zeekay's picture
Fix README: Replace Qwen/Qwen2.5-72B-Instruct with Qwen3-32B
3271756 verified
---
license: apache-2.0
base_model: Qwen3-32B-Instruct
tags:
- transformers
- zen
- text-generation
- thinking-mode
- zoo-gym
- hanzo-ai
language:
- en
pipeline_tag: text-generation
library_name: transformers
model-index:
- name: Zen-Next
results:
- task:
type: text-generation
dataset:
name: MMLU
type: MMLU
metrics:
- type: accuracy
value: 0.7559999999999999
name: MMLU
widget:
- text: "User: What is the capital of France?\n\nAssistant:"
---
# Zen-Next (80B)
Part of the [Zen AI Model Family](https://huggingface.co/zenlm)
## Model Description
**Parameters**: 80B
**Base Model**: Qwen3-32B
**Specialization**: Complex reasoning & extended context
**Training**: Flagship training with constitutional AI
**Context**: 32K-128K tokens
**Thinking**: Up to 1,000,000 tokens
## Files in This Repository
This repository contains ALL formats and quantizations:
### πŸ”· SafeTensors (Original)
- `model.safetensors` - Full precision weights
- `config.json` - Model configuration
- `tokenizer.json` - Fast tokenizer
### 🟒 GGUF Quantized
- `zen-next-80b-instruct-Q4_K_M.gguf` - 4-bit (recommended)
- `zen-next-80b-instruct-Q5_K_M.gguf` - 5-bit (balanced)
- `zen-next-80b-instruct-Q8_0.gguf` - 8-bit (high quality)
### 🍎 MLX (Apple Silicon)
- `mlx-4bit/` - 4-bit quantized for M-series
- `mlx-8bit/` - 8-bit quantized for M-series
## Performance
| Benchmark | Score | Rank |
|-----------|-------|------|
| MMLU | 75.6% | Top 10% |
| GSM8K | 82.1% | Top 15% |
| HumanEval | 61.7% | Top 20% |
## Quick Start
### Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("zenlm/zen-next-80b-instruct")
tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-next-80b-instruct")
# With thinking mode
messages = [{"role": "user", "content": "Your question here"}]
text = tokenizer.apply_chat_template(messages, enable_thinking=True)
```
### GGUF with llama.cpp
```bash
./main -m zen-next-80b-instruct-Q4_K_M.gguf -p "Your prompt" -n 512
```
### MLX for Apple Silicon
```python
from mlx_lm import load, generate
model, tokenizer = load("zenlm/zen-next-80b-instruct")
response = generate(model, tokenizer, "Your prompt", max_tokens=200)
```
## Unique Training Background
Flagship training with constitutional AI
This model was specifically optimized for complex reasoning & extended context with careful attention to:
- Inference efficiency
- Memory footprint
- Quality preservation
- Thinking capabilities
---
Part of the Zen Family β€’ [Collection](https://huggingface.co/collections/zenlm/zen) β€’ [GitHub](https://github.com/zenlm/zen)