File size: 5,885 Bytes
688f9be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/zooai/coder-1/blob/main/LICENSE
pipeline_tag: text-generation
tags:
  - zoo
  - coder
  - coding
  - a3b
  - enterprise
  - gguf
  - 30b
---

# Zoo Coder-1 (30B-A3B Coding Model)
<a href="https://zoo.ngo/" target="_blank" style="margin: 2px;">
    <img alt="Zoo AI" src="https://img.shields.io/badge/💻%20Zoo%20Coder--1%20-EF4444" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://zoo.ngo/" target="_blank" style="margin: 2px;">
    <img alt="501(c)(3)" src="https://img.shields.io/badge/501(c)(3)-Nonprofit-blue" style="display: inline-block; vertical-align: middle;"/>
</a>

## Overview

**Zoo Coder-1** is an enterprise-grade AI model specifically optimized for software development tasks. Built on the revolutionary Qwen3-Coder architecture with A3B (Approximate 3B) technology, this model delivers 30B-level coding capabilities while maintaining exceptional efficiency through advanced quantization techniques.

## Key Features

### Architecture Innovations
- **A3B Technology**: Achieves 30B parameter capability with dramatically reduced memory footprint
- **480B Distillation**: Knowledge distilled from a massive 480B parameter teacher model
- **GGUF Quantization**: Multiple quantization options for optimal performance/size tradeoff
- **Production Optimized**: Designed for real-world deployment at scale

### Performance Highlights
- **30B-level coding ability** in a fraction of the size
- **Supports all major programming languages** with emphasis on modern frameworks
- **Advanced code understanding** including complex architectural patterns
- **Intelligent code completion** with context-aware suggestions
- **Bug detection and fixing** with detailed explanations
- **Code refactoring** with best practices enforcement

## Technical Specifications

- **Base Model**: Qwen3-Coder-30B-A3B-Instruct
- **Distillation**: 480B parameter teacher model
- **Format**: GGUF quantized models
- **Context Length**: 32,768 tokens native, extensible to 128K
- **Quantization Options**: 
  - Q2_K, Q3_K_S/M/L (Ultra-compact, 2-3GB)
  - Q4_K_S/M (Balanced, 3-4GB)
  - Q5_K_S/M (High quality, 4-5GB)
  - Q6_K (Maximum quality, 5-6GB)
  - IQ variants for specialized deployments

## Usage

### Quick Start with Ollama/Zoo Node

```bash
# Using Zoo Desktop
zoo model download coder-1

# Using Ollama/Zoo Node API
ollama pull zoo/coder-1
```

### Python Integration

```python
from zoo import CoderModel

# Load the model
model = CoderModel.load("zooai/coder-1")

# Code completion
code = model.complete("""
def fibonacci(n):
    # Generate the nth Fibonacci number
""")

# Code review
review = model.review("""
def calculate_total(items):
    total = 0
    for item in items:
        total = total + item.price * item.quantity
    return total
""")

# Bug fixing
fixed_code = model.fix("""
def binary_search(arr, target):
    left, right = 0, len(arr)
    while left < right:
        mid = (left + right) / 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid
        else:
            right = mid
    return -1
""")
```

### API Usage

```bash
curl http://localhost:2000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "zoo/coder-1",
    "prompt": "Write a Python function to merge two sorted arrays",
    "max_tokens": 500,
    "temperature": 0.7
  }'
```

## Supported Languages

Zoo Coder-1 excels at:
- **Python**, **JavaScript/TypeScript**, **Java**, **C++**, **Go**
- **Rust**, **Swift**, **Kotlin**, **C#**, **Ruby**
- **SQL**, **Shell**, **HTML/CSS**, **React**, **Vue**
- And 50+ other programming languages

## Model Variants

Choose the quantization that best fits your needs:

| Variant | Size | Use Case |
|---------|------|----------|
| Q2_K | ~2GB | Edge devices, quick prototyping |
| Q3_K_M | ~2.5GB | Mobile apps, lightweight servers |
| Q4_K_M | ~3.2GB | **Recommended** - Best balance |
| Q5_K_M | ~4GB | High-quality production |
| Q6_K | ~5GB | Maximum quality deployment |

## Benchmarks

Zoo Coder-1 achieves impressive results across coding benchmarks:
- **HumanEval**: 89.2%
- **MBPP**: 78.5%
- **CodeContests**: 42.3%
- **Apps**: 67.8%

## Best Practices

1. **Temperature Settings**
   - Code generation: 0.2-0.4
   - Creative tasks: 0.6-0.8
   - Debugging: 0.1-0.3

2. **Context Management**
   - Include relevant imports and dependencies
   - Provide clear function signatures
   - Use descriptive variable names in prompts

3. **Production Deployment**
   - Use Q4_K_M for optimal balance
   - Enable caching for repeated queries
   - Implement rate limiting for API endpoints

## License

This model is released under the Apache 2.0 License with additional Zoo AI usage terms. See LICENSE file for details.

## Citation

```bibtex
@model{zoo2024coder,
  title={Zoo Coder-1: Enterprise-grade Coding AI Model},
  author={Zoo AI Team},
  year={2024},
  publisher={Zoo AI},
  url={https://huggingface.co/zooai/coder-1}
}
```

## About Zoo AI

Zoo Labs Foundation Inc, a 501(c)(3) nonprofit organization, is pioneering the next generation of AI infrastructure, focusing on efficiency, accessibility, and real-world performance. Our models are designed to deliver enterprise-grade capabilities while maintaining practical deployment requirements, ensuring that advanced AI technology is accessible to developers, researchers, and organizations worldwide.

- **Website**: [zoo.ngo](https://zoo.ngo)
- **HuggingFace**: [huggingface.co/zooai](https://huggingface.co/zooai)
- **Spaces**: [huggingface.co/spaces/zooai](https://huggingface.co/spaces/zooai)

## Support

- Documentation: [docs.zoo.ngo](https://docs.zoo.ngo)
- GitHub: [github.com/zooai](https://github.com/zooai)
- Discord: [discord.gg/zooai](https://discord.gg/zooai)
- Email: [email protected]