|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- dense |
|
|
- generated_from_trainer |
|
|
- dataset_size:76932 |
|
|
- loss:MultipleNegativesRankingLoss |
|
|
base_model: intfloat/multilingual-e5-large |
|
|
widget: |
|
|
- source_sentence: 'query: ATM Adaptation Layer 2의 약어는 무엇인가요?' |
|
|
sentences: |
|
|
- 'passage: 2 Transmit 2 Receive (기술)' |
|
|
- 'passage: Alternating Current (개념)' |
|
|
- 'passage: AAL2 (기술)' |
|
|
- source_sentence: 'query: AC의 접근 클래스 C0부터 C15까지의 기능은 무엇인가요?' |
|
|
sentences: |
|
|
- 'passage: Access Class (C0 to C15) (개념)' |
|
|
- 'passage: 3 Dimension-Through Silicon Via (기술)' |
|
|
- 'passage: ACAP (Conceptual)' |
|
|
- source_sentence: 'query: What is the abbreviation for Alarm Agent Handling Block?' |
|
|
sentences: |
|
|
- 'passage: ATM Connection establishment/release Control Block (기술)' |
|
|
- 'passage: AAGHB (Technical)' |
|
|
- 'passage: Account Card Calling (활용)' |
|
|
- source_sentence: 'query: ABPL의 ATM 기본 속도 물리 계층 장치는 어떻게 구성되어 있나요?' |
|
|
sentences: |
|
|
- 'passage: ATM Base Rate Physical Layer Unit (기술)' |
|
|
- 'passage: 3A (개념)' |
|
|
- 'passage: 5GTF (Conceptual)' |
|
|
- source_sentence: 'query: How does the triple encryption process of 3-DES enhance |
|
|
security?' |
|
|
sentences: |
|
|
- 'passage: 5th Generation Technical Forum (Conceptual)' |
|
|
- 'passage: Triple Data Encryption Standard (Technical)' |
|
|
- 'passage: ABCDEF (활용)' |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@3 |
|
|
- cosine_accuracy@5 |
|
|
- cosine_accuracy@10 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@3 |
|
|
- cosine_precision@5 |
|
|
- cosine_precision@10 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@3 |
|
|
- cosine_recall@5 |
|
|
- cosine_recall@10 |
|
|
- cosine_ndcg@10 |
|
|
- cosine_mrr@10 |
|
|
- cosine_map@100 |
|
|
model-index: |
|
|
- name: SentenceTransformer based on intfloat/multilingual-e5-large |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: e5 eval real |
|
|
type: e5-eval-real |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.8686666666666667 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.969 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.9832 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.9922 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.8686666666666667 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.323 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.19664000000000004 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.09922000000000002 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.8686666666666667 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.969 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.9832 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.9922 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.9376619313817377 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.9193550000000039 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.9197550584627825 |
|
|
name: Cosine Map@100 |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-large |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 --> |
|
|
- **Maximum Sequence Length:** 256 tokens |
|
|
- **Output Dimensionality:** 1024 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Dataset:** |
|
|
- train |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) |
|
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'query: How does the triple encryption process of 3-DES enhance security?', |
|
|
'passage: Triple Data Encryption Standard (Technical)', |
|
|
'passage: ABCDEF (활용)', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities) |
|
|
# tensor([[1.0000, 0.8389, 0.1546], |
|
|
# [0.8389, 1.0000, 0.0850], |
|
|
# [0.1546, 0.0850, 1.0000]]) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `e5-eval-real` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.8687 | |
|
|
| cosine_accuracy@3 | 0.969 | |
|
|
| cosine_accuracy@5 | 0.9832 | |
|
|
| cosine_accuracy@10 | 0.9922 | |
|
|
| cosine_precision@1 | 0.8687 | |
|
|
| cosine_precision@3 | 0.323 | |
|
|
| cosine_precision@5 | 0.1966 | |
|
|
| cosine_precision@10 | 0.0992 | |
|
|
| cosine_recall@1 | 0.8687 | |
|
|
| cosine_recall@3 | 0.969 | |
|
|
| cosine_recall@5 | 0.9832 | |
|
|
| cosine_recall@10 | 0.9922 | |
|
|
| **cosine_ndcg@10** | **0.9377** | |
|
|
| cosine_mrr@10 | 0.9194 | |
|
|
| cosine_map@100 | 0.9198 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### train |
|
|
|
|
|
* Dataset: train |
|
|
* Size: 76,932 training samples |
|
|
* Columns: <code>0</code> and <code>1</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | 0 | 1 | |
|
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 11 tokens</li><li>mean: 19.44 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.28 tokens</li><li>max: 27 tokens</li></ul> | |
|
|
* Samples: |
|
|
| 0 | 1 | |
|
|
|:--------------------------------------------------------------------|:------------------------------------------------------------------| |
|
|
| <code>query: 3D-TSV 기술의 구조는 어떻게 되어 있나요?</code> | <code>passage: 3 Dimension-Through Silicon Via (기술)</code> | |
|
|
| <code>query: What is the structure of the 3D-TSV technology?</code> | <code>passage: 3 Dimension-Through Silicon Via (Technical)</code> | |
|
|
| <code>query: 3 Dimension-Through Silicon Via의 줄임말이 뭐죠?</code> | <code>passage: 3D-TSV (기술)</code> | |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "cos_sim", |
|
|
"gather_across_devices": false |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `learning_rate`: 1e-05 |
|
|
- `weight_decay`: 0.01 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `bf16`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 1e-05 |
|
|
- `weight_decay`: 0.01 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 3 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: True |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `parallelism_config`: None |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch_fused |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
- `router_mapping`: {} |
|
|
- `learning_rate_mapping`: {} |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | e5-eval-real_cosine_ndcg@10 | |
|
|
|:------:|:----:|:-------------:|:---------------------------:| |
|
|
| 0.0008 | 1 | 3.1575 | - | |
|
|
| 0.0831 | 100 | 1.6593 | - | |
|
|
| 0.1663 | 200 | 0.1298 | 0.8389 | |
|
|
| 0.2494 | 300 | 0.0848 | - | |
|
|
| 0.3325 | 400 | 0.0716 | 0.8808 | |
|
|
| 0.4156 | 500 | 0.0504 | - | |
|
|
| 0.4988 | 600 | 0.0421 | 0.9033 | |
|
|
| 0.5819 | 700 | 0.042 | - | |
|
|
| 0.6650 | 800 | 0.0398 | 0.9095 | |
|
|
| 0.7481 | 900 | 0.0384 | - | |
|
|
| 0.8313 | 1000 | 0.0383 | 0.9111 | |
|
|
| 0.9144 | 1100 | 0.0321 | - | |
|
|
| 0.9975 | 1200 | 0.0317 | 0.9186 | |
|
|
| 1.0806 | 1300 | 0.0299 | - | |
|
|
| 1.1638 | 1400 | 0.0302 | 0.9161 | |
|
|
| 1.2469 | 1500 | 0.025 | - | |
|
|
| 1.3300 | 1600 | 0.0199 | 0.9261 | |
|
|
| 1.4131 | 1700 | 0.0179 | - | |
|
|
| 1.4963 | 1800 | 0.0117 | 0.9305 | |
|
|
| 1.5794 | 1900 | 0.013 | - | |
|
|
| 1.6625 | 2000 | 0.012 | 0.9308 | |
|
|
| 1.7456 | 2100 | 0.0137 | - | |
|
|
| 1.8288 | 2200 | 0.0141 | 0.9309 | |
|
|
| 1.9119 | 2300 | 0.0127 | - | |
|
|
| 1.9950 | 2400 | 0.0115 | 0.9332 | |
|
|
| 2.0781 | 2500 | 0.0114 | - | |
|
|
| 2.1613 | 2600 | 0.011 | 0.9351 | |
|
|
| 2.2444 | 2700 | 0.0107 | - | |
|
|
| 2.3275 | 2800 | 0.0087 | 0.9357 | |
|
|
| 2.4106 | 2900 | 0.0084 | - | |
|
|
| 2.4938 | 3000 | 0.0059 | 0.9366 | |
|
|
| 2.5769 | 3100 | 0.0062 | - | |
|
|
| 2.6600 | 3200 | 0.0071 | 0.9377 | |
|
|
| 2.7431 | 3300 | 0.0072 | - | |
|
|
| 2.8263 | 3400 | 0.0079 | 0.9376 | |
|
|
| 2.9094 | 3500 | 0.0071 | - | |
|
|
| 2.9925 | 3600 | 0.0068 | 0.9376 | |
|
|
| -1 | -1 | - | 0.9377 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.12.11 |
|
|
- Sentence Transformers: 5.1.0 |
|
|
- Transformers: 4.56.1 |
|
|
- PyTorch: 2.8.0+cu126 |
|
|
- Accelerate: 1.10.1 |
|
|
- Datasets: 3.6.0 |
|
|
- Tokenizers: 0.22.0 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |