vit / README.md
goodcasper's picture
End of training
460f062 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9985885673959068

vit

This model is a fine-tuned version of google/vit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0048
  • Accuracy: 0.9986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2323 1.0 1595 0.0450 0.9859
0.095 2.0 3190 0.0332 0.9889
0.0648 3.0 4785 0.0256 0.9922
0.0568 4.0 6380 0.0145 0.9958
0.0493 5.0 7975 0.0248 0.9915
0.042 6.0 9570 0.0195 0.9939
0.0383 7.0 11165 0.0087 0.9969
0.0345 8.0 12760 0.0143 0.9960
0.0285 9.0 14355 0.0115 0.9972
0.0257 10.0 15950 0.0131 0.9965
0.0248 11.0 17545 0.0068 0.9979
0.0235 12.0 19140 0.0065 0.9979
0.0201 13.0 20735 0.0056 0.9976
0.0161 14.0 22330 0.0033 0.9988
0.017 15.0 23925 0.0041 0.9988
0.0144 16.0 25520 0.0032 0.9993
0.0121 17.0 27115 0.0055 0.9979
0.0105 18.0 28710 0.0052 0.9984
0.0103 19.0 30305 0.0054 0.9984
0.0092 20.0 31900 0.0048 0.9986

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1