CALE-XLM-R / README.md
gabrielloiseau's picture
Update README.md
ff90d7f verified
metadata
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - loss:ContrastiveLoss
base_model: FacebookAI/xlm-roberta-large
pipeline_tag: sentence-similarity
datasets:
  - gabrielloiseau/CALE-SPCD

CALE-XLM-R

This is a sentence-transformers model: It maps occurences of a word to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer

# 1. Load CALE model
model = SentenceTransformer("gabrielloiseau/CALE-XLM-R")

sentences = [
    "the boy could easily <t>distinguish</t> the different note values",
    "he patient’s ability to <t>recognize</t> forms and shapes",
    "the government had refused to <t>recognize</t> their autonomy and existence as a state",
]

# 2. Calculate embeddings
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# 3. Calculate the embedding similarities
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9332, 0.5331],
#        [0.9332, 1.0000, 0.5619],
#        [0.5331, 0.5619, 1.0000]])

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)