mcp-nlp-analytics / README_SPACE.md
RReyesp's picture
feat: entrega MVP MCP-NLP para hackatón
f120be8
|
raw
history blame
3.94 kB
# Sentiment Evolution Tracker – Hugging Face Space Edition
MCP-powered customer sentiment monitoring packaged for Hugging Face Spaces and local demos.
> Nota: el dashboard Streamlit es opcional y no forma parte del entregable principal. Solo ejecútalo si quieres experimentar con la versión interactiva local.
## 🚀 Launch The Demo (Opcional)
```powershell
streamlit run app.py
```
Open `http://localhost:8501` for the interactive dashboard.
## 📊 Feature Set
### Interactive Dashboard
- Four KPIs (customers, analyses, sentiment, alerts).
- Two charts (churn risk vs. time, sentiment trend).
- Detailed customer table with statuses.
### Deep-Dive Panels
- Select any customer to view historical analyses.
- Inspect sentiment velocity and recommended actions.
- Highlight churn drivers automatically.
### Multi-Customer Trends
- Compare sentiment trajectories across clients.
- Identify shared risk signals.
### MCP Tooling (7 tools)
1. `analyze_sentiment_evolution`
2. `detect_risk_signals`
3. `predict_next_action`
4. `get_customer_history`
5. `get_high_risk_customers`
6. `get_database_statistics`
7. `save_analysis`
## 💻 Local Setup
Requirements: Python 3.10+, pip.
```powershell
git clone https://huggingface.co/spaces/MCP-1st-Birthday/sentiment-tracker
cd mcp-nlp-server
pip install -r requirements.txt
python init_db.py
python tools\populate_demo_data.py
python tools\dashboard.py
python tools\generate_report.py # opens data/reporte_clientes.html
streamlit run app.py
```
## 🔧 MCP Configuration
1. Edit `config/claude_desktop_config.json`.
2. Point the server entry to `src/mcp_server.py`.
3. Restart Claude Desktop and select the sentiment tracker server.
```json
{
"mcpServers": {
"sentiment-tracker": {
"command": "python",
"args": ["src/mcp_server.py"],
"cwd": "C:/path/to/mcp-nlp-server"
}
}
}
```
## 📈 Use Cases
### 1. Churn Prediction
```
Input → customer ID
Process → trend analysis + risk signals + alerts
Output → alert if risk > 70% with suggested actions
```
### 2. Real-Time Monitoring
```
Dashboard highlights:
- Critical accounts (red)
- At-risk accounts (orange)
- Healthy accounts (green)
Updated whenever new analyses are stored
```
### 3. Executive Reporting
```
Generate the HTML report to share daily:
- Risk charts
- Sentiment evolution
- Top 5 accounts needing attention
- Actionable recommendations
```
### 4. LLM Integration
```
Claude workflow:
→ get_high_risk_customers()
→ get_customer_history()
→ predict_next_action()
→ Respond with urgency, revenue at risk, and next steps
```
## 📊 Sample Dataset
- Five demo customers (manufacturing, tech, retail, healthcare, finance).
- Seventeen conversations across rising/declining/stable trends.
- Alerts triggered automatically when risk exceeds thresholds.
## 🎯 Architecture
```
User / Team Lead
Claude Desktop (optional)
↓ MCP Protocol (stdio)
Sentiment Tracker Server (7 tools)
SQLite Database (customer_profiles, conversations, risk_alerts)
```
## 🔑 Key Advantages
- **Local-first**: keep customer data on-prem.
- **Zero external APIs**: predictable cost, improved privacy.
- **Real-time**: sentiment scoring < 100 ms per request.
- **Predictive**: churn detection 5–7 days ahead.
- **Agentic**: Claude drives the workflow autonomously.
- **Scalable**: handles thousands of customers on commodity hardware.
## 📚 Documentation
- [Architecture](docs/ARCHITECTURE.md)
- [Quick Start](docs/QUICK_START.md)
- [Blog Post](../BLOG_POST.md)
## 🤝 Contributions
Suggestions are welcome—open an issue or submit a pull request.
## 📝 License
MIT License.
## 🙏 Acknowledgements
- Anthropic for MCP.
- Hugging Face for the hosting platform.
- TextBlob + NLTK for NLP utilities.
---
Built for the MCP 1st Birthday Hackathon 🎉
[GitHub](https://github.com) • [Blog](../BLOG_POST.md) • [Docs](docs/)