---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:76932
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large
widget:
- source_sentence: 'query: ATM Adaptation Layer 2의 약어는 무엇인가요?'
sentences:
- 'passage: 2 Transmit 2 Receive (기술)'
- 'passage: Alternating Current (개념)'
- 'passage: AAL2 (기술)'
- source_sentence: 'query: AC의 접근 클래스 C0부터 C15까지의 기능은 무엇인가요?'
sentences:
- 'passage: Access Class (C0 to C15) (개념)'
- 'passage: 3 Dimension-Through Silicon Via (기술)'
- 'passage: ACAP (Conceptual)'
- source_sentence: 'query: What is the abbreviation for Alarm Agent Handling Block?'
sentences:
- 'passage: ATM Connection establishment/release Control Block (기술)'
- 'passage: AAGHB (Technical)'
- 'passage: Account Card Calling (활용)'
- source_sentence: 'query: ABPL의 ATM 기본 속도 물리 계층 장치는 어떻게 구성되어 있나요?'
sentences:
- 'passage: ATM Base Rate Physical Layer Unit (기술)'
- 'passage: 3A (개념)'
- 'passage: 5GTF (Conceptual)'
- source_sentence: 'query: How does the triple encryption process of 3-DES enhance
security?'
sentences:
- 'passage: 5th Generation Technical Forum (Conceptual)'
- 'passage: Triple Data Encryption Standard (Technical)'
- 'passage: ABCDEF (활용)'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: e5 eval real
type: e5-eval-real
metrics:
- type: cosine_accuracy@1
value: 0.8686666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.969
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9832
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9922
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8686666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.323
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19664000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09922000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8686666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.969
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9832
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9922
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9376619313817377
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9193550000000039
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9197550584627825
name: Cosine Map@100
---
# SentenceTransformer based on intfloat/multilingual-e5-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- train
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'query: How does the triple encryption process of 3-DES enhance security?',
'passage: Triple Data Encryption Standard (Technical)',
'passage: ABCDEF (활용)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8389, 0.1546],
# [0.8389, 1.0000, 0.0850],
# [0.1546, 0.0850, 1.0000]])
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `e5-eval-real`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8687 |
| cosine_accuracy@3 | 0.969 |
| cosine_accuracy@5 | 0.9832 |
| cosine_accuracy@10 | 0.9922 |
| cosine_precision@1 | 0.8687 |
| cosine_precision@3 | 0.323 |
| cosine_precision@5 | 0.1966 |
| cosine_precision@10 | 0.0992 |
| cosine_recall@1 | 0.8687 |
| cosine_recall@3 | 0.969 |
| cosine_recall@5 | 0.9832 |
| cosine_recall@10 | 0.9922 |
| **cosine_ndcg@10** | **0.9377** |
| cosine_mrr@10 | 0.9194 |
| cosine_map@100 | 0.9198 |
## Training Details
### Training Dataset
#### train
* Dataset: train
* Size: 76,932 training samples
* Columns: 0 and 1
* Approximate statistics based on the first 1000 samples:
| | 0 | 1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
query: 3D-TSV 기술의 구조는 어떻게 되어 있나요? | passage: 3 Dimension-Through Silicon Via (기술) |
| query: What is the structure of the 3D-TSV technology? | passage: 3 Dimension-Through Silicon Via (Technical) |
| query: 3 Dimension-Through Silicon Via의 줄임말이 뭐죠? | passage: 3D-TSV (기술) |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters