SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- train
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'query: How does the triple encryption process of 3-DES enhance security?',
'passage: Triple Data Encryption Standard (Technical)',
'passage: ABCDEF (활용)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8389, 0.1546],
# [0.8389, 1.0000, 0.0850],
# [0.1546, 0.0850, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
e5-eval-real - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8687 |
| cosine_accuracy@3 | 0.969 |
| cosine_accuracy@5 | 0.9832 |
| cosine_accuracy@10 | 0.9922 |
| cosine_precision@1 | 0.8687 |
| cosine_precision@3 | 0.323 |
| cosine_precision@5 | 0.1966 |
| cosine_precision@10 | 0.0992 |
| cosine_recall@1 | 0.8687 |
| cosine_recall@3 | 0.969 |
| cosine_recall@5 | 0.9832 |
| cosine_recall@10 | 0.9922 |
| cosine_ndcg@10 | 0.9377 |
| cosine_mrr@10 | 0.9194 |
| cosine_map@100 | 0.9198 |
Training Details
Training Dataset
train
- Dataset: train
- Size: 76,932 training samples
- Columns:
0and1 - Approximate statistics based on the first 1000 samples:
0 1 type string string details - min: 11 tokens
- mean: 19.44 tokens
- max: 48 tokens
- min: 8 tokens
- mean: 12.28 tokens
- max: 27 tokens
- Samples:
0 1 query: 3D-TSV 기술의 구조는 어떻게 되어 있나요?passage: 3 Dimension-Through Silicon Via (기술)query: What is the structure of the 3D-TSV technology?passage: 3 Dimension-Through Silicon Via (Technical)query: 3 Dimension-Through Silicon Via의 줄임말이 뭐죠?passage: 3D-TSV (기술) - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 1e-05weight_decay: 0.01lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | e5-eval-real_cosine_ndcg@10 |
|---|---|---|---|
| 0.0008 | 1 | 3.1575 | - |
| 0.0831 | 100 | 1.6593 | - |
| 0.1663 | 200 | 0.1298 | 0.8389 |
| 0.2494 | 300 | 0.0848 | - |
| 0.3325 | 400 | 0.0716 | 0.8808 |
| 0.4156 | 500 | 0.0504 | - |
| 0.4988 | 600 | 0.0421 | 0.9033 |
| 0.5819 | 700 | 0.042 | - |
| 0.6650 | 800 | 0.0398 | 0.9095 |
| 0.7481 | 900 | 0.0384 | - |
| 0.8313 | 1000 | 0.0383 | 0.9111 |
| 0.9144 | 1100 | 0.0321 | - |
| 0.9975 | 1200 | 0.0317 | 0.9186 |
| 1.0806 | 1300 | 0.0299 | - |
| 1.1638 | 1400 | 0.0302 | 0.9161 |
| 1.2469 | 1500 | 0.025 | - |
| 1.3300 | 1600 | 0.0199 | 0.9261 |
| 1.4131 | 1700 | 0.0179 | - |
| 1.4963 | 1800 | 0.0117 | 0.9305 |
| 1.5794 | 1900 | 0.013 | - |
| 1.6625 | 2000 | 0.012 | 0.9308 |
| 1.7456 | 2100 | 0.0137 | - |
| 1.8288 | 2200 | 0.0141 | 0.9309 |
| 1.9119 | 2300 | 0.0127 | - |
| 1.9950 | 2400 | 0.0115 | 0.9332 |
| 2.0781 | 2500 | 0.0114 | - |
| 2.1613 | 2600 | 0.011 | 0.9351 |
| 2.2444 | 2700 | 0.0107 | - |
| 2.3275 | 2800 | 0.0087 | 0.9357 |
| 2.4106 | 2900 | 0.0084 | - |
| 2.4938 | 3000 | 0.0059 | 0.9366 |
| 2.5769 | 3100 | 0.0062 | - |
| 2.6600 | 3200 | 0.0071 | 0.9377 |
| 2.7431 | 3300 | 0.0072 | - |
| 2.8263 | 3400 | 0.0079 | 0.9376 |
| 2.9094 | 3500 | 0.0071 | - |
| 2.9925 | 3600 | 0.0068 | 0.9376 |
| -1 | -1 | - | 0.9377 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 3.6.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 231
Model tree for blemond/RAG_press_multilingual_e5_large
Base model
intfloat/multilingual-e5-largeEvaluation results
- Cosine Accuracy@1 on e5 eval realself-reported0.869
- Cosine Accuracy@3 on e5 eval realself-reported0.969
- Cosine Accuracy@5 on e5 eval realself-reported0.983
- Cosine Accuracy@10 on e5 eval realself-reported0.992
- Cosine Precision@1 on e5 eval realself-reported0.869
- Cosine Precision@3 on e5 eval realself-reported0.323
- Cosine Precision@5 on e5 eval realself-reported0.197
- Cosine Precision@10 on e5 eval realself-reported0.099
- Cosine Recall@1 on e5 eval realself-reported0.869
- Cosine Recall@3 on e5 eval realself-reported0.969