File size: 2,969 Bytes
2799efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460f062
2799efe
 
 
 
 
 
 
 
 
460f062
 
2799efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460f062
2799efe
 
 
460f062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799efe
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9985885673959068
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit

This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0048
- Accuracy: 0.9986

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2323        | 1.0   | 1595  | 0.0450          | 0.9859   |
| 0.095         | 2.0   | 3190  | 0.0332          | 0.9889   |
| 0.0648        | 3.0   | 4785  | 0.0256          | 0.9922   |
| 0.0568        | 4.0   | 6380  | 0.0145          | 0.9958   |
| 0.0493        | 5.0   | 7975  | 0.0248          | 0.9915   |
| 0.042         | 6.0   | 9570  | 0.0195          | 0.9939   |
| 0.0383        | 7.0   | 11165 | 0.0087          | 0.9969   |
| 0.0345        | 8.0   | 12760 | 0.0143          | 0.9960   |
| 0.0285        | 9.0   | 14355 | 0.0115          | 0.9972   |
| 0.0257        | 10.0  | 15950 | 0.0131          | 0.9965   |
| 0.0248        | 11.0  | 17545 | 0.0068          | 0.9979   |
| 0.0235        | 12.0  | 19140 | 0.0065          | 0.9979   |
| 0.0201        | 13.0  | 20735 | 0.0056          | 0.9976   |
| 0.0161        | 14.0  | 22330 | 0.0033          | 0.9988   |
| 0.017         | 15.0  | 23925 | 0.0041          | 0.9988   |
| 0.0144        | 16.0  | 25520 | 0.0032          | 0.9993   |
| 0.0121        | 17.0  | 27115 | 0.0055          | 0.9979   |
| 0.0105        | 18.0  | 28710 | 0.0052          | 0.9984   |
| 0.0103        | 19.0  | 30305 | 0.0054          | 0.9984   |
| 0.0092        | 20.0  | 31900 | 0.0048          | 0.9986   |


### Framework versions

- Transformers 4.53.0.dev0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1