Update README.md
Browse files
README.md
CHANGED
|
@@ -1,547 +1,59 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
tags:
|
| 3 |
- sentence-transformers
|
| 4 |
- sentence-similarity
|
| 5 |
- feature-extraction
|
| 6 |
-
- generated_from_trainer
|
| 7 |
-
- dataset_size:156387
|
| 8 |
- loss:ContrastiveLoss
|
| 9 |
base_model: FacebookAI/xlm-roberta-large
|
| 10 |
-
widget:
|
| 11 |
-
- source_sentence: the latter is useful for modifying information about some or all
|
| 12 |
-
forms of a word , hence reducing the work required to improve <t>dictionary</t>
|
| 13 |
-
contents .
|
| 14 |
-
sentences:
|
| 15 |
-
- conchita nagged at the younger children , attempting without <t>success</t> to
|
| 16 |
-
keep her thoughts off tom brannon .
|
| 17 |
-
- another girl from a relatively large midwestern city described herself as `` the
|
| 18 |
-
only orthodox girl in <t>town</t> '' .
|
| 19 |
-
- entries are summarized only when by doing so the amount of information retained
|
| 20 |
-
in the <t>dictionary</t> is reduced and the time required for dictionary operations
|
| 21 |
-
is decreased .
|
| 22 |
-
- source_sentence: the kind of religious experience that most moderns seek not only
|
| 23 |
-
provides , clarifies , and relates human yearnings , values , ideals , and purposes
|
| 24 |
-
; it also provides facilities and incitements for the <t>development</t> of personality
|
| 25 |
-
, sociality , and creativeness .
|
| 26 |
-
sentences:
|
| 27 |
-
- the artistic interest , then , lies in what the encounter may be made to represent
|
| 28 |
-
, in the power of some <t>central</t> significance to draw the details into relevance
|
| 29 |
-
and meaningfulness .
|
| 30 |
-
- more than 25 carefully selected cities were visited , <t>including</t> new york
|
| 31 |
-
, brooklyn , long island city , newark , elizabeth , stamford , waterbury , new
|
| 32 |
-
haven , bridgeport , boston , cambridge , worcester , and waltham .
|
| 33 |
-
- the liberals , smelling blood , were faced with the necessity of <t>winning</t>
|
| 34 |
-
three big votes - in the democratic committee on committees , in the full party
|
| 35 |
-
caucus , and on the floor of the house - before they could oust colmer .
|
| 36 |
-
- source_sentence: 'another yankee became so disgusted as to state : `` i wish to
|
| 37 |
-
god one half of our <t>officers</t> were knocked in the head by slinging them
|
| 38 |
-
against [ the other half ] '''' .'
|
| 39 |
-
sentences:
|
| 40 |
-
- we 'd seen his handiwork out in the back yard , and the little his tenants had
|
| 41 |
-
told us of him did make him sound a little <t>special</t> .
|
| 42 |
-
- 'private george gray hunter of pennsylvania wrote : `` i am well convinced in
|
| 43 |
-
my own mind that had it not been for <t>officers</t> this war would have ended
|
| 44 |
-
long ago '''' .'
|
| 45 |
-
- until this hunter-killer operation can be performed by spacecraft , manned aircraft
|
| 46 |
-
<t>appear</t> to be the only means available to us .
|
| 47 |
-
- source_sentence: there was a man 's jacket on the chair and a straw hat on the <t>table</t>
|
| 48 |
-
.
|
| 49 |
-
sentences:
|
| 50 |
-
- this section shall not apply to corporations purchasing such stock solely for
|
| 51 |
-
investment and not using the same by voting or otherwise to bring about , or in
|
| 52 |
-
<t>attempting</t> to bring about , the substantial lessening of competition ``
|
| 53 |
-
.
|
| 54 |
-
- if your principal place of abode for the tax <t>year</t> is outside the united
|
| 55 |
-
states ( including alaska and hawaii ) , puerto rico , or the virgin islands and
|
| 56 |
-
you have no legal residence or principal place of business in any internal revenue
|
| 57 |
-
district in the united states , you should file your return with the office of
|
| 58 |
-
international operations , internal revenue service , washington 25 , d. c. .
|
| 59 |
-
- both , of course , were remarkable feats and further embossed the fact that <t>baseball</t>
|
| 60 |
-
rightfully is the national pastime .
|
| 61 |
-
- source_sentence: a. e. sharp , in vowel-length and syllabicity in kikuyu , examines
|
| 62 |
-
one set of related orthographic questions and its phonologic <t>background</t>
|
| 63 |
-
in detail .
|
| 64 |
-
sentences:
|
| 65 |
-
- sensing the unseen presence of the other men in the patrol , he felt mutely united
|
| 66 |
-
to these nine <t>near</t> strangers sharing this pinpoint of being with him .
|
| 67 |
-
- this subsection shall not be so construed as to deprive the owner of any <t>background</t>
|
| 68 |
-
patent relating thereto of such rights as he may have thereunder .
|
| 69 |
-
- government itself was based upon contract ; business organization - the corporation
|
| 70 |
-
- was analyzed in contractual terms ; trade was based on freedom of contract ,
|
| 71 |
-
and money was lent and borrowed on contractual terms ; even marriage and the family
|
| 72 |
-
was seen as a contractual <t>arrangement</t> .
|
| 73 |
pipeline_tag: sentence-similarity
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
- cosine_accuracy
|
| 77 |
-
- cosine_accuracy_threshold
|
| 78 |
-
- cosine_f1
|
| 79 |
-
- cosine_f1_threshold
|
| 80 |
-
- cosine_precision
|
| 81 |
-
- cosine_recall
|
| 82 |
-
- cosine_ap
|
| 83 |
-
model-index:
|
| 84 |
-
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
| 85 |
-
results:
|
| 86 |
-
- task:
|
| 87 |
-
type: binary-classification
|
| 88 |
-
name: Binary Classification
|
| 89 |
-
dataset:
|
| 90 |
-
name: cale eval
|
| 91 |
-
type: cale-eval
|
| 92 |
-
metrics:
|
| 93 |
-
- type: cosine_accuracy
|
| 94 |
-
value: 0.7822948920719075
|
| 95 |
-
name: Cosine Accuracy
|
| 96 |
-
- type: cosine_accuracy_threshold
|
| 97 |
-
value: 0.6373387575149536
|
| 98 |
-
name: Cosine Accuracy Threshold
|
| 99 |
-
- type: cosine_f1
|
| 100 |
-
value: 0.7738327068520447
|
| 101 |
-
name: Cosine F1
|
| 102 |
-
- type: cosine_f1_threshold
|
| 103 |
-
value: 0.5533720254898071
|
| 104 |
-
name: Cosine F1 Threshold
|
| 105 |
-
- type: cosine_precision
|
| 106 |
-
value: 0.661133681563165
|
| 107 |
-
name: Cosine Precision
|
| 108 |
-
- type: cosine_recall
|
| 109 |
-
value: 0.9328492657094503
|
| 110 |
-
name: Cosine Recall
|
| 111 |
-
- type: cosine_ap
|
| 112 |
-
value: 0.7420096616621343
|
| 113 |
-
name: Cosine Ap
|
| 114 |
---
|
| 115 |
|
| 116 |
-
#
|
| 117 |
|
| 118 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
| 119 |
|
| 120 |
-
## Model Details
|
| 121 |
|
| 122 |
-
### Model Description
|
| 123 |
-
- **Model Type:** Sentence Transformer
|
| 124 |
-
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
|
| 125 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 126 |
-
- **Output Dimensionality:** 1024 dimensions
|
| 127 |
-
- **Similarity Function:** Cosine Similarity
|
| 128 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 129 |
-
<!-- - **Language:** Unknown -->
|
| 130 |
-
<!-- - **License:** Unknown -->
|
| 131 |
|
| 132 |
-
|
| 133 |
|
| 134 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 135 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 136 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 137 |
-
|
| 138 |
-
### Full Model Architecture
|
| 139 |
-
|
| 140 |
-
```
|
| 141 |
-
SentenceTransformer(
|
| 142 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 143 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 144 |
-
)
|
| 145 |
```
|
| 146 |
-
|
| 147 |
-
## Usage
|
| 148 |
-
|
| 149 |
-
### Direct Usage (Sentence Transformers)
|
| 150 |
-
|
| 151 |
-
First install the Sentence Transformers library:
|
| 152 |
-
|
| 153 |
-
```bash
|
| 154 |
pip install -U sentence-transformers
|
| 155 |
```
|
| 156 |
|
| 157 |
-
Then you can
|
|
|
|
| 158 |
```python
|
| 159 |
from sentence_transformers import SentenceTransformer
|
| 160 |
|
| 161 |
-
#
|
| 162 |
model = SentenceTransformer("gabrielloiseau/CALE-XLM-R")
|
| 163 |
-
|
| 164 |
sentences = [
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
]
|
|
|
|
|
|
|
| 169 |
embeddings = model.encode(sentences)
|
| 170 |
print(embeddings.shape)
|
| 171 |
# [3, 1024]
|
| 172 |
|
| 173 |
-
#
|
| 174 |
similarities = model.similarity(embeddings, embeddings)
|
| 175 |
-
print(similarities
|
| 176 |
-
# [
|
|
|
|
|
|
|
| 177 |
```
|
| 178 |
|
| 179 |
-
|
| 180 |
-
### Direct Usage (Transformers)
|
| 181 |
-
|
| 182 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 183 |
-
|
| 184 |
-
</details>
|
| 185 |
-
-->
|
| 186 |
-
|
| 187 |
-
<!--
|
| 188 |
-
### Downstream Usage (Sentence Transformers)
|
| 189 |
-
|
| 190 |
-
You can finetune this model on your own dataset.
|
| 191 |
-
|
| 192 |
-
<details><summary>Click to expand</summary>
|
| 193 |
-
|
| 194 |
-
</details>
|
| 195 |
-
-->
|
| 196 |
-
|
| 197 |
-
<!--
|
| 198 |
-
### Out-of-Scope Use
|
| 199 |
-
|
| 200 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 201 |
-
-->
|
| 202 |
-
|
| 203 |
-
## Evaluation
|
| 204 |
-
|
| 205 |
-
### Metrics
|
| 206 |
-
|
| 207 |
-
#### Binary Classification
|
| 208 |
-
|
| 209 |
-
* Dataset: `cale-eval`
|
| 210 |
-
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
| 211 |
-
|
| 212 |
-
| Metric | Value |
|
| 213 |
-
|:--------------------------|:----------|
|
| 214 |
-
| cosine_accuracy | 0.7823 |
|
| 215 |
-
| cosine_accuracy_threshold | 0.6373 |
|
| 216 |
-
| cosine_f1 | 0.7738 |
|
| 217 |
-
| cosine_f1_threshold | 0.5534 |
|
| 218 |
-
| cosine_precision | 0.6611 |
|
| 219 |
-
| cosine_recall | 0.9328 |
|
| 220 |
-
| **cosine_ap** | **0.742** |
|
| 221 |
-
|
| 222 |
-
<!--
|
| 223 |
-
## Bias, Risks and Limitations
|
| 224 |
-
|
| 225 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 226 |
-
-->
|
| 227 |
-
|
| 228 |
-
<!--
|
| 229 |
-
### Recommendations
|
| 230 |
-
|
| 231 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 232 |
-
-->
|
| 233 |
-
|
| 234 |
-
## Training Details
|
| 235 |
-
|
| 236 |
-
### Training Dataset
|
| 237 |
-
|
| 238 |
-
#### Unnamed Dataset
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
* Size: 156,387 training samples
|
| 242 |
-
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
|
| 243 |
-
* Approximate statistics based on the first 1000 samples:
|
| 244 |
-
| | label | sentence1 | sentence2 |
|
| 245 |
-
|:--------|:------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
| 246 |
-
| type | int | string | string |
|
| 247 |
-
| details | <ul><li>0: ~60.70%</li><li>1: ~39.30%</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 56.47 tokens</li><li>max: 134 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 57.06 tokens</li><li>max: 135 tokens</li></ul> |
|
| 248 |
-
* Samples:
|
| 249 |
-
| label | sentence1 | sentence2 |
|
| 250 |
-
|:---------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 251 |
-
| <code>1</code> | <code>as a result , although we still make use of this distinction , there is much confusion as to the meaning of the <t>basic</t> terms employed .</code> | <code>but he takes his bearings from the great guidelines of policy , well established precedents , the commitments of the united states under international charters and treaties , <t>basic</t> statutes , and well understood notions of the american people about how we are to conduct ourselves , in policy literature such as country papers and national security council papers accumulated in the department .</code> |
|
| 252 |
-
| <code>0</code> | <code>as a result , although we still make use of this distinction , there is much confusion as to the meaning of the <t>basic</t> terms employed .</code> | <code>if adjectival meanings show relatively low retentiveness of stems , as i am confident will prove to be the case in most languages of the world , why should our <t>basic</t> lists include 15 per cent of these unstable forms , but only 8 per cent of animals and plants which replace much more slowly ?</code> |
|
| 253 |
-
| <code>0</code> | <code>as a result , although we still make use of this distinction , there is much confusion as to the meaning of the <t>basic</t> terms employed .</code> | <code>in 1927 his father 's business collapsed , and , rather than go bankrupt , mercer senior turned his firm over to a <t>bank</t> for liquidation .</code> |
|
| 254 |
-
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
| 255 |
-
```json
|
| 256 |
-
{
|
| 257 |
-
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
| 258 |
-
"margin": 0.7,
|
| 259 |
-
"size_average": true
|
| 260 |
-
}
|
| 261 |
-
```
|
| 262 |
-
|
| 263 |
-
### Evaluation Dataset
|
| 264 |
-
|
| 265 |
-
#### Unnamed Dataset
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
* Size: 44,891 evaluation samples
|
| 269 |
-
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
|
| 270 |
-
* Approximate statistics based on the first 1000 samples:
|
| 271 |
-
| | label | sentence1 | sentence2 |
|
| 272 |
-
|:--------|:------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
| 273 |
-
| type | int | string | string |
|
| 274 |
-
| details | <ul><li>0: ~60.60%</li><li>1: ~39.40%</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 53.29 tokens</li><li>max: 151 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 54.72 tokens</li><li>max: 149 tokens</li></ul> |
|
| 275 |
-
* Samples:
|
| 276 |
-
| label | sentence1 | sentence2 |
|
| 277 |
-
|:---------------|:-------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 278 |
-
| <code>1</code> | <code>drop both hands to the floor and at the same time kick the right <t>foot</t> up in back .</code> | <code>place a suitably loaded barbell across them ; grasp the bar ( which will rest against the back of your neck ) ; extend your <t>feet</t> forward and backward until you are in a deep leg split .</code> |
|
| 279 |
-
| <code>0</code> | <code>drop both hands to the floor and at the same time kick the right <t>foot</t> up in back .</code> | <code>a scant half mile away shelley and mary were doubtless sitting on their diminutive terrace , the air about them scented with stock , and listening to the nightingale who had nested in the big lime tree at the <t>foot</t> of the garden .</code> |
|
| 280 |
-
| <code>0</code> | <code>drop both hands to the floor and at the same time kick the right <t>foot</t> up in back .</code> | <code>in preparing the state guide plan , particular attention will be given means of <t>strengthening</t> the economy of the state through the development of industry and recreation .</code> |
|
| 281 |
-
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
| 282 |
-
```json
|
| 283 |
-
{
|
| 284 |
-
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
| 285 |
-
"margin": 0.7,
|
| 286 |
-
"size_average": true
|
| 287 |
-
}
|
| 288 |
-
```
|
| 289 |
-
|
| 290 |
-
### Training Hyperparameters
|
| 291 |
-
#### Non-Default Hyperparameters
|
| 292 |
-
|
| 293 |
-
- `eval_strategy`: steps
|
| 294 |
-
- `per_device_train_batch_size`: 13
|
| 295 |
-
- `per_device_eval_batch_size`: 13
|
| 296 |
-
- `gradient_accumulation_steps`: 2
|
| 297 |
-
- `learning_rate`: 4.46438e-06
|
| 298 |
-
- `weight_decay`: 0.0388
|
| 299 |
-
- `num_train_epochs`: 1
|
| 300 |
-
- `warmup_ratio`: 0.2995
|
| 301 |
-
- `fp16`: True
|
| 302 |
-
- `gradient_checkpointing`: True
|
| 303 |
-
|
| 304 |
-
#### All Hyperparameters
|
| 305 |
-
<details><summary>Click to expand</summary>
|
| 306 |
-
|
| 307 |
-
- `overwrite_output_dir`: False
|
| 308 |
-
- `do_predict`: False
|
| 309 |
-
- `eval_strategy`: steps
|
| 310 |
-
- `prediction_loss_only`: True
|
| 311 |
-
- `per_device_train_batch_size`: 13
|
| 312 |
-
- `per_device_eval_batch_size`: 13
|
| 313 |
-
- `per_gpu_train_batch_size`: None
|
| 314 |
-
- `per_gpu_eval_batch_size`: None
|
| 315 |
-
- `gradient_accumulation_steps`: 2
|
| 316 |
-
- `eval_accumulation_steps`: None
|
| 317 |
-
- `torch_empty_cache_steps`: None
|
| 318 |
-
- `learning_rate`: 4.46438e-06
|
| 319 |
-
- `weight_decay`: 0.0388
|
| 320 |
-
- `adam_beta1`: 0.9
|
| 321 |
-
- `adam_beta2`: 0.999
|
| 322 |
-
- `adam_epsilon`: 1e-08
|
| 323 |
-
- `max_grad_norm`: 1.0
|
| 324 |
-
- `num_train_epochs`: 1
|
| 325 |
-
- `max_steps`: -1
|
| 326 |
-
- `lr_scheduler_type`: linear
|
| 327 |
-
- `lr_scheduler_kwargs`: {}
|
| 328 |
-
- `warmup_ratio`: 0.2995
|
| 329 |
-
- `warmup_steps`: 0
|
| 330 |
-
- `log_level`: passive
|
| 331 |
-
- `log_level_replica`: warning
|
| 332 |
-
- `log_on_each_node`: True
|
| 333 |
-
- `logging_nan_inf_filter`: True
|
| 334 |
-
- `save_safetensors`: True
|
| 335 |
-
- `save_on_each_node`: False
|
| 336 |
-
- `save_only_model`: False
|
| 337 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 338 |
-
- `no_cuda`: False
|
| 339 |
-
- `use_cpu`: False
|
| 340 |
-
- `use_mps_device`: False
|
| 341 |
-
- `seed`: 42
|
| 342 |
-
- `data_seed`: None
|
| 343 |
-
- `jit_mode_eval`: False
|
| 344 |
-
- `use_ipex`: False
|
| 345 |
-
- `bf16`: False
|
| 346 |
-
- `fp16`: True
|
| 347 |
-
- `fp16_opt_level`: O1
|
| 348 |
-
- `half_precision_backend`: auto
|
| 349 |
-
- `bf16_full_eval`: False
|
| 350 |
-
- `fp16_full_eval`: False
|
| 351 |
-
- `tf32`: None
|
| 352 |
-
- `local_rank`: 0
|
| 353 |
-
- `ddp_backend`: None
|
| 354 |
-
- `tpu_num_cores`: None
|
| 355 |
-
- `tpu_metrics_debug`: False
|
| 356 |
-
- `debug`: []
|
| 357 |
-
- `dataloader_drop_last`: False
|
| 358 |
-
- `dataloader_num_workers`: 0
|
| 359 |
-
- `dataloader_prefetch_factor`: None
|
| 360 |
-
- `past_index`: -1
|
| 361 |
-
- `disable_tqdm`: False
|
| 362 |
-
- `remove_unused_columns`: True
|
| 363 |
-
- `label_names`: None
|
| 364 |
-
- `load_best_model_at_end`: False
|
| 365 |
-
- `ignore_data_skip`: False
|
| 366 |
-
- `fsdp`: []
|
| 367 |
-
- `fsdp_min_num_params`: 0
|
| 368 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 369 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 370 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 371 |
-
- `deepspeed`: None
|
| 372 |
-
- `label_smoothing_factor`: 0.0
|
| 373 |
-
- `optim`: adamw_torch
|
| 374 |
-
- `optim_args`: None
|
| 375 |
-
- `adafactor`: False
|
| 376 |
-
- `group_by_length`: False
|
| 377 |
-
- `length_column_name`: length
|
| 378 |
-
- `ddp_find_unused_parameters`: None
|
| 379 |
-
- `ddp_bucket_cap_mb`: None
|
| 380 |
-
- `ddp_broadcast_buffers`: False
|
| 381 |
-
- `dataloader_pin_memory`: True
|
| 382 |
-
- `dataloader_persistent_workers`: False
|
| 383 |
-
- `skip_memory_metrics`: True
|
| 384 |
-
- `use_legacy_prediction_loop`: False
|
| 385 |
-
- `push_to_hub`: False
|
| 386 |
-
- `resume_from_checkpoint`: None
|
| 387 |
-
- `hub_model_id`: None
|
| 388 |
-
- `hub_strategy`: every_save
|
| 389 |
-
- `hub_private_repo`: None
|
| 390 |
-
- `hub_always_push`: False
|
| 391 |
-
- `gradient_checkpointing`: True
|
| 392 |
-
- `gradient_checkpointing_kwargs`: None
|
| 393 |
-
- `include_inputs_for_metrics`: False
|
| 394 |
-
- `include_for_metrics`: []
|
| 395 |
-
- `eval_do_concat_batches`: True
|
| 396 |
-
- `fp16_backend`: auto
|
| 397 |
-
- `push_to_hub_model_id`: None
|
| 398 |
-
- `push_to_hub_organization`: None
|
| 399 |
-
- `mp_parameters`:
|
| 400 |
-
- `auto_find_batch_size`: False
|
| 401 |
-
- `full_determinism`: False
|
| 402 |
-
- `torchdynamo`: None
|
| 403 |
-
- `ray_scope`: last
|
| 404 |
-
- `ddp_timeout`: 1800
|
| 405 |
-
- `torch_compile`: False
|
| 406 |
-
- `torch_compile_backend`: None
|
| 407 |
-
- `torch_compile_mode`: None
|
| 408 |
-
- `dispatch_batches`: None
|
| 409 |
-
- `split_batches`: None
|
| 410 |
-
- `include_tokens_per_second`: False
|
| 411 |
-
- `include_num_input_tokens_seen`: False
|
| 412 |
-
- `neftune_noise_alpha`: None
|
| 413 |
-
- `optim_target_modules`: None
|
| 414 |
-
- `batch_eval_metrics`: False
|
| 415 |
-
- `eval_on_start`: False
|
| 416 |
-
- `use_liger_kernel`: False
|
| 417 |
-
- `eval_use_gather_object`: False
|
| 418 |
-
- `average_tokens_across_devices`: False
|
| 419 |
-
- `prompts`: None
|
| 420 |
-
- `batch_sampler`: batch_sampler
|
| 421 |
-
- `multi_dataset_batch_sampler`: proportional
|
| 422 |
-
|
| 423 |
-
</details>
|
| 424 |
-
|
| 425 |
-
### Training Logs
|
| 426 |
-
| Epoch | Step | Training Loss | Validation Loss | cale-eval_cosine_ap |
|
| 427 |
-
|:------:|:----:|:-------------:|:---------------:|:-------------------:|
|
| 428 |
-
| 0 | 0 | - | - | 0.5131 |
|
| 429 |
-
| 0.0166 | 100 | 0.2826 | - | - |
|
| 430 |
-
| 0.0333 | 200 | 0.2505 | - | - |
|
| 431 |
-
| 0.0499 | 300 | 0.1684 | - | - |
|
| 432 |
-
| 0.0665 | 400 | 0.1539 | - | - |
|
| 433 |
-
| 0.0831 | 500 | 0.1297 | 0.0598 | 0.5317 |
|
| 434 |
-
| 0.0998 | 600 | 0.1237 | - | - |
|
| 435 |
-
| 0.1164 | 700 | 0.1141 | - | - |
|
| 436 |
-
| 0.1330 | 800 | 0.114 | - | - |
|
| 437 |
-
| 0.1496 | 900 | 0.1161 | - | - |
|
| 438 |
-
| 0.1663 | 1000 | 0.111 | 0.0561 | 0.5799 |
|
| 439 |
-
| 0.1829 | 1100 | 0.1066 | - | - |
|
| 440 |
-
| 0.1995 | 1200 | 0.1012 | - | - |
|
| 441 |
-
| 0.2161 | 1300 | 0.0951 | - | - |
|
| 442 |
-
| 0.2328 | 1400 | 0.0885 | - | - |
|
| 443 |
-
| 0.2494 | 1500 | 0.0844 | 0.0410 | 0.7014 |
|
| 444 |
-
| 0.2660 | 1600 | 0.0827 | - | - |
|
| 445 |
-
| 0.2826 | 1700 | 0.0807 | - | - |
|
| 446 |
-
| 0.2993 | 1800 | 0.0833 | - | - |
|
| 447 |
-
| 0.3159 | 1900 | 0.079 | - | - |
|
| 448 |
-
| 0.3325 | 2000 | 0.0778 | 0.0393 | 0.7209 |
|
| 449 |
-
| 0.3491 | 2100 | 0.0756 | - | - |
|
| 450 |
-
| 0.3658 | 2200 | 0.0798 | - | - |
|
| 451 |
-
| 0.3824 | 2300 | 0.0756 | - | - |
|
| 452 |
-
| 0.3990 | 2400 | 0.0715 | - | - |
|
| 453 |
-
| 0.4156 | 2500 | 0.0723 | 0.0374 | 0.7374 |
|
| 454 |
-
| 0.4323 | 2600 | 0.0728 | - | - |
|
| 455 |
-
| 0.4489 | 2700 | 0.0719 | - | - |
|
| 456 |
-
| 0.4655 | 2800 | 0.0724 | - | - |
|
| 457 |
-
| 0.4821 | 2900 | 0.0674 | - | - |
|
| 458 |
-
| 0.4988 | 3000 | 0.0683 | 0.0377 | 0.7344 |
|
| 459 |
-
| 0.5154 | 3100 | 0.0673 | - | - |
|
| 460 |
-
| 0.5320 | 3200 | 0.0684 | - | - |
|
| 461 |
-
| 0.5486 | 3300 | 0.0649 | - | - |
|
| 462 |
-
| 0.5653 | 3400 | 0.067 | - | - |
|
| 463 |
-
| 0.5819 | 3500 | 0.0673 | 0.0373 | 0.7382 |
|
| 464 |
-
| 0.5985 | 3600 | 0.0701 | - | - |
|
| 465 |
-
| 0.6151 | 3700 | 0.0648 | - | - |
|
| 466 |
-
| 0.6318 | 3800 | 0.0641 | - | - |
|
| 467 |
-
| 0.6484 | 3900 | 0.0653 | - | - |
|
| 468 |
-
| 0.6650 | 4000 | 0.0658 | 0.0367 | 0.7428 |
|
| 469 |
-
| 0.6816 | 4100 | 0.0628 | - | - |
|
| 470 |
-
| 0.6983 | 4200 | 0.0671 | - | - |
|
| 471 |
-
| 0.7149 | 4300 | 0.0626 | - | - |
|
| 472 |
-
| 0.7315 | 4400 | 0.0638 | - | - |
|
| 473 |
-
| 0.7481 | 4500 | 0.0655 | 0.0370 | 0.7383 |
|
| 474 |
-
| 0.7648 | 4600 | 0.0608 | - | - |
|
| 475 |
-
| 0.7814 | 4700 | 0.062 | - | - |
|
| 476 |
-
| 0.7980 | 4800 | 0.0625 | - | - |
|
| 477 |
-
| 0.8146 | 4900 | 0.0629 | - | - |
|
| 478 |
-
| 0.8313 | 5000 | 0.0631 | 0.0368 | 0.7409 |
|
| 479 |
-
| 0.8479 | 5100 | 0.0619 | - | - |
|
| 480 |
-
| 0.8645 | 5200 | 0.0623 | - | - |
|
| 481 |
-
| 0.8811 | 5300 | 0.0623 | - | - |
|
| 482 |
-
| 0.8978 | 5400 | 0.0631 | - | - |
|
| 483 |
-
| 0.9144 | 5500 | 0.0588 | 0.0367 | 0.7409 |
|
| 484 |
-
| 0.9310 | 5600 | 0.0618 | - | - |
|
| 485 |
-
| 0.9476 | 5700 | 0.0588 | - | - |
|
| 486 |
-
| 0.9643 | 5800 | 0.0605 | - | - |
|
| 487 |
-
| 0.9809 | 5900 | 0.061 | - | - |
|
| 488 |
-
| 0.9975 | 6000 | 0.0587 | 0.0367 | 0.7420 |
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
### Framework Versions
|
| 492 |
-
- Python: 3.10.12
|
| 493 |
-
- Sentence Transformers: 3.3.1
|
| 494 |
-
- Transformers: 4.48.1
|
| 495 |
-
- PyTorch: 2.5.1
|
| 496 |
-
- Accelerate: 1.2.1
|
| 497 |
-
- Datasets: 3.2.0
|
| 498 |
-
- Tokenizers: 0.21.0
|
| 499 |
-
|
| 500 |
-
## Citation
|
| 501 |
-
|
| 502 |
-
### BibTeX
|
| 503 |
-
|
| 504 |
-
#### Sentence Transformers
|
| 505 |
-
```bibtex
|
| 506 |
-
@inproceedings{reimers-2019-sentence-bert,
|
| 507 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 508 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
| 509 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 510 |
-
month = "11",
|
| 511 |
-
year = "2019",
|
| 512 |
-
publisher = "Association for Computational Linguistics",
|
| 513 |
-
url = "https://arxiv.org/abs/1908.10084",
|
| 514 |
-
}
|
| 515 |
```
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
| 522 |
-
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
| 523 |
-
year={2006},
|
| 524 |
-
volume={2},
|
| 525 |
-
number={},
|
| 526 |
-
pages={1735-1742},
|
| 527 |
-
doi={10.1109/CVPR.2006.100}
|
| 528 |
-
}
|
| 529 |
-
```
|
| 530 |
-
|
| 531 |
-
<!--
|
| 532 |
-
## Glossary
|
| 533 |
-
|
| 534 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 535 |
-
-->
|
| 536 |
-
|
| 537 |
-
<!--
|
| 538 |
-
## Model Card Authors
|
| 539 |
-
|
| 540 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 541 |
-
-->
|
| 542 |
-
|
| 543 |
-
<!--
|
| 544 |
-
## Model Card Contact
|
| 545 |
-
|
| 546 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 547 |
-
-->
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
tags:
|
| 4 |
- sentence-transformers
|
| 5 |
- sentence-similarity
|
| 6 |
- feature-extraction
|
|
|
|
|
|
|
| 7 |
- loss:ContrastiveLoss
|
| 8 |
base_model: FacebookAI/xlm-roberta-large
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pipeline_tag: sentence-similarity
|
| 10 |
+
datasets:
|
| 11 |
+
- gabrielloiseau/CALE-SPCD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# CALE-XLM-R
|
| 15 |
|
| 16 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps occurences of a word to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 17 |
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
## Usage (Sentence-Transformers)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
pip install -U sentence-transformers
|
| 24 |
```
|
| 25 |
|
| 26 |
+
Then you can use the model like this:
|
| 27 |
+
|
| 28 |
```python
|
| 29 |
from sentence_transformers import SentenceTransformer
|
| 30 |
|
| 31 |
+
# 1. Load CALE model
|
| 32 |
model = SentenceTransformer("gabrielloiseau/CALE-XLM-R")
|
| 33 |
+
|
| 34 |
sentences = [
|
| 35 |
+
"the boy could easily <t>distinguish</t> the different note values",
|
| 36 |
+
"he patient’s ability to <t>recognize</t> forms and shapes",
|
| 37 |
+
"the government had refused to <t>recognize</t> their autonomy and existence as a state",
|
| 38 |
]
|
| 39 |
+
|
| 40 |
+
# 2. Calculate embeddings
|
| 41 |
embeddings = model.encode(sentences)
|
| 42 |
print(embeddings.shape)
|
| 43 |
# [3, 1024]
|
| 44 |
|
| 45 |
+
# 3. Calculate the embedding similarities
|
| 46 |
similarities = model.similarity(embeddings, embeddings)
|
| 47 |
+
print(similarities)
|
| 48 |
+
# tensor([[1.0000, 0.9332, 0.5331],
|
| 49 |
+
# [0.9332, 1.0000, 0.5619],
|
| 50 |
+
# [0.5331, 0.5619, 1.0000]])
|
| 51 |
```
|
| 52 |
|
| 53 |
+
## Full Model Architecture
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
```
|
| 55 |
+
SentenceTransformer(
|
| 56 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
|
| 57 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 58 |
+
)
|
| 59 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|