File size: 17,606 Bytes
c8a098a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:76932
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large
widget:
- source_sentence: 'query: ATM Adaptation Layer 2의 약어는 무엇인가요?'
sentences:
- 'passage: 2 Transmit 2 Receive (기술)'
- 'passage: Alternating Current (개념)'
- 'passage: AAL2 (기술)'
- source_sentence: 'query: AC의 접근 클래스 C0부터 C15까지의 기능은 무엇인가요?'
sentences:
- 'passage: Access Class (C0 to C15) (개념)'
- 'passage: 3 Dimension-Through Silicon Via (기술)'
- 'passage: ACAP (Conceptual)'
- source_sentence: 'query: What is the abbreviation for Alarm Agent Handling Block?'
sentences:
- 'passage: ATM Connection establishment/release Control Block (기술)'
- 'passage: AAGHB (Technical)'
- 'passage: Account Card Calling (활용)'
- source_sentence: 'query: ABPL의 ATM 기본 속도 물리 계층 장치는 어떻게 구성되어 있나요?'
sentences:
- 'passage: ATM Base Rate Physical Layer Unit (기술)'
- 'passage: 3A (개념)'
- 'passage: 5GTF (Conceptual)'
- source_sentence: 'query: How does the triple encryption process of 3-DES enhance
security?'
sentences:
- 'passage: 5th Generation Technical Forum (Conceptual)'
- 'passage: Triple Data Encryption Standard (Technical)'
- 'passage: ABCDEF (활용)'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: e5 eval real
type: e5-eval-real
metrics:
- type: cosine_accuracy@1
value: 0.8686666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.969
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9832
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9922
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8686666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.323
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19664000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09922000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8686666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.969
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9832
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9922
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9376619313817377
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9193550000000039
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9197550584627825
name: Cosine Map@100
---
# SentenceTransformer based on intfloat/multilingual-e5-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'query: How does the triple encryption process of 3-DES enhance security?',
'passage: Triple Data Encryption Standard (Technical)',
'passage: ABCDEF (활용)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8389, 0.1546],
# [0.8389, 1.0000, 0.0850],
# [0.1546, 0.0850, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `e5-eval-real`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8687 |
| cosine_accuracy@3 | 0.969 |
| cosine_accuracy@5 | 0.9832 |
| cosine_accuracy@10 | 0.9922 |
| cosine_precision@1 | 0.8687 |
| cosine_precision@3 | 0.323 |
| cosine_precision@5 | 0.1966 |
| cosine_precision@10 | 0.0992 |
| cosine_recall@1 | 0.8687 |
| cosine_recall@3 | 0.969 |
| cosine_recall@5 | 0.9832 |
| cosine_recall@10 | 0.9922 |
| **cosine_ndcg@10** | **0.9377** |
| cosine_mrr@10 | 0.9194 |
| cosine_map@100 | 0.9198 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### train
* Dataset: train
* Size: 76,932 training samples
* Columns: <code>0</code> and <code>1</code>
* Approximate statistics based on the first 1000 samples:
| | 0 | 1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 19.44 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.28 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
| 0 | 1 |
|:--------------------------------------------------------------------|:------------------------------------------------------------------|
| <code>query: 3D-TSV 기술의 구조는 어떻게 되어 있나요?</code> | <code>passage: 3 Dimension-Through Silicon Via (기술)</code> |
| <code>query: What is the structure of the 3D-TSV technology?</code> | <code>passage: 3 Dimension-Through Silicon Via (Technical)</code> |
| <code>query: 3 Dimension-Through Silicon Via의 줄임말이 뭐죠?</code> | <code>passage: 3D-TSV (기술)</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | e5-eval-real_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------------------:|
| 0.0008 | 1 | 3.1575 | - |
| 0.0831 | 100 | 1.6593 | - |
| 0.1663 | 200 | 0.1298 | 0.8389 |
| 0.2494 | 300 | 0.0848 | - |
| 0.3325 | 400 | 0.0716 | 0.8808 |
| 0.4156 | 500 | 0.0504 | - |
| 0.4988 | 600 | 0.0421 | 0.9033 |
| 0.5819 | 700 | 0.042 | - |
| 0.6650 | 800 | 0.0398 | 0.9095 |
| 0.7481 | 900 | 0.0384 | - |
| 0.8313 | 1000 | 0.0383 | 0.9111 |
| 0.9144 | 1100 | 0.0321 | - |
| 0.9975 | 1200 | 0.0317 | 0.9186 |
| 1.0806 | 1300 | 0.0299 | - |
| 1.1638 | 1400 | 0.0302 | 0.9161 |
| 1.2469 | 1500 | 0.025 | - |
| 1.3300 | 1600 | 0.0199 | 0.9261 |
| 1.4131 | 1700 | 0.0179 | - |
| 1.4963 | 1800 | 0.0117 | 0.9305 |
| 1.5794 | 1900 | 0.013 | - |
| 1.6625 | 2000 | 0.012 | 0.9308 |
| 1.7456 | 2100 | 0.0137 | - |
| 1.8288 | 2200 | 0.0141 | 0.9309 |
| 1.9119 | 2300 | 0.0127 | - |
| 1.9950 | 2400 | 0.0115 | 0.9332 |
| 2.0781 | 2500 | 0.0114 | - |
| 2.1613 | 2600 | 0.011 | 0.9351 |
| 2.2444 | 2700 | 0.0107 | - |
| 2.3275 | 2800 | 0.0087 | 0.9357 |
| 2.4106 | 2900 | 0.0084 | - |
| 2.4938 | 3000 | 0.0059 | 0.9366 |
| 2.5769 | 3100 | 0.0062 | - |
| 2.6600 | 3200 | 0.0071 | 0.9377 |
| 2.7431 | 3300 | 0.0072 | - |
| 2.8263 | 3400 | 0.0079 | 0.9376 |
| 2.9094 | 3500 | 0.0071 | - |
| 2.9925 | 3600 | 0.0068 | 0.9376 |
| -1 | -1 | - | 0.9377 |
### Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 3.6.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |