File size: 3,935 Bytes
f120be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Sentiment Evolution Tracker β Hugging Face Space Edition
MCP-powered customer sentiment monitoring packaged for Hugging Face Spaces and local demos.
> Nota: el dashboard Streamlit es opcional y no forma parte del entregable principal. Solo ejecΓΊtalo si quieres experimentar con la versiΓ³n interactiva local.
## π Launch The Demo (Opcional)
```powershell
streamlit run app.py
```
Open `http://localhost:8501` for the interactive dashboard.
## π Feature Set
### Interactive Dashboard
- Four KPIs (customers, analyses, sentiment, alerts).
- Two charts (churn risk vs. time, sentiment trend).
- Detailed customer table with statuses.
### Deep-Dive Panels
- Select any customer to view historical analyses.
- Inspect sentiment velocity and recommended actions.
- Highlight churn drivers automatically.
### Multi-Customer Trends
- Compare sentiment trajectories across clients.
- Identify shared risk signals.
### MCP Tooling (7 tools)
1. `analyze_sentiment_evolution`
2. `detect_risk_signals`
3. `predict_next_action`
4. `get_customer_history`
5. `get_high_risk_customers`
6. `get_database_statistics`
7. `save_analysis`
## π» Local Setup
Requirements: Python 3.10+, pip.
```powershell
git clone https://huggingface.co/spaces/MCP-1st-Birthday/sentiment-tracker
cd mcp-nlp-server
pip install -r requirements.txt
python init_db.py
python tools\populate_demo_data.py
python tools\dashboard.py
python tools\generate_report.py # opens data/reporte_clientes.html
streamlit run app.py
```
## π§ MCP Configuration
1. Edit `config/claude_desktop_config.json`.
2. Point the server entry to `src/mcp_server.py`.
3. Restart Claude Desktop and select the sentiment tracker server.
```json
{
"mcpServers": {
"sentiment-tracker": {
"command": "python",
"args": ["src/mcp_server.py"],
"cwd": "C:/path/to/mcp-nlp-server"
}
}
}
```
## π Use Cases
### 1. Churn Prediction
```
Input β customer ID
Process β trend analysis + risk signals + alerts
Output β alert if risk > 70% with suggested actions
```
### 2. Real-Time Monitoring
```
Dashboard highlights:
- Critical accounts (red)
- At-risk accounts (orange)
- Healthy accounts (green)
Updated whenever new analyses are stored
```
### 3. Executive Reporting
```
Generate the HTML report to share daily:
- Risk charts
- Sentiment evolution
- Top 5 accounts needing attention
- Actionable recommendations
```
### 4. LLM Integration
```
Claude workflow:
β get_high_risk_customers()
β get_customer_history()
β predict_next_action()
β Respond with urgency, revenue at risk, and next steps
```
## π Sample Dataset
- Five demo customers (manufacturing, tech, retail, healthcare, finance).
- Seventeen conversations across rising/declining/stable trends.
- Alerts triggered automatically when risk exceeds thresholds.
## π― Architecture
```
User / Team Lead
β
Claude Desktop (optional)
β MCP Protocol (stdio)
Sentiment Tracker Server (7 tools)
β
SQLite Database (customer_profiles, conversations, risk_alerts)
```
## π Key Advantages
- **Local-first**: keep customer data on-prem.
- **Zero external APIs**: predictable cost, improved privacy.
- **Real-time**: sentiment scoring < 100 ms per request.
- **Predictive**: churn detection 5β7 days ahead.
- **Agentic**: Claude drives the workflow autonomously.
- **Scalable**: handles thousands of customers on commodity hardware.
## π Documentation
- [Architecture](docs/ARCHITECTURE.md)
- [Quick Start](docs/QUICK_START.md)
- [Blog Post](../BLOG_POST.md)
## π€ Contributions
Suggestions are welcomeβopen an issue or submit a pull request.
## π License
MIT License.
## π Acknowledgements
- Anthropic for MCP.
- Hugging Face for the hosting platform.
- TextBlob + NLTK for NLP utilities.
---
Built for the MCP 1st Birthday Hackathon π
[GitHub](https://github.com) β’ [Blog](../BLOG_POST.md) β’ [Docs](docs/)
|