Abs6187 commited on
Commit
1d477a7
·
verified ·
1 Parent(s): 1fe9a1e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +238 -0
app.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import gradio as gr
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
+ from datetime import datetime
7
+ from sklearn.metrics import confusion_matrix, precision_score, recall_score
8
+
9
+ # Sample data preparation (in a real scenario, you would load your data)
10
+ # Converting your sample data to a DataFrame
11
+ data = {
12
+ 'transaction_amount': [2500, 799, 9338, 11749, 8999, 1500, 3000, 4000, 300, 5000, 24990],
13
+ 'transaction_date': ['01-11-2024 16:08', '01-11-2024 16:15', '02-11-2024 14:43', '03-11-2024 11:14',
14
+ '04-11-2024 12:54', '06-11-2024 08:36', '06-11-2024 08:56', '06-11-2024 09:08',
15
+ '06-11-2024 09:29', '06-11-2024 13:05', '06-11-2024 15:12'],
16
+ 'transaction_channel': ['mobile', 'mobile', 'mobile', 'mobile', 'mobile', 'W', 'W', 'W', 'W', 'W', 'mobile'],
17
+ 'is_fraud': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
18
+ 'transaction_payment_mode_anonymous': [10, 10, 2, 6, 2, 10, 10, 10, 10, 10, 2],
19
+ 'payment_gateway_bank_anonymous': [6, 6, 6, 58, 6, 6, 6, 6, 6, 6, 6],
20
+ 'payer_browser_anonymous': [1833, 1833, 2766, 3378, 2766, 3212, 3212, 3212, 3212, 3212, 2721],
21
+ 'transaction_id_anonymous': ['ANON_9629', 'ANON_9764', 'ANON_27514', 'ANON_41176', 'ANON_66597',
22
+ 'ANON_134329', 'ANON_134618', 'ANON_134815', 'ANON_135218',
23
+ 'ANON_147464', 'ANON_155578'],
24
+ 'payee_id_anonymous': ['ANON_47', 'ANON_47', 'ANON_265', 'ANON_8', 'ANON_265', 'ANON_12',
25
+ 'ANON_12', 'ANON_12', 'ANON_12', 'ANON_12', 'ANON_265']
26
+ }
27
+
28
+ df = pd.DataFrame(data)
29
+
30
+ # Convert date strings to datetime objects
31
+ df['transaction_date'] = pd.to_datetime(df['transaction_date'], format='%d-%m-%Y %H:%M')
32
+
33
+ # Add simulated predicted fraud and reported fraud columns
34
+ # In a real scenario, these would come from your model and reports
35
+ np.random.seed(42)
36
+ df['is_fraud_predicted'] = np.random.choice([0, 1], size=len(df), p=[0.3, 0.7])
37
+ df['is_fraud_reported'] = np.random.choice([0, 1], size=len(df), p=[0.4, 0.6])
38
+
39
+ def filter_data(start_date, end_date, payer_id, payee_id, transaction_id):
40
+ filtered_df = df.copy()
41
+
42
+ # Convert string dates to datetime for comparison
43
+ start_date = pd.to_datetime(start_date)
44
+ end_date = pd.to_datetime(end_date)
45
+
46
+ # Apply filters
47
+ filtered_df = filtered_df[(filtered_df['transaction_date'] >= start_date) &
48
+ (filtered_df['transaction_date'] <= end_date)]
49
+
50
+ if payer_id:
51
+ filtered_df = filtered_df[filtered_df['transaction_id_anonymous'] == payer_id]
52
+
53
+ if payee_id:
54
+ filtered_df = filtered_df[filtered_df['payee_id_anonymous'] == payee_id]
55
+
56
+ if transaction_id:
57
+ filtered_df = filtered_df[filtered_df['transaction_id_anonymous'] == transaction_id]
58
+
59
+ return filtered_df
60
+
61
+ def create_comparison_chart(dimension, filtered_df):
62
+ if filtered_df.empty:
63
+ return plt.figure()
64
+
65
+ plt.figure(figsize=(10, 6))
66
+
67
+ if dimension == 'Transaction Channel':
68
+ group_col = 'transaction_channel'
69
+ elif dimension == 'Transaction Payment Mode':
70
+ group_col = 'transaction_payment_mode_anonymous'
71
+ elif dimension == 'Payment Gateway Bank':
72
+ group_col = 'payment_gateway_bank_anonymous'
73
+ elif dimension == 'Payer ID':
74
+ group_col = 'transaction_id_anonymous'
75
+ elif dimension == 'Payee ID':
76
+ group_col = 'payee_id_anonymous'
77
+ else:
78
+ return plt.figure()
79
+
80
+ # Group by the selected dimension and count predicted and reported frauds
81
+ predicted = filtered_df.groupby(group_col)['is_fraud_predicted'].sum()
82
+ reported = filtered_df.groupby(group_col)['is_fraud_reported'].sum()
83
+
84
+ # Create a DataFrame for plotting
85
+ plot_df = pd.DataFrame({
86
+ 'Predicted Fraud': predicted,
87
+ 'Reported Fraud': reported
88
+ })
89
+
90
+ # Plot
91
+ plot_df.plot(kind='bar', figsize=(10, 6))
92
+ plt.title(f'Fraud Comparison by {dimension}')
93
+ plt.ylabel('Count')
94
+ plt.xlabel(dimension)
95
+ plt.tight_layout()
96
+
97
+ return plt
98
+
99
+ def create_time_series(filtered_df, granularity):
100
+ if filtered_df.empty:
101
+ return plt.figure()
102
+
103
+ plt.figure(figsize=(12, 6))
104
+
105
+ # Set the time grouping based on granularity
106
+ if granularity == 'Day':
107
+ time_group = filtered_df['transaction_date'].dt.date
108
+ elif granularity == 'Hour':
109
+ time_group = filtered_df['transaction_date'].dt.strftime('%Y-%m-%d %H')
110
+ elif granularity == 'Minute':
111
+ time_group = filtered_df['transaction_date'].dt.strftime('%Y-%m-%d %H:%M')
112
+ else:
113
+ return plt.figure()
114
+
115
+ # Group by time and count predicted and reported frauds
116
+ predicted = filtered_df.groupby(time_group)['is_fraud_predicted'].sum()
117
+ reported = filtered_df.groupby(time_group)['is_fraud_reported'].sum()
118
+
119
+ # Plot
120
+ plt.plot(predicted.index, predicted.values, 'b-', label='Predicted Fraud')
121
+ plt.plot(reported.index, reported.values, 'r-', label='Reported Fraud')
122
+ plt.title('Fraud Trend Over Time')
123
+ plt.ylabel('Count')
124
+ plt.xlabel('Time')
125
+ plt.legend()
126
+ plt.xticks(rotation=45)
127
+ plt.tight_layout()
128
+
129
+ return plt
130
+
131
+ def calculate_metrics(filtered_df):
132
+ if filtered_df.empty:
133
+ return None, 0, 0
134
+
135
+ # Calculate confusion matrix
136
+ cm = confusion_matrix(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'])
137
+
138
+ # Calculate precision and recall
139
+ precision = precision_score(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'], zero_division=0)
140
+ recall = recall_score(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'], zero_division=0)
141
+
142
+ # Create confusion matrix plot
143
+ plt.figure(figsize=(6, 5))
144
+ sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
145
+ xticklabels=['Not Fraud', 'Fraud'],
146
+ yticklabels=['Not Fraud', 'Fraud'])
147
+ plt.ylabel('Actual')
148
+ plt.xlabel('Predicted')
149
+ plt.title('Confusion Matrix')
150
+
151
+ return plt, precision, recall
152
+
153
+ def update_interface(start_date, end_date, payer_id, payee_id, transaction_id, dimension, time_granularity):
154
+ # Filter data based on inputs
155
+ filtered_df = filter_data(start_date, end_date, payer_id, payee_id, transaction_id)
156
+
157
+ # Create comparison chart
158
+ comparison_chart = create_comparison_chart(dimension, filtered_df)
159
+
160
+ # Create time series chart
161
+ time_series = create_time_series(filtered_df, time_granularity)
162
+
163
+ # Calculate evaluation metrics
164
+ confusion_matrix_plot, precision, recall = calculate_metrics(filtered_df)
165
+
166
+ # Format the filtered dataframe for display
167
+ display_df = filtered_df.copy()
168
+ display_df['transaction_date'] = display_df['transaction_date'].dt.strftime('%Y-%m-%d %H:%M')
169
+
170
+ return (display_df.to_dict('records'),
171
+ comparison_chart,
172
+ time_series,
173
+ confusion_matrix_plot,
174
+ f"Precision: {precision:.4f}",
175
+ f"Recall: {recall:.4f}")
176
+
177
+ # Define the Gradio interface
178
+ with gr.Blocks() as demo:
179
+ gr.Markdown("# Fraud Transaction Analysis Dashboard")
180
+
181
+ with gr.Row():
182
+ with gr.Column():
183
+ start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2024-11-01")
184
+ end_date = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2024-11-06")
185
+
186
+ with gr.Column():
187
+ payer_id = gr.Textbox(label="Payer ID")
188
+ payee_id = gr.Textbox(label="Payee ID")
189
+ transaction_id = gr.Textbox(label="Transaction ID")
190
+
191
+ with gr.Row():
192
+ dimension = gr.Dropdown(
193
+ ["Transaction Channel", "Transaction Payment Mode", "Payment Gateway Bank", "Payer ID", "Payee ID"],
194
+ label="Comparison Dimension",
195
+ value="Transaction Channel"
196
+ )
197
+ time_granularity = gr.Dropdown(
198
+ ["Day", "Hour", "Minute"],
199
+ label="Time Granularity",
200
+ value="Day"
201
+ )
202
+
203
+ update_button = gr.Button("Update Dashboard")
204
+
205
+ with gr.Row():
206
+ gr.Markdown("## Transaction Data")
207
+
208
+ data_table = gr.DataFrame()
209
+
210
+ with gr.Row():
211
+ with gr.Column():
212
+ gr.Markdown("## Fraud Comparison by Dimension")
213
+ comparison_plot = gr.Plot()
214
+
215
+ with gr.Column():
216
+ gr.Markdown("## Fraud Trend Over Time")
217
+ time_series_plot = gr.Plot()
218
+
219
+ with gr.Row():
220
+ gr.Markdown("## Model Evaluation")
221
+
222
+ with gr.Row():
223
+ with gr.Column():
224
+ confusion_matrix_plot = gr.Plot()
225
+
226
+ with gr.Column():
227
+ precision_text = gr.Textbox(label="Precision")
228
+ recall_text = gr.Textbox(label="Recall")
229
+
230
+ update_button.click(
231
+ update_interface,
232
+ inputs=[start_date, end_date, payer_id, payee_id, transaction_id, dimension, time_granularity],
233
+ outputs=[data_table, comparison_plot, time_series_plot, confusion_matrix_plot, precision_text, recall_text]
234
+ )
235
+
236
+ # Launch the app
237
+ if __name__ == "__main__":
238
+ demo.launch()