned over the 5-year period are paid to the independent Investment Bank Z.
During the audit, an exchange of information exercise was carried out, which identified that Investment Bank Z had entered into an identical but reverse arrangement with Company B, which is controlled by the beneficial owner of Company A. As a result of this arrangement, most of the profit-less the annual administration fee that stays with the bankwas paid to Company B. Investment Bank Z was thus acting as a mere intermediary, which was effectively a BEPS arrangement between related parties in Companies A and B.
Ring-fencing rules could avoid this type of scenario by ring-fencing the outcomes of such derivative instrument arrangements into separate tax bases that would not allow Company A to offset such expenses resulting from derivatives unless the gain was made on such a derivative transaction. This way, even in the absence of detection of such a BEPS arrangement, the tax base is protected. Ring-fencing rules effectively disallow Company A from offsetting losses derived from these types of transactions from mining revenues. In case of legitimate derivative arrangements, the company will still be entitled to offset the derivative losses from derivative gains earned in subsequent periods. This feature
|
[
"mining",
"taxpayer",
",",
"and",
"gains",
"are",
"booked",
"by",
"the",
"beneficial",
"owner",
"or",
"its",
"controlled",
"company",
"(",
"see",
"Box",
"6",
")",
".",
"\n\n",
"#",
"#",
"BOX",
"6",
".",
"AN",
"ILLUSTRATION",
"OF",
"THE",
"EROSION",
"OF",
"THE",
"TAX",
"BASE",
"DURING",
"FINANCIAL",
"DERIVATIVES",
"ARRANGEMENTS",
"\n\n",
"Company",
"A",
"is",
"a",
"mining",
"company",
"in",
"Country",
"A.",
"It",
"has",
"entered",
"into",
"a",
"long",
"-",
"term",
"financial",
"derivative",
"instrument",
"arrangement",
"with",
"an",
"overseas",
"-",
"based",
"independent",
"Investment",
"Bank",
"Z",
":",
"\n\n",
"-",
"·",
"whereby",
"if",
"the",
"market",
"price",
"of",
"the",
"commodity",
"extracted",
"by",
"Company",
"A",
"falls",
"below",
"a",
"set",
"price",
"of",
"USD",
"100",
",",
"Investment",
"Bank",
"Z",
"will",
"pay",
"Company",
"A",
"the",
"difference",
"between",
"the",
"set",
"price",
"(",
"USD",
"100",
")",
"and",
"the",
"actual",
"market",
"price",
".",
"\n",
"-",
"·",
"whereby",
"if",
"the",
"market",
"price",
"of",
"the",
"commodity",
"rises",
"above",
"the",
"set",
"price",
",",
"Company",
"A",
"pays",
"the",
"difference",
"to",
"Investment",
"Bank",
"Z.",
"\n\n",
"Based",
"on",
"the",
"facts",
"of",
"the",
"case",
",",
"the",
"price",
"was",
"set",
"at",
"USD",
"100",
",",
"while",
"the",
"market",
"demand",
"trends",
"and",
"longer",
"-",
"term",
"prognosis",
"indicated",
"that",
"the",
"commodity",
"price",
"would",
"be",
"mostly",
"rising",
"in",
"the",
"coming",
"5",
"years",
"to",
"USD",
"120",
",",
"USD",
"130",
",",
"USD",
"150",
",",
"USD",
"170",
",",
"and",
"USD",
"200",
",",
"respectively",
",",
"with",
"a",
"very",
"low",
"risk",
"that",
"the",
"price",
"drops",
"below",
"USD",
"100",
".",
"As",
"a",
"result",
"of",
"this",
"arrangement",
",",
"most",
"of",
"the",
"profits",
"earned",
"over",
"the",
"5",
"-",
"year",
"period",
"are",
"paid",
"to",
"the",
"independent",
"Investment",
"Bank",
"Z.",
"\n\n",
"During",
"the",
"audit",
",",
"an",
"exchange",
"of",
"information",
"exercise",
"was",
"carried",
"out",
",",
"which",
"identified",
"that",
"Investment",
"Bank",
"Z",
"had",
"entered",
"into",
"an",
"identical",
"but",
"reverse",
"arrangement",
"with",
"Company",
"B",
",",
"which",
"is",
"controlled",
"by",
"the",
"beneficial",
"owner",
"of",
"Company",
"A.",
"As",
"a",
"result",
"of",
"this",
"arrangement",
",",
"most",
"of",
"the",
"profit",
"-",
"less",
"the",
"annual",
"administration",
"fee",
"that",
"stays",
"with",
"the",
"bankwas",
"paid",
"to",
"Company",
"B.",
"Investment",
"Bank",
"Z",
"was",
"thus",
"acting",
"as",
"a",
"mere",
"intermediary",
",",
"which",
"was",
"effectively",
"a",
"BEPS",
"arrangement",
"between",
"related",
"parties",
"in",
"Companies",
"A",
"and",
"B.",
"\n\n",
"Ring",
"-",
"fencing",
"rules",
"could",
"avoid",
"this",
"type",
"of",
"scenario",
"by",
"ring",
"-",
"fencing",
"the",
"outcomes",
"of",
"such",
"derivative",
"instrument",
"arrangements",
"into",
"separate",
"tax",
"bases",
"that",
"would",
"not",
"allow",
"Company",
"A",
"to",
"offset",
"such",
"expenses",
"resulting",
"from",
"derivatives",
"unless",
"the",
"gain",
"was",
"made",
"on",
"such",
"a",
"derivative",
"transaction",
".",
"This",
"way",
",",
"even",
"in",
"the",
"absence",
"of",
"detection",
"of",
"such",
"a",
"BEPS",
"arrangement",
",",
"the",
"tax",
"base",
"is",
"protected",
".",
"Ring",
"-",
"fencing",
"rules",
"effectively",
"disallow",
"Company",
"A",
"from",
"offsetting",
"losses",
"derived",
"from",
"these",
"types",
"of",
"transactions",
"from",
"mining",
"revenues",
".",
"In",
"case",
"of",
"legitimate",
"derivative",
"arrangements",
",",
"the",
"company",
"will",
"still",
"be",
"entitled",
"to",
"offset",
"the",
"derivative",
"losses",
"from",
"derivative",
"gains",
"earned",
"in",
"subsequent",
"periods",
".",
"This",
"feature"
] |
[] |
The government launched nationwide media campaigns and community social mobilisation efforts to educate citizens on handwashing techniques and the use of face masks. Sanitisation of hotspots, and rapid assembly of handwashing stations in underserved areas (in partnership with local private sector actors), were also among the measures taken (Wangari et al., 2021[25]). Innovations by local industry,
supported by the government, included mass production of PPE kits and ventilators (Government of Kenya, 2020[21]). The Ministry of Health also launched guidance on mental and psychosocial support provision during COVID-19 (Government of Kenya, 2020[26]).
In November 2021, in a State of the Nation Address, the Kenyan President noted key COVID-19 health response achievements including: a) immediate appropriation of KES 6 billion (approximately EUR 40 million) from Universal Health Coverage funds to support counties in recruiting additional health staff; b) a 600% increase in intensive care unit (ICU) bed capacity nationwide; c) a 1000% increase in oxygen generation capacity; d) increasing the number of well-equipped laboratories from 1 to 95; and e) locally driven production (including exports) of syringes and masks (Government of Kenya, 2021[27]). The number of health workers recruited and trained to respond to the pandemic increased from zero (0) to 41 119 between 2019 and 2020 while the number of health facilities to isolate and treat COVID-19 patients increased from 14 to 290 in the same period (IDEV, 2022[28]). Notably, the number of trained health workers and health facilities available for isolation exceeded the targets set by the government.
## 2.4. Expanding access to vaccines during the pandemic
During the COVID-19 pandemic, Kenya was able to continue the routine administration of immunisations with generally high coverage rates. In areas where coverage fell, they quickly managed to catch up (see Chapter 1). The pre-existing immunisation systems were capable of reaching hard-to-reach and vulnerable groups in rural and remote parts of the country, including arid and semi-arid regions, and refugee populations. Some gaps in cold storage, county-level infrastructure, distribution network, waste management capacity and surveillance were noted. These areas received support from international partners, particularly in 2022, to strengthen Kenya's COVID -19 vaccination efforts (World Bank, 2021[29]).
## Securing vaccines through COVAX and international partnerships
COVAX and the African Vaccine Acquisition Task Team (AVATT) were the key mechanisms through which Kenya procured its vaccines. This included using loans from multilateral institutions to finance such procurements (e.g. a USD 130 million loan from the
|
[
"The",
" ",
"government",
" ",
"launched",
" ",
"nationwide",
" ",
"media",
" ",
"campaigns",
" ",
"and",
" ",
"community",
" ",
"social",
" ",
"mobilisation",
" ",
"efforts",
" ",
"to",
"educate",
"citizens",
"on",
"handwashing",
"techniques",
"and",
"the",
"use",
"of",
"face",
"masks",
".",
"Sanitisation",
"of",
"hotspots",
",",
"and",
"rapid",
"assembly",
"of",
"handwashing",
"stations",
"in",
"underserved",
"areas",
"(",
"in",
"partnership",
"with",
"local",
"private",
"sector",
"actors",
")",
",",
" ",
"were",
" ",
"also",
" ",
"among",
" ",
"the",
" ",
"measures",
" ",
"taken",
" ",
"(",
"Wangari",
" ",
"et",
"al",
".",
",",
" ",
"2021[25",
"]",
")",
".",
" ",
"Innovations",
" ",
"by",
" ",
"local",
" ",
"industry",
",",
"\n\n",
"supported",
" ",
"by",
" ",
"the",
" ",
"government",
",",
" ",
"included",
" ",
"mass",
" ",
"production",
" ",
"of",
" ",
"PPE",
" ",
"kits",
" ",
"and",
" ",
"ventilators",
" ",
"(",
"Government",
" ",
"of",
"Kenya",
",",
" ",
"2020[21",
"]",
")",
".",
" ",
"The",
" ",
"Ministry",
" ",
"of",
" ",
"Health",
" ",
"also",
" ",
"launched",
" ",
"guidance",
" ",
"on",
" ",
"mental",
" ",
"and",
" ",
"psychosocial",
" ",
"support",
"provision",
"during",
"COVID-19",
"(",
"Government",
"of",
"Kenya",
",",
"2020[26",
"]",
")",
".",
"\n\n",
"In",
"November",
"2021",
",",
"in",
"a",
"State",
"of",
"the",
"Nation",
"Address",
",",
"the",
"Kenyan",
"President",
"noted",
"key",
"COVID-19",
"health",
"response",
"achievements",
"including",
":",
"a",
")",
"immediate",
"appropriation",
"of",
"KES",
"6",
"billion",
"(",
"approximately",
"EUR",
"40",
"million",
")",
"from",
"Universal",
"Health",
"Coverage",
"funds",
"to",
"support",
"counties",
"in",
"recruiting",
"additional",
"health",
"staff",
";",
" ",
"b",
")",
"a",
" ",
"600",
"%",
"increase",
"in",
"intensive",
"care",
"unit",
"(",
"ICU",
")",
"bed",
"capacity",
"nationwide",
";",
"c",
")",
"a",
"1000",
"%",
"increase",
"in",
"oxygen",
"generation",
"capacity",
";",
"d",
")",
"increasing",
"the",
"number",
"of",
"well",
"-",
"equipped",
"laboratories",
"from",
"1",
"to",
"95",
";",
"and",
"e",
")",
"locally",
"driven",
"production",
"(",
"including",
"exports",
")",
"of",
"syringes",
"and",
"masks",
"(",
"Government",
"of",
"Kenya",
",",
"2021[27",
"]",
")",
".",
"The",
"number",
"of",
"health",
"workers",
"recruited",
"and",
"trained",
"to",
"respond",
"to",
"the",
"pandemic",
"increased",
"from",
"zero",
"(",
"0",
")",
"to",
"41",
"119",
"between",
"2019",
"and",
"2020",
"while",
"the",
"number",
"of",
"health",
"facilities",
"to",
"isolate",
"and",
"treat",
"COVID-19",
"patients",
"increased",
"from",
"14",
"to",
"290",
"in",
"the",
"same",
"period",
"(",
"IDEV",
",",
"2022[28",
"]",
")",
".",
"Notably",
",",
"the",
"number",
"of",
"trained",
"health",
"workers",
"and",
"health",
"facilities",
"available",
"for",
"isolation",
"exceeded",
"the",
"targets",
"set",
"by",
"the",
"government",
".",
"\n\n",
"#",
"#",
"2.4",
".",
"Expanding",
"access",
"to",
"vaccines",
"during",
"the",
"pandemic",
"\n\n",
"During",
"the",
"COVID-19",
"pandemic",
",",
"Kenya",
"was",
"able",
"to",
"continue",
"the",
"routine",
"administration",
"of",
"immunisations",
"with",
"generally",
"high",
"coverage",
"rates",
".",
"In",
"areas",
"where",
"coverage",
"fell",
",",
"they",
"quickly",
"managed",
"to",
"catch",
"up",
"(",
"see",
"Chapter",
"1",
")",
".",
"The",
"pre",
"-",
"existing",
"immunisation",
"systems",
"were",
"capable",
"of",
"reaching",
"hard",
"-",
"to",
"-",
"reach",
"and",
"vulnerable",
"groups",
" ",
"in",
" ",
"rural",
" ",
"and",
" ",
"remote",
" ",
"parts",
" ",
"of",
" ",
"the",
" ",
"country",
",",
" ",
"including",
" ",
"arid",
" ",
"and",
" ",
"semi",
"-",
"arid",
" ",
"regions",
",",
" ",
"and",
" ",
"refugee",
"populations",
".",
"Some",
" ",
"gaps",
" ",
"in",
" ",
"cold",
" ",
"storage",
",",
"county",
"-",
"level",
"infrastructure",
",",
"distribution",
"network",
",",
"waste",
"management",
" ",
"capacity",
" ",
"and",
" ",
"surveillance",
" ",
"were",
" ",
"noted",
".",
" ",
"These",
" ",
"areas",
" ",
"received",
" ",
"support",
" ",
"from",
" ",
"international",
"partners",
",",
"particularly",
"in",
"2022",
",",
"to",
"strengthen",
"Kenya",
"'s",
"COVID",
"-19",
"vaccination",
"efforts",
"(",
"World",
"Bank",
",",
"2021[29",
"]",
")",
".",
"\n\n",
"#",
"#",
"Securing",
"vaccines",
"through",
"COVAX",
"and",
"international",
"partnerships",
"\n\n",
"COVAX",
"and",
"the",
"African",
"Vaccine",
"Acquisition",
"Task",
"Team",
"(",
"AVATT",
")",
"were",
"the",
"key",
"mechanisms",
"through",
"which",
"Kenya",
" ",
"procured",
" ",
"its",
" ",
"vaccines",
".",
" ",
"This",
" ",
"included",
" ",
"using",
" ",
"loans",
" ",
"from",
" ",
"multilateral",
" ",
"institutions",
" ",
"to",
" ",
"finance",
" ",
"such",
"procurements",
"(",
"e.g.",
"a",
"USD",
"130",
"million",
"loan",
"from",
"the"
] |
[
{
"end": 387,
"label": "CITATION_REF",
"start": 361
},
{
"end": 376,
"label": "AUTHOR",
"start": 361
},
{
"end": 383,
"label": "YEAR",
"start": 379
},
{
"end": 386,
"label": "CITATION_ID",
"start": 384
},
{
"end": 552,
"label": "CITATION_REF",
"start": 521
},
{
"end": 541,
"label": "AUTHOR",
"start": 521
},
{
"end": 548,
"label": "YEAR",
"start": 544
},
{
"end": 551,
"label": "CITATION_ID",
"start": 549
},
{
"end": 704,
"label": "CITATION_REF",
"start": 675
},
{
"end": 694,
"label": "AUTHOR",
"start": 675
},
{
"end": 700,
"label": "YEAR",
"start": 696
},
{
"end": 703,
"label": "CITATION_ID",
"start": 701
},
{
"end": 1311,
"label": "CITATION_REF",
"start": 1282
},
{
"end": 1301,
"label": "AUTHOR",
"start": 1282
},
{
"end": 1307,
"label": "YEAR",
"start": 1303
},
{
"end": 1310,
"label": "CITATION_ID",
"start": 1308
},
{
"end": 1584,
"label": "CITATION_REF",
"start": 1570
},
{
"end": 1574,
"label": "AUTHOR",
"start": 1570
},
{
"end": 1580,
"label": "YEAR",
"start": 1576
},
{
"end": 1583,
"label": "CITATION_ID",
"start": 1581
},
{
"end": 2519,
"label": "CITATION_REF",
"start": 2499
},
{
"end": 2509,
"label": "AUTHOR",
"start": 2499
},
{
"end": 2515,
"label": "YEAR",
"start": 2511
},
{
"end": 2518,
"label": "CITATION_ID",
"start": 2516
}
] |
Zealand** | 80 | 42 | 23 | 13 | 13 | 6 | 45 | 23 | 58 | 35 | 5 | 5 | 4 | 2 | 36 | 19 | 17 | 13 | 28 | 31 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
| Norway | 418 | 255 | 315 | 169 | 50 | 37 | 52 | 49 | 412 | 245 | 275 | 136 | 31 | 21 | 33 | | 33 | 14 | | 9 | 12 | 75 15 | 75 15 | 75 15 | 75 15 | 66 | 75 15 | 75 15 | 75 15 | 75 15 |
| Poland | 14 | 16 | 2 | 4 | 1 | 2 | 11 | 11 | 14 | 12 | 1 | 1 | 0 | 1 | 11 | | 9 | | 5 | 23 | | 5 15 | | | 6 | | 11 | 11 | 11 | 11 |
| Portugal | 47 | 51 | 16 | 16 | 9 | 10 | 22 | 24 | 47 | 46 | 2 | 2 | 3 | 3 | 15 | | | 17 | | | 35 | 33 | 36 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| Qatar Republic of Korea | 126 188 | 152 | 45 | 79 | 20 | 3 | 61 | 69 | 126 | 148 | 4 | 74 | 0 49 | 0 46 | 40 84 | 111 | 67 | 56 10 | 58 12 | 22 | 30 | 16 | 2 25 | 2 25 | 2 25 | 2 25 | 2 25 | 2 25 | 2 25 | 2 25 |
| Romania* | 62 | 235 58 | 41 0 | 51 | 56 0 | 59 | 91 61 | 125 55 | 188 62 | 235 56 | 28 0 | 25 0 | 0 | 0 | 61 | | 55 | 78 | 94 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|
|
[
"Zealand",
"*",
"*",
" ",
"|",
"80",
" ",
"|",
"42",
" ",
"|",
"23",
" ",
"|",
"13",
" ",
"|",
"13",
" ",
"|",
"6",
" ",
"|",
"45",
" ",
"|",
"23",
" ",
"|",
"58",
" ",
"|",
"35",
" ",
"|",
"5",
" ",
"|",
"5",
" ",
"|",
"4",
" ",
"|",
"2",
" ",
"|",
"36",
" ",
"|",
"19",
" ",
"|",
"17",
" ",
"|",
"13",
" ",
"|",
"28",
" ",
"|",
"31",
" ",
"|",
"16",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"15",
" ",
"|",
"\n",
"|",
"Norway",
" ",
"|",
"418",
" ",
"|",
"255",
" ",
"|",
"315",
" ",
"|",
"169",
" ",
"|",
"50",
" ",
"|",
"37",
" ",
"|",
"52",
" ",
"|",
"49",
" ",
"|",
"412",
" ",
"|",
"245",
" ",
"|",
"275",
" ",
"|",
"136",
" ",
"|",
"31",
" ",
"|",
"21",
" ",
"|",
"33",
" ",
"|",
" ",
"|",
"33",
" ",
"|",
"14",
" ",
"|",
" ",
"|",
"9",
" ",
"|",
"12",
" ",
"|",
"75",
"15",
" ",
"|",
"75",
"15",
" ",
"|",
"75",
"15",
" ",
"|",
"75",
"15",
" ",
"|",
"66",
" ",
"|",
"75",
"15",
" ",
"|",
"75",
"15",
" ",
"|",
"75",
"15",
" ",
"|",
"75",
"15",
" ",
"|",
"\n",
"|",
"Poland",
" ",
"|",
"14",
" ",
"|",
"16",
" ",
"|",
"2",
" ",
"|",
"4",
" ",
"|",
"1",
" ",
"|",
"2",
" ",
"|",
"11",
" ",
"|",
"11",
" ",
"|",
"14",
" ",
"|",
"12",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"0",
" ",
"|",
"1",
" ",
"|",
"11",
" ",
"|",
" ",
"|",
"9",
" ",
"|",
" ",
"|",
"5",
" ",
"|",
"23",
" ",
"|",
" ",
"|",
"5",
"15",
" ",
"|",
" ",
"|",
" ",
"|",
"6",
" ",
"|",
" ",
"|",
"11",
" ",
"|",
"11",
" ",
"|",
"11",
" ",
"|",
"11",
" ",
"|",
"\n",
"|",
"Portugal",
" ",
"|",
"47",
" ",
"|",
"51",
" ",
"|",
"16",
" ",
"|",
"16",
" ",
"|",
"9",
" ",
"|",
"10",
" ",
"|",
"22",
" ",
"|",
"24",
" ",
"|",
"47",
" ",
"|",
"46",
" ",
"|",
"2",
" ",
"|",
"2",
" ",
"|",
"3",
" ",
"|",
"3",
" ",
"|",
"15",
" ",
"|",
" ",
"|",
" ",
"|",
"17",
" ",
"|",
" ",
"|",
" ",
"|",
"35",
" ",
"|",
"33",
" ",
"|",
"36",
" ",
"|",
"20",
" ",
"|",
"20",
" ",
"|",
"20",
" ",
"|",
"20",
" ",
"|",
"20",
" ",
"|",
"20",
" ",
"|",
"20",
" ",
"|",
"\n",
"|",
"Qatar",
"Republic",
"of",
"Korea",
" ",
"|",
"126",
"188",
" ",
"|",
"152",
" ",
"|",
"45",
" ",
"|",
"79",
" ",
"|",
"20",
" ",
"|",
"3",
" ",
"|",
"61",
" ",
"|",
"69",
" ",
"|",
"126",
" ",
"|",
"148",
" ",
"|",
"4",
" ",
"|",
"74",
" ",
"|",
"0",
"49",
" ",
"|",
"0",
"46",
" ",
"|",
"40",
"84",
" ",
"|",
"111",
" ",
"|",
"67",
" ",
"|",
"56",
"10",
" ",
"|",
"58",
"12",
" ",
"|",
"22",
" ",
"|",
"30",
" ",
"|",
"16",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"2",
"25",
" ",
"|",
"\n",
"|",
"Romania",
"*",
" ",
"|",
"62",
" ",
"|",
"235",
"58",
" ",
"|",
"41",
"0",
" ",
"|",
"51",
" ",
"|",
"56",
"0",
" ",
"|",
"59",
" ",
"|",
"91",
"61",
" ",
"|",
"125",
"55",
" ",
"|",
"188",
"62",
" ",
"|",
"235",
"56",
" ",
"|",
"28",
"0",
" ",
"|",
"25",
"0",
" ",
"|",
"0",
" ",
"|",
"0",
" ",
"|",
"61",
" ",
"|",
" ",
"|",
"55",
" ",
"|",
"78",
" ",
"|",
"94",
" ",
"|",
"3",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"1",
" ",
"|",
"\n",
"|"
] |
[] |
and the survey with the brokers shows that the political importance of coethnicity and religion is weakened because residents express a far stronger preference for neighbours to share those attributes. This implies that rather than a political inclination, there is a wider social preference within the neighbourhood for those of the same ethnicity and religion. Education is the strongest preference expressed by residents for their broker's attribute. Paniagua (2022) considers the provision of basic public goods and services within communities in urban slums in the city of Buenos Aires, Argentina. Using two sources of quantitative data, she compares neighbourhoods where elections to choose slum level representatives had already taken place to those where they had not. She also carried out in-depth interviews with slum residents, brokers and community organisation leaders. The findings show that in neighbourhoods with higher social capital and a high density of grassroots organisations, introducing formal electoral methods to choose a broker, rather than relying on informal selection procedures, improves the level of broker responsiveness.
Formal slum leader elections can also see new leaders entering the competition. However, public good provision will only transpire when civil society is active within the community.
The popular view of slum communities is that they are in hopelessness. However, as Auerbach and Thachil ( 2023) point out:
they are not helpless, nor are they tricked into trading votes for trinkets. Instead, they are engaged in everyday forms of political participation... urban slum residents actively select their community leaders (brokers), following those they see best as positioned to improve local conditions (p.10).
There are two parts to the research. First, to fully assess the efficacy and distribu -tive aspects, we listen to the voices of community members carrying out interviews to allow for an ethnographically informed picture of who leads the slums. Second, through a conjoint experiment using the theoretical framework set out in Auerbach and Thachil ( 2018 ; 2023) and Stokes et al. (2013), we explore residents' prefer -ences around selecting brokers to assist them in the procurement of goods and services. So, why a conjoint experiment and how does it work?
## Why a conjoint experiment and how does it work?
Conjoint analysis has been shown to be superior to other statistical techniques as the respondent is making a choice without having to be concerned about disclosing personal preferences. This has the benefit of confidentiality, thus avoiding bias. The
|
[
"and",
"the",
"survey",
"with",
"the",
"brokers",
"shows",
"that",
"the",
"political",
"importance",
"of",
"coethnicity",
"and",
"religion",
"is",
"weakened",
"because",
"residents",
"express",
"a",
"far",
"stronger",
"preference",
"for",
"neighbours",
"to",
"share",
"those",
"attributes",
".",
"This",
"implies",
"that",
"rather",
"than",
"a",
"political",
"inclination",
",",
"there",
"is",
"a",
"wider",
"social",
"preference",
"within",
"the",
"neighbourhood",
"for",
"those",
"of",
"the",
"same",
"ethnicity",
"and",
"religion",
".",
"Education",
"is",
"the",
"strongest",
"preference",
"expressed",
"by",
"residents",
"for",
"their",
"broker",
"'s",
"attribute",
".",
"Paniagua",
"(",
"2022",
")",
"considers",
"the",
"provision",
"of",
"basic",
"public",
"goods",
"and",
"services",
"within",
"communities",
"in",
"urban",
"slums",
"in",
"the",
"city",
"of",
"Buenos",
"Aires",
",",
"Argentina",
".",
"Using",
"two",
"sources",
"of",
"quantitative",
"data",
",",
"she",
"compares",
"neighbourhoods",
"where",
"elections",
"to",
"choose",
"slum",
"level",
"representatives",
"had",
"already",
"taken",
"place",
"to",
"those",
"where",
"they",
"had",
"not",
".",
"She",
"also",
"carried",
"out",
"in",
"-",
"depth",
"interviews",
"with",
"slum",
"residents",
",",
"brokers",
"and",
"community",
"organisation",
"leaders",
".",
"The",
"findings",
"show",
"that",
"in",
"neighbourhoods",
"with",
"higher",
"social",
"capital",
"and",
"a",
"high",
"density",
"of",
"grassroots",
"organisations",
",",
"introducing",
"formal",
"electoral",
"methods",
"to",
"choose",
"a",
"broker",
",",
"rather",
"than",
"relying",
"on",
"informal",
"selection",
"procedures",
",",
"improves",
"the",
"level",
"of",
"broker",
"responsiveness",
".",
"\n\n",
"Formal",
"slum",
"leader",
"elections",
"can",
"also",
"see",
"new",
"leaders",
"entering",
"the",
"competition",
".",
"However",
",",
"public",
"good",
"provision",
"will",
"only",
"transpire",
"when",
"civil",
"society",
"is",
"active",
"within",
"the",
"community",
".",
"\n\n",
"The",
"popular",
"view",
"of",
"slum",
"communities",
"is",
"that",
"they",
"are",
"in",
"hopelessness",
".",
"However",
",",
"as",
"Auerbach",
"and",
"Thachil",
"(",
"2023",
")",
"point",
"out",
":",
"\n\n",
"they",
" ",
"are",
" ",
"not",
" ",
"helpless",
",",
" ",
"nor",
" ",
"are",
" ",
"they",
" ",
"tricked",
" ",
"into",
" ",
"trading",
" ",
"votes",
" ",
"for",
" ",
"trinkets",
".",
"Instead",
",",
"they",
"are",
"engaged",
"in",
"everyday",
"forms",
"of",
"political",
"participation",
"...",
"urban",
"slum",
"residents",
"actively",
"select",
"their",
"community",
"leaders",
"(",
"brokers",
")",
",",
"following",
"those",
"they",
"see",
"best",
"as",
"positioned",
"to",
"improve",
"local",
"conditions",
"(",
"p.10",
")",
".",
"\n\n",
"There",
"are",
"two",
"parts",
"to",
"the",
"research",
".",
"First",
",",
"to",
"fully",
"assess",
"the",
"efficacy",
"and",
"distribu",
"-tive",
"aspects",
",",
"we",
"listen",
"to",
"the",
"voices",
"of",
"community",
"members",
"carrying",
"out",
"interviews",
"to",
"allow",
"for",
"an",
"ethnographically",
"informed",
"picture",
"of",
"who",
"leads",
"the",
"slums",
".",
"Second",
",",
"through",
"a",
"conjoint",
"experiment",
"using",
"the",
"theoretical",
"framework",
"set",
"out",
"in",
"Auerbach",
"and",
"Thachil",
"(",
"2018",
";",
"2023",
")",
"and",
"Stokes",
"et",
"al",
".",
"(",
"2013",
")",
",",
"we",
"explore",
"residents",
"'",
"prefer",
"-ences",
" ",
"around",
" ",
"selecting",
" ",
"brokers",
" ",
"to",
" ",
"assist",
" ",
"them",
" ",
"in",
" ",
"the",
" ",
"procurement",
" ",
"of",
" ",
"goods",
" ",
"and",
"services",
".",
"So",
",",
"why",
"a",
"conjoint",
"experiment",
"and",
"how",
"does",
"it",
"work",
"?",
"\n\n",
"#",
"#",
"Why",
"a",
"conjoint",
"experiment",
"and",
"how",
"does",
"it",
"work",
"?",
"\n\n",
"Conjoint",
"analysis",
"has",
"been",
"shown",
"to",
"be",
"superior",
"to",
"other",
"statistical",
"techniques",
"as",
"the",
"respondent",
"is",
"making",
"a",
"choice",
"without",
"having",
"to",
"be",
"concerned",
"about",
"disclosing",
"personal",
"preferences",
".",
"This",
"has",
"the",
"benefit",
"of",
"confidentiality",
",",
"thus",
"avoiding",
"bias",
".",
"The"
] |
[
{
"end": 462,
"label": "AUTHOR",
"start": 454
},
{
"end": 468,
"label": "YEAR",
"start": 464
},
{
"end": 469,
"label": "CITATION_REF",
"start": 454
},
{
"end": 1449,
"label": "YEAR",
"start": 1445
},
{
"end": 1442,
"label": "AUTHOR",
"start": 1422
},
{
"end": 1450,
"label": "CITATION_REF",
"start": 1422
},
{
"end": 2124,
"label": "AUTHOR",
"start": 2104
},
{
"end": 2131,
"label": "YEAR",
"start": 2127
},
{
"end": 2138,
"label": "YEAR",
"start": 2134
},
{
"end": 2163,
"label": "YEAR",
"start": 2159
},
{
"end": 2157,
"label": "AUTHOR",
"start": 2144
},
{
"end": 2164,
"label": "CITATION_REF",
"start": 2144
},
{
"end": 2139,
"label": "CITATION_REF",
"start": 2104
}
] |
'social capital' to 'private benefits', you need to pass through the variable 'partners' ( Figure 3.5). We can write all four unique pairs of non-adjacent vertices as conditional independence statements as follows SC PrB P | , P SWB SC PrB PuB | , SC PrB P | and
## PuB PrB P |
We investigate the hypothesis of independence using Pearson partial correlation, testing to see if any of the coefficients are zero. The test results for the probabilities
Table 3.5 d-separation statements, Pearson partial correlation and probabilities
| | Pearson partial correlation | Pearson partial correlation |
|------------------------|-------------------------------|-----------------------------------|
| d-separation statement | Estimate | Probability assuming independence |
| SC PrB P | | 0.0565 | 0.0113 |
| P SWB SC PrB PuB | | -0.0028 | 0.7142 |
| SC PrB P | | -0.0395 | 0.0666 |
| PuB PrB P | | -0.3467 | 0.001 |
assuming independence are given in Table 3.5 . We obtain the composite probability for all four of these by using the Fisher's C test:
<!-- formula-not-decoded -->
This statistical result implies that we have no reason to reject our model's assumptions and that our data were produced by this causal structure.
## Note
- 1 A latent variable is one that cannot be directly observed but is estimated based on a series of observed variables (i.e., the social capital scale responses).
## Authors' note
Figures 3.2 and 3.3 from StataCorp. 2023. Stata Statistical Software: Release 18. College Station, TX: StataCorp LLC.
## References
Aligica, P. D. (2019). Public Entrepreneurship, Citizenship, and Self-Governance. Cambridge, UK: Cambridge University Press.
Ayittey, G. B. N. (2005) Africa Unchained: The Blueprint for Africa's Future. New York, NY: Palgrave Macmillan.
Auerbach, A. M. (2020). Demanding Development. The Politics of Public Goods Provision in India's Urban Slums. Cambridge, UK: Cambridge University Press.
Auerbach, A. M. (2017). Neighbourhood Associations and the Urban Poor: India's Slum Development Committees, World Development 96 , , 119-135.
Auerbach, A. M. , and Thachil, T. (2018). How Clients Select Brokers: Competition and Choice in India's Slums, American Political Science Review , 112 (4), 775-791.
Bavetta, S. , Navarra, P., and Maimone, D. (2014). Freedom and the Pursuit of Happiness . New York, NY: Cambridge University Press.
Bhan, G. (2016). In the Public's Interest: Evictions, Citizenship, and Inequality in Contemporary Delhi. Athens, GA: University of Georgia Press.
|
[
"'",
"social",
"capital",
"'",
"to",
"'",
"private",
"benefits",
"'",
",",
"you",
"need",
"to",
"pass",
"through",
"the",
"variable",
"'",
"partners",
"'",
"(",
"Figure",
"3.5",
")",
".",
"We",
"can",
"write",
"all",
"four",
"unique",
"pairs",
"of",
"non",
"-",
"adjacent",
"vertices",
"as",
"conditional",
"independence",
"statements",
" ",
"as",
" ",
"follows",
"SC",
"PrB",
"P",
"",
"|",
",",
"P",
"SWB",
"SC",
"PrB",
"PuB",
"",
"|",
",",
"SC",
"PrB",
"P",
"",
"|",
"and",
"\n\n",
"#",
"#",
"PuB",
"PrB",
"P",
"",
"|",
"\n\n",
"We",
"investigate",
"the",
"hypothesis",
"of",
"independence",
"using",
"Pearson",
"partial",
"correlation",
",",
"testing",
"to",
"see",
"if",
"any",
"of",
"the",
"coefficients",
"are",
"zero",
".",
"The",
"test",
"results",
"for",
"the",
"probabilities",
"\n\n",
"Table",
"3.5",
" ",
"d",
"-",
"separation",
"statements",
",",
"Pearson",
"partial",
"correlation",
"and",
"probabilities",
"\n\n",
"|",
" ",
"|",
"Pearson",
"partial",
"correlation",
" ",
"|",
"Pearson",
"partial",
"correlation",
" ",
"|",
"\n",
"|------------------------|-------------------------------|-----------------------------------|",
"\n",
"|",
"d",
"-",
"separation",
"statement",
"|",
"Estimate",
" ",
"|",
"Probability",
"assuming",
"independence",
"|",
"\n",
"|",
"SC",
"PrB",
"P",
"",
"|",
" ",
"|",
"0.0565",
" ",
"|",
"0.0113",
" ",
"|",
"\n",
"|",
"P",
"SWB",
"SC",
"PrB",
"PuB",
"",
"|",
" ",
"|",
"-0.0028",
" ",
"|",
"0.7142",
" ",
"|",
"\n",
"|",
"SC",
"PrB",
"P",
"",
"|",
" ",
"|",
"-0.0395",
" ",
"|",
"0.0666",
" ",
"|",
"\n",
"|",
"PuB",
"PrB",
"P",
"",
"|",
" ",
"|",
"-0.3467",
" ",
"|",
"0.001",
" ",
"|",
"\n\n",
"assuming",
"independence",
"are",
"given",
"in",
"Table",
"3.5",
".",
"We",
"obtain",
"the",
"composite",
"probability",
"for",
"all",
"four",
"of",
"these",
"by",
"using",
"the",
"Fisher",
"'s",
"C",
"test",
":",
"\n\n",
"<",
"!",
"--",
"formula",
"-",
"not",
"-",
"decoded",
"--",
">",
"\n\n",
"This",
" ",
"statistical",
" ",
"result",
" ",
"implies",
" ",
"that",
" ",
"we",
" ",
"have",
" ",
"no",
" ",
"reason",
" ",
"to",
" ",
"reject",
" ",
"our",
" ",
"model",
"'s",
"assumptions",
"and",
"that",
"our",
"data",
"were",
"produced",
"by",
"this",
"causal",
"structure",
".",
"\n\n",
"#",
"#",
"Note",
"\n\n",
"-",
"1",
"A",
"latent",
"variable",
"is",
"one",
"that",
"can",
"not",
"be",
"directly",
"observed",
"but",
"is",
"estimated",
"based",
"on",
"a",
"series",
"of",
"observed",
"variables",
"(",
"i.e.",
",",
"the",
"social",
"capital",
"scale",
"responses",
")",
".",
"\n\n",
"#",
"#",
"Authors",
"'",
"note",
"\n\n",
"Figures",
"3.2",
"and",
"3.3",
"from",
"StataCorp",
".",
"2023",
".",
"Stata",
"Statistical",
"Software",
":",
"Release",
"18",
".",
"College",
"Station",
",",
"TX",
":",
"StataCorp",
"LLC",
".",
"\n\n",
"#",
"#",
"References",
"\n\n",
"Aligica",
",",
"P.",
"D.",
"(",
"2019",
")",
".",
"Public",
"Entrepreneurship",
",",
"Citizenship",
",",
"and",
"Self",
"-",
"Governance",
".",
"Cambridge",
",",
"UK",
":",
"Cambridge",
"University",
"Press",
".",
"\n\n",
"Ayittey",
",",
"G.",
"B.",
"N.",
"(",
"2005",
")",
"Africa",
"Unchained",
":",
"The",
"Blueprint",
"for",
"Africa",
"'s",
"Future",
".",
"New",
"York",
",",
"NY",
":",
"Palgrave",
"Macmillan",
".",
"\n\n",
"Auerbach",
",",
"A.",
"M.",
"(",
"2020",
")",
".",
"Demanding",
"Development",
".",
"The",
"Politics",
"of",
"Public",
"Goods",
"Provision",
"in",
"India",
"'s",
"Urban",
"Slums",
".",
"Cambridge",
",",
"UK",
":",
"Cambridge",
"University",
"Press",
".",
"\n\n",
"Auerbach",
",",
"A.",
"M.",
"(",
"2017",
")",
".",
"Neighbourhood",
"Associations",
"and",
"the",
"Urban",
"Poor",
":",
"India",
"'s",
"Slum",
"Development",
"Committees",
",",
"World",
"Development",
" ",
"96",
",",
",",
"119",
"-",
"135",
".",
"\n\n",
"Auerbach",
",",
"A.",
"M.",
",",
" ",
"and",
" ",
"Thachil",
",",
"T.",
"(",
"2018",
")",
".",
"How",
"Clients",
"Select",
"Brokers",
":",
"Competition",
"and",
"Choice",
"in",
"India",
"'s",
"Slums",
",",
"American",
"Political",
"Science",
"Review",
",",
"112",
"(",
"4",
")",
",",
"775",
"-",
"791",
".",
"\n\n",
"Bavetta",
",",
"S.",
",",
"Navarra",
",",
"P.",
",",
"and",
"Maimone",
",",
"D.",
"(",
"2014",
")",
".",
"Freedom",
"and",
"the",
"Pursuit",
"of",
"Happiness",
".",
"New",
"York",
",",
"NY",
":",
"Cambridge",
"University",
"Press",
".",
"\n\n",
"Bhan",
",",
" ",
"G.",
"(",
"2016",
")",
".",
"In",
" ",
"the",
" ",
"Public",
"'s",
" ",
"Interest",
":",
" ",
"Evictions",
",",
" ",
"Citizenship",
",",
" ",
"and",
" ",
"Inequality",
" ",
"in",
"Contemporary",
"Delhi",
".",
"Athens",
",",
"GA",
":",
"University",
"of",
"Georgia",
"Press",
".",
"\n\n"
] |
[
{
"end": 1988,
"label": "CITATION_SPAN",
"start": 1864
},
{
"end": 2101,
"label": "CITATION_SPAN",
"start": 1990
},
{
"end": 2255,
"label": "CITATION_SPAN",
"start": 2103
},
{
"end": 2399,
"label": "CITATION_SPAN",
"start": 2257
},
{
"end": 2567,
"label": "CITATION_SPAN",
"start": 2401
},
{
"end": 2700,
"label": "CITATION_SPAN",
"start": 2569
},
{
"end": 2856,
"label": "CITATION_SPAN",
"start": 2702
}
] |
over 70% of the world’s population will live in cities, with
the most rapid urbanisation occurring in the Global South. Cities attract people
with the prospect of improving their lives. Being free to choose your urban space is
of great importance. Some neighbourhoods spontaneously develop and grow from
the bottom up. Others are spaces that have been planned from the top down with
no input from those living at the grassroots. Place matters. What is important for
development is the freedom to control one’s own life that will engender well-being
and provide purpose and meaning.
Until recently a typical view has been that slums are where life is little more
than a quest for survival. Unplanned settlements are regarded as pictures of pov -
erty and marginalisation; those coming from rural areas impinging upon the city’s
periphery ( Roy, 2008 ). However, recent urban theory has recognised that ‘slums’
can be regarded as places highlighting resistance, resilience and entrepreneurship
(Kudva, 2009 ; McFarlane, 2012 ; Varley, 2013 ). The term slum was first uttered
in the East End of London in the early 19th century. Its meaning: a ‘room of low
repute’. ‘Back slum’ described a “back alley – street of poor people” ( Nolan, 2015 ;
UN-Habitat, 2003 ; Weinstein, 2014 ). It has been estimated that in 2022, almost
1.1 billion people in the world lived in slums or slum-like conditions. The projec -
tion is that by 2050, this number will almost double owing to rapid urbanisation.
According to UN-Habitat, in 2020, one in four urban dwellers worldwide lived
in slums or informal settlements. Three hundred sixty-nine million, that’s 48.2%
of the urban population of central and southern Asia, live in slums (UN-Habitat,
2022b ). In a meeting convened in 2002 by UN-Habitat, the United Nations
Statistics Division and the Cities Alliance, a definition was set out for the term
‘slum’. This would allow for the measuring of the then Millennium Development
Goal 7 ‘Ensure Environmental Sustainability’ with a focus on Target 7D that is
to ‘achieve by 2020, a significant improvement in the lives of at least 100 million
slum dwellers’ . The definition still stands for the measuring of the 2015–2030 SDG
targets, including SDG 11 ‘ Sustainable Cities and Communities’ and Target 11.1:
6 Urban life in Delhi slums
‘By 2030, ensure access for all to adequate, safe and affordable housing and basic
services
|
[
"over",
"70",
"%",
"of",
"the",
"world",
"’s",
"population",
"will",
"live",
"in",
"cities",
",",
"with",
"\n",
"the",
"most",
"rapid",
"urbanisation",
"occurring",
"in",
"the",
"Global",
"South",
".",
"Cities",
"attract",
"people",
"\n",
"with",
"the",
"prospect",
"of",
"improving",
"their",
"lives",
".",
"Being",
"free",
"to",
"choose",
"your",
"urban",
"space",
"is",
"\n",
"of",
"great",
"importance",
".",
"Some",
"neighbourhoods",
"spontaneously",
"develop",
"and",
"grow",
"from",
"\n",
"the",
"bottom",
"up",
".",
"Others",
"are",
"spaces",
"that",
"have",
"been",
"planned",
"from",
"the",
"top",
"down",
"with",
"\n",
"no",
"input",
"from",
"those",
"living",
"at",
"the",
"grassroots",
".",
"Place",
"matters",
".",
"What",
"is",
"important",
"for",
"\n",
"development",
"is",
"the",
"freedom",
"to",
"control",
"one",
"’s",
"own",
"life",
"that",
"will",
"engender",
"well",
"-",
"being",
"\n",
"and",
"provide",
"purpose",
"and",
"meaning",
".",
"\n",
"Until",
"recently",
"a",
"typical",
"view",
"has",
"been",
"that",
"slums",
"are",
"where",
"life",
"is",
"little",
"more",
"\n",
"than",
"a",
"quest",
"for",
"survival",
".",
"Unplanned",
"settlements",
"are",
"regarded",
"as",
"pictures",
"of",
"pov",
"-",
"\n",
"erty",
"and",
"marginalisation",
";",
"those",
"coming",
"from",
"rural",
"areas",
"impinging",
"upon",
"the",
"city",
"’s",
"\n",
"periphery",
"(",
"Roy",
",",
"2008",
")",
".",
"However",
",",
"recent",
"urban",
"theory",
"has",
"recognised",
"that",
"‘",
"slums",
"’",
"\n",
"can",
"be",
"regarded",
"as",
"places",
"highlighting",
"resistance",
",",
"resilience",
"and",
"entrepreneurship",
"\n",
"(",
"Kudva",
",",
"2009",
";",
"McFarlane",
",",
"2012",
";",
"Varley",
",",
"2013",
")",
".",
"The",
"term",
"slum",
"was",
"first",
"uttered",
"\n",
"in",
"the",
"East",
"End",
"of",
"London",
"in",
"the",
"early",
"19th",
"century",
".",
"Its",
"meaning",
":",
"a",
"‘",
"room",
"of",
"low",
"\n",
"repute",
"’",
".",
"‘",
"Back",
"slum",
"’",
"described",
"a",
"“",
"back",
"alley",
"–",
"street",
"of",
"poor",
"people",
"”",
"(",
"Nolan",
",",
"2015",
";",
"\n",
"UN",
"-",
"Habitat",
",",
"2003",
";",
"Weinstein",
",",
"2014",
")",
".",
"It",
"has",
"been",
"estimated",
"that",
"in",
"2022",
",",
"almost",
"\n",
"1.1",
"billion",
"people",
"in",
"the",
"world",
"lived",
"in",
"slums",
"or",
"slum",
"-",
"like",
"conditions",
".",
"The",
"projec",
"-",
"\n",
"tion",
"is",
"that",
"by",
"2050",
",",
"this",
"number",
"will",
"almost",
"double",
"owing",
"to",
"rapid",
"urbanisation",
".",
"\n",
"According",
"to",
"UN",
"-",
"Habitat",
",",
"in",
"2020",
",",
"one",
"in",
"four",
"urban",
"dwellers",
"worldwide",
"lived",
"\n",
"in",
"slums",
"or",
"informal",
"settlements",
".",
"Three",
"hundred",
"sixty",
"-",
"nine",
"million",
",",
"that",
"’s",
"48.2",
"%",
"\n",
"of",
"the",
"urban",
"population",
"of",
"central",
"and",
"southern",
"Asia",
",",
"live",
"in",
"slums",
"(",
"UN",
"-",
"Habitat",
",",
"\n",
"2022b",
")",
".",
"In",
"a",
"meeting",
"convened",
"in",
"2002",
"by",
"UN",
"-",
"Habitat",
",",
"the",
"United",
"Nations",
"\n",
"Statistics",
"Division",
"and",
"the",
"Cities",
"Alliance",
",",
"a",
"definition",
"was",
"set",
"out",
"for",
"the",
"term",
"\n",
"‘",
"slum",
"’",
".",
"This",
"would",
"allow",
"for",
"the",
"measuring",
"of",
"the",
"then",
"Millennium",
"Development",
"\n",
"Goal",
"7",
"‘",
"Ensure",
"Environmental",
"Sustainability",
"’",
"with",
"a",
"focus",
"on",
"Target",
"7D",
"that",
"is",
"\n",
"to",
"‘",
"achieve",
"by",
"2020",
",",
"a",
"significant",
"improvement",
"in",
"the",
"lives",
"of",
"at",
"least",
"100",
"million",
"\n",
"slum",
"dwellers",
"’",
".",
"The",
"definition",
"still",
"stands",
"for",
"the",
"measuring",
"of",
"the",
"2015–2030",
"SDG",
"\n",
"targets",
",",
"including",
"SDG",
"11",
"‘",
"Sustainable",
"Cities",
"and",
"Communities",
"’",
" ",
"and",
"Target",
"11.1",
":",
"\n",
"6",
"Urban",
"life",
"in",
"Delhi",
"slums",
"\n",
"‘",
"By",
"2030",
",",
"ensure",
"access",
"for",
"all",
"to",
"adequate",
",",
"safe",
"and",
"affordable",
"housing",
"and",
"basic",
"\n",
"services"
] |
[
{
"end": 857,
"label": "CITATION_REF",
"start": 848
},
{
"end": 1015,
"label": "CITATION_REF",
"start": 1004
},
{
"end": 1033,
"label": "CITATION_REF",
"start": 1018
},
{
"end": 1048,
"label": "CITATION_REF",
"start": 1036
},
{
"end": 1250,
"label": "CITATION_REF",
"start": 1239
},
{
"end": 1270,
"label": "CITATION_REF",
"start": 1254
},
{
"end": 1288,
"label": "CITATION_REF",
"start": 1273
},
{
"end": 1264,
"label": "AUTHOR",
"start": 1254
},
{
"end": 1743,
"label": "AUTHOR",
"start": 1733
},
{
"end": 851,
"label": "AUTHOR",
"start": 848
},
{
"end": 1009,
"label": "AUTHOR",
"start": 1004
},
{
"end": 1027,
"label": "AUTHOR",
"start": 1018
},
{
"end": 1042,
"label": "AUTHOR",
"start": 1036
},
{
"end": 1244,
"label": "AUTHOR",
"start": 1239
},
{
"end": 1282,
"label": "AUTHOR",
"start": 1273
},
{
"end": 857,
"label": "YEAR",
"start": 853
},
{
"end": 1015,
"label": "YEAR",
"start": 1011
},
{
"end": 1033,
"label": "YEAR",
"start": 1029
},
{
"end": 1048,
"label": "YEAR",
"start": 1044
},
{
"end": 1250,
"label": "YEAR",
"start": 1246
},
{
"end": 1270,
"label": "YEAR",
"start": 1266
},
{
"end": 1288,
"label": "YEAR",
"start": 1284
},
{
"end": 1751,
"label": "YEAR",
"start": 1746
},
{
"end": 1536,
"label": "CITATION_REF",
"start": 1517
},
{
"end": 1527,
"label": "AUTHOR",
"start": 1517
},
{
"end": 1536,
"label": "YEAR",
"start": 1532
},
{
"end": 1751,
"label": "CITATION_REF",
"start": 1733
}
] |
(19.6) | 211 (57.8) |
| House has electricity | 298 (95.8) | 342 (93.7) |
| Computer | 8 (2.6) | 43 (11.8) |
| Fridge with freezer | 155 (49.8) | 322 (88.6) |
| Washing machine | 89 (28.6) | 234 (64.1) |
| TV | 237 (76.2) | 317 (86.8) |
associated with greater levels of community collective action. Social capital provides a greater understanding of the networks and norms within a community's social structure, showing how cooperative and coordinative actions benefit the whole community ( Putnam, 1993 ; Krishna, 2002). In this next section, we con -sider differences in social capital and neighbourhood cohesion in Ajit Vihar and Sanjay colony.
## Social Capital
Figure 2.3 illustrates the social capital (SC) index estimated averaged marginal component effects for Ajit Vihar with 95% CIs. The percentage points (pp) esti -mates are for Ajit Vihar (=1) with the base group being Sanjay (=0). The marginal effect of each independent variable being averaged over the joint distribution of the remaining variables. The independent variables are on the vertical axis. The horizontal axis gives the prediction of change in the independent variable (points), and the associated 95% CIs (bars).
The data show there are five significant differences in the social capital scale between those living in Ajit Vihar and Sanjay colony. The most significant dif -ference is for SC4 'unite to solve problems'. There is a 33.6 pp (p<0.001, SC4) increased positive likelihood that residents come together in Ajit Vihar to solve problems ( Table 2.7). Given that the base probability is 50%, this effect size is significant as it increases the base probability by 67.2% (medium Cohen's d effect size (0.672 = 0.336/0.5)). This large effect size indicates how the community in Ajit Vihar has a significantly greater likelihood of coming together to support each other. Neighbours in Ajit Vihar are 10.4 pp (p < 0.001, SC3) more likely to give
Figure 2.3 Social capital scale - Ajit Vihar and Sanjay
<!-- image -->
Table 2.7 Auerbach's social capital scale
| Item description | Ajit Vihar base Sanjay colony |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| If a family here is short of money, or has a member who is sick or dies, will people here in the settlement help that family in need? (SC1) | 0.024 (0.029) |
| If you were short of money and needed Rs 1,000, would your neighbours
|
[
"(",
"19.6",
")",
" ",
"|",
"211",
"(",
"57.8",
")",
" ",
"|",
"\n",
"|",
"House",
"has",
"electricity",
" ",
"|",
"298",
"(",
"95.8",
")",
" ",
"|",
"342",
"(",
"93.7",
")",
" ",
"|",
"\n",
"|",
"Computer",
" ",
"|",
"8",
"(",
"2.6",
")",
" ",
"|",
"43",
"(",
"11.8",
")",
" ",
"|",
"\n",
"|",
"Fridge",
"with",
"freezer",
" ",
"|",
"155",
"(",
"49.8",
")",
" ",
"|",
"322",
"(",
"88.6",
")",
" ",
"|",
"\n",
"|",
"Washing",
"machine",
" ",
"|",
"89",
"(",
"28.6",
")",
" ",
"|",
"234",
"(",
"64.1",
")",
" ",
"|",
"\n",
"|",
"TV",
" ",
"|",
"237",
"(",
"76.2",
")",
" ",
"|",
"317",
"(",
"86.8",
")",
" ",
"|",
"\n\n",
"associated",
"with",
"greater",
"levels",
"of",
"community",
"collective",
"action",
".",
"Social",
"capital",
"provides",
"a",
"greater",
"understanding",
"of",
"the",
"networks",
"and",
"norms",
"within",
"a",
"community",
"'s",
"social",
" ",
"structure",
",",
" ",
"showing",
" ",
"how",
" ",
"cooperative",
" ",
"and",
" ",
"coordinative",
" ",
"actions",
" ",
"benefit",
" ",
"the",
"whole",
"community",
"(",
"Putnam",
",",
"1993",
";",
"Krishna",
",",
"2002",
")",
".",
"In",
"this",
"next",
"section",
",",
"we",
"con",
"-sider",
"differences",
"in",
"social",
"capital",
"and",
"neighbourhood",
"cohesion",
"in",
"Ajit",
"Vihar",
"and",
"Sanjay",
"colony",
".",
"\n\n",
"#",
"#",
"Social",
"Capital",
"\n\n",
"Figure",
"2.3",
"illustrates",
" ",
"the",
" ",
"social",
" ",
"capital",
" ",
"(",
"SC",
")",
" ",
"index",
" ",
"estimated",
" ",
"averaged",
" ",
"marginal",
"component",
"effects",
"for",
"Ajit",
"Vihar",
"with",
"95",
"%",
"CIs",
".",
"The",
"percentage",
"points",
"(",
"pp",
")",
"esti",
"-mates",
"are",
"for",
"Ajit",
"Vihar",
"(=",
"1",
")",
"with",
"the",
"base",
"group",
"being",
"Sanjay",
"(=",
"0",
")",
".",
"The",
"marginal",
"effect",
"of",
"each",
"independent",
"variable",
"being",
"averaged",
"over",
"the",
"joint",
"distribution",
"of",
"the",
"remaining",
"variables",
".",
"The",
"independent",
"variables",
"are",
"on",
"the",
"vertical",
"axis",
".",
"The",
"horizontal",
"axis",
"gives",
"the",
"prediction",
"of",
"change",
"in",
"the",
"independent",
"variable",
"(",
"points",
")",
",",
"and",
"the",
"associated",
"95",
"%",
"CIs",
"(",
"bars",
")",
".",
"\n\n",
"The",
"data",
"show",
"there",
"are",
"five",
"significant",
"differences",
"in",
"the",
"social",
"capital",
"scale",
"between",
"those",
"living",
"in",
"Ajit",
"Vihar",
"and",
"Sanjay",
"colony",
".",
"The",
"most",
"significant",
"dif",
"-ference",
"is",
"for",
"SC4",
"'",
"unite",
"to",
"solve",
"problems",
"'",
".",
"There",
"is",
"a",
"33.6",
"pp",
"(",
"p<0.001",
",",
"SC4",
")",
"increased",
"positive",
"likelihood",
"that",
"residents",
"come",
"together",
"in",
"Ajit",
"Vihar",
"to",
"solve",
"problems",
"(",
"Table",
"2.7",
")",
".",
"Given",
"that",
"the",
"base",
"probability",
"is",
"50",
"%",
",",
"this",
"effect",
"size",
"is",
"significant",
"as",
"it",
"increases",
"the",
"base",
"probability",
"by",
"67.2",
"%",
"(",
"medium",
"Cohen",
"'s",
"d",
"effect",
"size",
"(",
"0.672",
"=",
"0.336/0.5",
")",
")",
".",
"This",
"large",
"effect",
"size",
"indicates",
"how",
"the",
"community",
"in",
"Ajit",
"Vihar",
"has",
"a",
"significantly",
"greater",
"likelihood",
"of",
"coming",
"together",
"to",
"support",
"each",
"other",
".",
"Neighbours",
"in",
"Ajit",
"Vihar",
"are",
"10.4",
"pp",
"(",
"p",
"&",
"lt",
";",
"0.001",
",",
"SC3",
")",
"more",
"likely",
"to",
"give",
"\n\n",
"Figure",
"2.3",
"Social",
"capital",
"scale",
"-",
"Ajit",
"Vihar",
"and",
"Sanjay",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Table",
"2.7",
"Auerbach",
"'s",
"social",
"capital",
"scale",
"\n\n",
"|",
"Item",
"description",
" ",
"|",
"Ajit",
"Vihar",
"base",
"Sanjay",
"colony",
" ",
"|",
"\n",
"|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|",
"\n",
"|",
"If",
"a",
"family",
"here",
"is",
"short",
"of",
"money",
",",
"or",
"has",
"a",
"member",
"who",
"is",
"sick",
"or",
"dies",
",",
"will",
"people",
"here",
"in",
"the",
"settlement",
"help",
"that",
"family",
"in",
"need",
"?",
"(",
"SC1",
")",
" ",
"|",
"0.024",
"(",
"0.029",
")",
" ",
"|",
"\n",
"|",
"If",
"you",
"were",
"short",
"of",
"money",
"and",
"needed",
"Rs",
"1,000",
",",
"would",
"your",
"neighbours"
] |
[
{
"end": 724,
"label": "CITATION_REF",
"start": 712
},
{
"end": 740,
"label": "CITATION_REF",
"start": 727
},
{
"end": 740,
"label": "YEAR",
"start": 736
},
{
"end": 724,
"label": "YEAR",
"start": 720
},
{
"end": 718,
"label": "AUTHOR",
"start": 712
},
{
"end": 734,
"label": "AUTHOR",
"start": 727
}
] |
or more virtualization containers or virtual machines (VMs), where the containers or VMs run on one or more application servers owned/operated by a third-party service provider (e.g., of ), which can include one or more cloud compute nodes of a cloud computing service, one or more edge compute nodes of an edge computing framework, one or more network functions in a cellular network, one or more application servers/platforms, and/or the like. In some implementations, the represents individual compute nodes or controllers implemented in , which can operate in conjunction with one another to autonomously operate within the MRF (e.g., where the MRF has a distributed architecture or the like). Additionally or alternatively, the is implemented as a distributed application, wherein various control system functions (or control system packages) operate on and/or .
Examples of the sensors - to -N (collectively referred to herein as “ ” or “ ”) include image capture devices/image sensors (e.g., visible light cameras, infrared cameras, x-ray sensors, and/or the like), temperature sensors, moisture sensors, and/or other sensors. Additionally or alternatively, the can include any of the sensor devices discussed herein (see e.g., of ). Examples of the MHUs - to -M (collectively referred to herein as “ ” or “ ”) include mechanical separators/sorters, robotic sorters, optical sorters, pneumatic (air) systems/sorters, conveyors, balers, infeed/metering systems, and/or any other general or specialized MHUs that may be employed by an MRF as appropriate to handle solid waste streams. Additionally or alternatively, the can include any of the actuation devices discussed infra (see e.g., of ). The may be deployed at different locations within the MRF and/or may be that are part of one or . These examples not intended to be comprehensive, but rather exemplary.
The also includes one or more AI/ , which obtains , and generates and/or determines that assist the in autonomously controlling aspects of the MRF. For purposes of the present disclosure, the term “inference” may refer to a set of inferences, a set of predictions, a set of probabilities, a set of detected patterns, optimized parameters or configuration data, a set of actions/tasks to be performed, and/or any other output of one or more AI/ML models. Examples of the AI/ML system(s) can include supervised learning techniques, semi-supervised learning techniques, unsupervised learning techniques, reinforcement learning techniques, dimensionality reduction techniques, meta learning, deep learning (e.g., based on neural networks and the like), anomaly detection,
|
[
"or",
"more",
"virtualization",
"containers",
"or",
"virtual",
"machines",
"(",
"VMs",
")",
",",
"where",
"the",
"containers",
"or",
"VMs",
"run",
"on",
"one",
"or",
"more",
"application",
"servers",
"owned",
"/",
"operated",
"by",
"a",
"third",
"-",
"party",
"service",
"provider",
"(",
"e.g.",
",",
" ",
"of",
")",
",",
"which",
"can",
"include",
"one",
"or",
"more",
"cloud",
"compute",
"nodes",
"of",
"a",
"cloud",
"computing",
"service",
",",
"one",
"or",
"more",
"edge",
"compute",
"nodes",
"of",
"an",
"edge",
"computing",
"framework",
",",
"one",
"or",
"more",
"network",
"functions",
"in",
"a",
"cellular",
"network",
",",
"one",
"or",
"more",
"application",
"servers",
"/",
"platforms",
",",
"and/or",
"the",
"like",
".",
"In",
"some",
"implementations",
",",
"the",
" ",
"represents",
"individual",
"compute",
"nodes",
"or",
"controllers",
"implemented",
"in",
" ",
",",
"which",
"can",
"operate",
"in",
"conjunction",
"with",
"one",
"another",
"to",
"autonomously",
"operate",
"within",
"the",
"MRF",
"(",
"e.g.",
",",
"where",
"the",
"MRF",
"has",
"a",
"distributed",
"architecture",
"or",
"the",
"like",
")",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
" ",
"is",
"implemented",
"as",
"a",
"distributed",
"application",
",",
"wherein",
"various",
"control",
"system",
"functions",
"(",
"or",
"control",
"system",
"packages",
")",
"operate",
"on",
" ",
"and/or",
" ",
".",
"\n\n",
"Examples",
"of",
"the",
"sensors",
"-",
"to",
"-N",
"(",
"collectively",
"referred",
"to",
"herein",
"as",
"“",
"”",
"or",
"“",
"”",
")",
"include",
"image",
"capture",
"devices",
"/",
"image",
"sensors",
"(",
"e.g.",
",",
"visible",
"light",
"cameras",
",",
"infrared",
"cameras",
",",
"x",
"-",
"ray",
"sensors",
",",
"and/or",
"the",
"like",
")",
",",
"temperature",
"sensors",
",",
"moisture",
"sensors",
",",
"and/or",
"other",
"sensors",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
" ",
"can",
"include",
"any",
"of",
"the",
"sensor",
"devices",
"discussed",
"herein",
"(",
"see",
"e.g.",
",",
" ",
"of",
")",
".",
"Examples",
"of",
"the",
"MHUs",
"-",
"to",
"-M",
"(",
"collectively",
"referred",
"to",
"herein",
"as",
"“",
"”",
"or",
"“",
"”",
")",
"include",
"mechanical",
"separators",
"/",
"sorters",
",",
"robotic",
"sorters",
",",
"optical",
"sorters",
",",
"pneumatic",
"(",
"air",
")",
"systems",
"/",
"sorters",
",",
"conveyors",
",",
"balers",
",",
"infeed",
"/",
"metering",
"systems",
",",
"and/or",
"any",
"other",
"general",
"or",
"specialized",
"MHUs",
"that",
"may",
"be",
"employed",
"by",
"an",
"MRF",
"as",
"appropriate",
"to",
"handle",
"solid",
"waste",
"streams",
".",
"Additionally",
"or",
"alternatively",
",",
"the",
" ",
"can",
"include",
"any",
"of",
"the",
"actuation",
"devices",
"discussed",
"infra",
"(",
"see",
"e.g.",
",",
" ",
"of",
")",
".",
"The",
" ",
"may",
"be",
"deployed",
"at",
"different",
"locations",
"within",
"the",
"MRF",
"and/or",
"may",
"be",
" ",
"that",
"are",
"part",
"of",
"one",
"or",
" ",
".",
"These",
"examples",
"not",
"intended",
"to",
"be",
"comprehensive",
",",
"but",
"rather",
"exemplary",
".",
"\n\n",
"The",
" ",
"also",
"includes",
"one",
"or",
"more",
"AI/",
",",
"which",
"obtains",
" ",
",",
"and",
"generates",
"and/or",
"determines",
" ",
"that",
"assist",
"the",
" ",
"in",
"autonomously",
"controlling",
"aspects",
"of",
"the",
"MRF",
".",
"For",
"purposes",
"of",
"the",
"present",
"disclosure",
",",
"the",
"term",
"“",
"inference",
"”",
"may",
"refer",
"to",
"a",
"set",
"of",
"inferences",
",",
"a",
"set",
"of",
"predictions",
",",
"a",
"set",
"of",
"probabilities",
",",
"a",
"set",
"of",
"detected",
"patterns",
",",
"optimized",
"parameters",
"or",
"configuration",
"data",
",",
"a",
"set",
"of",
"actions",
"/",
"tasks",
"to",
"be",
"performed",
",",
"and/or",
"any",
"other",
"output",
"of",
"one",
"or",
"more",
"AI",
"/",
"ML",
"models",
".",
"Examples",
"of",
"the",
"AI",
"/",
"ML",
"system(s",
")",
" ",
"can",
"include",
"supervised",
"learning",
"techniques",
",",
"semi",
"-",
"supervised",
"learning",
"techniques",
",",
"unsupervised",
"learning",
"techniques",
",",
"reinforcement",
"learning",
"techniques",
",",
"dimensionality",
"reduction",
"techniques",
",",
"meta",
"learning",
",",
"deep",
"learning",
"(",
"e.g.",
",",
"based",
"on",
"neural",
"networks",
"and",
"the",
"like",
")",
",",
"anomaly",
"detection",
","
] |
[] |
Potential for knowledge-based economic cooperation271 272
Annexes
GEORGIA MOLDOVA UKRAINEEmploy-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
NACE Industry name Current Current CurrentEmerg-
ingEmerg-
ingEmerg-
ingCurrent Current CurrentEmerg-
ingEmerg-
ingEmerg-
ingCurrent Current CurrentEmerg-
ingEmerg-
ingEmerg-
ing
34 52 28 61 64 40 31 29 15 50 47 21 55 40 35 83 57 34
7 Mining of metal ores
7.1 Mining of iron ores X X X
7.2 Mining of non-ferrous metal ores X X X X X X
8 Other mining and quarrying
8.1 Quarrying of stone, sand and clay X X X X
8.9 Mining and quarrying n.e.c.
9 Mining support service activities
9.1 Support activities for petroleum and natural gas extraction
9.9 Support activities for other mining and quarrying
C MANUFACTURING
10 Manufacture of food products
10.1 Processing and preserving of meat and production of meat products X X X X
10.2 Processing and preserving of fish, crustaceans and molluscs X X X
10.3 Processing and preserving of fruit and vegetables X X X X X X
10.4 Manufacture of vegetable and animal oils and fats X X X X X
10.5 Manufacture of dairy products X X X X X X
10.6 Manufacture of grain mill products, starches and starch products X X X X X
10.7 Manufacture of bakery and farinaceous products X X X
10.8 Manufacture of other food products X X X X X
10.9 Manufacture of prepared animal feeds X X X X
11 Manufacture of beverages X X X X
12 Manufacture of tobacco products X X X X
13 Manufacture of textiles
13.1 Preparation and spinning of textile fibres
13.2 Weaving of textiles
13.3 Finishing of textiles
13.9 Manufacture of other textiles X X X X X
14 Manufacture of wearing apparel
14.1 Manufacture of wearing apparel, except fur apparel X X X X X X X X
14.2 Manufacture of articles of fur
Smart Specialisation in the Eastern Partnership countries - Potential for knowledge-based economic cooperation273 274
Annexes
GEORGIA MOLDOVA UKRAINEEmploy-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
Employ-
ment
Turnover
Employ-
ment &
turnover
|
[
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation271",
"272",
"\n",
"Annexes",
"\n",
"GEORGIA",
"MOLDOVA",
"UKRAINEEmploy-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"NACE",
"Industry",
"name",
"Current",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingCurrent",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingCurrent",
"Current",
"CurrentEmerg-",
"\n",
"ingEmerg-",
"\n",
"ingEmerg-",
"\n",
"ing",
"\n",
"34",
"52",
"28",
"61",
"64",
"40",
"31",
"29",
"15",
"50",
"47",
"21",
"55",
"40",
"35",
"83",
"57",
"34",
"\n",
"7",
"Mining",
"of",
"metal",
"ores",
" \n",
"7.1",
"Mining",
"of",
"iron",
"ores",
" ",
"X",
"X",
"X",
" \n",
"7.2",
"Mining",
"of",
"non",
"-",
"ferrous",
"metal",
"ores",
" ",
"X",
"X",
"X",
" ",
"X",
"X",
"X",
" \n",
"8",
"Other",
"mining",
"and",
"quarrying",
" \n",
"8.1",
"Quarrying",
"of",
"stone",
",",
"sand",
"and",
"clay",
" ",
"X",
"X",
"X",
" ",
"X",
" \n",
"8.9",
"Mining",
"and",
"quarrying",
"n.e.c",
".",
" \n",
"9",
"Mining",
"support",
"service",
"activities",
" \n",
"9.1",
"Support",
"activities",
"for",
"petroleum",
"and",
"natural",
"gas",
"extraction",
" \n",
"9.9",
"Support",
"activities",
"for",
"other",
"mining",
"and",
"quarrying",
" \n",
"C",
"MANUFACTURING",
"\n",
"10",
"Manufacture",
"of",
"food",
"products",
" \n",
"10.1",
"Processing",
"and",
"preserving",
"of",
"meat",
"and",
"production",
"of",
"meat",
"products",
" ",
"X",
" ",
"X",
" ",
"X",
" ",
"X",
" \n",
"10.2",
"Processing",
"and",
"preserving",
"of",
"fish",
",",
"crustaceans",
"and",
"molluscs",
" ",
"X",
"X",
"X",
" \n",
"10.3",
"Processing",
"and",
"preserving",
"of",
"fruit",
"and",
"vegetables",
" ",
"X",
" ",
"X",
" ",
"X",
"X",
"X",
" ",
"X",
" \n",
"10.4",
"Manufacture",
"of",
"vegetable",
"and",
"animal",
"oils",
"and",
"fats",
" ",
"X",
" ",
"X",
"X",
"X",
"X",
" \n",
"10.5",
"Manufacture",
"of",
"dairy",
"products",
" ",
"X",
"X",
"X",
" ",
"X",
"X",
"X",
" \n",
"10.6",
"Manufacture",
"of",
"grain",
"mill",
"products",
",",
"starches",
"and",
"starch",
"products",
" ",
"X",
" ",
"X",
"X",
"X",
" ",
"X",
" \n",
"10.7",
"Manufacture",
"of",
"bakery",
"and",
"farinaceous",
"products",
" ",
"X",
"X",
"X",
" \n",
"10.8",
"Manufacture",
"of",
"other",
"food",
"products",
" ",
"X",
"X",
"X",
" ",
"X",
" ",
"X",
" \n",
"10.9",
"Manufacture",
"of",
"prepared",
"animal",
"feeds",
" ",
"X",
"X",
"X",
"X",
" \n",
"11",
"Manufacture",
"of",
"beverages",
" ",
"X",
"X",
"X",
" ",
"X",
" \n",
"12",
"Manufacture",
"of",
"tobacco",
"products",
" ",
"X",
" ",
"X",
" ",
"X",
" ",
"X",
" \n",
"13",
"Manufacture",
"of",
"textiles",
" \n",
"13.1",
"Preparation",
"and",
"spinning",
"of",
"textile",
"fibres",
" \n",
"13.2",
"Weaving",
"of",
"textiles",
" \n",
"13.3",
"Finishing",
"of",
"textiles",
" \n",
"13.9",
"Manufacture",
"of",
"other",
"textiles",
" ",
"X",
"X",
"X",
"X",
" ",
"X",
" \n",
"14",
"Manufacture",
"of",
"wearing",
"apparel",
" \n",
"14.1",
"Manufacture",
"of",
"wearing",
"apparel",
",",
"except",
"fur",
"apparel",
" ",
"X",
"X",
"X",
"X",
"X",
"X",
"X",
" ",
"X",
" \n",
"14.2",
"Manufacture",
"of",
"articles",
"of",
"fur",
" \n",
"Smart",
"Specialisation",
"in",
"the",
"Eastern",
"Partnership",
"countries",
"-",
"Potential",
"for",
"knowledge",
"-",
"based",
"economic",
"cooperation273",
"274",
"\n",
"Annexes",
"\n",
"GEORGIA",
"MOLDOVA",
"UKRAINEEmploy-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n",
"Employ-",
"\n",
"ment",
"\n",
"Turnover",
"\n",
"Employ-",
"\n",
"ment",
"&",
"\n",
"turnover",
"\n"
] |
[] |
mining fiscal regimes. On the one hand, these cost-based incentives help decrease the capital cost of mining investments. A challenge, however, is that when such deductions on capital costs from a specific investment are claimed against other income- generating activities, such as other mining or even non- mining activities, taxes may be delayed even though those other projects are profitable. Ring-fencing rules limit the deduction of costs to the specific projects and the activities to which they relate, and thus bring revenues forward on the profitable projects rather than delaying them. In addition, some behavioural responses of taxpayers exploit these cost-based tax incentives for BEPS |
## 1.0 INTRODUCTION
2.0 THE
FUNDAMENTALS
OF RING-FENCING
3.0 THE BENEFITS
AND RISKS OF
RING-FENCING
## 4.0 DESIGNING RING-FENCING RULES
5.0 THE
IMPLEMENTATION
OF RING-FENCING
RULES
6.0 CONCLUSION
| Circumstance | Where ring-fencing is appropriate in this circumstance |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Where there is a policy objective to accelerate tax revenues, and there are challenges in administering profit- based fiscal instruments. | Ring-fencing rules may not be suitable in such cases, and there might be other fiscal instruments that could achieve a similar result. For instance, royalties can provide early revenues from the start of production, are relatively easy to administer, and have fewer avenues for avoidance than profit-based instruments. A simpler way to deliver early revenues could be to carefully design a royalty regime. However, the downside of royalties is that they do not consider extraction costs, which increase the marginal costs of production, and the lack of elasticity in particular, if it is an ad-valorem royalty. This can distort investment and production decisions (Benninger et al., 2024; Lassourd et al., 2023). |
| Where there is a policy preference to align the tax treatment with commercial structures. | Governments need to be pragmatic on how the rules are applied in their jurisdictions, including tax and mining laws. Where governments define a mining project as an integrated project with mineral extraction and a separate processing facility, it might prefer to ring-fence per mining project which, in turn, includes the processing facility. |
Source: Author's elaboration.
As noted in the above considerations, ring-fencing will not always be the most appropriate policy response and fiscal tool. The potential need to use ring-fencing rules will also depend on how the capital allowances regime is designed. Where the capital allowance regime operates on the basis of 'matching'
|
[
"mining",
"fiscal",
"regimes",
".",
"On",
"the",
"one",
"hand",
",",
"these",
"cost",
"-",
"based",
"incentives",
"help",
"decrease",
"the",
"capital",
"cost",
"of",
"mining",
"investments",
".",
"A",
"challenge",
",",
"however",
",",
"is",
"that",
"when",
"such",
"deductions",
"on",
"capital",
"costs",
"from",
"a",
"specific",
"investment",
"are",
"claimed",
"against",
"other",
"income-",
"generating",
"activities",
",",
"such",
"as",
"other",
"mining",
"or",
"even",
"non-",
"mining",
"activities",
",",
"taxes",
"may",
"be",
"delayed",
"even",
"though",
"those",
"other",
"projects",
"are",
"profitable",
".",
"Ring",
"-",
"fencing",
"rules",
"limit",
"the",
"deduction",
"of",
"costs",
"to",
"the",
"specific",
"projects",
"and",
"the",
"activities",
"to",
"which",
"they",
"relate",
",",
"and",
"thus",
"bring",
"revenues",
"forward",
"on",
"the",
"profitable",
"projects",
"rather",
"than",
"delaying",
"them",
".",
"In",
"addition",
",",
"some",
"behavioural",
"responses",
"of",
"taxpayers",
"exploit",
"these",
"cost",
"-",
"based",
"tax",
"incentives",
"for",
"BEPS",
"|",
"\n\n",
"#",
"#",
"1.0",
"INTRODUCTION",
"\n\n",
"2.0",
"THE",
"\n\n",
"FUNDAMENTALS",
"\n\n",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"3.0",
"THE",
"BENEFITS",
"\n\n",
"AND",
"RISKS",
"OF",
"\n\n",
"RING",
"-",
"FENCING",
"\n\n",
"#",
"#",
"4.0",
"DESIGNING",
"RING",
"-",
"FENCING",
"RULES",
"\n\n",
"5.0",
"THE",
"\n\n",
"IMPLEMENTATION",
"\n\n",
"OF",
"RING",
"-",
"FENCING",
"\n\n",
"RULES",
"\n\n",
"6.0",
"CONCLUSION",
"\n\n",
"|",
"Circumstance",
" ",
"|",
"Where",
"ring",
"-",
"fencing",
"is",
"appropriate",
"in",
"this",
"circumstance",
" ",
"|",
"\n",
"|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|",
"\n",
"|",
"Where",
"there",
"is",
"a",
"policy",
"objective",
"to",
"accelerate",
"tax",
"revenues",
",",
"and",
"there",
"are",
"challenges",
"in",
"administering",
"profit-",
"based",
"fiscal",
"instruments",
".",
"|",
"Ring",
"-",
"fencing",
"rules",
"may",
"not",
"be",
"suitable",
"in",
"such",
"cases",
",",
"and",
"there",
"might",
"be",
"other",
"fiscal",
"instruments",
"that",
"could",
"achieve",
"a",
"similar",
"result",
".",
"For",
"instance",
",",
"royalties",
"can",
"provide",
"early",
"revenues",
"from",
"the",
"start",
"of",
"production",
",",
"are",
"relatively",
"easy",
"to",
"administer",
",",
"and",
"have",
"fewer",
"avenues",
"for",
"avoidance",
"than",
"profit",
"-",
"based",
"instruments",
".",
"A",
"simpler",
"way",
"to",
"deliver",
"early",
"revenues",
"could",
"be",
"to",
"carefully",
"design",
"a",
"royalty",
"regime",
".",
"However",
",",
"the",
"downside",
"of",
"royalties",
"is",
"that",
"they",
"do",
"not",
"consider",
"extraction",
"costs",
",",
"which",
"increase",
"the",
"marginal",
"costs",
"of",
"production",
",",
"and",
"the",
"lack",
"of",
"elasticity",
"in",
"particular",
",",
"if",
"it",
"is",
"an",
"ad",
"-",
"valorem",
"royalty",
".",
"This",
"can",
"distort",
"investment",
"and",
"production",
"decisions",
"(",
"Benninger",
"et",
"al",
".",
",",
"2024",
";",
"Lassourd",
"et",
"al",
".",
",",
"2023",
")",
".",
"|",
"\n",
"|",
"Where",
"there",
"is",
"a",
"policy",
"preference",
"to",
"align",
"the",
"tax",
"treatment",
"with",
"commercial",
"structures",
".",
" ",
"|",
"Governments",
"need",
"to",
"be",
"pragmatic",
"on",
"how",
"the",
"rules",
"are",
"applied",
"in",
"their",
"jurisdictions",
",",
"including",
"tax",
"and",
"mining",
"laws",
".",
"Where",
"governments",
"define",
"a",
"mining",
"project",
"as",
"an",
"integrated",
"project",
"with",
"mineral",
"extraction",
"and",
"a",
"separate",
"processing",
"facility",
",",
"it",
"might",
"prefer",
"to",
"ring",
"-",
"fence",
"per",
"mining",
"project",
"which",
",",
"in",
"turn",
",",
"includes",
"the",
"processing",
"facility",
".",
" ",
"|",
"\n\n",
"Source",
":",
"Author",
"'s",
"elaboration",
".",
"\n\n",
"As",
"noted",
"in",
"the",
"above",
"considerations",
",",
"ring",
"-",
"fencing",
"will",
"not",
"always",
"be",
"the",
"most",
"appropriate",
"policy",
"response",
"and",
"fiscal",
"tool",
".",
"The",
"potential",
"need",
"to",
"use",
"ring",
"-",
"fencing",
"rules",
"will",
"also",
"depend",
"on",
"how",
"the",
"capital",
"allowances",
"regime",
"is",
"designed",
".",
"Where",
"the",
"capital",
"allowance",
"regime",
"operates",
"on",
"the",
"basis",
"of",
"'",
"matching",
"'"
] |
[
{
"end": 3454,
"label": "CITATION_REF",
"start": 3432
},
{
"end": 3477,
"label": "CITATION_REF",
"start": 3456
},
{
"end": 3448,
"label": "AUTHOR",
"start": 3432
},
{
"end": 3454,
"label": "YEAR",
"start": 3450
},
{
"end": 3471,
"label": "AUTHOR",
"start": 3456
},
{
"end": 3477,
"label": "YEAR",
"start": 3473
}
] |
20-year-old son. He's worked hard to build his clinic business because he wants the best for his children. His oldest daughter has a humanities degree and teaches children with special needs, commuting every day from the colony to Gurugram. He tells us that his youngest daughter is following in his footsteps, training for her BAMS (Bachelor of Ayurvedic Medicine and Surgery). He seems extremely proud of her for choosing the same path he did. She lives away from home in Mathura and is in her second year at the Sanskriti Unani Medical College. He jokes that she takes after him and isn't great at physics. 'If she had done better in physics, she could have gone for an MBBS', he says. MBBS is a Bachelor of Medicine and Surgery. Training to become a doctor in India for an MBBS degree takes five and a half years, including a one-year internship. This degree provides traditional medical training as in the U.K. or U.S.A. Running alongside BAMS, there are other non-MBBS options in India, including AYUSH programs that focus on Ayurveda, Yoga, Unani, Siddhi, and Homoeopathy. His son is on a different track, proudly says Ansari, studying for an MBA and getting ready to go into business. His children's education is extremely important to him.
We ask Dr Ansari how and why do medics like him emerge in slum settlements? He says he came here around 25 years ago:
'When I came to this place, there was nothing here. No proper drainage sys -tems. The kinds of patients we had were those with fever, colds, and stomach-related issues.'
## And now we ask, have things changed?
'Well, you know', he says, 'there are still patients coming in with stomach diseases, but things are getting better, I feel. The residents have done a lot and made many improvements. These improvements are reflected in better health … I'm still busy'.
He goes on to tell us that he believes these stomach problems come from two main sources.
'People are eating different cultural foods, which is causing them illness. Vendors prepare it by the roadside, and cleaning does not take place here at regular intervals. This is the first reason for this issue. Secondly, those who are consuming filtered water are also experiencing stomach problems.'
We ask him why he believes filtered water is the problem. Dr Ansari explains that it has to do with
|
[
"20",
"-",
"year",
"-",
"old",
"son",
".",
"He",
"'s",
"worked",
"hard",
"to",
"build",
"his",
"clinic",
"business",
"because",
"he",
"wants",
"the",
"best",
"for",
"his",
"children",
".",
"His",
"oldest",
"daughter",
"has",
"a",
"humanities",
"degree",
"and",
"teaches",
"children",
"with",
"special",
"needs",
",",
"commuting",
"every",
"day",
"from",
"the",
"colony",
"to",
"Gurugram",
".",
"He",
"tells",
"us",
"that",
"his",
"youngest",
"daughter",
"is",
"following",
"in",
"his",
"footsteps",
",",
"training",
"for",
"her",
"BAMS",
"(",
"Bachelor",
"of",
"Ayurvedic",
"Medicine",
"and",
"Surgery",
")",
".",
"He",
"seems",
"extremely",
"proud",
"of",
"her",
"for",
"choosing",
"the",
"same",
"path",
"he",
"did",
".",
"She",
"lives",
"away",
"from",
"home",
"in",
"Mathura",
"and",
"is",
"in",
"her",
"second",
"year",
"at",
"the",
"Sanskriti",
"Unani",
"Medical",
"College",
".",
"He",
"jokes",
"that",
"she",
"takes",
"after",
"him",
"and",
"is",
"n't",
"great",
"at",
"physics",
".",
"'",
"If",
"she",
"had",
"done",
"better",
"in",
"physics",
",",
"she",
"could",
"have",
"gone",
"for",
"an",
"MBBS",
"'",
",",
"he",
"says",
".",
"MBBS",
"is",
"a",
"Bachelor",
"of",
"Medicine",
"and",
"Surgery",
".",
"Training",
"to",
"become",
"a",
"doctor",
"in",
"India",
"for",
"an",
"MBBS",
"degree",
"takes",
"five",
"and",
"a",
"half",
"years",
",",
"including",
"a",
"one",
"-",
"year",
"internship",
".",
"This",
"degree",
" ",
"provides",
" ",
"traditional",
" ",
"medical",
" ",
"training",
" ",
"as",
" ",
"in",
" ",
"the",
" ",
"U.K.",
" ",
"or",
" ",
"U.S.A.",
" ",
"Running",
"alongside",
"BAMS",
",",
"there",
"are",
"other",
"non",
"-",
"MBBS",
"options",
"in",
"India",
",",
"including",
"AYUSH",
"programs",
"that",
"focus",
"on",
"Ayurveda",
",",
"Yoga",
",",
"Unani",
",",
"Siddhi",
",",
"and",
"Homoeopathy",
".",
"His",
"son",
"is",
"on",
"a",
"different",
"track",
",",
"proudly",
"says",
"Ansari",
",",
"studying",
"for",
"an",
"MBA",
"and",
"getting",
"ready",
"to",
"go",
"into",
"business",
".",
"His",
"children",
"'s",
"education",
"is",
"extremely",
"important",
"to",
"him",
".",
"\n\n",
"We",
"ask",
"Dr",
"Ansari",
"how",
"and",
"why",
"do",
"medics",
"like",
"him",
"emerge",
"in",
"slum",
"settlements",
"?",
"He",
"says",
"he",
"came",
"here",
"around",
"25",
"years",
"ago",
":",
"\n\n",
"'",
"When",
"I",
"came",
"to",
"this",
"place",
",",
"there",
"was",
"nothing",
"here",
".",
"No",
"proper",
"drainage",
"sys",
"-tems",
".",
"The",
"kinds",
"of",
"patients",
"we",
"had",
"were",
"those",
"with",
"fever",
",",
"colds",
",",
"and",
"stomach",
"-",
"related",
"issues",
".",
"'",
"\n\n",
"#",
"#",
"And",
"now",
"we",
"ask",
",",
"have",
"things",
"changed",
"?",
"\n\n",
"'",
"Well",
",",
"you",
"know",
"'",
",",
"he",
"says",
",",
"'",
"there",
"are",
"still",
"patients",
"coming",
"in",
"with",
"stomach",
"diseases",
",",
"but",
"things",
"are",
"getting",
"better",
",",
"I",
"feel",
".",
"The",
"residents",
"have",
"done",
"a",
"lot",
"and",
"made",
"many",
"improvements",
".",
"These",
"improvements",
"are",
"reflected",
"in",
"better",
"health",
"…",
"I",
"'m",
"still",
"busy",
"'",
".",
"\n\n",
"He",
"goes",
"on",
"to",
"tell",
"us",
"that",
"he",
"believes",
"these",
"stomach",
"problems",
"come",
"from",
"two",
"main",
"sources",
".",
"\n\n",
"'",
"People",
"are",
"eating",
"different",
"cultural",
"foods",
",",
"which",
"is",
"causing",
"them",
"illness",
".",
"Vendors",
"prepare",
"it",
"by",
"the",
"roadside",
",",
"and",
"cleaning",
"does",
"not",
"take",
"place",
"here",
"at",
"regular",
"intervals",
".",
"This",
"is",
"the",
"first",
"reason",
"for",
"this",
"issue",
".",
"Secondly",
",",
"those",
"who",
"are",
"consuming",
"filtered",
"water",
"are",
"also",
"experiencing",
"stomach",
"problems",
".",
"'",
"\n\n",
"We",
"ask",
"him",
"why",
"he",
"believes",
"filtered",
"water",
"is",
"the",
"problem",
".",
"Dr",
"Ansari",
"explains",
"that",
"it",
"has",
"to",
"do",
"with"
] |
[] |
Plus d’informations :
https://gosr .ioc-unesco.orgUne planète,
Un océanRapport mondial sur les
sciences océaniques 2020
Cartographie des capacités au service de
la durabilité des océans
Éditions
UNESCO
Organisation
des Nations Unies
pour l’éducation,
la science et la culture
|
[
"Plus",
"d’informations",
":",
"\n",
"https://gosr",
".ioc",
"-",
"unesco.orgUne",
"planète",
",",
"\n",
"Un",
"océanRapport",
"mondial",
"sur",
"les",
"\n",
"sciences",
"océaniques",
"2020",
"\n",
"Cartographie",
"des",
"capacités",
"au",
"service",
"de",
"\n",
"la",
"durabilité",
"des",
"océans",
"\n",
"Éditions",
"\n",
"UNESCO",
"\n",
"Organisation",
"\n",
"des",
"Nations",
"Unies",
"\n",
"pour",
"l’éducation",
",",
"\n",
"la",
"science",
"et",
"la",
"culture"
] |
[] |
in August 2023, 82 more deaths were reported than expected: an excess death rate of 67%. In the week of 19 August, the rate was 367% higher than expected compared to previous years. 80% of these deaths didn’t take place in a medical context, 12% higher than in other months, suggesting some people never reached medical care because of the fires. At the same time, the proportion of deaths with a non-medical cause rose from 68% to 80%.
This differs slightly from the official fatality count of 102, although it’s very close to the 88 fire-related deaths reported in August 2023 by the CDC.
“We think this might reflect a temporary drop in other causes of death, like car accidents, during the fire period, similar to what we saw during Covid-19, when deaths from some non-Covid causes dropped during lockdowns,” said Nakatsuka. “It's also possible that some deaths occurred after the August time window we studied, for example from missed treatments or worsening of chronic conditions.”
<!-- image -->
<!-- image -->
Report Ad
The scientists point out that there are some limitations to this analysis. For instance, the data is not geographically granular enough to identify whether the death toll was particularly high in Lāhainā itself.
“Our study only covers a short time window, so we can’t speak to longer-term mortality impacts,” explained Nakatsuka. “Excess mortality models also can’t determine exact causes of death, and we didn’t have access to detailed death certificate data like toxicology reports or autopsy findings. Still, we believe this type of analysis offers important insights into the broader health impacts of disasters like the Lāhainā fire.”
Planting the future
To protect Hawaiʻi from similar tragedies in the future, the researchers call for improved disaster preparedness and investment in the restoration of Native Hawaiian plants and agroecological systems, which reduce the likelihood of destructive wildfires compared to modern monocultures and invasive plant species.
“In the short term, it’s critical for people exposed to wildfires to get immediate medical treatment,” said Nakatsuka. “Fast, accessible emergency care can save lives.”
“In the long term, we’d like to see more policy investment in wildfire prevention rooted in Native Hawaiian ecological knowledge,” said Taparra. “This includes restoring traditional agroecological systems, removing dry, non-native grasses, restoring traditional pre-colonial water systems, and improving fire risk modeling to better guide preparedness efforts.”
<!-- image -->
<!-- image -->
Report Ad
- RELATED
|
[
"in",
"August",
"2023",
",",
"82",
"more",
"deaths",
"were",
"reported",
"than",
"expected",
":",
"an",
"excess",
"death",
"rate",
"of",
"67",
"%",
".",
"In",
"the",
"week",
"of",
"19",
"August",
",",
"the",
"rate",
"was",
"367",
"%",
"higher",
"than",
"expected",
"compared",
"to",
"previous",
"years",
".",
"80",
"%",
"of",
"these",
"deaths",
"did",
"n’t",
"take",
"place",
"in",
"a",
"medical",
"context",
",",
"12",
"%",
"higher",
"than",
"in",
"other",
"months",
",",
"suggesting",
"some",
"people",
"never",
"reached",
"medical",
"care",
"because",
"of",
"the",
"fires",
".",
"At",
"the",
"same",
"time",
",",
"the",
"proportion",
"of",
"deaths",
"with",
"a",
"non",
"-",
"medical",
"cause",
"rose",
"from",
"68",
"%",
"to",
"80",
"%",
".",
"\n\n",
"This",
"differs",
"slightly",
"from",
"the",
"official",
"fatality",
"count",
"of",
"102",
",",
"although",
"it",
"’s",
"very",
"close",
"to",
"the",
"88",
"fire",
"-",
"related",
"deaths",
"reported",
"in",
"August",
"2023",
"by",
"the",
"CDC",
".",
"\n\n",
"“",
"We",
"think",
"this",
"might",
"reflect",
"a",
"temporary",
"drop",
"in",
"other",
"causes",
"of",
"death",
",",
"like",
"car",
"accidents",
",",
"during",
"the",
"fire",
"period",
",",
"similar",
"to",
"what",
"we",
"saw",
"during",
"Covid-19",
",",
"when",
"deaths",
"from",
"some",
"non",
"-",
"Covid",
"causes",
"dropped",
"during",
"lockdowns",
",",
"”",
"said",
"Nakatsuka",
".",
"“",
"It",
"'s",
"also",
"possible",
"that",
"some",
"deaths",
"occurred",
"after",
"the",
"August",
"time",
"window",
"we",
"studied",
",",
"for",
"example",
"from",
"missed",
"treatments",
"or",
"worsening",
"of",
"chronic",
"conditions",
".",
"”",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Report",
"Ad",
"\n\n",
"The",
"scientists",
"point",
"out",
"that",
"there",
"are",
"some",
"limitations",
"to",
"this",
"analysis",
".",
"For",
"instance",
",",
"the",
"data",
"is",
"not",
"geographically",
"granular",
"enough",
"to",
"identify",
"whether",
"the",
"death",
"toll",
"was",
"particularly",
"high",
"in",
"Lāhainā",
"itself",
".",
"\n\n",
"“",
"Our",
"study",
"only",
"covers",
"a",
"short",
"time",
"window",
",",
"so",
"we",
"ca",
"n’t",
"speak",
"to",
"longer",
"-",
"term",
"mortality",
"impacts",
",",
"”",
"explained",
"Nakatsuka",
".",
"“",
"Excess",
"mortality",
"models",
"also",
"ca",
"n’t",
"determine",
"exact",
"causes",
"of",
"death",
",",
"and",
"we",
"did",
"n’t",
"have",
"access",
"to",
"detailed",
"death",
"certificate",
"data",
"like",
"toxicology",
"reports",
"or",
"autopsy",
"findings",
".",
"Still",
",",
"we",
"believe",
"this",
"type",
"of",
"analysis",
"offers",
"important",
"insights",
"into",
"the",
"broader",
"health",
"impacts",
"of",
"disasters",
"like",
"the",
"Lāhainā",
"fire",
".",
"”",
"\n\n",
"Planting",
"the",
"future",
"\n\n",
"To",
"protect",
"Hawaiʻi",
"from",
"similar",
"tragedies",
"in",
"the",
"future",
",",
"the",
"researchers",
"call",
"for",
"improved",
"disaster",
"preparedness",
"and",
"investment",
"in",
"the",
"restoration",
"of",
"Native",
"Hawaiian",
"plants",
"and",
"agroecological",
"systems",
",",
"which",
"reduce",
"the",
"likelihood",
"of",
"destructive",
"wildfires",
"compared",
"to",
"modern",
"monocultures",
"and",
"invasive",
"plant",
"species",
".",
"\n\n",
"“",
"In",
"the",
"short",
"term",
",",
"it",
"’s",
"critical",
"for",
"people",
"exposed",
"to",
"wildfires",
"to",
"get",
"immediate",
"medical",
"treatment",
",",
"”",
"said",
"Nakatsuka",
".",
"“",
"Fast",
",",
"accessible",
"emergency",
"care",
"can",
"save",
"lives",
".",
"”",
"\n\n",
"“",
"In",
"the",
"long",
"term",
",",
"we",
"’d",
"like",
"to",
"see",
"more",
"policy",
"investment",
"in",
"wildfire",
"prevention",
"rooted",
"in",
"Native",
"Hawaiian",
"ecological",
"knowledge",
",",
"”",
"said",
"Taparra",
".",
"“",
"This",
"includes",
"restoring",
"traditional",
"agroecological",
"systems",
",",
"removing",
"dry",
",",
"non",
"-",
"native",
"grasses",
",",
"restoring",
"traditional",
"pre",
"-",
"colonial",
"water",
"systems",
",",
"and",
"improving",
"fire",
"risk",
"modeling",
"to",
"better",
"guide",
"preparedness",
"efforts",
".",
"”",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"<",
"!",
"--",
"image",
"--",
">",
"\n\n",
"Report",
"Ad",
"\n\n",
"-",
"RELATED"
] |
[] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.