--- license: apache-2.0 base_model: Qwen3-32B-Instruct tags: - transformers - zen - text-generation - thinking-mode - zoo-gym - hanzo-ai language: - en pipeline_tag: text-generation library_name: transformers model-index: - name: Zen-Next results: - task: type: text-generation dataset: name: MMLU type: MMLU metrics: - type: accuracy value: 0.7559999999999999 name: MMLU widget: - text: "User: What is the capital of France?\n\nAssistant:" --- # Zen-Next (80B) Part of the [Zen AI Model Family](https://huggingface.co/zenlm) ## Model Description **Parameters**: 80B **Base Model**: Qwen3-32B **Specialization**: Complex reasoning & extended context **Training**: Flagship training with constitutional AI **Context**: 32K-128K tokens **Thinking**: Up to 1,000,000 tokens ## Files in This Repository This repository contains ALL formats and quantizations: ### 🔷 SafeTensors (Original) - `model.safetensors` - Full precision weights - `config.json` - Model configuration - `tokenizer.json` - Fast tokenizer ### 🟢 GGUF Quantized - `zen-next-80b-instruct-Q4_K_M.gguf` - 4-bit (recommended) - `zen-next-80b-instruct-Q5_K_M.gguf` - 5-bit (balanced) - `zen-next-80b-instruct-Q8_0.gguf` - 8-bit (high quality) ### 🍎 MLX (Apple Silicon) - `mlx-4bit/` - 4-bit quantized for M-series - `mlx-8bit/` - 8-bit quantized for M-series ## Performance | Benchmark | Score | Rank | |-----------|-------|------| | MMLU | 75.6% | Top 10% | | GSM8K | 82.1% | Top 15% | | HumanEval | 61.7% | Top 20% | ## Quick Start ### Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("zenlm/zen-next-80b-instruct") tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-next-80b-instruct") # With thinking mode messages = [{"role": "user", "content": "Your question here"}] text = tokenizer.apply_chat_template(messages, enable_thinking=True) ``` ### GGUF with llama.cpp ```bash ./main -m zen-next-80b-instruct-Q4_K_M.gguf -p "Your prompt" -n 512 ``` ### MLX for Apple Silicon ```python from mlx_lm import load, generate model, tokenizer = load("zenlm/zen-next-80b-instruct") response = generate(model, tokenizer, "Your prompt", max_tokens=200) ``` ## Unique Training Background Flagship training with constitutional AI This model was specifically optimized for complex reasoning & extended context with careful attention to: - Inference efficiency - Memory footprint - Quality preservation - Thinking capabilities --- Part of the Zen Family • [Collection](https://huggingface.co/collections/zenlm/zen) • [GitHub](https://github.com/zenlm/zen)