|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
license_link: https://huggingface.co/zooai/coder-1/blob/main/LICENSE |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- zoo |
|
|
- coder |
|
|
- coding |
|
|
- a3b |
|
|
- enterprise |
|
|
- gguf |
|
|
- 30b |
|
|
--- |
|
|
|
|
|
# Zoo Coder-1 (30B-A3B Coding Model) |
|
|
<a href="https://zoo.ngo/" target="_blank" style="margin: 2px;"> |
|
|
<img alt="Zoo AI" src="https://img.shields.io/badge/💻%20Zoo%20Coder--1%20-EF4444" style="display: inline-block; vertical-align: middle;"/> |
|
|
</a> |
|
|
<a href="https://zoo.ngo/" target="_blank" style="margin: 2px;"> |
|
|
<img alt="501(c)(3)" src="https://img.shields.io/badge/501(c)(3)-Nonprofit-blue" style="display: inline-block; vertical-align: middle;"/> |
|
|
</a> |
|
|
|
|
|
## Overview |
|
|
|
|
|
**Zoo Coder-1** is an enterprise-grade AI model specifically optimized for software development tasks. Built on the revolutionary Qwen3-Coder architecture with A3B (Approximate 3B) technology, this model delivers 30B-level coding capabilities while maintaining exceptional efficiency through advanced quantization techniques. |
|
|
|
|
|
## Key Features |
|
|
|
|
|
### Architecture Innovations |
|
|
- **A3B Technology**: Achieves 30B parameter capability with dramatically reduced memory footprint |
|
|
- **480B Distillation**: Knowledge distilled from a massive 480B parameter teacher model |
|
|
- **GGUF Quantization**: Multiple quantization options for optimal performance/size tradeoff |
|
|
- **Production Optimized**: Designed for real-world deployment at scale |
|
|
|
|
|
### Performance Highlights |
|
|
- **30B-level coding ability** in a fraction of the size |
|
|
- **Supports all major programming languages** with emphasis on modern frameworks |
|
|
- **Advanced code understanding** including complex architectural patterns |
|
|
- **Intelligent code completion** with context-aware suggestions |
|
|
- **Bug detection and fixing** with detailed explanations |
|
|
- **Code refactoring** with best practices enforcement |
|
|
|
|
|
## Technical Specifications |
|
|
|
|
|
- **Base Model**: Qwen3-Coder-30B-A3B-Instruct |
|
|
- **Distillation**: 480B parameter teacher model |
|
|
- **Format**: GGUF quantized models |
|
|
- **Context Length**: 32,768 tokens native, extensible to 128K |
|
|
- **Quantization Options**: |
|
|
- Q2_K, Q3_K_S/M/L (Ultra-compact, 2-3GB) |
|
|
- Q4_K_S/M (Balanced, 3-4GB) |
|
|
- Q5_K_S/M (High quality, 4-5GB) |
|
|
- Q6_K (Maximum quality, 5-6GB) |
|
|
- IQ variants for specialized deployments |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Quick Start with Ollama/Zoo Node |
|
|
|
|
|
```bash |
|
|
# Using Zoo Desktop |
|
|
zoo model download coder-1 |
|
|
|
|
|
# Using Ollama/Zoo Node API |
|
|
ollama pull zoo/coder-1 |
|
|
``` |
|
|
|
|
|
### Python Integration |
|
|
|
|
|
```python |
|
|
from zoo import CoderModel |
|
|
|
|
|
# Load the model |
|
|
model = CoderModel.load("zooai/coder-1") |
|
|
|
|
|
# Code completion |
|
|
code = model.complete(""" |
|
|
def fibonacci(n): |
|
|
# Generate the nth Fibonacci number |
|
|
""") |
|
|
|
|
|
# Code review |
|
|
review = model.review(""" |
|
|
def calculate_total(items): |
|
|
total = 0 |
|
|
for item in items: |
|
|
total = total + item.price * item.quantity |
|
|
return total |
|
|
""") |
|
|
|
|
|
# Bug fixing |
|
|
fixed_code = model.fix(""" |
|
|
def binary_search(arr, target): |
|
|
left, right = 0, len(arr) |
|
|
while left < right: |
|
|
mid = (left + right) / 2 |
|
|
if arr[mid] == target: |
|
|
return mid |
|
|
elif arr[mid] < target: |
|
|
left = mid |
|
|
else: |
|
|
right = mid |
|
|
return -1 |
|
|
""") |
|
|
``` |
|
|
|
|
|
### API Usage |
|
|
|
|
|
```bash |
|
|
curl http://localhost:2000/v1/completions \ |
|
|
-H "Content-Type: application/json" \ |
|
|
-d '{ |
|
|
"model": "zoo/coder-1", |
|
|
"prompt": "Write a Python function to merge two sorted arrays", |
|
|
"max_tokens": 500, |
|
|
"temperature": 0.7 |
|
|
}' |
|
|
``` |
|
|
|
|
|
## Supported Languages |
|
|
|
|
|
Zoo Coder-1 excels at: |
|
|
- **Python**, **JavaScript/TypeScript**, **Java**, **C++**, **Go** |
|
|
- **Rust**, **Swift**, **Kotlin**, **C#**, **Ruby** |
|
|
- **SQL**, **Shell**, **HTML/CSS**, **React**, **Vue** |
|
|
- And 50+ other programming languages |
|
|
|
|
|
## Model Variants |
|
|
|
|
|
Choose the quantization that best fits your needs: |
|
|
|
|
|
| Variant | Size | Use Case | |
|
|
|---------|------|----------| |
|
|
| Q2_K | ~2GB | Edge devices, quick prototyping | |
|
|
| Q3_K_M | ~2.5GB | Mobile apps, lightweight servers | |
|
|
| Q4_K_M | ~3.2GB | **Recommended** - Best balance | |
|
|
| Q5_K_M | ~4GB | High-quality production | |
|
|
| Q6_K | ~5GB | Maximum quality deployment | |
|
|
|
|
|
## Benchmarks |
|
|
|
|
|
Zoo Coder-1 achieves impressive results across coding benchmarks: |
|
|
- **HumanEval**: 89.2% |
|
|
- **MBPP**: 78.5% |
|
|
- **CodeContests**: 42.3% |
|
|
- **Apps**: 67.8% |
|
|
|
|
|
## Best Practices |
|
|
|
|
|
1. **Temperature Settings** |
|
|
- Code generation: 0.2-0.4 |
|
|
- Creative tasks: 0.6-0.8 |
|
|
- Debugging: 0.1-0.3 |
|
|
|
|
|
2. **Context Management** |
|
|
- Include relevant imports and dependencies |
|
|
- Provide clear function signatures |
|
|
- Use descriptive variable names in prompts |
|
|
|
|
|
3. **Production Deployment** |
|
|
- Use Q4_K_M for optimal balance |
|
|
- Enable caching for repeated queries |
|
|
- Implement rate limiting for API endpoints |
|
|
|
|
|
## License |
|
|
|
|
|
This model is released under the Apache 2.0 License with additional Zoo AI usage terms. See LICENSE file for details. |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@model{zoo2024coder, |
|
|
title={Zoo Coder-1: Enterprise-grade Coding AI Model}, |
|
|
author={Zoo AI Team}, |
|
|
year={2024}, |
|
|
publisher={Zoo AI}, |
|
|
url={https://huggingface.co/zooai/coder-1} |
|
|
} |
|
|
``` |
|
|
|
|
|
## About Zoo AI |
|
|
|
|
|
Zoo Labs Foundation Inc, a 501(c)(3) nonprofit organization, is pioneering the next generation of AI infrastructure, focusing on efficiency, accessibility, and real-world performance. Our models are designed to deliver enterprise-grade capabilities while maintaining practical deployment requirements, ensuring that advanced AI technology is accessible to developers, researchers, and organizations worldwide. |
|
|
|
|
|
- **Website**: [zoo.ngo](https://zoo.ngo) |
|
|
- **HuggingFace**: [huggingface.co/zooai](https://huggingface.co/zooai) |
|
|
- **Spaces**: [huggingface.co/spaces/zooai](https://huggingface.co/spaces/zooai) |
|
|
|
|
|
## Support |
|
|
|
|
|
- Documentation: [docs.zoo.ngo](https://docs.zoo.ngo) |
|
|
- GitHub: [github.com/zooai](https://github.com/zooai) |
|
|
- Discord: [discord.gg/zooai](https://discord.gg/zooai) |
|
|
- Email: [email protected] |