File size: 8,116 Bytes
1d477a7
 
 
 
 
 
 
3f769a0
 
1d477a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f769a0
1d477a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from sklearn.metrics import confusion_matrix, precision_score, recall_score

# Sample data preparation
data = {
    'transaction_amount': [2500, 799, 9338, 11749, 8999, 1500, 3000, 4000, 300, 5000, 24990],
    'transaction_date': ['01-11-2024 16:08', '01-11-2024 16:15', '02-11-2024 14:43', '03-11-2024 11:14', 
                         '04-11-2024 12:54', '06-11-2024 08:36', '06-11-2024 08:56', '06-11-2024 09:08', 
                         '06-11-2024 09:29', '06-11-2024 13:05', '06-11-2024 15:12'],
    'transaction_channel': ['mobile', 'mobile', 'mobile', 'mobile', 'mobile', 'W', 'W', 'W', 'W', 'W', 'mobile'],
    'is_fraud': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    'transaction_payment_mode_anonymous': [10, 10, 2, 6, 2, 10, 10, 10, 10, 10, 2],
    'payment_gateway_bank_anonymous': [6, 6, 6, 58, 6, 6, 6, 6, 6, 6, 6],
    'payer_browser_anonymous': [1833, 1833, 2766, 3378, 2766, 3212, 3212, 3212, 3212, 3212, 2721],
    'transaction_id_anonymous': ['ANON_9629', 'ANON_9764', 'ANON_27514', 'ANON_41176', 'ANON_66597', 
                                'ANON_134329', 'ANON_134618', 'ANON_134815', 'ANON_135218', 
                                'ANON_147464', 'ANON_155578'],
    'payee_id_anonymous': ['ANON_47', 'ANON_47', 'ANON_265', 'ANON_8', 'ANON_265', 'ANON_12', 
                          'ANON_12', 'ANON_12', 'ANON_12', 'ANON_12', 'ANON_265']
}

df = pd.DataFrame(data)

df['transaction_date'] = pd.to_datetime(df['transaction_date'], format='%d-%m-%Y %H:%M')

np.random.seed(42)
df['is_fraud_predicted'] = np.random.choice([0, 1], size=len(df), p=[0.3, 0.7])
df['is_fraud_reported'] = np.random.choice([0, 1], size=len(df), p=[0.4, 0.6])

def filter_data(start_date, end_date, payer_id, payee_id, transaction_id):
    filtered_df = df.copy()
    
    start_date = pd.to_datetime(start_date)
    end_date = pd.to_datetime(end_date)
    
    filtered_df = filtered_df[(filtered_df['transaction_date'] >= start_date) & 
                             (filtered_df['transaction_date'] <= end_date)]
    
    if payer_id:
        filtered_df = filtered_df[filtered_df['transaction_id_anonymous'] == payer_id]
    
    if payee_id:
        filtered_df = filtered_df[filtered_df['payee_id_anonymous'] == payee_id]
    
    if transaction_id:
        filtered_df = filtered_df[filtered_df['transaction_id_anonymous'] == transaction_id]
    
    return filtered_df

def create_comparison_chart(dimension, filtered_df):
    if filtered_df.empty:
        return plt.figure()
    
    plt.figure(figsize=(10, 6))
    
    if dimension == 'Transaction Channel':
        group_col = 'transaction_channel'
    elif dimension == 'Transaction Payment Mode':
        group_col = 'transaction_payment_mode_anonymous'
    elif dimension == 'Payment Gateway Bank':
        group_col = 'payment_gateway_bank_anonymous'
    elif dimension == 'Payer ID':
        group_col = 'transaction_id_anonymous'
    elif dimension == 'Payee ID':
        group_col = 'payee_id_anonymous'
    else:
        return plt.figure()
    
    predicted = filtered_df.groupby(group_col)['is_fraud_predicted'].sum()
    reported = filtered_df.groupby(group_col)['is_fraud_reported'].sum()
    
    plot_df = pd.DataFrame({
        'Predicted Fraud': predicted,
        'Reported Fraud': reported
    })
    
    plot_df.plot(kind='bar', figsize=(10, 6))
    plt.title(f'Fraud Comparison by {dimension}')
    plt.ylabel('Count')
    plt.xlabel(dimension)
    plt.tight_layout()
    
    return plt

def create_time_series(filtered_df, granularity):
    if filtered_df.empty:
        return plt.figure()
    
    plt.figure(figsize=(12, 6))
    
    if granularity == 'Day':
        time_group = filtered_df['transaction_date'].dt.date
    elif granularity == 'Hour':
        time_group = filtered_df['transaction_date'].dt.strftime('%Y-%m-%d %H')
    elif granularity == 'Minute':
        time_group = filtered_df['transaction_date'].dt.strftime('%Y-%m-%d %H:%M')
    else:
        return plt.figure()
    
    predicted = filtered_df.groupby(time_group)['is_fraud_predicted'].sum()
    reported = filtered_df.groupby(time_group)['is_fraud_reported'].sum()
    
    plt.plot(predicted.index, predicted.values, 'b-', label='Predicted Fraud')
    plt.plot(reported.index, reported.values, 'r-', label='Reported Fraud')
    plt.title('Fraud Trend Over Time')
    plt.ylabel('Count')
    plt.xlabel('Time')
    plt.legend()
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    return plt

def calculate_metrics(filtered_df):
    if filtered_df.empty:
        return None, 0, 0
    
    cm = confusion_matrix(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'])
    
    precision = precision_score(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'], zero_division=0)
    recall = recall_score(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'], zero_division=0)
    
    plt.figure(figsize=(6, 5))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 
                xticklabels=['Not Fraud', 'Fraud'],
                yticklabels=['Not Fraud', 'Fraud'])
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion Matrix')
    
    return plt, precision, recall

def update_interface(start_date, end_date, payer_id, payee_id, transaction_id, dimension, time_granularity):
    filtered_df = filter_data(start_date, end_date, payer_id, payee_id, transaction_id)
    
    comparison_chart = create_comparison_chart(dimension, filtered_df)
    
    time_series = create_time_series(filtered_df, time_granularity)
    
    confusion_matrix_plot, precision, recall = calculate_metrics(filtered_df)
    
    display_df = filtered_df.copy()
    display_df['transaction_date'] = display_df['transaction_date'].dt.strftime('%Y-%m-%d %H:%M')
    
    return (display_df.to_dict('records'), 
            comparison_chart, 
            time_series, 
            confusion_matrix_plot, 
            f"Precision: {precision:.4f}", 
            f"Recall: {recall:.4f}")

with gr.Blocks() as demo:
    gr.Markdown("# Fraud Transaction Analysis Dashboard")
    
    with gr.Row():
        with gr.Column():
            start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2024-11-01")
            end_date = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2024-11-06")
        
        with gr.Column():
            payer_id = gr.Textbox(label="Payer ID")
            payee_id = gr.Textbox(label="Payee ID")
            transaction_id = gr.Textbox(label="Transaction ID")
    
    with gr.Row():
        dimension = gr.Dropdown(
            ["Transaction Channel", "Transaction Payment Mode", "Payment Gateway Bank", "Payer ID", "Payee ID"],
            label="Comparison Dimension",
            value="Transaction Channel"
        )
        time_granularity = gr.Dropdown(
            ["Day", "Hour", "Minute"],
            label="Time Granularity",
            value="Day"
        )
    
    update_button = gr.Button("Update Dashboard")
    
    with gr.Row():
        gr.Markdown("## Transaction Data")
    
    data_table = gr.DataFrame()
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Fraud Comparison by Dimension")
            comparison_plot = gr.Plot()
        
        with gr.Column():
            gr.Markdown("## Fraud Trend Over Time")
            time_series_plot = gr.Plot()
    
    with gr.Row():
        gr.Markdown("## Model Evaluation")
    
    with gr.Row():
        with gr.Column():
            confusion_matrix_plot = gr.Plot()
        
        with gr.Column():
            precision_text = gr.Textbox(label="Precision")
            recall_text = gr.Textbox(label="Recall")
    
    update_button.click(
        update_interface,
        inputs=[start_date, end_date, payer_id, payee_id, transaction_id, dimension, time_granularity],
        outputs=[data_table, comparison_plot, time_series_plot, confusion_matrix_plot, precision_text, recall_text]
    )

if __name__ == "__main__":
    demo.launch()