gabrielloiseau commited on
Commit
90d6891
·
verified ·
1 Parent(s): 4dcb757

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:156387
8
+ - loss:ContrastiveLoss
9
+ base_model: FacebookAI/xlm-roberta-large
10
+ widget:
11
+ - source_sentence: the latter is useful for modifying information about some or all
12
+ forms of a word , hence reducing the work required to improve <t>dictionary</t>
13
+ contents .
14
+ sentences:
15
+ - conchita nagged at the younger children , attempting without <t>success</t> to
16
+ keep her thoughts off tom brannon .
17
+ - another girl from a relatively large midwestern city described herself as `` the
18
+ only orthodox girl in <t>town</t> '' .
19
+ - entries are summarized only when by doing so the amount of information retained
20
+ in the <t>dictionary</t> is reduced and the time required for dictionary operations
21
+ is decreased .
22
+ - source_sentence: the kind of religious experience that most moderns seek not only
23
+ provides , clarifies , and relates human yearnings , values , ideals , and purposes
24
+ ; it also provides facilities and incitements for the <t>development</t> of personality
25
+ , sociality , and creativeness .
26
+ sentences:
27
+ - the artistic interest , then , lies in what the encounter may be made to represent
28
+ , in the power of some <t>central</t> significance to draw the details into relevance
29
+ and meaningfulness .
30
+ - more than 25 carefully selected cities were visited , <t>including</t> new york
31
+ , brooklyn , long island city , newark , elizabeth , stamford , waterbury , new
32
+ haven , bridgeport , boston , cambridge , worcester , and waltham .
33
+ - the liberals , smelling blood , were faced with the necessity of <t>winning</t>
34
+ three big votes - in the democratic committee on committees , in the full party
35
+ caucus , and on the floor of the house - before they could oust colmer .
36
+ - source_sentence: 'another yankee became so disgusted as to state : `` i wish to
37
+ god one half of our <t>officers</t> were knocked in the head by slinging them
38
+ against [ the other half ] '''' .'
39
+ sentences:
40
+ - we 'd seen his handiwork out in the back yard , and the little his tenants had
41
+ told us of him did make him sound a little <t>special</t> .
42
+ - 'private george gray hunter of pennsylvania wrote : `` i am well convinced in
43
+ my own mind that had it not been for <t>officers</t> this war would have ended
44
+ long ago '''' .'
45
+ - until this hunter-killer operation can be performed by spacecraft , manned aircraft
46
+ <t>appear</t> to be the only means available to us .
47
+ - source_sentence: there was a man 's jacket on the chair and a straw hat on the <t>table</t>
48
+ .
49
+ sentences:
50
+ - this section shall not apply to corporations purchasing such stock solely for
51
+ investment and not using the same by voting or otherwise to bring about , or in
52
+ <t>attempting</t> to bring about , the substantial lessening of competition ``
53
+ .
54
+ - if your principal place of abode for the tax <t>year</t> is outside the united
55
+ states ( including alaska and hawaii ) , puerto rico , or the virgin islands and
56
+ you have no legal residence or principal place of business in any internal revenue
57
+ district in the united states , you should file your return with the office of
58
+ international operations , internal revenue service , washington 25 , d. c. .
59
+ - both , of course , were remarkable feats and further embossed the fact that <t>baseball</t>
60
+ rightfully is the national pastime .
61
+ - source_sentence: a. e. sharp , in vowel-length and syllabicity in kikuyu , examines
62
+ one set of related orthographic questions and its phonologic <t>background</t>
63
+ in detail .
64
+ sentences:
65
+ - sensing the unseen presence of the other men in the patrol , he felt mutely united
66
+ to these nine <t>near</t> strangers sharing this pinpoint of being with him .
67
+ - this subsection shall not be so construed as to deprive the owner of any <t>background</t>
68
+ patent relating thereto of such rights as he may have thereunder .
69
+ - government itself was based upon contract ; business organization - the corporation
70
+ - was analyzed in contractual terms ; trade was based on freedom of contract ,
71
+ and money was lent and borrowed on contractual terms ; even marriage and the family
72
+ was seen as a contractual <t>arrangement</t> .
73
+ pipeline_tag: sentence-similarity
74
+ library_name: sentence-transformers
75
+ metrics:
76
+ - cosine_accuracy
77
+ - cosine_accuracy_threshold
78
+ - cosine_f1
79
+ - cosine_f1_threshold
80
+ - cosine_precision
81
+ - cosine_recall
82
+ - cosine_ap
83
+ model-index:
84
+ - name: SentenceTransformer based on FacebookAI/xlm-roberta-large
85
+ results:
86
+ - task:
87
+ type: binary-classification
88
+ name: Binary Classification
89
+ dataset:
90
+ name: cale eval
91
+ type: cale-eval
92
+ metrics:
93
+ - type: cosine_accuracy
94
+ value: 0.7822948920719075
95
+ name: Cosine Accuracy
96
+ - type: cosine_accuracy_threshold
97
+ value: 0.6373387575149536
98
+ name: Cosine Accuracy Threshold
99
+ - type: cosine_f1
100
+ value: 0.7738327068520447
101
+ name: Cosine F1
102
+ - type: cosine_f1_threshold
103
+ value: 0.5533720254898071
104
+ name: Cosine F1 Threshold
105
+ - type: cosine_precision
106
+ value: 0.661133681563165
107
+ name: Cosine Precision
108
+ - type: cosine_recall
109
+ value: 0.9328492657094503
110
+ name: Cosine Recall
111
+ - type: cosine_ap
112
+ value: 0.7420096616621343
113
+ name: Cosine Ap
114
+ ---
115
+
116
+ # SentenceTransformer based on FacebookAI/xlm-roberta-large
117
+
118
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
119
+
120
+ ## Model Details
121
+
122
+ ### Model Description
123
+ - **Model Type:** Sentence Transformer
124
+ - **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
125
+ - **Maximum Sequence Length:** 512 tokens
126
+ - **Output Dimensionality:** 1024 dimensions
127
+ - **Similarity Function:** Cosine Similarity
128
+ <!-- - **Training Dataset:** Unknown -->
129
+ <!-- - **Language:** Unknown -->
130
+ <!-- - **License:** Unknown -->
131
+
132
+ ### Model Sources
133
+
134
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
135
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
136
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
137
+
138
+ ### Full Model Architecture
139
+
140
+ ```
141
+ SentenceTransformer(
142
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
143
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
144
+ )
145
+ ```
146
+
147
+ ## Usage
148
+
149
+ ### Direct Usage (Sentence Transformers)
150
+
151
+ First install the Sentence Transformers library:
152
+
153
+ ```bash
154
+ pip install -U sentence-transformers
155
+ ```
156
+
157
+ Then you can load this model and run inference.
158
+ ```python
159
+ from sentence_transformers import SentenceTransformer
160
+
161
+ # Download from the 🤗 Hub
162
+ model = SentenceTransformer("gabrielloiseau/CALE-XLM-R")
163
+ # Run inference
164
+ sentences = [
165
+ 'a. e. sharp , in vowel-length and syllabicity in kikuyu , examines one set of related orthographic questions and its phonologic <t>background</t> in detail .',
166
+ 'this subsection shall not be so construed as to deprive the owner of any <t>background</t> patent relating thereto of such rights as he may have thereunder .',
167
+ 'sensing the unseen presence of the other men in the patrol , he felt mutely united to these nine <t>near</t> strangers sharing this pinpoint of being with him .',
168
+ ]
169
+ embeddings = model.encode(sentences)
170
+ print(embeddings.shape)
171
+ # [3, 1024]
172
+
173
+ # Get the similarity scores for the embeddings
174
+ similarities = model.similarity(embeddings, embeddings)
175
+ print(similarities.shape)
176
+ # [3, 3]
177
+ ```
178
+
179
+ <!--
180
+ ### Direct Usage (Transformers)
181
+
182
+ <details><summary>Click to see the direct usage in Transformers</summary>
183
+
184
+ </details>
185
+ -->
186
+
187
+ <!--
188
+ ### Downstream Usage (Sentence Transformers)
189
+
190
+ You can finetune this model on your own dataset.
191
+
192
+ <details><summary>Click to expand</summary>
193
+
194
+ </details>
195
+ -->
196
+
197
+ <!--
198
+ ### Out-of-Scope Use
199
+
200
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
201
+ -->
202
+
203
+ ## Evaluation
204
+
205
+ ### Metrics
206
+
207
+ #### Binary Classification
208
+
209
+ * Dataset: `cale-eval`
210
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
211
+
212
+ | Metric | Value |
213
+ |:--------------------------|:----------|
214
+ | cosine_accuracy | 0.7823 |
215
+ | cosine_accuracy_threshold | 0.6373 |
216
+ | cosine_f1 | 0.7738 |
217
+ | cosine_f1_threshold | 0.5534 |
218
+ | cosine_precision | 0.6611 |
219
+ | cosine_recall | 0.9328 |
220
+ | **cosine_ap** | **0.742** |
221
+
222
+ <!--
223
+ ## Bias, Risks and Limitations
224
+
225
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
226
+ -->
227
+
228
+ <!--
229
+ ### Recommendations
230
+
231
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
232
+ -->
233
+
234
+ ## Training Details
235
+
236
+ ### Training Dataset
237
+
238
+ #### Unnamed Dataset
239
+
240
+
241
+ * Size: 156,387 training samples
242
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
243
+ * Approximate statistics based on the first 1000 samples:
244
+ | | label | sentence1 | sentence2 |
245
+ |:--------|:------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
246
+ | type | int | string | string |
247
+ | details | <ul><li>0: ~60.70%</li><li>1: ~39.30%</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 56.47 tokens</li><li>max: 134 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 57.06 tokens</li><li>max: 135 tokens</li></ul> |
248
+ * Samples:
249
+ | label | sentence1 | sentence2 |
250
+ |:---------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
251
+ | <code>1</code> | <code>as a result , although we still make use of this distinction , there is much confusion as to the meaning of the <t>basic</t> terms employed .</code> | <code>but he takes his bearings from the great guidelines of policy , well established precedents , the commitments of the united states under international charters and treaties , <t>basic</t> statutes , and well understood notions of the american people about how we are to conduct ourselves , in policy literature such as country papers and national security council papers accumulated in the department .</code> |
252
+ | <code>0</code> | <code>as a result , although we still make use of this distinction , there is much confusion as to the meaning of the <t>basic</t> terms employed .</code> | <code>if adjectival meanings show relatively low retentiveness of stems , as i am confident will prove to be the case in most languages of the world , why should our <t>basic</t> lists include 15 per cent of these unstable forms , but only 8 per cent of animals and plants which replace much more slowly ?</code> |
253
+ | <code>0</code> | <code>as a result , although we still make use of this distinction , there is much confusion as to the meaning of the <t>basic</t> terms employed .</code> | <code>in 1927 his father 's business collapsed , and , rather than go bankrupt , mercer senior turned his firm over to a <t>bank</t> for liquidation .</code> |
254
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
255
+ ```json
256
+ {
257
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
258
+ "margin": 0.7,
259
+ "size_average": true
260
+ }
261
+ ```
262
+
263
+ ### Evaluation Dataset
264
+
265
+ #### Unnamed Dataset
266
+
267
+
268
+ * Size: 44,891 evaluation samples
269
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
270
+ * Approximate statistics based on the first 1000 samples:
271
+ | | label | sentence1 | sentence2 |
272
+ |:--------|:------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
273
+ | type | int | string | string |
274
+ | details | <ul><li>0: ~60.60%</li><li>1: ~39.40%</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 53.29 tokens</li><li>max: 151 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 54.72 tokens</li><li>max: 149 tokens</li></ul> |
275
+ * Samples:
276
+ | label | sentence1 | sentence2 |
277
+ |:---------------|:-------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
278
+ | <code>1</code> | <code>drop both hands to the floor and at the same time kick the right <t>foot</t> up in back .</code> | <code>place a suitably loaded barbell across them ; grasp the bar ( which will rest against the back of your neck ) ; extend your <t>feet</t> forward and backward until you are in a deep leg split .</code> |
279
+ | <code>0</code> | <code>drop both hands to the floor and at the same time kick the right <t>foot</t> up in back .</code> | <code>a scant half mile away shelley and mary were doubtless sitting on their diminutive terrace , the air about them scented with stock , and listening to the nightingale who had nested in the big lime tree at the <t>foot</t> of the garden .</code> |
280
+ | <code>0</code> | <code>drop both hands to the floor and at the same time kick the right <t>foot</t> up in back .</code> | <code>in preparing the state guide plan , particular attention will be given means of <t>strengthening</t> the economy of the state through the development of industry and recreation .</code> |
281
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
282
+ ```json
283
+ {
284
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
285
+ "margin": 0.7,
286
+ "size_average": true
287
+ }
288
+ ```
289
+
290
+ ### Training Hyperparameters
291
+ #### Non-Default Hyperparameters
292
+
293
+ - `eval_strategy`: steps
294
+ - `per_device_train_batch_size`: 13
295
+ - `per_device_eval_batch_size`: 13
296
+ - `gradient_accumulation_steps`: 2
297
+ - `learning_rate`: 4.46438e-06
298
+ - `weight_decay`: 0.0388
299
+ - `num_train_epochs`: 1
300
+ - `warmup_ratio`: 0.2995
301
+ - `fp16`: True
302
+ - `gradient_checkpointing`: True
303
+
304
+ #### All Hyperparameters
305
+ <details><summary>Click to expand</summary>
306
+
307
+ - `overwrite_output_dir`: False
308
+ - `do_predict`: False
309
+ - `eval_strategy`: steps
310
+ - `prediction_loss_only`: True
311
+ - `per_device_train_batch_size`: 13
312
+ - `per_device_eval_batch_size`: 13
313
+ - `per_gpu_train_batch_size`: None
314
+ - `per_gpu_eval_batch_size`: None
315
+ - `gradient_accumulation_steps`: 2
316
+ - `eval_accumulation_steps`: None
317
+ - `torch_empty_cache_steps`: None
318
+ - `learning_rate`: 4.46438e-06
319
+ - `weight_decay`: 0.0388
320
+ - `adam_beta1`: 0.9
321
+ - `adam_beta2`: 0.999
322
+ - `adam_epsilon`: 1e-08
323
+ - `max_grad_norm`: 1.0
324
+ - `num_train_epochs`: 1
325
+ - `max_steps`: -1
326
+ - `lr_scheduler_type`: linear
327
+ - `lr_scheduler_kwargs`: {}
328
+ - `warmup_ratio`: 0.2995
329
+ - `warmup_steps`: 0
330
+ - `log_level`: passive
331
+ - `log_level_replica`: warning
332
+ - `log_on_each_node`: True
333
+ - `logging_nan_inf_filter`: True
334
+ - `save_safetensors`: True
335
+ - `save_on_each_node`: False
336
+ - `save_only_model`: False
337
+ - `restore_callback_states_from_checkpoint`: False
338
+ - `no_cuda`: False
339
+ - `use_cpu`: False
340
+ - `use_mps_device`: False
341
+ - `seed`: 42
342
+ - `data_seed`: None
343
+ - `jit_mode_eval`: False
344
+ - `use_ipex`: False
345
+ - `bf16`: False
346
+ - `fp16`: True
347
+ - `fp16_opt_level`: O1
348
+ - `half_precision_backend`: auto
349
+ - `bf16_full_eval`: False
350
+ - `fp16_full_eval`: False
351
+ - `tf32`: None
352
+ - `local_rank`: 0
353
+ - `ddp_backend`: None
354
+ - `tpu_num_cores`: None
355
+ - `tpu_metrics_debug`: False
356
+ - `debug`: []
357
+ - `dataloader_drop_last`: False
358
+ - `dataloader_num_workers`: 0
359
+ - `dataloader_prefetch_factor`: None
360
+ - `past_index`: -1
361
+ - `disable_tqdm`: False
362
+ - `remove_unused_columns`: True
363
+ - `label_names`: None
364
+ - `load_best_model_at_end`: False
365
+ - `ignore_data_skip`: False
366
+ - `fsdp`: []
367
+ - `fsdp_min_num_params`: 0
368
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
369
+ - `fsdp_transformer_layer_cls_to_wrap`: None
370
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
371
+ - `deepspeed`: None
372
+ - `label_smoothing_factor`: 0.0
373
+ - `optim`: adamw_torch
374
+ - `optim_args`: None
375
+ - `adafactor`: False
376
+ - `group_by_length`: False
377
+ - `length_column_name`: length
378
+ - `ddp_find_unused_parameters`: None
379
+ - `ddp_bucket_cap_mb`: None
380
+ - `ddp_broadcast_buffers`: False
381
+ - `dataloader_pin_memory`: True
382
+ - `dataloader_persistent_workers`: False
383
+ - `skip_memory_metrics`: True
384
+ - `use_legacy_prediction_loop`: False
385
+ - `push_to_hub`: False
386
+ - `resume_from_checkpoint`: None
387
+ - `hub_model_id`: None
388
+ - `hub_strategy`: every_save
389
+ - `hub_private_repo`: None
390
+ - `hub_always_push`: False
391
+ - `gradient_checkpointing`: True
392
+ - `gradient_checkpointing_kwargs`: None
393
+ - `include_inputs_for_metrics`: False
394
+ - `include_for_metrics`: []
395
+ - `eval_do_concat_batches`: True
396
+ - `fp16_backend`: auto
397
+ - `push_to_hub_model_id`: None
398
+ - `push_to_hub_organization`: None
399
+ - `mp_parameters`:
400
+ - `auto_find_batch_size`: False
401
+ - `full_determinism`: False
402
+ - `torchdynamo`: None
403
+ - `ray_scope`: last
404
+ - `ddp_timeout`: 1800
405
+ - `torch_compile`: False
406
+ - `torch_compile_backend`: None
407
+ - `torch_compile_mode`: None
408
+ - `dispatch_batches`: None
409
+ - `split_batches`: None
410
+ - `include_tokens_per_second`: False
411
+ - `include_num_input_tokens_seen`: False
412
+ - `neftune_noise_alpha`: None
413
+ - `optim_target_modules`: None
414
+ - `batch_eval_metrics`: False
415
+ - `eval_on_start`: False
416
+ - `use_liger_kernel`: False
417
+ - `eval_use_gather_object`: False
418
+ - `average_tokens_across_devices`: False
419
+ - `prompts`: None
420
+ - `batch_sampler`: batch_sampler
421
+ - `multi_dataset_batch_sampler`: proportional
422
+
423
+ </details>
424
+
425
+ ### Training Logs
426
+ | Epoch | Step | Training Loss | Validation Loss | cale-eval_cosine_ap |
427
+ |:------:|:----:|:-------------:|:---------------:|:-------------------:|
428
+ | 0 | 0 | - | - | 0.5131 |
429
+ | 0.0166 | 100 | 0.2826 | - | - |
430
+ | 0.0333 | 200 | 0.2505 | - | - |
431
+ | 0.0499 | 300 | 0.1684 | - | - |
432
+ | 0.0665 | 400 | 0.1539 | - | - |
433
+ | 0.0831 | 500 | 0.1297 | 0.0598 | 0.5317 |
434
+ | 0.0998 | 600 | 0.1237 | - | - |
435
+ | 0.1164 | 700 | 0.1141 | - | - |
436
+ | 0.1330 | 800 | 0.114 | - | - |
437
+ | 0.1496 | 900 | 0.1161 | - | - |
438
+ | 0.1663 | 1000 | 0.111 | 0.0561 | 0.5799 |
439
+ | 0.1829 | 1100 | 0.1066 | - | - |
440
+ | 0.1995 | 1200 | 0.1012 | - | - |
441
+ | 0.2161 | 1300 | 0.0951 | - | - |
442
+ | 0.2328 | 1400 | 0.0885 | - | - |
443
+ | 0.2494 | 1500 | 0.0844 | 0.0410 | 0.7014 |
444
+ | 0.2660 | 1600 | 0.0827 | - | - |
445
+ | 0.2826 | 1700 | 0.0807 | - | - |
446
+ | 0.2993 | 1800 | 0.0833 | - | - |
447
+ | 0.3159 | 1900 | 0.079 | - | - |
448
+ | 0.3325 | 2000 | 0.0778 | 0.0393 | 0.7209 |
449
+ | 0.3491 | 2100 | 0.0756 | - | - |
450
+ | 0.3658 | 2200 | 0.0798 | - | - |
451
+ | 0.3824 | 2300 | 0.0756 | - | - |
452
+ | 0.3990 | 2400 | 0.0715 | - | - |
453
+ | 0.4156 | 2500 | 0.0723 | 0.0374 | 0.7374 |
454
+ | 0.4323 | 2600 | 0.0728 | - | - |
455
+ | 0.4489 | 2700 | 0.0719 | - | - |
456
+ | 0.4655 | 2800 | 0.0724 | - | - |
457
+ | 0.4821 | 2900 | 0.0674 | - | - |
458
+ | 0.4988 | 3000 | 0.0683 | 0.0377 | 0.7344 |
459
+ | 0.5154 | 3100 | 0.0673 | - | - |
460
+ | 0.5320 | 3200 | 0.0684 | - | - |
461
+ | 0.5486 | 3300 | 0.0649 | - | - |
462
+ | 0.5653 | 3400 | 0.067 | - | - |
463
+ | 0.5819 | 3500 | 0.0673 | 0.0373 | 0.7382 |
464
+ | 0.5985 | 3600 | 0.0701 | - | - |
465
+ | 0.6151 | 3700 | 0.0648 | - | - |
466
+ | 0.6318 | 3800 | 0.0641 | - | - |
467
+ | 0.6484 | 3900 | 0.0653 | - | - |
468
+ | 0.6650 | 4000 | 0.0658 | 0.0367 | 0.7428 |
469
+ | 0.6816 | 4100 | 0.0628 | - | - |
470
+ | 0.6983 | 4200 | 0.0671 | - | - |
471
+ | 0.7149 | 4300 | 0.0626 | - | - |
472
+ | 0.7315 | 4400 | 0.0638 | - | - |
473
+ | 0.7481 | 4500 | 0.0655 | 0.0370 | 0.7383 |
474
+ | 0.7648 | 4600 | 0.0608 | - | - |
475
+ | 0.7814 | 4700 | 0.062 | - | - |
476
+ | 0.7980 | 4800 | 0.0625 | - | - |
477
+ | 0.8146 | 4900 | 0.0629 | - | - |
478
+ | 0.8313 | 5000 | 0.0631 | 0.0368 | 0.7409 |
479
+ | 0.8479 | 5100 | 0.0619 | - | - |
480
+ | 0.8645 | 5200 | 0.0623 | - | - |
481
+ | 0.8811 | 5300 | 0.0623 | - | - |
482
+ | 0.8978 | 5400 | 0.0631 | - | - |
483
+ | 0.9144 | 5500 | 0.0588 | 0.0367 | 0.7409 |
484
+ | 0.9310 | 5600 | 0.0618 | - | - |
485
+ | 0.9476 | 5700 | 0.0588 | - | - |
486
+ | 0.9643 | 5800 | 0.0605 | - | - |
487
+ | 0.9809 | 5900 | 0.061 | - | - |
488
+ | 0.9975 | 6000 | 0.0587 | 0.0367 | 0.7420 |
489
+
490
+
491
+ ### Framework Versions
492
+ - Python: 3.10.12
493
+ - Sentence Transformers: 3.3.1
494
+ - Transformers: 4.48.1
495
+ - PyTorch: 2.5.1
496
+ - Accelerate: 1.2.1
497
+ - Datasets: 3.2.0
498
+ - Tokenizers: 0.21.0
499
+
500
+ ## Citation
501
+
502
+ ### BibTeX
503
+
504
+ #### Sentence Transformers
505
+ ```bibtex
506
+ @inproceedings{reimers-2019-sentence-bert,
507
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
508
+ author = "Reimers, Nils and Gurevych, Iryna",
509
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
510
+ month = "11",
511
+ year = "2019",
512
+ publisher = "Association for Computational Linguistics",
513
+ url = "https://arxiv.org/abs/1908.10084",
514
+ }
515
+ ```
516
+
517
+ #### ContrastiveLoss
518
+ ```bibtex
519
+ @inproceedings{hadsell2006dimensionality,
520
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
521
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
522
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
523
+ year={2006},
524
+ volume={2},
525
+ number={},
526
+ pages={1735-1742},
527
+ doi={10.1109/CVPR.2006.100}
528
+ }
529
+ ```
530
+
531
+ <!--
532
+ ## Glossary
533
+
534
+ *Clearly define terms in order to be accessible across audiences.*
535
+ -->
536
+
537
+ <!--
538
+ ## Model Card Authors
539
+
540
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
541
+ -->
542
+
543
+ <!--
544
+ ## Model Card Contact
545
+
546
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
547
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.55.0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.0.0",
4
+ "transformers": "4.55.0",
5
+ "pytorch": "2.7.1+cu126"
6
+ },
7
+ "prompts": {
8
+ "query": "",
9
+ "document": ""
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine",
13
+ "model_type": "SentenceTransformer"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24059aa5f0d8e613409e17e7e0450db5412616bd665f16150b69bcfe8bf5bdce
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizerFast",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }