Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,20 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
-
import json
|
| 4 |
import gradio as gr
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import seaborn as sns
|
| 7 |
from datetime import datetime
|
| 8 |
from sklearn.metrics import confusion_matrix, precision_score, recall_score
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
data = {
|
| 11 |
'transaction_amount': [2500, 799, 9338, 11749, 8999, 1500, 3000, 4000, 300, 5000, 24990],
|
| 12 |
'transaction_date': ['01-11-2024 16:08', '01-11-2024 16:15', '02-11-2024 14:43', '03-11-2024 11:14',
|
|
@@ -25,50 +33,13 @@ data = {
|
|
| 25 |
}
|
| 26 |
|
| 27 |
df = pd.DataFrame(data)
|
|
|
|
| 28 |
df['transaction_date'] = pd.to_datetime(df['transaction_date'], format='%d-%m-%Y %H:%M')
|
| 29 |
|
| 30 |
np.random.seed(42)
|
| 31 |
df['is_fraud_predicted'] = np.random.choice([0, 1], size=len(df), p=[0.3, 0.7])
|
| 32 |
df['is_fraud_reported'] = np.random.choice([0, 1], size=len(df), p=[0.4, 0.6])
|
| 33 |
|
| 34 |
-
df_fraud = pd.DataFrame(data)
|
| 35 |
-
df_fraud['fraud_reason'] = 'Suspicious Activity'
|
| 36 |
-
df_fraud['fraud_score'] = np.random.uniform(0.6, 0.95, size=len(df_fraud))
|
| 37 |
-
|
| 38 |
-
fraud_dict = {
|
| 39 |
-
row['transaction_id_anonymous']: {
|
| 40 |
-
'is_fraud': True,
|
| 41 |
-
'fraud_reason': row['fraud_reason'],
|
| 42 |
-
'fraud_score': float(row['fraud_score'])
|
| 43 |
-
}
|
| 44 |
-
for _, row in df_fraud.iterrows()
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
def generate_non_fraud_transactions(n, start_id=1000):
|
| 48 |
-
non_fraud_dict = {}
|
| 49 |
-
|
| 50 |
-
for i in range(n):
|
| 51 |
-
tx_id = f'ANON_{start_id + i}'
|
| 52 |
-
if tx_id in fraud_dict:
|
| 53 |
-
continue
|
| 54 |
-
|
| 55 |
-
non_fraud_dict[tx_id] = {
|
| 56 |
-
'is_fraud': False,
|
| 57 |
-
'fraud_reason': 'Not Fraud',
|
| 58 |
-
'fraud_score': float(np.random.uniform(0.01, 0.4))
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
return non_fraud_dict
|
| 62 |
-
|
| 63 |
-
total_records = 172927
|
| 64 |
-
fraud_records = len(fraud_dict)
|
| 65 |
-
non_fraud_needed = total_records - fraud_records
|
| 66 |
-
|
| 67 |
-
sample_non_fraud = generate_non_fraud_transactions(5, start_id=200000)
|
| 68 |
-
|
| 69 |
-
with open('transactions_train.csv', 'w') as f:
|
| 70 |
-
json.dump(fraud_dict, f, indent=2)
|
| 71 |
-
|
| 72 |
def filter_data(start_date, end_date, payer_id, payee_id, transaction_id):
|
| 73 |
filtered_df = df.copy()
|
| 74 |
|
|
@@ -194,6 +165,8 @@ def update_interface(start_date, end_date, payer_id, payee_id, transaction_id, d
|
|
| 194 |
with gr.Blocks() as demo:
|
| 195 |
gr.Markdown("# Fraud Transaction Analysis Dashboard")
|
| 196 |
|
|
|
|
|
|
|
| 197 |
with gr.Row():
|
| 198 |
with gr.Column():
|
| 199 |
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2024-11-01")
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import seaborn as sns
|
| 6 |
from datetime import datetime
|
| 7 |
from sklearn.metrics import confusion_matrix, precision_score, recall_score
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
| 11 |
|
| 12 |
+
# Load SabPaisa logo
|
| 13 |
+
logo_url = "https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.facebook.com%2Fsabpaisa%2F&psig=AOvVaw1tJqk9DKF8WgvbGj1H004X&ust=1742646042537000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCPjmiLiUm4wDFQAAAAAdAAAAABAE"
|
| 14 |
+
response = requests.get(logo_url)
|
| 15 |
+
logo = Image.open(BytesIO(response.content))
|
| 16 |
+
|
| 17 |
+
# Sample data preparation
|
| 18 |
data = {
|
| 19 |
'transaction_amount': [2500, 799, 9338, 11749, 8999, 1500, 3000, 4000, 300, 5000, 24990],
|
| 20 |
'transaction_date': ['01-11-2024 16:08', '01-11-2024 16:15', '02-11-2024 14:43', '03-11-2024 11:14',
|
|
|
|
| 33 |
}
|
| 34 |
|
| 35 |
df = pd.DataFrame(data)
|
| 36 |
+
|
| 37 |
df['transaction_date'] = pd.to_datetime(df['transaction_date'], format='%d-%m-%Y %H:%M')
|
| 38 |
|
| 39 |
np.random.seed(42)
|
| 40 |
df['is_fraud_predicted'] = np.random.choice([0, 1], size=len(df), p=[0.3, 0.7])
|
| 41 |
df['is_fraud_reported'] = np.random.choice([0, 1], size=len(df), p=[0.4, 0.6])
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def filter_data(start_date, end_date, payer_id, payee_id, transaction_id):
|
| 44 |
filtered_df = df.copy()
|
| 45 |
|
|
|
|
| 165 |
with gr.Blocks() as demo:
|
| 166 |
gr.Markdown("# Fraud Transaction Analysis Dashboard")
|
| 167 |
|
| 168 |
+
gr.Image(logo, show_label=False, width=200)
|
| 169 |
+
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column():
|
| 172 |
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2024-11-01")
|