SentenceTransformer based on intfloat/multilingual-e5-large

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-large
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • train

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'query: How does the triple encryption process of 3-DES enhance security?',
    'passage: Triple Data Encryption Standard (Technical)',
    'passage: ABCDEF (활용)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8389, 0.1546],
#         [0.8389, 1.0000, 0.0850],
#         [0.1546, 0.0850, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8687
cosine_accuracy@3 0.969
cosine_accuracy@5 0.9832
cosine_accuracy@10 0.9922
cosine_precision@1 0.8687
cosine_precision@3 0.323
cosine_precision@5 0.1966
cosine_precision@10 0.0992
cosine_recall@1 0.8687
cosine_recall@3 0.969
cosine_recall@5 0.9832
cosine_recall@10 0.9922
cosine_ndcg@10 0.9377
cosine_mrr@10 0.9194
cosine_map@100 0.9198

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 76,932 training samples
  • Columns: 0 and 1
  • Approximate statistics based on the first 1000 samples:
    0 1
    type string string
    details
    • min: 11 tokens
    • mean: 19.44 tokens
    • max: 48 tokens
    • min: 8 tokens
    • mean: 12.28 tokens
    • max: 27 tokens
  • Samples:
    0 1
    query: 3D-TSV 기술의 구조는 어떻게 되어 있나요? passage: 3 Dimension-Through Silicon Via (기술)
    query: What is the structure of the 3D-TSV technology? passage: 3 Dimension-Through Silicon Via (Technical)
    query: 3 Dimension-Through Silicon Via의 줄임말이 뭐죠? passage: 3D-TSV (기술)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss e5-eval-real_cosine_ndcg@10
0.0008 1 3.1575 -
0.0831 100 1.6593 -
0.1663 200 0.1298 0.8389
0.2494 300 0.0848 -
0.3325 400 0.0716 0.8808
0.4156 500 0.0504 -
0.4988 600 0.0421 0.9033
0.5819 700 0.042 -
0.6650 800 0.0398 0.9095
0.7481 900 0.0384 -
0.8313 1000 0.0383 0.9111
0.9144 1100 0.0321 -
0.9975 1200 0.0317 0.9186
1.0806 1300 0.0299 -
1.1638 1400 0.0302 0.9161
1.2469 1500 0.025 -
1.3300 1600 0.0199 0.9261
1.4131 1700 0.0179 -
1.4963 1800 0.0117 0.9305
1.5794 1900 0.013 -
1.6625 2000 0.012 0.9308
1.7456 2100 0.0137 -
1.8288 2200 0.0141 0.9309
1.9119 2300 0.0127 -
1.9950 2400 0.0115 0.9332
2.0781 2500 0.0114 -
2.1613 2600 0.011 0.9351
2.2444 2700 0.0107 -
2.3275 2800 0.0087 0.9357
2.4106 2900 0.0084 -
2.4938 3000 0.0059 0.9366
2.5769 3100 0.0062 -
2.6600 3200 0.0071 0.9377
2.7431 3300 0.0072 -
2.8263 3400 0.0079 0.9376
2.9094 3500 0.0071 -
2.9925 3600 0.0068 0.9376
-1 -1 - 0.9377

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu126
  • Accelerate: 1.10.1
  • Datasets: 3.6.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
231
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for blemond/RAG_press_multilingual_e5_large

Finetuned
(138)
this model

Evaluation results