|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
base_model: google/vit-large-patch16-224 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- imagefolder |
|
|
metrics: |
|
|
- accuracy |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
model-index: |
|
|
- name: vit_4090_downsample_normal_da |
|
|
results: |
|
|
- task: |
|
|
name: Image Classification |
|
|
type: image-classification |
|
|
dataset: |
|
|
name: imagefolder |
|
|
type: imagefolder |
|
|
config: default |
|
|
split: test |
|
|
args: default |
|
|
metrics: |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.35706727135298566 |
|
|
- name: Precision |
|
|
type: precision |
|
|
value: 0.426496961448031 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.35706727135298566 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.30112832284646396 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# vit_4090_downsample_normal_da |
|
|
|
|
|
This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 6.3528 |
|
|
- Accuracy: 0.3571 |
|
|
- Precision: 0.4265 |
|
|
- Recall: 0.3571 |
|
|
- F1: 0.3011 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0001 |
|
|
- train_batch_size: 24 |
|
|
- eval_batch_size: 4 |
|
|
- seed: 42 |
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 10 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
|
| 0.1307 | 1.0 | 1834 | 4.1849 | 0.3710 | 0.4442 | 0.3710 | 0.3346 | |
|
|
| 0.0388 | 2.0 | 3668 | 4.7670 | 0.3805 | 0.4413 | 0.3805 | 0.3444 | |
|
|
| 0.0277 | 3.0 | 5502 | 4.5994 | 0.4204 | 0.4645 | 0.4204 | 0.3922 | |
|
|
| 0.0174 | 4.0 | 7336 | 4.7754 | 0.3619 | 0.4226 | 0.3619 | 0.3361 | |
|
|
| 0.0113 | 5.0 | 9170 | 5.1718 | 0.3586 | 0.4126 | 0.3586 | 0.3005 | |
|
|
| 0.0092 | 6.0 | 11004 | 4.9205 | 0.3800 | 0.4535 | 0.3800 | 0.3450 | |
|
|
| 0.005 | 7.0 | 12838 | 5.8665 | 0.3701 | 0.3679 | 0.3701 | 0.2726 | |
|
|
| 0.0033 | 8.0 | 14672 | 5.8658 | 0.3382 | 0.4145 | 0.3382 | 0.3009 | |
|
|
| 0.001 | 9.0 | 16506 | 6.1933 | 0.3495 | 0.3938 | 0.3495 | 0.2864 | |
|
|
| 0.0001 | 10.0 | 18340 | 6.3528 | 0.3571 | 0.4265 | 0.3571 | 0.3011 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.49.0 |
|
|
- Pytorch 2.5.1 |
|
|
- Datasets 3.2.0 |
|
|
- Tokenizers 0.21.1 |
|
|
|