vit_4090_downsample_normal_da
This model is a fine-tuned version of google/vit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 6.3528
- Accuracy: 0.3571
- Precision: 0.4265
- Recall: 0.3571
- F1: 0.3011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.1307 | 1.0 | 1834 | 4.1849 | 0.3710 | 0.4442 | 0.3710 | 0.3346 |
| 0.0388 | 2.0 | 3668 | 4.7670 | 0.3805 | 0.4413 | 0.3805 | 0.3444 |
| 0.0277 | 3.0 | 5502 | 4.5994 | 0.4204 | 0.4645 | 0.4204 | 0.3922 |
| 0.0174 | 4.0 | 7336 | 4.7754 | 0.3619 | 0.4226 | 0.3619 | 0.3361 |
| 0.0113 | 5.0 | 9170 | 5.1718 | 0.3586 | 0.4126 | 0.3586 | 0.3005 |
| 0.0092 | 6.0 | 11004 | 4.9205 | 0.3800 | 0.4535 | 0.3800 | 0.3450 |
| 0.005 | 7.0 | 12838 | 5.8665 | 0.3701 | 0.3679 | 0.3701 | 0.2726 |
| 0.0033 | 8.0 | 14672 | 5.8658 | 0.3382 | 0.4145 | 0.3382 | 0.3009 |
| 0.001 | 9.0 | 16506 | 6.1933 | 0.3495 | 0.3938 | 0.3495 | 0.2864 |
| 0.0001 | 10.0 | 18340 | 6.3528 | 0.3571 | 0.4265 | 0.3571 | 0.3011 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for goodcasper/vit_4090_downsample_normal_da
Base model
google/vit-large-patch16-224Evaluation results
- Accuracy on imagefoldertest set self-reported0.357
- Precision on imagefoldertest set self-reported0.426
- Recall on imagefoldertest set self-reported0.357
- F1 on imagefoldertest set self-reported0.301