instance_id
stringlengths
14
33
version
stringclasses
1 value
gold_patches
dict
test_patch
null
pre_patches
dict
pre_scripts
null
repo
stringclasses
11 values
base_commit
stringclasses
11 values
base_commit_timestamp
stringdate
2024-07-22 07:32:48-0400
2024-10-09 00:56:33-0400
hints_text
null
created_at
null
problem_statement
dict
environment_setup_commit
stringclasses
11 values
evaluation
dict
scikit-learn__scikit-learn-122
1.0
{ "code": "diff --git b/sklearn/neighbors/_nca.py a/sklearn/neighbors/_nca.py\nindex 46d3fc48d..a4ef3c303 100644\n--- b/sklearn/neighbors/_nca.py\n+++ a/sklearn/neighbors/_nca.py\n@@ -470,6 +470,55 @@ class NeighborhoodComponentsAnalysis(\n The new (flattened) gradient of the loss.\n \"\"\"\n \n+ if self.n_iter_ == 0:\n+ self.n_iter_ += 1\n+ if self.verbose:\n+ header_fields = [\"Iteration\", \"Objective Value\", \"Time(s)\"]\n+ header_fmt = \"{:>10} {:>20} {:>10}\"\n+ header = header_fmt.format(*header_fields)\n+ cls_name = self.__class__.__name__\n+ print(\"[{}]\".format(cls_name))\n+ print(\n+ \"[{}] {}\\n[{}] {}\".format(\n+ cls_name, header, cls_name, \"-\" * len(header)\n+ )\n+ )\n+\n+ t_funcall = time.time()\n+\n+ transformation = transformation.reshape(-1, X.shape[1])\n+ X_embedded = np.dot(X, transformation.T) # (n_samples, n_components)\n+\n+ # Compute softmax distances\n+ p_ij = pairwise_distances(X_embedded, squared=True)\n+ np.fill_diagonal(p_ij, np.inf)\n+ p_ij = softmax(-p_ij) # (n_samples, n_samples)\n+\n+ # Compute loss\n+ masked_p_ij = p_ij * same_class_mask\n+ p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1)\n+ loss = np.sum(p)\n+\n+ # Compute gradient of loss w.r.t. `transform`\n+ weighted_p_ij = masked_p_ij - p_ij * p\n+ weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T\n+ np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0))\n+ gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X)\n+ # time complexity of the gradient: O(n_components x n_samples x (\n+ # n_samples + n_features))\n+\n+ if self.verbose:\n+ t_funcall = time.time() - t_funcall\n+ values_fmt = \"[{}] {:>10} {:>20.6e} {:>10.2f}\"\n+ print(\n+ values_fmt.format(\n+ self.__class__.__name__, self.n_iter_, loss, t_funcall\n+ )\n+ )\n+ sys.stdout.flush()\n+\n+ return sign * loss, sign * gradient.ravel()\n+\n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n tags.target_tags.required = True\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_nca.py b/sklearn/neighbors/_nca.py\nindex a4ef3c303..46d3fc48d 100644\n--- a/sklearn/neighbors/_nca.py\n+++ b/sklearn/neighbors/_nca.py\n@@ -470,55 +470,6 @@ class NeighborhoodComponentsAnalysis(\n The new (flattened) gradient of the loss.\n \"\"\"\n \n- if self.n_iter_ == 0:\n- self.n_iter_ += 1\n- if self.verbose:\n- header_fields = [\"Iteration\", \"Objective Value\", \"Time(s)\"]\n- header_fmt = \"{:>10} {:>20} {:>10}\"\n- header = header_fmt.format(*header_fields)\n- cls_name = self.__class__.__name__\n- print(\"[{}]\".format(cls_name))\n- print(\n- \"[{}] {}\\n[{}] {}\".format(\n- cls_name, header, cls_name, \"-\" * len(header)\n- )\n- )\n-\n- t_funcall = time.time()\n-\n- transformation = transformation.reshape(-1, X.shape[1])\n- X_embedded = np.dot(X, transformation.T) # (n_samples, n_components)\n-\n- # Compute softmax distances\n- p_ij = pairwise_distances(X_embedded, squared=True)\n- np.fill_diagonal(p_ij, np.inf)\n- p_ij = softmax(-p_ij) # (n_samples, n_samples)\n-\n- # Compute loss\n- masked_p_ij = p_ij * same_class_mask\n- p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1)\n- loss = np.sum(p)\n-\n- # Compute gradient of loss w.r.t. `transform`\n- weighted_p_ij = masked_p_ij - p_ij * p\n- weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T\n- np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0))\n- gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X)\n- # time complexity of the gradient: O(n_components x n_samples x (\n- # n_samples + n_features))\n-\n- if self.verbose:\n- t_funcall = time.time() - t_funcall\n- values_fmt = \"[{}] {:>10} {:>20.6e} {:>10.2f}\"\n- print(\n- values_fmt.format(\n- self.__class__.__name__, self.n_iter_, loss, t_funcall\n- )\n- )\n- sys.stdout.flush()\n-\n- return sign * loss, sign * gradient.ravel()\n-\n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n tags.target_tags.required = True\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_nca.py.\nHere is the description for the function:\n def _loss_grad_lbfgs(self, transformation, X, same_class_mask, sign=1.0):\n \"\"\"Compute the loss and the loss gradient w.r.t. `transformation`.\n\n Parameters\n ----------\n transformation : ndarray of shape (n_components * n_features,)\n The raveled linear transformation on which to compute loss and\n evaluate gradient.\n\n X : ndarray of shape (n_samples, n_features)\n The training samples.\n\n same_class_mask : ndarray of shape (n_samples, n_samples)\n A mask where `mask[i, j] == 1` if `X[i]` and `X[j]` belong\n to the same class, and `0` otherwise.\n\n Returns\n -------\n loss : float\n The loss computed for the given transformation.\n\n gradient : ndarray of shape (n_components * n_features,)\n The new (flattened) gradient of the loss.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_nca.py::test_simple_example", "sklearn/neighbors/tests/test_nca.py::test_toy_example_collapse_points", "sklearn/neighbors/tests/test_nca.py::test_finite_differences[42]", "sklearn/neighbors/tests/test_nca.py::test_transformation_dimensions", "sklearn/neighbors/tests/test_nca.py::test_n_components", "sklearn/neighbors/tests/test_nca.py::test_init_transformation", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_warm_start_validation", "sklearn/neighbors/tests/test_nca.py::test_warm_start_effectiveness", "sklearn/neighbors/tests/test_nca.py::test_verbose[pca]", "sklearn/neighbors/tests/test_nca.py::test_verbose[lda]", "sklearn/neighbors/tests/test_nca.py::test_verbose[identity]", "sklearn/neighbors/tests/test_nca.py::test_verbose[random]", "sklearn/neighbors/tests/test_nca.py::test_verbose[precomputed]", "sklearn/neighbors/tests/test_nca.py::test_no_verbose", "sklearn/neighbors/tests/test_nca.py::test_singleton_class", "sklearn/neighbors/tests/test_nca.py::test_one_class", "sklearn/neighbors/tests/test_nca.py::test_callback", "sklearn/neighbors/tests/test_nca.py::test_expected_transformation_shape", "sklearn/neighbors/tests/test_nca.py::test_convergence_warning", "sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[n_components-value0]", "sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[max_iter-value1]", "sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[tol-value2]", "sklearn/neighbors/tests/test_nca.py::test_nca_feature_names_out[None]", "sklearn/neighbors/tests/test_nca.py::test_nca_feature_names_out[2]", "sklearn/neighbors/_nca.py::sklearn.neighbors._nca.NeighborhoodComponentsAnalysis", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-NeighborhoodComponentsAnalysis(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-123
1.0
{ "code": "diff --git b/sklearn/neighbors/_nca.py a/sklearn/neighbors/_nca.py\nindex dfc423107..a4ef3c303 100644\n--- b/sklearn/neighbors/_nca.py\n+++ a/sklearn/neighbors/_nca.py\n@@ -221,6 +221,7 @@ class NeighborhoodComponentsAnalysis(\n self.verbose = verbose\n self.random_state = random_state\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data.\n \n@@ -237,6 +238,108 @@ class NeighborhoodComponentsAnalysis(\n self : object\n Fitted estimator.\n \"\"\"\n+ # Validate the inputs X and y, and converts y to numerical classes.\n+ X, y = validate_data(self, X, y, ensure_min_samples=2)\n+ check_classification_targets(y)\n+ y = LabelEncoder().fit_transform(y)\n+\n+ # Check the preferred dimensionality of the projected space\n+ if self.n_components is not None and self.n_components > X.shape[1]:\n+ raise ValueError(\n+ \"The preferred dimensionality of the \"\n+ f\"projected space `n_components` ({self.n_components}) cannot \"\n+ \"be greater than the given data \"\n+ f\"dimensionality ({X.shape[1]})!\"\n+ )\n+ # If warm_start is enabled, check that the inputs are consistent\n+ if (\n+ self.warm_start\n+ and hasattr(self, \"components_\")\n+ and self.components_.shape[1] != X.shape[1]\n+ ):\n+ raise ValueError(\n+ f\"The new inputs dimensionality ({X.shape[1]}) does not \"\n+ \"match the input dimensionality of the \"\n+ f\"previously learned transformation ({self.components_.shape[1]}).\"\n+ )\n+ # Check how the linear transformation should be initialized\n+ init = self.init\n+ if isinstance(init, np.ndarray):\n+ init = check_array(init)\n+ # Assert that init.shape[1] = X.shape[1]\n+ if init.shape[1] != X.shape[1]:\n+ raise ValueError(\n+ f\"The input dimensionality ({init.shape[1]}) of the given \"\n+ \"linear transformation `init` must match the \"\n+ f\"dimensionality of the given inputs `X` ({X.shape[1]}).\"\n+ )\n+ # Assert that init.shape[0] <= init.shape[1]\n+ if init.shape[0] > init.shape[1]:\n+ raise ValueError(\n+ f\"The output dimensionality ({init.shape[0]}) of the given \"\n+ \"linear transformation `init` cannot be \"\n+ f\"greater than its input dimensionality ({init.shape[1]}).\"\n+ )\n+ # Assert that self.n_components = init.shape[0]\n+ if self.n_components is not None and self.n_components != init.shape[0]:\n+ raise ValueError(\n+ \"The preferred dimensionality of the \"\n+ f\"projected space `n_components` ({self.n_components}) does\"\n+ \" not match the output dimensionality of \"\n+ \"the given linear transformation \"\n+ f\"`init` ({init.shape[0]})!\"\n+ )\n+\n+ # Initialize the random generator\n+ self.random_state_ = check_random_state(self.random_state)\n+\n+ # Measure the total training time\n+ t_train = time.time()\n+\n+ # Compute a mask that stays fixed during optimization:\n+ same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]\n+ # (n_samples, n_samples)\n+\n+ # Initialize the transformation\n+ transformation = np.ravel(self._initialize(X, y, init))\n+\n+ # Create a dictionary of parameters to be passed to the optimizer\n+ disp = self.verbose - 2 if self.verbose > 1 else -1\n+ optimizer_params = {\n+ \"method\": \"L-BFGS-B\",\n+ \"fun\": self._loss_grad_lbfgs,\n+ \"args\": (X, same_class_mask, -1.0),\n+ \"jac\": True,\n+ \"x0\": transformation,\n+ \"tol\": self.tol,\n+ \"options\": dict(maxiter=self.max_iter, disp=disp),\n+ \"callback\": self._callback,\n+ }\n+\n+ # Call the optimizer\n+ self.n_iter_ = 0\n+ opt_result = minimize(**optimizer_params)\n+\n+ # Reshape the solution found by the optimizer\n+ self.components_ = opt_result.x.reshape(-1, X.shape[1])\n+\n+ # Stop timer\n+ t_train = time.time() - t_train\n+ if self.verbose:\n+ cls_name = self.__class__.__name__\n+\n+ # Warn the user if the algorithm did not converge\n+ if not opt_result.success:\n+ warn(\n+ \"[{}] NCA did not converge: {}\".format(\n+ cls_name, opt_result.message\n+ ),\n+ ConvergenceWarning,\n+ )\n+\n+ print(\"[{}] Training took {:8.2f}s.\".format(cls_name, t_train))\n+\n+ return self\n \n def transform(self, X):\n \"\"\"Apply the learned transformation to the given data.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_nca.py b/sklearn/neighbors/_nca.py\nindex a4ef3c303..dfc423107 100644\n--- a/sklearn/neighbors/_nca.py\n+++ b/sklearn/neighbors/_nca.py\n@@ -221,7 +221,6 @@ class NeighborhoodComponentsAnalysis(\n self.verbose = verbose\n self.random_state = random_state\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data.\n \n@@ -238,108 +237,6 @@ class NeighborhoodComponentsAnalysis(\n self : object\n Fitted estimator.\n \"\"\"\n- # Validate the inputs X and y, and converts y to numerical classes.\n- X, y = validate_data(self, X, y, ensure_min_samples=2)\n- check_classification_targets(y)\n- y = LabelEncoder().fit_transform(y)\n-\n- # Check the preferred dimensionality of the projected space\n- if self.n_components is not None and self.n_components > X.shape[1]:\n- raise ValueError(\n- \"The preferred dimensionality of the \"\n- f\"projected space `n_components` ({self.n_components}) cannot \"\n- \"be greater than the given data \"\n- f\"dimensionality ({X.shape[1]})!\"\n- )\n- # If warm_start is enabled, check that the inputs are consistent\n- if (\n- self.warm_start\n- and hasattr(self, \"components_\")\n- and self.components_.shape[1] != X.shape[1]\n- ):\n- raise ValueError(\n- f\"The new inputs dimensionality ({X.shape[1]}) does not \"\n- \"match the input dimensionality of the \"\n- f\"previously learned transformation ({self.components_.shape[1]}).\"\n- )\n- # Check how the linear transformation should be initialized\n- init = self.init\n- if isinstance(init, np.ndarray):\n- init = check_array(init)\n- # Assert that init.shape[1] = X.shape[1]\n- if init.shape[1] != X.shape[1]:\n- raise ValueError(\n- f\"The input dimensionality ({init.shape[1]}) of the given \"\n- \"linear transformation `init` must match the \"\n- f\"dimensionality of the given inputs `X` ({X.shape[1]}).\"\n- )\n- # Assert that init.shape[0] <= init.shape[1]\n- if init.shape[0] > init.shape[1]:\n- raise ValueError(\n- f\"The output dimensionality ({init.shape[0]}) of the given \"\n- \"linear transformation `init` cannot be \"\n- f\"greater than its input dimensionality ({init.shape[1]}).\"\n- )\n- # Assert that self.n_components = init.shape[0]\n- if self.n_components is not None and self.n_components != init.shape[0]:\n- raise ValueError(\n- \"The preferred dimensionality of the \"\n- f\"projected space `n_components` ({self.n_components}) does\"\n- \" not match the output dimensionality of \"\n- \"the given linear transformation \"\n- f\"`init` ({init.shape[0]})!\"\n- )\n-\n- # Initialize the random generator\n- self.random_state_ = check_random_state(self.random_state)\n-\n- # Measure the total training time\n- t_train = time.time()\n-\n- # Compute a mask that stays fixed during optimization:\n- same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]\n- # (n_samples, n_samples)\n-\n- # Initialize the transformation\n- transformation = np.ravel(self._initialize(X, y, init))\n-\n- # Create a dictionary of parameters to be passed to the optimizer\n- disp = self.verbose - 2 if self.verbose > 1 else -1\n- optimizer_params = {\n- \"method\": \"L-BFGS-B\",\n- \"fun\": self._loss_grad_lbfgs,\n- \"args\": (X, same_class_mask, -1.0),\n- \"jac\": True,\n- \"x0\": transformation,\n- \"tol\": self.tol,\n- \"options\": dict(maxiter=self.max_iter, disp=disp),\n- \"callback\": self._callback,\n- }\n-\n- # Call the optimizer\n- self.n_iter_ = 0\n- opt_result = minimize(**optimizer_params)\n-\n- # Reshape the solution found by the optimizer\n- self.components_ = opt_result.x.reshape(-1, X.shape[1])\n-\n- # Stop timer\n- t_train = time.time() - t_train\n- if self.verbose:\n- cls_name = self.__class__.__name__\n-\n- # Warn the user if the algorithm did not converge\n- if not opt_result.success:\n- warn(\n- \"[{}] NCA did not converge: {}\".format(\n- cls_name, opt_result.message\n- ),\n- ConvergenceWarning,\n- )\n-\n- print(\"[{}] Training took {:8.2f}s.\".format(cls_name, t_train))\n-\n- return self\n \n def transform(self, X):\n \"\"\"Apply the learned transformation to the given data.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_nca.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The training samples.\n\n y : array-like of shape (n_samples,)\n The corresponding training labels.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_nca.py::test_simple_example", "sklearn/neighbors/tests/test_nca.py::test_toy_example_collapse_points", "sklearn/neighbors/tests/test_nca.py::test_params_validation", "sklearn/neighbors/tests/test_nca.py::test_transformation_dimensions", "sklearn/neighbors/tests/test_nca.py::test_n_components", "sklearn/neighbors/tests/test_nca.py::test_init_transformation", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_warm_start_validation", "sklearn/neighbors/tests/test_nca.py::test_warm_start_effectiveness", "sklearn/neighbors/tests/test_nca.py::test_verbose[pca]", "sklearn/neighbors/tests/test_nca.py::test_verbose[lda]", "sklearn/neighbors/tests/test_nca.py::test_verbose[identity]", "sklearn/neighbors/tests/test_nca.py::test_verbose[random]", "sklearn/neighbors/tests/test_nca.py::test_verbose[precomputed]", "sklearn/neighbors/tests/test_nca.py::test_no_verbose", "sklearn/neighbors/tests/test_nca.py::test_singleton_class", "sklearn/neighbors/tests/test_nca.py::test_one_class", "sklearn/neighbors/tests/test_nca.py::test_callback", "sklearn/neighbors/tests/test_nca.py::test_expected_transformation_shape", "sklearn/neighbors/tests/test_nca.py::test_convergence_warning", "sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[n_components-value0]", "sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[max_iter-value1]", "sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[tol-value2]", "sklearn/neighbors/tests/test_nca.py::test_nca_feature_names_out[None]", "sklearn/neighbors/tests/test_nca.py::test_nca_feature_names_out[2]", "sklearn/neighbors/_nca.py::sklearn.neighbors._nca.NeighborhoodComponentsAnalysis", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-NeighborhoodComponentsAnalysis(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-124
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex 0a17da29a..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -977,6 +977,7 @@ class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator)\n self.random_state = random_state\n self.n_jobs = n_jobs\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit estimator to data.\n \n@@ -998,6 +999,43 @@ class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator)\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X, accept_sparse=\"csr\")\n+ rnd = check_random_state(self.random_state)\n+ n_samples = X.shape[0]\n+\n+ # get basis vectors\n+ if self.n_components > n_samples:\n+ # XXX should we just bail?\n+ n_components = n_samples\n+ warnings.warn(\n+ \"n_components > n_samples. This is not possible.\\n\"\n+ \"n_components was set to n_samples, which results\"\n+ \" in inefficient evaluation of the full kernel.\"\n+ )\n+\n+ else:\n+ n_components = self.n_components\n+ n_components = min(n_samples, n_components)\n+ inds = rnd.permutation(n_samples)\n+ basis_inds = inds[:n_components]\n+ basis = X[basis_inds]\n+\n+ basis_kernel = pairwise_kernels(\n+ basis,\n+ metric=self.kernel,\n+ filter_params=True,\n+ n_jobs=self.n_jobs,\n+ **self._get_kernel_params(),\n+ )\n+\n+ # sqrt of kernel matrix on basis vectors\n+ U, S, V = svd(basis_kernel)\n+ S = np.maximum(S, 1e-12)\n+ self.normalization_ = np.dot(U / np.sqrt(S), V)\n+ self.components_ = basis\n+ self.component_indices_ = basis_inds\n+ self._n_features_out = n_components\n+ return self\n \n def transform(self, X):\n \"\"\"Apply feature map to X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..0a17da29a 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -977,7 +977,6 @@ class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator)\n self.random_state = random_state\n self.n_jobs = n_jobs\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit estimator to data.\n \n@@ -999,43 +998,6 @@ class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator)\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X, accept_sparse=\"csr\")\n- rnd = check_random_state(self.random_state)\n- n_samples = X.shape[0]\n-\n- # get basis vectors\n- if self.n_components > n_samples:\n- # XXX should we just bail?\n- n_components = n_samples\n- warnings.warn(\n- \"n_components > n_samples. This is not possible.\\n\"\n- \"n_components was set to n_samples, which results\"\n- \" in inefficient evaluation of the full kernel.\"\n- )\n-\n- else:\n- n_components = self.n_components\n- n_components = min(n_samples, n_components)\n- inds = rnd.permutation(n_samples)\n- basis_inds = inds[:n_components]\n- basis = X[basis_inds]\n-\n- basis_kernel = pairwise_kernels(\n- basis,\n- metric=self.kernel,\n- filter_params=True,\n- n_jobs=self.n_jobs,\n- **self._get_kernel_params(),\n- )\n-\n- # sqrt of kernel matrix on basis vectors\n- U, S, V = svd(basis_kernel)\n- S = np.maximum(S, 1e-12)\n- self.normalization_ = np.dot(U / np.sqrt(S), V)\n- self.components_ = basis\n- self.component_indices_ = basis_inds\n- self._n_features_out = n_components\n- return self\n \n def transform(self, X):\n \"\"\"Apply feature map to X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit estimator to data.\n\n Samples a subset of training points, computes kernel\n on these and computes normalization matrix.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : array-like, shape (n_samples,) or (n_samples, n_outputs), \\\n default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_sgd.py::test_ocsvm_vs_sgdocsvm", "sklearn/tests/test_kernel_approximation.py::test_nystroem_approximation", "sklearn/tests/test_kernel_approximation.py::test_nystroem_default_parameters", "sklearn/tests/test_kernel_approximation.py::test_nystroem_singular_kernel", "sklearn/tests/test_kernel_approximation.py::test_nystroem_poly_kernel_params", "sklearn/tests/test_kernel_approximation.py::test_nystroem_callable", "sklearn/tests/test_kernel_approximation.py::test_nystroem_precomputed_kernel", "sklearn/tests/test_kernel_approximation.py::test_nystroem_component_indices", "sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[Nystroem]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.Nystroem", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[Nystroem(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Nystroem()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Nystroem()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[Nystroem()]", "sklearn/tests/test_common.py::test_check_param_validation[Nystroem()]", "sklearn/tests/test_common.py::test_set_output_transform[Nystroem()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-Nystroem()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-Nystroem()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-125
1.0
{ "code": "diff --git b/sklearn/covariance/_shrunk_covariance.py a/sklearn/covariance/_shrunk_covariance.py\nindex da1cc3e39..2a5e09f2c 100644\n--- b/sklearn/covariance/_shrunk_covariance.py\n+++ a/sklearn/covariance/_shrunk_covariance.py\n@@ -782,6 +782,7 @@ class OAS(EmpiricalCovariance):\n np.float64(0.0195...)\n \"\"\"\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the Oracle Approximating Shrinkage covariance model to X.\n \n@@ -798,3 +799,16 @@ class OAS(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X)\n+ # Not calling the parent object to fit, to avoid computing the\n+ # covariance matrix (and potentially the precision)\n+ if self.assume_centered:\n+ self.location_ = np.zeros(X.shape[1])\n+ else:\n+ self.location_ = X.mean(0)\n+\n+ covariance, shrinkage = _oas(X - self.location_, assume_centered=True)\n+ self.shrinkage_ = shrinkage\n+ self._set_covariance(covariance)\n+\n+ return self\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_shrunk_covariance.py b/sklearn/covariance/_shrunk_covariance.py\nindex 2a5e09f2c..da1cc3e39 100644\n--- a/sklearn/covariance/_shrunk_covariance.py\n+++ b/sklearn/covariance/_shrunk_covariance.py\n@@ -782,7 +782,6 @@ class OAS(EmpiricalCovariance):\n np.float64(0.0195...)\n \"\"\"\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the Oracle Approximating Shrinkage covariance model to X.\n \n@@ -799,16 +798,3 @@ class OAS(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X)\n- # Not calling the parent object to fit, to avoid computing the\n- # covariance matrix (and potentially the precision)\n- if self.assume_centered:\n- self.location_ = np.zeros(X.shape[1])\n- else:\n- self.location_ = X.mean(0)\n-\n- covariance, shrinkage = _oas(X - self.location_, assume_centered=True)\n- self.shrinkage_ = shrinkage\n- self._set_covariance(covariance)\n-\n- return self\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_shrunk_covariance.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the Oracle Approximating Shrinkage covariance model to X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.covariance.oas-sklearn.covariance.OAS]", "sklearn/covariance/tests/test_covariance.py::test_oas", "sklearn/covariance/_shrunk_covariance.py::sklearn.covariance._shrunk_covariance.OAS", "sklearn/covariance/_shrunk_covariance.py::sklearn.covariance._shrunk_covariance.oas", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OAS()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OAS()]", "sklearn/tests/test_common.py::test_check_param_validation[OAS()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-126
1.0
{ "code": "diff --git b/sklearn/preprocessing/_encoders.py a/sklearn/preprocessing/_encoders.py\nindex 89946be95..0bfae1c47 100644\n--- b/sklearn/preprocessing/_encoders.py\n+++ a/sklearn/preprocessing/_encoders.py\n@@ -961,6 +961,7 @@ class OneHotEncoder(_BaseEncoder):\n \n return output\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"\n Fit OneHotEncoder to X.\n@@ -979,6 +980,14 @@ class OneHotEncoder(_BaseEncoder):\n self\n Fitted encoder.\n \"\"\"\n+ self._fit(\n+ X,\n+ handle_unknown=self.handle_unknown,\n+ ensure_all_finite=\"allow-nan\",\n+ )\n+ self._set_drop_idx()\n+ self._n_features_outs = self._compute_n_features_outs()\n+ return self\n \n def transform(self, X):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py\nindex 0bfae1c47..89946be95 100644\n--- a/sklearn/preprocessing/_encoders.py\n+++ b/sklearn/preprocessing/_encoders.py\n@@ -961,7 +961,6 @@ class OneHotEncoder(_BaseEncoder):\n \n return output\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"\n Fit OneHotEncoder to X.\n@@ -980,14 +979,6 @@ class OneHotEncoder(_BaseEncoder):\n self\n Fitted encoder.\n \"\"\"\n- self._fit(\n- X,\n- handle_unknown=self.handle_unknown,\n- ensure_all_finite=\"allow-nan\",\n- )\n- self._set_drop_idx()\n- self._n_features_outs = self._compute_n_features_outs()\n- return self\n \n def transform(self, X):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_encoders.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"\n Fit OneHotEncoder to X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The data to determine the categories of each feature.\n\n y : None\n Ignored. This parameter exists only for compatibility with\n :class:`~sklearn.pipeline.Pipeline`.\n\n Returns\n -------\n self\n Fitted encoder.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_list", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_custom_feature_name_combiner", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mixed_cols_sparse", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_threshold", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-False]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-True]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-False]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-True]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None]", "sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit]", "sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit_transform]", "sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit]", "sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit_transform]", "sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit_transform]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[mixed]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[numeric]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[object]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[string]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-np.nan-object]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_negative_column_indexes", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float-nan-object]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-infrequent_if_exist]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features0-dataframe]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-ignore]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features1-array]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-infrequent_if_exist]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_with_make_column_selector", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-infrequent_if_exist]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features2-array]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_nan_ending_specified_categories[OneHotEncoder]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector2]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector2]", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>1]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]", "sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop0]", "sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop1]", "sklearn/preprocessing/tests/test_encoders.py::test_categories[first-sparse]", "sklearn/preprocessing/tests/test_encoders.py::test_categories[first-dense]", "sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-sparse]", "sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-dense]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs0]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs1]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[remainder1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs4]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[first]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[drop2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_infrequent_errors[drop0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_infrequent_errors[drop1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-drop]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs4]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs5]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs6]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[first]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[drop1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_infrequent_errors[drop0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[drop]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_infrequent_errors[drop1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_handle_unknown_error", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_user_cats", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_mixed", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories_dtypes", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_one_level_errors[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_user_cats_unknown_training_errors[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-S]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-S]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-S]", "sklearn/preprocessing/tests/test_encoders.py::test_mixed_string_bytes_categoricals", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-infrequent_if_exist]", "sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_type", "sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_equal", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-infrequent_if_exist]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-ignore]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data[csc_matrix]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[infrequent_if_exist]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data[csc_array]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_more_informative_error_message", "sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_duplicate_specified_categories[OneHotEncoder]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_output", "sklearn/preprocessing/tests/test_encoders.py::test_predefined_categories_dtype", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_encoders.py::test_drop_idx_infrequent_categories", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_discretization.py::test_valid_n_bins", "sklearn/preprocessing/tests/test_discretization.py::test_transform_1d_behavior", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_discretization.py::test_encode_options", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[quantile-expected_bin_edges0]", "sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[kmeans-expected_bin_edges1]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float16]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-expected_names0]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-dense-expected_names1]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-uniform]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomTreesEmbedding]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-quantile]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-RandomTreesEmbedding]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-20]", "sklearn/preprocessing/tests/test_discretization.py::test_KBD_inverse_transform_Xt_deprecation", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-20]", "sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomTreesEmbedding]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomTreesEmbedding]", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.RandomTreesEmbedding", "sklearn/preprocessing/_encoders.py::sklearn.preprocessing._encoders.OneHotEncoder", "sklearn/ensemble/tests/test_forest.py::test_random_trees_embedding_feature_names_out", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_param_validation[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform[OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-OneHotEncoder(sparse_output=False)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-127
1.0
{ "code": "diff --git b/sklearn/preprocessing/_encoders.py a/sklearn/preprocessing/_encoders.py\nindex e72f83bae..0bfae1c47 100644\n--- b/sklearn/preprocessing/_encoders.py\n+++ a/sklearn/preprocessing/_encoders.py\n@@ -1211,6 +1211,20 @@ class OneHotEncoder(_BaseEncoder):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n+ check_is_fitted(self)\n+ input_features = _check_feature_names_in(self, input_features)\n+ cats = [\n+ self._compute_transformed_categories(i)\n+ for i, _ in enumerate(self.categories_)\n+ ]\n+\n+ name_combiner = self._check_get_feature_name_combiner()\n+ feature_names = []\n+ for i in range(len(cats)):\n+ names = [name_combiner(input_features[i], t) for t in cats[i]]\n+ feature_names.extend(names)\n+\n+ return np.array(feature_names, dtype=object)\n \n def _check_get_feature_name_combiner(self):\n if self.feature_name_combiner == \"concat\":\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py\nindex 0bfae1c47..e72f83bae 100644\n--- a/sklearn/preprocessing/_encoders.py\n+++ b/sklearn/preprocessing/_encoders.py\n@@ -1211,20 +1211,6 @@ class OneHotEncoder(_BaseEncoder):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n- check_is_fitted(self)\n- input_features = _check_feature_names_in(self, input_features)\n- cats = [\n- self._compute_transformed_categories(i)\n- for i, _ in enumerate(self.categories_)\n- ]\n-\n- name_combiner = self._check_get_feature_name_combiner()\n- feature_names = []\n- for i in range(len(cats)):\n- names = [name_combiner(input_features[i], t) for t in cats[i]]\n- feature_names.extend(names)\n-\n- return np.array(feature_names, dtype=object)\n \n def _check_get_feature_name_combiner(self):\n if self.feature_name_combiner == \"concat\":\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_encoders.py.\nHere is the description for the function:\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Input features.\n\n - If `input_features` is `None`, then `feature_names_in_` is\n used as feature names in. If `feature_names_in_` is not defined,\n then the following input feature names are generated:\n `[\"x0\", \"x1\", ..., \"x(n_features_in_ - 1)\"]`.\n - If `input_features` is an array-like, then `input_features` must\n match `feature_names_in_` if `feature_names_in_` is defined.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_custom_feature_name_combiner", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs3]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[first]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector4]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[drop2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs5]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs6]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_output", "sklearn/preprocessing/tests/test_encoders.py::test_drop_idx_infrequent_categories", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-expected_names0]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-dense-expected_names1]", "sklearn/preprocessing/_encoders.py::sklearn.preprocessing._encoders.OneHotEncoder", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-OneHotEncoder(sparse_output=False)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-128
1.0
{ "code": "diff --git b/sklearn/preprocessing/_encoders.py a/sklearn/preprocessing/_encoders.py\nindex 7f77124df..0bfae1c47 100644\n--- b/sklearn/preprocessing/_encoders.py\n+++ a/sklearn/preprocessing/_encoders.py\n@@ -1012,6 +1012,65 @@ class OneHotEncoder(_BaseEncoder):\n Transformed input. If `sparse_output=True`, a sparse matrix will be\n returned.\n \"\"\"\n+ check_is_fitted(self)\n+ transform_output = _get_output_config(\"transform\", estimator=self)[\"dense\"]\n+ if transform_output != \"default\" and self.sparse_output:\n+ capitalize_transform_output = transform_output.capitalize()\n+ raise ValueError(\n+ f\"{capitalize_transform_output} output does not support sparse data.\"\n+ f\" Set sparse_output=False to output {transform_output} dataframes or\"\n+ f\" disable {capitalize_transform_output} output via\"\n+ '` ohe.set_output(transform=\"default\").'\n+ )\n+\n+ # validation of X happens in _check_X called by _transform\n+ warn_on_unknown = self.drop is not None and self.handle_unknown in {\n+ \"ignore\",\n+ \"infrequent_if_exist\",\n+ }\n+ X_int, X_mask = self._transform(\n+ X,\n+ handle_unknown=self.handle_unknown,\n+ ensure_all_finite=\"allow-nan\",\n+ warn_on_unknown=warn_on_unknown,\n+ )\n+\n+ n_samples, n_features = X_int.shape\n+\n+ if self._drop_idx_after_grouping is not None:\n+ to_drop = self._drop_idx_after_grouping.copy()\n+ # We remove all the dropped categories from mask, and decrement all\n+ # categories that occur after them to avoid an empty column.\n+ keep_cells = X_int != to_drop\n+ for i, cats in enumerate(self.categories_):\n+ # drop='if_binary' but feature isn't binary\n+ if to_drop[i] is None:\n+ # set to cardinality to not drop from X_int\n+ to_drop[i] = len(cats)\n+\n+ to_drop = to_drop.reshape(1, -1)\n+ X_int[X_int > to_drop] -= 1\n+ X_mask &= keep_cells\n+\n+ mask = X_mask.ravel()\n+ feature_indices = np.cumsum([0] + self._n_features_outs)\n+ indices = (X_int + feature_indices[:-1]).ravel()[mask]\n+\n+ indptr = np.empty(n_samples + 1, dtype=int)\n+ indptr[0] = 0\n+ np.sum(X_mask, axis=1, out=indptr[1:], dtype=indptr.dtype)\n+ np.cumsum(indptr[1:], out=indptr[1:])\n+ data = np.ones(indptr[-1])\n+\n+ out = sparse.csr_matrix(\n+ (data, indices, indptr),\n+ shape=(n_samples, feature_indices[-1]),\n+ dtype=self.dtype,\n+ )\n+ if not self.sparse_output:\n+ return out.toarray()\n+ else:\n+ return out\n \n def inverse_transform(self, X):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py\nindex 0bfae1c47..7f77124df 100644\n--- a/sklearn/preprocessing/_encoders.py\n+++ b/sklearn/preprocessing/_encoders.py\n@@ -1012,65 +1012,6 @@ class OneHotEncoder(_BaseEncoder):\n Transformed input. If `sparse_output=True`, a sparse matrix will be\n returned.\n \"\"\"\n- check_is_fitted(self)\n- transform_output = _get_output_config(\"transform\", estimator=self)[\"dense\"]\n- if transform_output != \"default\" and self.sparse_output:\n- capitalize_transform_output = transform_output.capitalize()\n- raise ValueError(\n- f\"{capitalize_transform_output} output does not support sparse data.\"\n- f\" Set sparse_output=False to output {transform_output} dataframes or\"\n- f\" disable {capitalize_transform_output} output via\"\n- '` ohe.set_output(transform=\"default\").'\n- )\n-\n- # validation of X happens in _check_X called by _transform\n- warn_on_unknown = self.drop is not None and self.handle_unknown in {\n- \"ignore\",\n- \"infrequent_if_exist\",\n- }\n- X_int, X_mask = self._transform(\n- X,\n- handle_unknown=self.handle_unknown,\n- ensure_all_finite=\"allow-nan\",\n- warn_on_unknown=warn_on_unknown,\n- )\n-\n- n_samples, n_features = X_int.shape\n-\n- if self._drop_idx_after_grouping is not None:\n- to_drop = self._drop_idx_after_grouping.copy()\n- # We remove all the dropped categories from mask, and decrement all\n- # categories that occur after them to avoid an empty column.\n- keep_cells = X_int != to_drop\n- for i, cats in enumerate(self.categories_):\n- # drop='if_binary' but feature isn't binary\n- if to_drop[i] is None:\n- # set to cardinality to not drop from X_int\n- to_drop[i] = len(cats)\n-\n- to_drop = to_drop.reshape(1, -1)\n- X_int[X_int > to_drop] -= 1\n- X_mask &= keep_cells\n-\n- mask = X_mask.ravel()\n- feature_indices = np.cumsum([0] + self._n_features_outs)\n- indices = (X_int + feature_indices[:-1]).ravel()[mask]\n-\n- indptr = np.empty(n_samples + 1, dtype=int)\n- indptr[0] = 0\n- np.sum(X_mask, axis=1, out=indptr[1:], dtype=indptr.dtype)\n- np.cumsum(indptr[1:], out=indptr[1:])\n- data = np.ones(indptr[-1])\n-\n- out = sparse.csr_matrix(\n- (data, indices, indptr),\n- shape=(n_samples, feature_indices[-1]),\n- dtype=self.dtype,\n- )\n- if not self.sparse_output:\n- return out.toarray()\n- else:\n- return out\n \n def inverse_transform(self, X):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_encoders.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"\n Transform X using one-hot encoding.\n\n If `sparse_output=True` (default), it returns an instance of\n :class:`scipy.sparse._csr.csr_matrix` (CSR format).\n\n If there are infrequent categories for a feature, set by specifying\n `max_categories` or `min_frequency`, the infrequent categories are\n grouped into a single category.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The data to encode.\n\n Returns\n -------\n X_out : {ndarray, sparse matrix} of shape \\\n (n_samples, n_encoded_features)\n Transformed input. If `sparse_output=True`, a sparse matrix will be\n returned.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_list", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mixed_cols_sparse", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_threshold", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-ignore]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_negative_column_indexes", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-ignore]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_with_make_column_selector", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-infrequent_if_exist]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-ignore]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector2]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>2]", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs4]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs4]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[if_binary]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[remainder1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[first]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[drop2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs2]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs3]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs4]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs5]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs6]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[first]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[drop1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_handle_unknown_error", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs1]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_user_cats", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_mixed", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories_dtypes", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_one_level_errors[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_user_cats_unknown_training_errors[kwargs0]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-S]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-O]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-O]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-O]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[drop]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-S]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-O]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-O]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-U]", "sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-S]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[ignore]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[infrequent_if_exist]", "sklearn/preprocessing/tests/test_encoders.py::test_ohe_more_informative_error_message", "sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_output", "sklearn/preprocessing/tests/test_encoders.py::test_encoder_not_fitted[OneHotEncoder]", "sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_type", "sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_equal", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data[csc_matrix]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data[csc_array]", "sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-RandomTreesEmbedding]", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/preprocessing/tests/test_discretization.py::test_valid_n_bins", "sklearn/preprocessing/tests/test_discretization.py::test_encode_options", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float32]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-expected_names0]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-dense-expected_names1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/preprocessing/tests/test_discretization.py::test_KBD_inverse_transform_Xt_deprecation", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features0-dataframe]", "sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomTreesEmbedding]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features2-array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-20]", "sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomTreesEmbedding]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/preprocessing/_encoders.py::sklearn.preprocessing._encoders.OneHotEncoder", "sklearn/ensemble/tests/test_forest.py::test_random_trees_embedding_feature_names_out", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.RandomTreesEmbedding", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform[OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-OneHotEncoder(sparse_output=False)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-129
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 85bea1642..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -969,6 +969,31 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n output shape changed to ``(n_samples,)`` to conform to\n scikit-learn conventions for binary classification.\n \"\"\"\n+ check_is_fitted(self)\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=True,\n+ ensure_all_finite=False,\n+ reset=False,\n+ )\n+\n+ indices = self.pairwise_indices_\n+ if indices is None:\n+ Xs = [X] * len(self.estimators_)\n+ else:\n+ Xs = [X[:, idx] for idx in indices]\n+\n+ predictions = np.vstack(\n+ [est.predict(Xi) for est, Xi in zip(self.estimators_, Xs)]\n+ ).T\n+ confidences = np.vstack(\n+ [_predict_binary(est, Xi) for est, Xi in zip(self.estimators_, Xs)]\n+ ).T\n+ Y = _ovr_decision_function(predictions, confidences, len(self.classes_))\n+ if self.n_classes_ == 2:\n+ return Y[:, 1]\n+ return Y\n \n @property\n def n_classes_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..85bea1642 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -969,31 +969,6 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n output shape changed to ``(n_samples,)`` to conform to\n scikit-learn conventions for binary classification.\n \"\"\"\n- check_is_fitted(self)\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=True,\n- ensure_all_finite=False,\n- reset=False,\n- )\n-\n- indices = self.pairwise_indices_\n- if indices is None:\n- Xs = [X] * len(self.estimators_)\n- else:\n- Xs = [X[:, idx] for idx in indices]\n-\n- predictions = np.vstack(\n- [est.predict(Xi) for est, Xi in zip(self.estimators_, Xs)]\n- ).T\n- confidences = np.vstack(\n- [_predict_binary(est, Xi) for est, Xi in zip(self.estimators_, Xs)]\n- ).T\n- Y = _ovr_decision_function(predictions, confidences, len(self.classes_))\n- if self.n_classes_ == 2:\n- return Y[:, 1]\n- return Y\n \n @property\n def n_classes_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def decision_function(self, X):\n \"\"\"Decision function for the OneVsOneClassifier.\n\n The decision values for the samples are computed by adding the\n normalized sum of pair-wise classification confidence levels to the\n votes in order to disambiguate between the decision values when the\n votes for all the classes are equal leading to a tie.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data.\n\n Returns\n -------\n Y : array-like of shape (n_samples, n_classes) or (n_samples,)\n Result of calling `decision_function` on the final estimator.\n\n .. versionchanged:: 0.19\n output shape changed to ``(n_samples,)`` to conform to\n scikit-learn conventions for binary classification.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/tests/test_multiclass.py::test_ovo_exceptions", "sklearn/tests/test_multiclass.py::test_ovo_fit_on_list", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/tests/test_multiclass.py::test_ovo_partial_fit_predict", "sklearn/tests/test_multiclass.py::test_ovo_decision_function", "sklearn/tests/test_multiclass.py::test_ovo_ties", "sklearn/tests/test_multiclass.py::test_ovo_ties2", "sklearn/tests/test_multiclass.py::test_ovo_string_y", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsOneClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/tests/test_multiclass.py::test_ovo_consistent_binary_classification", "sklearn/multiclass.py::sklearn.multiclass.OneVsOneClassifier", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsOneClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-130
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 71dac2fce..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -757,6 +757,10 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self.estimator = estimator\n self.n_jobs = n_jobs\n \n+ @_fit_context(\n+ # OneVsOneClassifier.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n \n@@ -782,6 +786,51 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self : object\n The fitted underlying estimator.\n \"\"\"\n+ _raise_for_params(fit_params, self, \"fit\")\n+\n+ routed_params = process_routing(\n+ self,\n+ \"fit\",\n+ **fit_params,\n+ )\n+\n+ # We need to validate the data because we do a safe_indexing later.\n+ X, y = validate_data(\n+ self, X, y, accept_sparse=[\"csr\", \"csc\"], ensure_all_finite=False\n+ )\n+ check_classification_targets(y)\n+\n+ self.classes_ = np.unique(y)\n+ if len(self.classes_) == 1:\n+ raise ValueError(\n+ \"OneVsOneClassifier can not be fit when only one class is present.\"\n+ )\n+ n_classes = self.classes_.shape[0]\n+ estimators_indices = list(\n+ zip(\n+ *(\n+ Parallel(n_jobs=self.n_jobs)(\n+ delayed(_fit_ovo_binary)(\n+ self.estimator,\n+ X,\n+ y,\n+ self.classes_[i],\n+ self.classes_[j],\n+ fit_params=routed_params.estimator.fit,\n+ )\n+ for i in range(n_classes)\n+ for j in range(i + 1, n_classes)\n+ )\n+ )\n+ )\n+ )\n+\n+ self.estimators_ = estimators_indices[0]\n+\n+ pairwise = self.__sklearn_tags__().input_tags.pairwise\n+ self.pairwise_indices_ = estimators_indices[1] if pairwise else None\n+\n+ return self\n \n @available_if(_estimators_has(\"partial_fit\"))\n @_fit_context(\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..71dac2fce 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -757,10 +757,6 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self.estimator = estimator\n self.n_jobs = n_jobs\n \n- @_fit_context(\n- # OneVsOneClassifier.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n \n@@ -786,51 +782,6 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self : object\n The fitted underlying estimator.\n \"\"\"\n- _raise_for_params(fit_params, self, \"fit\")\n-\n- routed_params = process_routing(\n- self,\n- \"fit\",\n- **fit_params,\n- )\n-\n- # We need to validate the data because we do a safe_indexing later.\n- X, y = validate_data(\n- self, X, y, accept_sparse=[\"csr\", \"csc\"], ensure_all_finite=False\n- )\n- check_classification_targets(y)\n-\n- self.classes_ = np.unique(y)\n- if len(self.classes_) == 1:\n- raise ValueError(\n- \"OneVsOneClassifier can not be fit when only one class is present.\"\n- )\n- n_classes = self.classes_.shape[0]\n- estimators_indices = list(\n- zip(\n- *(\n- Parallel(n_jobs=self.n_jobs)(\n- delayed(_fit_ovo_binary)(\n- self.estimator,\n- X,\n- y,\n- self.classes_[i],\n- self.classes_[j],\n- fit_params=routed_params.estimator.fit,\n- )\n- for i in range(n_classes)\n- for j in range(i + 1, n_classes)\n- )\n- )\n- )\n- )\n-\n- self.estimators_ = estimators_indices[0]\n-\n- pairwise = self.__sklearn_tags__().input_tags.pairwise\n- self.pairwise_indices_ = estimators_indices[1] if pairwise else None\n-\n- return self\n \n @available_if(_estimators_has(\"partial_fit\"))\n @_fit_context(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Data.\n\n y : array-like of shape (n_samples,)\n Multi-class targets.\n\n **fit_params : dict\n Parameters passed to the ``estimator.fit`` method of each\n sub-estimator.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n The fitted underlying estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[OneVsOneClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsOneClassifier]", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/tests/test_multiclass.py::test_ovo_fit_on_list", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/tests/test_multiclass.py::test_ovo_partial_fit_predict", "sklearn/tests/test_multiclass.py::test_ovo_decision_function", "sklearn/tests/test_multiclass.py::test_ovo_gridsearch", "sklearn/tests/test_multiclass.py::test_ovo_ties", "sklearn/tests/test_multiclass.py::test_ovo_ties2", "sklearn/tests/test_multiclass.py::test_ovo_string_y", "sklearn/tests/test_multiclass.py::test_ovo_one_class", "sklearn/tests/test_multiclass.py::test_ovo_float_y", "sklearn/tests/test_multiclass.py::test_pairwise_indices", "sklearn/tests/test_multiclass.py::test_pairwise_n_features_in", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsOneClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/tests/test_multiclass.py::test_ovo_consistent_binary_classification", "sklearn/multiclass.py::sklearn.multiclass.OneVsOneClassifier", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsOneClassifier]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[OneVsOneClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-131
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 5921fa660..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -832,6 +832,11 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n \n return self\n \n+ @available_if(_estimators_has(\"partial_fit\"))\n+ @_fit_context(\n+ # OneVsOneClassifier.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def partial_fit(self, X, y, classes=None, **partial_fit_params):\n \"\"\"Partially fit underlying estimators.\n \n@@ -868,6 +873,56 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self : object\n The partially fitted underlying estimator.\n \"\"\"\n+ _raise_for_params(partial_fit_params, self, \"partial_fit\")\n+\n+ routed_params = process_routing(\n+ self,\n+ \"partial_fit\",\n+ **partial_fit_params,\n+ )\n+\n+ first_call = _check_partial_fit_first_call(self, classes)\n+ if first_call:\n+ self.estimators_ = [\n+ clone(self.estimator)\n+ for _ in range(self.n_classes_ * (self.n_classes_ - 1) // 2)\n+ ]\n+\n+ if len(np.setdiff1d(y, self.classes_)):\n+ raise ValueError(\n+ \"Mini-batch contains {0} while it must be subset of {1}\".format(\n+ np.unique(y), self.classes_\n+ )\n+ )\n+\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=[\"csr\", \"csc\"],\n+ ensure_all_finite=False,\n+ reset=first_call,\n+ )\n+ check_classification_targets(y)\n+ combinations = itertools.combinations(range(self.n_classes_), 2)\n+ self.estimators_ = Parallel(n_jobs=self.n_jobs)(\n+ delayed(_partial_fit_ovo_binary)(\n+ estimator,\n+ X,\n+ y,\n+ self.classes_[i],\n+ self.classes_[j],\n+ partial_fit_params=routed_params.estimator.partial_fit,\n+ )\n+ for estimator, (i, j) in zip(self.estimators_, (combinations))\n+ )\n+\n+ self.pairwise_indices_ = None\n+\n+ if hasattr(self.estimators_[0], \"n_features_in_\"):\n+ self.n_features_in_ = self.estimators_[0].n_features_in_\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Estimate the best class label for each sample in X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..5921fa660 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -832,11 +832,6 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n \n return self\n \n- @available_if(_estimators_has(\"partial_fit\"))\n- @_fit_context(\n- # OneVsOneClassifier.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def partial_fit(self, X, y, classes=None, **partial_fit_params):\n \"\"\"Partially fit underlying estimators.\n \n@@ -873,56 +868,6 @@ class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self : object\n The partially fitted underlying estimator.\n \"\"\"\n- _raise_for_params(partial_fit_params, self, \"partial_fit\")\n-\n- routed_params = process_routing(\n- self,\n- \"partial_fit\",\n- **partial_fit_params,\n- )\n-\n- first_call = _check_partial_fit_first_call(self, classes)\n- if first_call:\n- self.estimators_ = [\n- clone(self.estimator)\n- for _ in range(self.n_classes_ * (self.n_classes_ - 1) // 2)\n- ]\n-\n- if len(np.setdiff1d(y, self.classes_)):\n- raise ValueError(\n- \"Mini-batch contains {0} while it must be subset of {1}\".format(\n- np.unique(y), self.classes_\n- )\n- )\n-\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=[\"csr\", \"csc\"],\n- ensure_all_finite=False,\n- reset=first_call,\n- )\n- check_classification_targets(y)\n- combinations = itertools.combinations(range(self.n_classes_), 2)\n- self.estimators_ = Parallel(n_jobs=self.n_jobs)(\n- delayed(_partial_fit_ovo_binary)(\n- estimator,\n- X,\n- y,\n- self.classes_[i],\n- self.classes_[j],\n- partial_fit_params=routed_params.estimator.partial_fit,\n- )\n- for estimator, (i, j) in zip(self.estimators_, (combinations))\n- )\n-\n- self.pairwise_indices_ = None\n-\n- if hasattr(self.estimators_[0], \"n_features_in_\"):\n- self.n_features_in_ = self.estimators_[0].n_features_in_\n-\n- return self\n \n def predict(self, X):\n \"\"\"Estimate the best class label for each sample in X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def partial_fit(self, X, y, classes=None, **partial_fit_params):\n \"\"\"Partially fit underlying estimators.\n\n Should be used when memory is inefficient to train all data. Chunks\n of data can be passed in several iteration, where the first call\n should have an array of all target variables.\n\n Parameters\n ----------\n X : {array-like, sparse matrix) of shape (n_samples, n_features)\n Data.\n\n y : array-like of shape (n_samples,)\n Multi-class targets.\n\n classes : array, shape (n_classes, )\n Classes across all calls to partial_fit.\n Can be obtained via `np.unique(y_all)`, where y_all is the\n target vector of the entire dataset.\n This argument is only required in the first call of partial_fit\n and can be omitted in the subsequent calls.\n\n **partial_fit_params : dict\n Parameters passed to the ``estimator.partial_fit`` method of each\n sub-estimator.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n The partially fitted underlying estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[OneVsOneClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsOneClassifier]", "sklearn/tests/test_multiclass.py::test_ovo_partial_fit_predict", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsOneClassifier]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[OneVsOneClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-132
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 3b1fdb789..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -324,6 +324,10 @@ class OneVsRestClassifier(\n self.n_jobs = n_jobs\n self.verbose = verbose\n \n+ @_fit_context(\n+ # OneVsRestClassifier.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n \n@@ -350,6 +354,45 @@ class OneVsRestClassifier(\n self : object\n Instance of fitted estimator.\n \"\"\"\n+ _raise_for_params(fit_params, self, \"fit\")\n+\n+ routed_params = process_routing(\n+ self,\n+ \"fit\",\n+ **fit_params,\n+ )\n+ # A sparse LabelBinarizer, with sparse_output=True, has been shown to\n+ # outperform or match a dense label binarizer in all cases and has also\n+ # resulted in less or equal memory consumption in the fit_ovr function\n+ # overall.\n+ self.label_binarizer_ = LabelBinarizer(sparse_output=True)\n+ Y = self.label_binarizer_.fit_transform(y)\n+ Y = Y.tocsc()\n+ self.classes_ = self.label_binarizer_.classes_\n+ columns = (col.toarray().ravel() for col in Y.T)\n+ # In cases where individual estimators are very fast to train setting\n+ # n_jobs > 1 in can results in slower performance due to the overhead\n+ # of spawning threads. See joblib issue #112.\n+ self.estimators_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(\n+ delayed(_fit_binary)(\n+ self.estimator,\n+ X,\n+ column,\n+ fit_params=routed_params.estimator.fit,\n+ classes=[\n+ \"not %s\" % self.label_binarizer_.classes_[i],\n+ self.label_binarizer_.classes_[i],\n+ ],\n+ )\n+ for i, column in enumerate(columns)\n+ )\n+\n+ if hasattr(self.estimators_[0], \"n_features_in_\"):\n+ self.n_features_in_ = self.estimators_[0].n_features_in_\n+ if hasattr(self.estimators_[0], \"feature_names_in_\"):\n+ self.feature_names_in_ = self.estimators_[0].feature_names_in_\n+\n+ return self\n \n @available_if(_estimators_has(\"partial_fit\"))\n @_fit_context(\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..3b1fdb789 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -324,10 +324,6 @@ class OneVsRestClassifier(\n self.n_jobs = n_jobs\n self.verbose = verbose\n \n- @_fit_context(\n- # OneVsRestClassifier.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n \n@@ -354,45 +350,6 @@ class OneVsRestClassifier(\n self : object\n Instance of fitted estimator.\n \"\"\"\n- _raise_for_params(fit_params, self, \"fit\")\n-\n- routed_params = process_routing(\n- self,\n- \"fit\",\n- **fit_params,\n- )\n- # A sparse LabelBinarizer, with sparse_output=True, has been shown to\n- # outperform or match a dense label binarizer in all cases and has also\n- # resulted in less or equal memory consumption in the fit_ovr function\n- # overall.\n- self.label_binarizer_ = LabelBinarizer(sparse_output=True)\n- Y = self.label_binarizer_.fit_transform(y)\n- Y = Y.tocsc()\n- self.classes_ = self.label_binarizer_.classes_\n- columns = (col.toarray().ravel() for col in Y.T)\n- # In cases where individual estimators are very fast to train setting\n- # n_jobs > 1 in can results in slower performance due to the overhead\n- # of spawning threads. See joblib issue #112.\n- self.estimators_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(\n- delayed(_fit_binary)(\n- self.estimator,\n- X,\n- column,\n- fit_params=routed_params.estimator.fit,\n- classes=[\n- \"not %s\" % self.label_binarizer_.classes_[i],\n- self.label_binarizer_.classes_[i],\n- ],\n- )\n- for i, column in enumerate(columns)\n- )\n-\n- if hasattr(self.estimators_[0], \"n_features_in_\"):\n- self.n_features_in_ = self.estimators_[0].n_features_in_\n- if hasattr(self.estimators_[0], \"feature_names_in_\"):\n- self.feature_names_in_ = self.estimators_[0].feature_names_in_\n-\n- return self\n \n @available_if(_estimators_has(\"partial_fit\"))\n @_fit_context(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Data.\n\n y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)\n Multi-class targets. An indicator matrix turns on multilabel\n classification.\n\n **fit_params : dict\n Parameters passed to the ``estimator.fit`` method of each\n sub-estimator.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n Instance of fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[OneVsRestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logreg_predict_proba_multinomial", "sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsRestClassifier]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_exceptions", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_array]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_svc", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_dataset", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/tests/test_multiclass.py::test_ovr_single_label_predict_proba", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_decision_function", "sklearn/tests/test_multiclass.py::test_ovr_single_label_decision_function", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/tests/test_multiclass.py::test_pairwise_n_features_in", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_constant_int_target[ones]", "sklearn/tests/test_multiclass.py::test_constant_int_target[zeros]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_classes]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel3]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_regression_target]", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_supervised_y_2d]", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_array]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_predict1d]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/multiclass.py::sklearn.multiclass.OneVsRestClassifier", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[OneVsRestClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-133
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 941586ebc..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -394,6 +394,11 @@ class OneVsRestClassifier(\n \n return self\n \n+ @available_if(_estimators_has(\"partial_fit\"))\n+ @_fit_context(\n+ # OneVsRestClassifier.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def partial_fit(self, X, y, classes=None, **partial_fit_params):\n \"\"\"Partially fit underlying estimators.\n \n@@ -430,6 +435,49 @@ class OneVsRestClassifier(\n self : object\n Instance of partially fitted estimator.\n \"\"\"\n+ _raise_for_params(partial_fit_params, self, \"partial_fit\")\n+\n+ routed_params = process_routing(\n+ self,\n+ \"partial_fit\",\n+ **partial_fit_params,\n+ )\n+\n+ if _check_partial_fit_first_call(self, classes):\n+ self.estimators_ = [clone(self.estimator) for _ in range(self.n_classes_)]\n+\n+ # A sparse LabelBinarizer, with sparse_output=True, has been\n+ # shown to outperform or match a dense label binarizer in all\n+ # cases and has also resulted in less or equal memory consumption\n+ # in the fit_ovr function overall.\n+ self.label_binarizer_ = LabelBinarizer(sparse_output=True)\n+ self.label_binarizer_.fit(self.classes_)\n+\n+ if len(np.setdiff1d(y, self.classes_)):\n+ raise ValueError(\n+ (\n+ \"Mini-batch contains {0} while classes \" + \"must be subset of {1}\"\n+ ).format(np.unique(y), self.classes_)\n+ )\n+\n+ Y = self.label_binarizer_.transform(y)\n+ Y = Y.tocsc()\n+ columns = (col.toarray().ravel() for col in Y.T)\n+\n+ self.estimators_ = Parallel(n_jobs=self.n_jobs)(\n+ delayed(_partial_fit_binary)(\n+ estimator,\n+ X,\n+ column,\n+ partial_fit_params=routed_params.estimator.partial_fit,\n+ )\n+ for estimator, column in zip(self.estimators_, columns)\n+ )\n+\n+ if hasattr(self.estimators_[0], \"n_features_in_\"):\n+ self.n_features_in_ = self.estimators_[0].n_features_in_\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Predict multi-class targets using underlying estimators.\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..941586ebc 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -394,11 +394,6 @@ class OneVsRestClassifier(\n \n return self\n \n- @available_if(_estimators_has(\"partial_fit\"))\n- @_fit_context(\n- # OneVsRestClassifier.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def partial_fit(self, X, y, classes=None, **partial_fit_params):\n \"\"\"Partially fit underlying estimators.\n \n@@ -435,49 +430,6 @@ class OneVsRestClassifier(\n self : object\n Instance of partially fitted estimator.\n \"\"\"\n- _raise_for_params(partial_fit_params, self, \"partial_fit\")\n-\n- routed_params = process_routing(\n- self,\n- \"partial_fit\",\n- **partial_fit_params,\n- )\n-\n- if _check_partial_fit_first_call(self, classes):\n- self.estimators_ = [clone(self.estimator) for _ in range(self.n_classes_)]\n-\n- # A sparse LabelBinarizer, with sparse_output=True, has been\n- # shown to outperform or match a dense label binarizer in all\n- # cases and has also resulted in less or equal memory consumption\n- # in the fit_ovr function overall.\n- self.label_binarizer_ = LabelBinarizer(sparse_output=True)\n- self.label_binarizer_.fit(self.classes_)\n-\n- if len(np.setdiff1d(y, self.classes_)):\n- raise ValueError(\n- (\n- \"Mini-batch contains {0} while classes \" + \"must be subset of {1}\"\n- ).format(np.unique(y), self.classes_)\n- )\n-\n- Y = self.label_binarizer_.transform(y)\n- Y = Y.tocsc()\n- columns = (col.toarray().ravel() for col in Y.T)\n-\n- self.estimators_ = Parallel(n_jobs=self.n_jobs)(\n- delayed(_partial_fit_binary)(\n- estimator,\n- X,\n- column,\n- partial_fit_params=routed_params.estimator.partial_fit,\n- )\n- for estimator, column in zip(self.estimators_, columns)\n- )\n-\n- if hasattr(self.estimators_[0], \"n_features_in_\"):\n- self.n_features_in_ = self.estimators_[0].n_features_in_\n-\n- return self\n \n def predict(self, X):\n \"\"\"Predict multi-class targets using underlying estimators.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def partial_fit(self, X, y, classes=None, **partial_fit_params):\n \"\"\"Partially fit underlying estimators.\n\n Should be used when memory is inefficient to train all data.\n Chunks of data can be passed in several iterations.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Data.\n\n y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)\n Multi-class targets. An indicator matrix turns on multilabel\n classification.\n\n classes : array, shape (n_classes, )\n Classes across all calls to partial_fit.\n Can be obtained via `np.unique(y_all)`, where y_all is the\n target vector of the entire dataset.\n This argument is only required in the first call of partial_fit\n and can be omitted in the subsequent calls.\n\n **partial_fit_params : dict\n Parameters passed to the ``estimator.partial_fit`` method of each\n sub-estimator.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n Instance of partially fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[OneVsRestClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit_exceptions", "sklearn/tests/test_multiclass.py::test_multiclass_estimator_attribute_error", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[OneVsRestClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-134
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 97fc043fb..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -492,6 +492,30 @@ class OneVsRestClassifier(\n y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)\n Predicted multi-class targets.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ n_samples = _num_samples(X)\n+ if self.label_binarizer_.y_type_ == \"multiclass\":\n+ maxima = np.empty(n_samples, dtype=float)\n+ maxima.fill(-np.inf)\n+ argmaxima = np.zeros(n_samples, dtype=int)\n+ for i, e in enumerate(self.estimators_):\n+ pred = _predict_binary(e, X)\n+ np.maximum(maxima, pred, out=maxima)\n+ argmaxima[maxima == pred] = i\n+ return self.classes_[argmaxima]\n+ else:\n+ thresh = _threshold_for_binary_predict(self.estimators_[0])\n+ indices = array.array(\"i\")\n+ indptr = array.array(\"i\", [0])\n+ for e in self.estimators_:\n+ indices.extend(np.where(_predict_binary(e, X) > thresh)[0])\n+ indptr.append(len(indices))\n+ data = np.ones(len(indices), dtype=int)\n+ indicator = sp.csc_matrix(\n+ (data, indices, indptr), shape=(n_samples, len(self.estimators_))\n+ )\n+ return self.label_binarizer_.inverse_transform(indicator)\n \n @available_if(_estimators_has(\"predict_proba\"))\n def predict_proba(self, X):\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..97fc043fb 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -492,30 +492,6 @@ class OneVsRestClassifier(\n y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)\n Predicted multi-class targets.\n \"\"\"\n- check_is_fitted(self)\n-\n- n_samples = _num_samples(X)\n- if self.label_binarizer_.y_type_ == \"multiclass\":\n- maxima = np.empty(n_samples, dtype=float)\n- maxima.fill(-np.inf)\n- argmaxima = np.zeros(n_samples, dtype=int)\n- for i, e in enumerate(self.estimators_):\n- pred = _predict_binary(e, X)\n- np.maximum(maxima, pred, out=maxima)\n- argmaxima[maxima == pred] = i\n- return self.classes_[argmaxima]\n- else:\n- thresh = _threshold_for_binary_predict(self.estimators_[0])\n- indices = array.array(\"i\")\n- indptr = array.array(\"i\", [0])\n- for e in self.estimators_:\n- indices.extend(np.where(_predict_binary(e, X) > thresh)[0])\n- indptr.append(len(indices))\n- data = np.ones(len(indices), dtype=int)\n- indicator = sp.csc_matrix(\n- (data, indices, indptr), shape=(n_samples, len(self.estimators_))\n- )\n- return self.label_binarizer_.inverse_transform(indicator)\n \n @available_if(_estimators_has(\"predict_proba\"))\n def predict_proba(self, X):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict multi-class targets using underlying estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Data.\n\n Returns\n -------\n y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)\n Predicted multi-class targets.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_exceptions", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_array]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_svc", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_dataset", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/tests/test_multiclass.py::test_ovr_single_label_predict_proba", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_decision_function", "sklearn/tests/test_multiclass.py::test_ovr_single_label_decision_function", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/multiclass.py::sklearn.multiclass.OneVsRestClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-135
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 44f1a8e84..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -517,6 +517,7 @@ class OneVsRestClassifier(\n )\n return self.label_binarizer_.inverse_transform(indicator)\n \n+ @available_if(_estimators_has(\"predict_proba\"))\n def predict_proba(self, X):\n \"\"\"Probability estimates.\n \n@@ -541,6 +542,20 @@ class OneVsRestClassifier(\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in `self.classes_`.\n \"\"\"\n+ check_is_fitted(self)\n+ # Y[i, j] gives the probability that sample i has the label j.\n+ # In the multi-label case, these are not disjoint.\n+ Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T\n+\n+ if len(self.estimators_) == 1:\n+ # Only one estimator, but we still want to return probabilities\n+ # for two classes.\n+ Y = np.concatenate(((1 - Y), Y), axis=1)\n+\n+ if not self.multilabel_:\n+ # Then, probabilities should be normalized to 1.\n+ Y /= np.sum(Y, axis=1)[:, np.newaxis]\n+ return Y\n \n @available_if(_estimators_has(\"decision_function\"))\n def decision_function(self, X):\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..44f1a8e84 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -517,7 +517,6 @@ class OneVsRestClassifier(\n )\n return self.label_binarizer_.inverse_transform(indicator)\n \n- @available_if(_estimators_has(\"predict_proba\"))\n def predict_proba(self, X):\n \"\"\"Probability estimates.\n \n@@ -542,20 +541,6 @@ class OneVsRestClassifier(\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in `self.classes_`.\n \"\"\"\n- check_is_fitted(self)\n- # Y[i, j] gives the probability that sample i has the label j.\n- # In the multi-label case, these are not disjoint.\n- Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T\n-\n- if len(self.estimators_) == 1:\n- # Only one estimator, but we still want to return probabilities\n- # for two classes.\n- Y = np.concatenate(((1 - Y), Y), axis=1)\n-\n- if not self.multilabel_:\n- # Then, probabilities should be normalized to 1.\n- Y /= np.sum(Y, axis=1)[:, np.newaxis]\n- return Y\n \n @available_if(_estimators_has(\"decision_function\"))\n def decision_function(self, X):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Probability estimates.\n\n The returned estimates for all classes are ordered by label of classes.\n\n Note that in the multilabel case, each sample can have any number of\n labels. This returns the marginal probability that the given sample has\n the label in question. For example, it is entirely consistent that two\n labels both have a 90% probability of applying to a given sample.\n\n In the single label multiclass case, the rows of the returned matrix\n sum to 1.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Input data.\n\n Returns\n -------\n T : array-like of shape (n_samples, n_classes)\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in `self.classes_`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/linear_model/tests/test_logistic.py::test_logreg_predict_proba_multinomial", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_array]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/tests/test_multiclass.py::test_ovr_single_label_predict_proba", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/tests/test_multiclass.py::test_constant_int_target[ones]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_multiclass.py::test_constant_int_target[zeros]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel3]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-136
1.0
{ "code": "diff --git b/sklearn/linear_model/_omp.py a/sklearn/linear_model/_omp.py\nindex fe5b17e78..aad9d1184 100644\n--- b/sklearn/linear_model/_omp.py\n+++ a/sklearn/linear_model/_omp.py\n@@ -752,6 +752,7 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):\n self.fit_intercept = fit_intercept\n self.precompute = precompute\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -768,6 +769,51 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):\n self : object\n Returns an instance of self.\n \"\"\"\n+ X, y = validate_data(self, X, y, multi_output=True, y_numeric=True)\n+ n_features = X.shape[1]\n+\n+ X, y, X_offset, y_offset, X_scale, Gram, Xy = _pre_fit(\n+ X, y, None, self.precompute, self.fit_intercept, copy=True\n+ )\n+\n+ if y.ndim == 1:\n+ y = y[:, np.newaxis]\n+\n+ if self.n_nonzero_coefs is None and self.tol is None:\n+ # default for n_nonzero_coefs is 0.1 * n_features\n+ # but at least one.\n+ self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1)\n+ elif self.tol is not None:\n+ self.n_nonzero_coefs_ = None\n+ else:\n+ self.n_nonzero_coefs_ = self.n_nonzero_coefs\n+\n+ if Gram is False:\n+ coef_, self.n_iter_ = orthogonal_mp(\n+ X,\n+ y,\n+ n_nonzero_coefs=self.n_nonzero_coefs_,\n+ tol=self.tol,\n+ precompute=False,\n+ copy_X=True,\n+ return_n_iter=True,\n+ )\n+ else:\n+ norms_sq = np.sum(y**2, axis=0) if self.tol is not None else None\n+\n+ coef_, self.n_iter_ = orthogonal_mp_gram(\n+ Gram,\n+ Xy=Xy,\n+ n_nonzero_coefs=self.n_nonzero_coefs_,\n+ tol=self.tol,\n+ norms_squared=norms_sq,\n+ copy_Gram=True,\n+ copy_Xy=True,\n+ return_n_iter=True,\n+ )\n+ self.coef_ = coef_.T\n+ self._set_intercept(X_offset, y_offset, X_scale)\n+ return self\n \n \n def _omp_path_residues(\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_omp.py b/sklearn/linear_model/_omp.py\nindex aad9d1184..fe5b17e78 100644\n--- a/sklearn/linear_model/_omp.py\n+++ b/sklearn/linear_model/_omp.py\n@@ -752,7 +752,6 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):\n self.fit_intercept = fit_intercept\n self.precompute = precompute\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -769,51 +768,6 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):\n self : object\n Returns an instance of self.\n \"\"\"\n- X, y = validate_data(self, X, y, multi_output=True, y_numeric=True)\n- n_features = X.shape[1]\n-\n- X, y, X_offset, y_offset, X_scale, Gram, Xy = _pre_fit(\n- X, y, None, self.precompute, self.fit_intercept, copy=True\n- )\n-\n- if y.ndim == 1:\n- y = y[:, np.newaxis]\n-\n- if self.n_nonzero_coefs is None and self.tol is None:\n- # default for n_nonzero_coefs is 0.1 * n_features\n- # but at least one.\n- self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1)\n- elif self.tol is not None:\n- self.n_nonzero_coefs_ = None\n- else:\n- self.n_nonzero_coefs_ = self.n_nonzero_coefs\n-\n- if Gram is False:\n- coef_, self.n_iter_ = orthogonal_mp(\n- X,\n- y,\n- n_nonzero_coefs=self.n_nonzero_coefs_,\n- tol=self.tol,\n- precompute=False,\n- copy_X=True,\n- return_n_iter=True,\n- )\n- else:\n- norms_sq = np.sum(y**2, axis=0) if self.tol is not None else None\n-\n- coef_, self.n_iter_ = orthogonal_mp_gram(\n- Gram,\n- Xy=Xy,\n- n_nonzero_coefs=self.n_nonzero_coefs_,\n- tol=self.tol,\n- norms_squared=norms_sq,\n- copy_Gram=True,\n- copy_Xy=True,\n- return_n_iter=True,\n- )\n- self.coef_ = coef_.T\n- self._set_intercept(X_offset, y_offset, X_scale)\n- return self\n \n \n def _omp_path_residues(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_omp.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit the model using X, y as training data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_targets)\n Target values. Will be cast to X's dtype if necessary.\n\n Returns\n -------\n self : object\n Returns an instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-OrthogonalMatchingPursuit]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-OrthogonalMatchingPursuitCV]", "sklearn/linear_model/tests/test_omp.py::test_estimator", "sklearn/linear_model/tests/test_omp.py::test_estimator_n_nonzero_coefs", "sklearn/linear_model/tests/test_omp.py::test_omp_cv", "sklearn/linear_model/tests/test_omp.py::test_omp_reaches_least_squares", "sklearn/linear_model/_omp.py::sklearn.linear_model._omp.OrthogonalMatchingPursuit", "sklearn/linear_model/_omp.py::sklearn.linear_model._omp.OrthogonalMatchingPursuitCV", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[OrthogonalMatchingPursuitCV]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OrthogonalMatchingPursuit()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OrthogonalMatchingPursuitCV(cv=3)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OrthogonalMatchingPursuit()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OrthogonalMatchingPursuitCV(cv=3)]", "sklearn/tests/test_common.py::test_check_param_validation[OrthogonalMatchingPursuit()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OrthogonalMatchingPursuitCV(cv=3)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-137
1.0
{ "code": "diff --git b/sklearn/linear_model/_omp.py a/sklearn/linear_model/_omp.py\nindex 504f902cc..aad9d1184 100644\n--- b/sklearn/linear_model/_omp.py\n+++ a/sklearn/linear_model/_omp.py\n@@ -1027,6 +1027,7 @@ class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):\n self.n_jobs = n_jobs\n self.verbose = verbose\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, **fit_params):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -1053,6 +1054,50 @@ class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):\n self : object\n Returns an instance of self.\n \"\"\"\n+ _raise_for_params(fit_params, self, \"fit\")\n+\n+ X, y = validate_data(self, X, y, y_numeric=True, ensure_min_features=2)\n+ X = as_float_array(X, copy=False, ensure_all_finite=False)\n+ cv = check_cv(self.cv, classifier=False)\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit\", **fit_params)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ routed_params = Bunch()\n+ routed_params.splitter = Bunch(split={})\n+ max_iter = (\n+ min(max(int(0.1 * X.shape[1]), 5), X.shape[1])\n+ if not self.max_iter\n+ else self.max_iter\n+ )\n+ cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(\n+ delayed(_omp_path_residues)(\n+ X[train],\n+ y[train],\n+ X[test],\n+ y[test],\n+ self.copy,\n+ self.fit_intercept,\n+ max_iter,\n+ )\n+ for train, test in cv.split(X, **routed_params.splitter.split)\n+ )\n+\n+ min_early_stop = min(fold.shape[0] for fold in cv_paths)\n+ mse_folds = np.array(\n+ [(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]\n+ )\n+ best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1\n+ self.n_nonzero_coefs_ = best_n_nonzero_coefs\n+ omp = OrthogonalMatchingPursuit(\n+ n_nonzero_coefs=best_n_nonzero_coefs,\n+ fit_intercept=self.fit_intercept,\n+ ).fit(X, y)\n+\n+ self.coef_ = omp.coef_\n+ self.intercept_ = omp.intercept_\n+ self.n_iter_ = omp.n_iter_\n+ return self\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_omp.py b/sklearn/linear_model/_omp.py\nindex aad9d1184..504f902cc 100644\n--- a/sklearn/linear_model/_omp.py\n+++ b/sklearn/linear_model/_omp.py\n@@ -1027,7 +1027,6 @@ class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):\n self.n_jobs = n_jobs\n self.verbose = verbose\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, **fit_params):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -1054,50 +1053,6 @@ class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):\n self : object\n Returns an instance of self.\n \"\"\"\n- _raise_for_params(fit_params, self, \"fit\")\n-\n- X, y = validate_data(self, X, y, y_numeric=True, ensure_min_features=2)\n- X = as_float_array(X, copy=False, ensure_all_finite=False)\n- cv = check_cv(self.cv, classifier=False)\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit\", **fit_params)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- routed_params = Bunch()\n- routed_params.splitter = Bunch(split={})\n- max_iter = (\n- min(max(int(0.1 * X.shape[1]), 5), X.shape[1])\n- if not self.max_iter\n- else self.max_iter\n- )\n- cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(\n- delayed(_omp_path_residues)(\n- X[train],\n- y[train],\n- X[test],\n- y[test],\n- self.copy,\n- self.fit_intercept,\n- max_iter,\n- )\n- for train, test in cv.split(X, **routed_params.splitter.split)\n- )\n-\n- min_early_stop = min(fold.shape[0] for fold in cv_paths)\n- mse_folds = np.array(\n- [(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]\n- )\n- best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1\n- self.n_nonzero_coefs_ = best_n_nonzero_coefs\n- omp = OrthogonalMatchingPursuit(\n- n_nonzero_coefs=best_n_nonzero_coefs,\n- fit_intercept=self.fit_intercept,\n- ).fit(X, y)\n-\n- self.coef_ = omp.coef_\n- self.intercept_ = omp.intercept_\n- self.n_iter_ = omp.n_iter_\n- return self\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_omp.py.\nHere is the description for the function:\n def fit(self, X, y, **fit_params):\n \"\"\"Fit the model using X, y as training data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values. Will be cast to X's dtype if necessary.\n\n **fit_params : dict\n Parameters to pass to the underlying splitter.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Returns an instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-OrthogonalMatchingPursuitCV]", "sklearn/linear_model/tests/test_omp.py::test_omp_cv", "sklearn/linear_model/_omp.py::sklearn.linear_model._omp.OrthogonalMatchingPursuitCV", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[OrthogonalMatchingPursuitCV]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OrthogonalMatchingPursuitCV(cv=3)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OrthogonalMatchingPursuitCV(cv=3)]", "sklearn/tests/test_common.py::test_check_param_validation[OrthogonalMatchingPursuitCV(cv=3)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OrthogonalMatchingPursuitCV(cv=3)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-138
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex 626abcd05..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -1150,6 +1150,10 @@ class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self.random_state = random_state\n self.n_jobs = n_jobs\n \n+ @_fit_context(\n+ # OutputCodeClassifier.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n \n@@ -1175,6 +1179,57 @@ class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self : object\n Returns a fitted instance of self.\n \"\"\"\n+ _raise_for_params(fit_params, self, \"fit\")\n+\n+ routed_params = process_routing(\n+ self,\n+ \"fit\",\n+ **fit_params,\n+ )\n+\n+ y = validate_data(self, X=\"no_validation\", y=y)\n+\n+ random_state = check_random_state(self.random_state)\n+ check_classification_targets(y)\n+\n+ self.classes_ = np.unique(y)\n+ n_classes = self.classes_.shape[0]\n+ if n_classes == 0:\n+ raise ValueError(\n+ \"OutputCodeClassifier can not be fit when no class is present.\"\n+ )\n+ n_estimators = int(n_classes * self.code_size)\n+\n+ # FIXME: there are more elaborate methods than generating the codebook\n+ # randomly.\n+ self.code_book_ = random_state.uniform(size=(n_classes, n_estimators))\n+ self.code_book_[self.code_book_ > 0.5] = 1.0\n+\n+ if hasattr(self.estimator, \"decision_function\"):\n+ self.code_book_[self.code_book_ != 1] = -1.0\n+ else:\n+ self.code_book_[self.code_book_ != 1] = 0.0\n+\n+ classes_index = {c: i for i, c in enumerate(self.classes_)}\n+\n+ Y = np.array(\n+ [self.code_book_[classes_index[y[i]]] for i in range(_num_samples(y))],\n+ dtype=int,\n+ )\n+\n+ self.estimators_ = Parallel(n_jobs=self.n_jobs)(\n+ delayed(_fit_binary)(\n+ self.estimator, X, Y[:, i], fit_params=routed_params.estimator.fit\n+ )\n+ for i in range(Y.shape[1])\n+ )\n+\n+ if hasattr(self.estimators_[0], \"n_features_in_\"):\n+ self.n_features_in_ = self.estimators_[0].n_features_in_\n+ if hasattr(self.estimators_[0], \"feature_names_in_\"):\n+ self.feature_names_in_ = self.estimators_[0].feature_names_in_\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Predict multi-class targets using underlying estimators.\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..626abcd05 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -1150,10 +1150,6 @@ class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self.random_state = random_state\n self.n_jobs = n_jobs\n \n- @_fit_context(\n- # OutputCodeClassifier.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n \n@@ -1179,57 +1175,6 @@ class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n self : object\n Returns a fitted instance of self.\n \"\"\"\n- _raise_for_params(fit_params, self, \"fit\")\n-\n- routed_params = process_routing(\n- self,\n- \"fit\",\n- **fit_params,\n- )\n-\n- y = validate_data(self, X=\"no_validation\", y=y)\n-\n- random_state = check_random_state(self.random_state)\n- check_classification_targets(y)\n-\n- self.classes_ = np.unique(y)\n- n_classes = self.classes_.shape[0]\n- if n_classes == 0:\n- raise ValueError(\n- \"OutputCodeClassifier can not be fit when no class is present.\"\n- )\n- n_estimators = int(n_classes * self.code_size)\n-\n- # FIXME: there are more elaborate methods than generating the codebook\n- # randomly.\n- self.code_book_ = random_state.uniform(size=(n_classes, n_estimators))\n- self.code_book_[self.code_book_ > 0.5] = 1.0\n-\n- if hasattr(self.estimator, \"decision_function\"):\n- self.code_book_[self.code_book_ != 1] = -1.0\n- else:\n- self.code_book_[self.code_book_ != 1] = 0.0\n-\n- classes_index = {c: i for i, c in enumerate(self.classes_)}\n-\n- Y = np.array(\n- [self.code_book_[classes_index[y[i]]] for i in range(_num_samples(y))],\n- dtype=int,\n- )\n-\n- self.estimators_ = Parallel(n_jobs=self.n_jobs)(\n- delayed(_fit_binary)(\n- self.estimator, X, Y[:, i], fit_params=routed_params.estimator.fit\n- )\n- for i in range(Y.shape[1])\n- )\n-\n- if hasattr(self.estimators_[0], \"n_features_in_\"):\n- self.n_features_in_ = self.estimators_[0].n_features_in_\n- if hasattr(self.estimators_[0], \"feature_names_in_\"):\n- self.feature_names_in_ = self.estimators_[0].feature_names_in_\n-\n- return self\n \n def predict(self, X):\n \"\"\"Predict multi-class targets using underlying estimators.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def fit(self, X, y, **fit_params):\n \"\"\"Fit underlying estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Data.\n\n y : array-like of shape (n_samples,)\n Multi-class targets.\n\n **fit_params : dict\n Parameters passed to the ``estimator.fit`` method of each\n sub-estimator.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n Returns a fitted instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[OutputCodeClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OutputCodeClassifier]", "sklearn/tests/test_multiclass.py::test_ecoc_fit_predict", "sklearn/tests/test_multiclass.py::test_ecoc_gridsearch", "sklearn/tests/test_multiclass.py::test_ecoc_float_y", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_array]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[OutputCodeClassifier]", "sklearn/multiclass.py::sklearn.multiclass.OutputCodeClassifier", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OutputCodeClassifier]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OutputCodeClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OutputCodeClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[OutputCodeClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-139
1.0
{ "code": "diff --git b/sklearn/multiclass.py a/sklearn/multiclass.py\nindex ddea001b3..dca055ecb 100644\n--- b/sklearn/multiclass.py\n+++ a/sklearn/multiclass.py\n@@ -1244,6 +1244,17 @@ class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n y : ndarray of shape (n_samples,)\n Predicted multi-class targets.\n \"\"\"\n+ check_is_fitted(self)\n+ # ArgKmin only accepts C-contiguous array. The aggregated predictions need to be\n+ # transposed. We therefore create a F-contiguous array to avoid a copy and have\n+ # a C-contiguous array after the transpose operation.\n+ Y = np.array(\n+ [_predict_binary(e, X) for e in self.estimators_],\n+ order=\"F\",\n+ dtype=np.float64,\n+ ).T\n+ pred = pairwise_distances_argmin(Y, self.code_book_, metric=\"euclidean\")\n+ return self.classes_[pred]\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
{ "code": "diff --git a/sklearn/multiclass.py b/sklearn/multiclass.py\nindex dca055ecb..ddea001b3 100644\n--- a/sklearn/multiclass.py\n+++ b/sklearn/multiclass.py\n@@ -1244,17 +1244,6 @@ class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):\n y : ndarray of shape (n_samples,)\n Predicted multi-class targets.\n \"\"\"\n- check_is_fitted(self)\n- # ArgKmin only accepts C-contiguous array. The aggregated predictions need to be\n- # transposed. We therefore create a F-contiguous array to avoid a copy and have\n- # a C-contiguous array after the transpose operation.\n- Y = np.array(\n- [_predict_binary(e, X) for e in self.estimators_],\n- order=\"F\",\n- dtype=np.float64,\n- ).T\n- pred = pairwise_distances_argmin(Y, self.code_book_, metric=\"euclidean\")\n- return self.classes_[pred]\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multiclass.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict multi-class targets using underlying estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Data.\n\n Returns\n -------\n y : ndarray of shape (n_samples,)\n Predicted multi-class targets.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_multiclass.py::test_ecoc_exceptions", "sklearn/tests/test_multiclass.py::test_ecoc_fit_predict", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_array]", "sklearn/multiclass.py::sklearn.multiclass.OutputCodeClassifier", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OutputCodeClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OutputCodeClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-140
1.0
{ "code": "diff --git b/sklearn/decomposition/_pca.py a/sklearn/decomposition/_pca.py\nindex bd1e58b53..24cb1649c 100644\n--- b/sklearn/decomposition/_pca.py\n+++ a/sklearn/decomposition/_pca.py\n@@ -442,6 +442,7 @@ class PCA(_BasePCA):\n self._fit(X)\n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None):\n \"\"\"Fit the model with X and apply the dimensionality reduction on X.\n \n@@ -464,6 +465,20 @@ class PCA(_BasePCA):\n This method returns a Fortran-ordered array. To convert it to a\n C-ordered array, use 'np.ascontiguousarray'.\n \"\"\"\n+ U, S, _, X, x_is_centered, xp = self._fit(X)\n+ if U is not None:\n+ U = U[:, : self.n_components_]\n+\n+ if self.whiten:\n+ # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)\n+ U *= sqrt(X.shape[0] - 1)\n+ else:\n+ # X_new = X * V = U * S * Vt * V = U * S\n+ U *= S[: self.n_components_]\n+\n+ return U\n+ else: # solver=\"covariance_eigh\" does not compute U at fit time.\n+ return self._transform(X, xp, x_is_centered=x_is_centered)\n \n def _fit(self, X):\n \"\"\"Dispatch to the right submethod depending on the chosen solver.\"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_pca.py b/sklearn/decomposition/_pca.py\nindex 24cb1649c..bd1e58b53 100644\n--- a/sklearn/decomposition/_pca.py\n+++ b/sklearn/decomposition/_pca.py\n@@ -442,7 +442,6 @@ class PCA(_BasePCA):\n self._fit(X)\n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None):\n \"\"\"Fit the model with X and apply the dimensionality reduction on X.\n \n@@ -465,20 +464,6 @@ class PCA(_BasePCA):\n This method returns a Fortran-ordered array. To convert it to a\n C-ordered array, use 'np.ascontiguousarray'.\n \"\"\"\n- U, S, _, X, x_is_centered, xp = self._fit(X)\n- if U is not None:\n- U = U[:, : self.n_components_]\n-\n- if self.whiten:\n- # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)\n- U *= sqrt(X.shape[0] - 1)\n- else:\n- # X_new = X * V = U * S * Vt * V = U * S\n- U *= S[: self.n_components_]\n-\n- return U\n- else: # solver=\"covariance_eigh\" does not compute U at fit time.\n- return self._transform(X, xp, x_is_centered=x_is_centered)\n \n def _fit(self, X):\n \"\"\"Dispatch to the right submethod depending on the chosen solver.\"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_pca.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None):\n \"\"\"Fit the model with X and apply the dimensionality reduction on X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : Ignored\n Ignored.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components)\n Transformed values.\n\n Notes\n -----\n This method returns a Fortran-ordered array. To convert it to a\n C-ordered array, use 'np.ascontiguousarray'.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_pca.py::test_pca[1-full]", "sklearn/decomposition/tests/test_pca.py::test_pca[1-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca[1-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca[1-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca[1-auto]", "sklearn/decomposition/tests/test_pca.py::test_pca[2-full]", "sklearn/decomposition/tests/test_pca.py::test_pca[2-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca[2-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca[2-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca[2-auto]", "sklearn/decomposition/tests/test_pca.py::test_pca[3-full]", "sklearn/decomposition/tests/test_pca.py::test_pca[3-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca[3-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca[3-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca[3-auto]", "sklearn/decomposition/tests/test_pca.py::test_pca_sparse_fit_transform[42-csr_matrix]", "sklearn/decomposition/tests/test_pca.py::test_pca_sparse_fit_transform[42-csr_array]", "sklearn/decomposition/tests/test_pca.py::test_pca_sparse_fit_transform[42-csc_matrix]", "sklearn/decomposition/tests/test_pca.py::test_pca_sparse_fit_transform[42-csc_array]", "sklearn/decomposition/tests/test_pca.py::test_whitening[full-True]", "sklearn/decomposition/tests/test_pca.py::test_whitening[full-False]", "sklearn/decomposition/tests/test_pca.py::test_whitening[covariance_eigh-True]", "sklearn/decomposition/tests/test_pca.py::test_whitening[covariance_eigh-False]", "sklearn/decomposition/tests/test_pca.py::test_whitening[arpack-True]", "sklearn/decomposition/tests/test_pca.py::test_whitening[arpack-False]", "sklearn/decomposition/tests/test_pca.py::test_whitening[randomized-True]", "sklearn/decomposition/tests/test_pca.py::test_whitening[randomized-False]", "sklearn/decomposition/tests/test_pca.py::test_whitening[auto-True]", "sklearn/decomposition/tests/test_pca.py::test_whitening[auto-False]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-False-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-False-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-False-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-False-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-False-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-False-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-True-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-True-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-True-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-True-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-True-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-False-True-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-False-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-False-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-False-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-False-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-False-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-False-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-True-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-True-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-True-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-True-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-True-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float64-42-True-True-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-random-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-correlated-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-random-wide]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[covariance_eigh-random-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[covariance_eigh-correlated-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[covariance_eigh-random-wide]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-random-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-correlated-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-random-wide]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-random-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-correlated-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-random-wide]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-random-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-correlated-tall]", "sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-random-wide]", "sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[full]", "sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[auto]", "sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[full]", "sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[auto]", "sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[full]", "sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[auto]", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_pipeline_transform", "sklearn/tests/test_pipeline.py::test_feature_union_weights", "sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough", "sklearn/tests/test_pipeline.py::test_pipeline_inverse_transform_Xt_deprecation", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately[pca-exact]", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately[pca-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_early_exaggeration_used", "sklearn/manifold/tests/test_t_sne.py::test_verbose", "sklearn/manifold/tests/test_t_sne.py::test_chebyshev_metric", "sklearn/manifold/tests/test_t_sne.py::test_reduction_to_one_component", "sklearn/manifold/tests/test_t_sne.py::test_min_grad_norm", "sklearn/feature_selection/tests/test_from_model.py::test_importance_getter[estimator0-named_steps.logisticregression.coef_]", "sklearn/manifold/tests/test_t_sne.py::test_accessible_kl_divergence", "sklearn/decomposition/tests/test_fastica.py::test_fastica_simple[float64-42-True]", "sklearn/decomposition/tests/test_fastica.py::test_fastica_simple[float64-42-False]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_array]", "sklearn/decomposition/tests/test_truncated_svd.py::test_truncated_svd_eq_pca", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_iris", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_random_data", "sklearn/decomposition/tests/test_incremental_pca.py::test_singular_values", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_inverse_transform", "sklearn/pipeline.py::sklearn.pipeline.FeatureUnion", "sklearn/manifold/_t_sne.py::sklearn.manifold._t_sne.trustworthiness", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_works_with_pandas_output", "sklearn/manifold/tests/test_t_sne.py::test_tnse_n_iter_deprecated", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TSNE(n_components=1,perplexity=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[PCA()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_check_param_validation[PCA()]", "sklearn/tests/test_common.py::test_set_output_transform[PCA()]", "sklearn/tests/test_common.py::test_set_output_transform[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-PCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-PCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-TSNE(perplexity=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-141
1.0
{ "code": "diff --git b/sklearn/linear_model/_passive_aggressive.py a/sklearn/linear_model/_passive_aggressive.py\nindex efff60ade..61eb06eda 100644\n--- b/sklearn/linear_model/_passive_aggressive.py\n+++ a/sklearn/linear_model/_passive_aggressive.py\n@@ -273,6 +273,7 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n intercept_init=None,\n )\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -295,6 +296,19 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n self : object\n Fitted estimator.\n \"\"\"\n+ self._more_validate_params()\n+\n+ lr = \"pa1\" if self.loss == \"hinge\" else \"pa2\"\n+ return self._fit(\n+ X,\n+ y,\n+ alpha=1.0,\n+ C=self.C,\n+ loss=\"hinge\",\n+ learning_rate=lr,\n+ coef_init=coef_init,\n+ intercept_init=intercept_init,\n+ )\n \n \n class PassiveAggressiveRegressor(BaseSGDRegressor):\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_passive_aggressive.py b/sklearn/linear_model/_passive_aggressive.py\nindex 61eb06eda..efff60ade 100644\n--- a/sklearn/linear_model/_passive_aggressive.py\n+++ b/sklearn/linear_model/_passive_aggressive.py\n@@ -273,7 +273,6 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n intercept_init=None,\n )\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -296,19 +295,6 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n self : object\n Fitted estimator.\n \"\"\"\n- self._more_validate_params()\n-\n- lr = \"pa1\" if self.loss == \"hinge\" else \"pa2\"\n- return self._fit(\n- X,\n- y,\n- alpha=1.0,\n- C=self.C,\n- loss=\"hinge\",\n- learning_rate=lr,\n- coef_init=coef_init,\n- intercept_init=intercept_init,\n- )\n \n \n class PassiveAggressiveRegressor(BaseSGDRegressor):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_passive_aggressive.py.\nHere is the description for the function:\n def fit(self, X, y, coef_init=None, intercept_init=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n coef_init : ndarray of shape (n_classes, n_features)\n The initial coefficients to warm-start the optimization.\n\n intercept_init : ndarray of shape (n_classes,)\n The initial intercept to warm-start the optimization.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-True-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-True-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-True-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-True-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-True-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-True-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_refit", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[hinge-None]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[hinge-csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[hinge-csr_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[squared_hinge-None]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[squared_hinge-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[squared_hinge-csr_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_class_weights", "sklearn/linear_model/tests/test_passive_aggressive.py::test_equal_class_weight", "sklearn/linear_model/tests/test_passive_aggressive.py::test_wrong_class_weight_label", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle", "sklearn/linear_model/tests/test_passive_aggressive.py::test_passive_aggressive_deprecated_average[PassiveAggressiveClassifier]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit", "sklearn/linear_model/_passive_aggressive.py::sklearn.linear_model._passive_aggressive.PassiveAggressiveClassifier", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_check_param_validation[PassiveAggressiveClassifier(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-142
1.0
{ "code": "diff --git b/sklearn/linear_model/_passive_aggressive.py a/sklearn/linear_model/_passive_aggressive.py\nindex 4cf22f770..61eb06eda 100644\n--- b/sklearn/linear_model/_passive_aggressive.py\n+++ a/sklearn/linear_model/_passive_aggressive.py\n@@ -217,6 +217,7 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n self.C = C\n self.loss = loss\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y, classes=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -241,6 +242,36 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n self : object\n Fitted estimator.\n \"\"\"\n+ if not hasattr(self, \"classes_\"):\n+ self._more_validate_params(for_partial_fit=True)\n+\n+ if self.class_weight == \"balanced\":\n+ raise ValueError(\n+ \"class_weight 'balanced' is not supported for \"\n+ \"partial_fit. For 'balanced' weights, use \"\n+ \"`sklearn.utils.compute_class_weight` with \"\n+ \"`class_weight='balanced'`. In place of y you \"\n+ \"can use a large enough subset of the full \"\n+ \"training set target to properly estimate the \"\n+ \"class frequency distributions. Pass the \"\n+ \"resulting weights as the class_weight \"\n+ \"parameter.\"\n+ )\n+\n+ lr = \"pa1\" if self.loss == \"hinge\" else \"pa2\"\n+ return self._partial_fit(\n+ X,\n+ y,\n+ alpha=1.0,\n+ C=self.C,\n+ loss=\"hinge\",\n+ learning_rate=lr,\n+ max_iter=1,\n+ classes=classes,\n+ sample_weight=None,\n+ coef_init=None,\n+ intercept_init=None,\n+ )\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_passive_aggressive.py b/sklearn/linear_model/_passive_aggressive.py\nindex 61eb06eda..4cf22f770 100644\n--- a/sklearn/linear_model/_passive_aggressive.py\n+++ b/sklearn/linear_model/_passive_aggressive.py\n@@ -217,7 +217,6 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n self.C = C\n self.loss = loss\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y, classes=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -242,36 +241,6 @@ class PassiveAggressiveClassifier(BaseSGDClassifier):\n self : object\n Fitted estimator.\n \"\"\"\n- if not hasattr(self, \"classes_\"):\n- self._more_validate_params(for_partial_fit=True)\n-\n- if self.class_weight == \"balanced\":\n- raise ValueError(\n- \"class_weight 'balanced' is not supported for \"\n- \"partial_fit. For 'balanced' weights, use \"\n- \"`sklearn.utils.compute_class_weight` with \"\n- \"`class_weight='balanced'`. In place of y you \"\n- \"can use a large enough subset of the full \"\n- \"training set target to properly estimate the \"\n- \"class frequency distributions. Pass the \"\n- \"resulting weights as the class_weight \"\n- \"parameter.\"\n- )\n-\n- lr = \"pa1\" if self.loss == \"hinge\" else \"pa2\"\n- return self._partial_fit(\n- X,\n- y,\n- alpha=1.0,\n- C=self.C,\n- loss=\"hinge\",\n- learning_rate=lr,\n- max_iter=1,\n- classes=classes,\n- sample_weight=None,\n- coef_init=None,\n- intercept_init=None,\n- )\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_passive_aggressive.py.\nHere is the description for the function:\n def partial_fit(self, X, y, classes=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Subset of the training data.\n\n y : array-like of shape (n_samples,)\n Subset of the target values.\n\n classes : ndarray of shape (n_classes,)\n Classes across all calls to partial_fit.\n Can be obtained by via `np.unique(y_all)`, where y_all is the\n target vector of the entire dataset.\n This argument is required for the first call to partial_fit\n and can be omitted in the subsequent calls.\n Note that y doesn't need to contain all labels in `classes`.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[None-False]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[None-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_matrix-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_matrix-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_array-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_array-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_partial_fit_weight_class_balanced", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[PassiveAggressiveClassifier(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-143
1.0
{ "code": "diff --git b/sklearn/linear_model/_passive_aggressive.py a/sklearn/linear_model/_passive_aggressive.py\nindex c7be1df8c..61eb06eda 100644\n--- b/sklearn/linear_model/_passive_aggressive.py\n+++ a/sklearn/linear_model/_passive_aggressive.py\n@@ -535,6 +535,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n intercept_init=None,\n )\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -557,3 +558,16 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n self : object\n Fitted estimator.\n \"\"\"\n+ self._more_validate_params()\n+\n+ lr = \"pa1\" if self.loss == \"epsilon_insensitive\" else \"pa2\"\n+ return self._fit(\n+ X,\n+ y,\n+ alpha=1.0,\n+ C=self.C,\n+ loss=\"epsilon_insensitive\",\n+ learning_rate=lr,\n+ coef_init=coef_init,\n+ intercept_init=intercept_init,\n+ )\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_passive_aggressive.py b/sklearn/linear_model/_passive_aggressive.py\nindex 61eb06eda..c7be1df8c 100644\n--- a/sklearn/linear_model/_passive_aggressive.py\n+++ b/sklearn/linear_model/_passive_aggressive.py\n@@ -535,7 +535,6 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n intercept_init=None,\n )\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -558,16 +557,3 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n self : object\n Fitted estimator.\n \"\"\"\n- self._more_validate_params()\n-\n- lr = \"pa1\" if self.loss == \"epsilon_insensitive\" else \"pa2\"\n- return self._fit(\n- X,\n- y,\n- alpha=1.0,\n- C=self.C,\n- loss=\"epsilon_insensitive\",\n- learning_rate=lr,\n- coef_init=coef_init,\n- intercept_init=intercept_init,\n- )\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_passive_aggressive.py.\nHere is the description for the function:\n def fit(self, X, y, coef_init=None, intercept_init=None):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : numpy array of shape [n_samples]\n Target values.\n\n coef_init : array, shape = [n_features]\n The initial coefficients to warm-start the optimization.\n\n intercept_init : array, shape = [1]\n The initial intercept to warm-start the optimization.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-True-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-True-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-True-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-True-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-True-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-True-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[epsilon_insensitive-None]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[epsilon_insensitive-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[epsilon_insensitive-csr_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[squared_epsilon_insensitive-None]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[squared_epsilon_insensitive-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[squared_epsilon_insensitive-csr_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_passive_aggressive_deprecated_average[PassiveAggressiveRegressor]", "sklearn/linear_model/_passive_aggressive.py::sklearn.linear_model._passive_aggressive.PassiveAggressiveRegressor", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveRegressor(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_check_param_validation[PassiveAggressiveRegressor(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-144
1.0
{ "code": "diff --git b/sklearn/linear_model/_passive_aggressive.py a/sklearn/linear_model/_passive_aggressive.py\nindex 9f5a80d0f..61eb06eda 100644\n--- b/sklearn/linear_model/_passive_aggressive.py\n+++ a/sklearn/linear_model/_passive_aggressive.py\n@@ -501,6 +501,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n self.C = C\n self.loss = loss\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -517,6 +518,22 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n self : object\n Fitted estimator.\n \"\"\"\n+ if not hasattr(self, \"coef_\"):\n+ self._more_validate_params(for_partial_fit=True)\n+\n+ lr = \"pa1\" if self.loss == \"epsilon_insensitive\" else \"pa2\"\n+ return self._partial_fit(\n+ X,\n+ y,\n+ alpha=1.0,\n+ C=self.C,\n+ loss=\"epsilon_insensitive\",\n+ learning_rate=lr,\n+ max_iter=1,\n+ sample_weight=None,\n+ coef_init=None,\n+ intercept_init=None,\n+ )\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_passive_aggressive.py b/sklearn/linear_model/_passive_aggressive.py\nindex 61eb06eda..9f5a80d0f 100644\n--- a/sklearn/linear_model/_passive_aggressive.py\n+++ b/sklearn/linear_model/_passive_aggressive.py\n@@ -501,7 +501,6 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n self.C = C\n self.loss = loss\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n \n@@ -518,22 +517,6 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):\n self : object\n Fitted estimator.\n \"\"\"\n- if not hasattr(self, \"coef_\"):\n- self._more_validate_params(for_partial_fit=True)\n-\n- lr = \"pa1\" if self.loss == \"epsilon_insensitive\" else \"pa2\"\n- return self._partial_fit(\n- X,\n- y,\n- alpha=1.0,\n- C=self.C,\n- loss=\"epsilon_insensitive\",\n- learning_rate=lr,\n- max_iter=1,\n- sample_weight=None,\n- coef_init=None,\n- intercept_init=None,\n- )\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, coef_init=None, intercept_init=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_passive_aggressive.py.\nHere is the description for the function:\n def partial_fit(self, X, y):\n \"\"\"Fit linear model with Passive Aggressive algorithm.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Subset of training data.\n\n y : numpy array of shape [n_samples]\n Subset of target values.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[None-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[None-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_matrix-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_matrix-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_array-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_array-True]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[PassiveAggressiveRegressor(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-145
1.0
{ "code": "diff --git b/sklearn/feature_extraction/image.py a/sklearn/feature_extraction/image.py\nindex 08ca7c532..ae7325d52 100644\n--- b/sklearn/feature_extraction/image.py\n+++ a/sklearn/feature_extraction/image.py\n@@ -632,6 +632,50 @@ class PatchExtractor(TransformerMixin, BaseEstimator):\n `n_patches` is either `n_samples * max_patches` or the total\n number of patches that can be extracted.\n \"\"\"\n+ X = validate_data(\n+ self,\n+ X=X,\n+ ensure_2d=False,\n+ allow_nd=True,\n+ ensure_min_samples=1,\n+ ensure_min_features=1,\n+ reset=False,\n+ )\n+ random_state = check_random_state(self.random_state)\n+ n_imgs, img_height, img_width = X.shape[:3]\n+ if self.patch_size is None:\n+ patch_size = img_height // 10, img_width // 10\n+ else:\n+ if len(self.patch_size) != 2:\n+ raise ValueError(\n+ \"patch_size must be a tuple of two integers. Got\"\n+ f\" {self.patch_size} instead.\"\n+ )\n+ patch_size = self.patch_size\n+\n+ n_imgs, img_height, img_width = X.shape[:3]\n+ X = np.reshape(X, (n_imgs, img_height, img_width, -1))\n+ n_channels = X.shape[-1]\n+\n+ # compute the dimensions of the patches array\n+ patch_height, patch_width = patch_size\n+ n_patches = _compute_n_patches(\n+ img_height, img_width, patch_height, patch_width, self.max_patches\n+ )\n+ patches_shape = (n_imgs * n_patches,) + patch_size\n+ if n_channels > 1:\n+ patches_shape += (n_channels,)\n+\n+ # extract the patches\n+ patches = np.empty(patches_shape)\n+ for ii, image in enumerate(X):\n+ patches[ii * n_patches : (ii + 1) * n_patches] = extract_patches_2d(\n+ image,\n+ patch_size,\n+ max_patches=self.max_patches,\n+ random_state=random_state,\n+ )\n+ return patches\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_extraction/image.py b/sklearn/feature_extraction/image.py\nindex ae7325d52..08ca7c532 100644\n--- a/sklearn/feature_extraction/image.py\n+++ b/sklearn/feature_extraction/image.py\n@@ -632,50 +632,6 @@ class PatchExtractor(TransformerMixin, BaseEstimator):\n `n_patches` is either `n_samples * max_patches` or the total\n number of patches that can be extracted.\n \"\"\"\n- X = validate_data(\n- self,\n- X=X,\n- ensure_2d=False,\n- allow_nd=True,\n- ensure_min_samples=1,\n- ensure_min_features=1,\n- reset=False,\n- )\n- random_state = check_random_state(self.random_state)\n- n_imgs, img_height, img_width = X.shape[:3]\n- if self.patch_size is None:\n- patch_size = img_height // 10, img_width // 10\n- else:\n- if len(self.patch_size) != 2:\n- raise ValueError(\n- \"patch_size must be a tuple of two integers. Got\"\n- f\" {self.patch_size} instead.\"\n- )\n- patch_size = self.patch_size\n-\n- n_imgs, img_height, img_width = X.shape[:3]\n- X = np.reshape(X, (n_imgs, img_height, img_width, -1))\n- n_channels = X.shape[-1]\n-\n- # compute the dimensions of the patches array\n- patch_height, patch_width = patch_size\n- n_patches = _compute_n_patches(\n- img_height, img_width, patch_height, patch_width, self.max_patches\n- )\n- patches_shape = (n_imgs * n_patches,) + patch_size\n- if n_channels > 1:\n- patches_shape += (n_channels,)\n-\n- # extract the patches\n- patches = np.empty(patches_shape)\n- for ii, image in enumerate(X):\n- patches[ii * n_patches : (ii + 1) * n_patches] = extract_patches_2d(\n- image,\n- patch_size,\n- max_patches=self.max_patches,\n- random_state=random_state,\n- )\n- return patches\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_extraction/image.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Transform the image samples in `X` into a matrix of patch data.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples, image_height, image_width) or \\\n (n_samples, image_height, image_width, n_channels)\n Array of images from which to extract patches. For color images,\n the last dimension specifies the channel: a RGB image would have\n `n_channels=3`.\n\n Returns\n -------\n patches : array of shape (n_patches, patch_height, patch_width) or \\\n (n_patches, patch_height, patch_width, n_channels)\n The collection of patches extracted from the images, where\n `n_patches` is either `n_samples * max_patches` or the total\n number of patches that can be extracted.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/feature_extraction/image.py::sklearn.feature_extraction.image.PatchExtractor" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-146
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex e8d7dda8e..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -702,6 +702,7 @@ class Pipeline(_BaseComposition):\n Xt, **routed_params[self.steps[-1][0]].predict_proba\n )\n \n+ @available_if(_final_estimator_has(\"decision_function\"))\n def decision_function(self, X, **params):\n \"\"\"Transform the data, and apply `decision_function` with the final estimator.\n \n@@ -731,6 +732,20 @@ class Pipeline(_BaseComposition):\n y_score : ndarray of shape (n_samples, n_classes)\n Result of calling `decision_function` on the final estimator.\n \"\"\"\n+ _raise_for_params(params, self, \"decision_function\")\n+\n+ # not branching here since params is only available if\n+ # enable_metadata_routing=True\n+ routed_params = process_routing(self, \"decision_function\", **params)\n+\n+ Xt = X\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(\n+ Xt, **routed_params.get(name, {}).get(\"transform\", {})\n+ )\n+ return self.steps[-1][1].decision_function(\n+ Xt, **routed_params.get(self.steps[-1][0], {}).get(\"decision_function\", {})\n+ )\n \n @available_if(_final_estimator_has(\"score_samples\"))\n def score_samples(self, X):\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..e8d7dda8e 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -702,7 +702,6 @@ class Pipeline(_BaseComposition):\n Xt, **routed_params[self.steps[-1][0]].predict_proba\n )\n \n- @available_if(_final_estimator_has(\"decision_function\"))\n def decision_function(self, X, **params):\n \"\"\"Transform the data, and apply `decision_function` with the final estimator.\n \n@@ -732,20 +731,6 @@ class Pipeline(_BaseComposition):\n y_score : ndarray of shape (n_samples, n_classes)\n Result of calling `decision_function` on the final estimator.\n \"\"\"\n- _raise_for_params(params, self, \"decision_function\")\n-\n- # not branching here since params is only available if\n- # enable_metadata_routing=True\n- routed_params = process_routing(self, \"decision_function\", **params)\n-\n- Xt = X\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(\n- Xt, **routed_params.get(name, {}).get(\"transform\", {})\n- )\n- return self.steps[-1][1].decision_function(\n- Xt, **routed_params.get(self.steps[-1][0], {}).get(\"decision_function\", {})\n- )\n \n @available_if(_final_estimator_has(\"score_samples\"))\n def score_samples(self, X):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def decision_function(self, X, **params):\n \"\"\"Transform the data, and apply `decision_function` with the final estimator.\n\n Call `transform` of each transformer in the pipeline. The transformed\n data are finally passed to the final estimator that calls\n `decision_function` method. Only valid if the final estimator\n implements `decision_function`.\n\n Parameters\n ----------\n X : iterable\n Data to predict on. Must fulfill input requirements of first step\n of the pipeline.\n\n **params : dict of string -> object\n Parameters requested and accepted by steps. Each step must have\n requested certain metadata for these parameters to be forwarded to\n them.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n y_score : ndarray of shape (n_samples, n_classes)\n Result of calling `decision_function` on the final estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_sgd.py::test_ocsvm_vs_sgdocsvm", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[decision_function]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[decision_function]", "sklearn/tests/test_pipeline.py::test_routing_passed_metadata_not_supported[decision_function]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[CalibratedClassifierCV]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-decision_function]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-decision_function]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-147
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 74cb3c6f1..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -412,6 +412,10 @@ class Pipeline(_BaseComposition):\n self.steps[step_idx] = (name, fitted_transformer)\n return X\n \n+ @_fit_context(\n+ # estimators in Pipeline.steps are not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y=None, **params):\n \"\"\"Fit the model.\n \n@@ -451,6 +455,14 @@ class Pipeline(_BaseComposition):\n self : object\n Pipeline with fitted steps.\n \"\"\"\n+ routed_params = self._check_method_params(method=\"fit\", props=params)\n+ Xt = self._fit(X, y, routed_params)\n+ with _print_elapsed_time(\"Pipeline\", self._log_message(len(self.steps) - 1)):\n+ if self._final_estimator != \"passthrough\":\n+ last_step_params = routed_params[self.steps[-1][0]]\n+ self._final_estimator.fit(Xt, y, **last_step_params[\"fit\"])\n+\n+ return self\n \n def _can_fit_transform(self):\n return (\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..74cb3c6f1 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -412,10 +412,6 @@ class Pipeline(_BaseComposition):\n self.steps[step_idx] = (name, fitted_transformer)\n return X\n \n- @_fit_context(\n- # estimators in Pipeline.steps are not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y=None, **params):\n \"\"\"Fit the model.\n \n@@ -455,14 +451,6 @@ class Pipeline(_BaseComposition):\n self : object\n Pipeline with fitted steps.\n \"\"\"\n- routed_params = self._check_method_params(method=\"fit\", props=params)\n- Xt = self._fit(X, y, routed_params)\n- with _print_elapsed_time(\"Pipeline\", self._log_message(len(self.steps) - 1)):\n- if self._final_estimator != \"passthrough\":\n- last_step_params = routed_params[self.steps[-1][0]]\n- self._final_estimator.fit(Xt, y, **last_step_params[\"fit\"])\n-\n- return self\n \n def _can_fit_transform(self):\n return (\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def fit(self, X, y=None, **params):\n \"\"\"Fit the model.\n\n Fit all the transformers one after the other and sequentially transform the\n data. Finally, fit the transformed data using the final estimator.\n\n Parameters\n ----------\n X : iterable\n Training data. Must fulfill input requirements of first step of the\n pipeline.\n\n y : iterable, default=None\n Training targets. Must fulfill label requirements for all steps of\n the pipeline.\n\n **params : dict of str -> object\n - If `enable_metadata_routing=False` (default): Parameters passed to the\n ``fit`` method of each step, where each parameter name is prefixed such\n that parameter ``p`` for step ``s`` has key ``s__p``.\n\n - If `enable_metadata_routing=True`: Parameters requested and accepted by\n steps. Each step must have requested certain metadata for these parameters\n to be forwarded to them.\n\n .. versionchanged:: 1.4\n Parameters are now passed to the ``transform`` method of the\n intermediate steps as well, if requested, and if\n `enable_metadata_routing=True` is set via\n :func:`~sklearn.set_config`.\n\n See :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n Pipeline with fitted steps.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_pipeline_consistency]", "sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AgglomerativeClustering()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/linear_model/tests/test_sgd.py::test_ocsvm_vs_sgdocsvm", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_pipeline", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_pipeline_consistency]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[mask]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_pipeline_consistency]", "sklearn/preprocessing/tests/test_data.py::test_cv_pipeline_precomputed", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-DecisionTreeRegressor-0]", "sklearn/tests/test_common.py::test_estimators[Binarizer()-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-DecisionTreeRegressor-0]", "sklearn/tests/test_common.py::test_estimators[Birch(n_clusters=2)-check_pipeline_consistency]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator2]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/neighbors/tests/test_neighbors.py::test_pipeline_with_nearest_neighbors_transformer", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_pipeline_consistency]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-Lasso-params0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-LassoCV-params1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNetCV-params2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifier-params3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNet-params4]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_pipeline_consistency]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNet-params5]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-Ridge-params6]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-LinearRegression-params7]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeCV-params8]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-Lasso-params0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-LassoCV-params1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNetCV-params2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifier-params3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNet-params4]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNet-params5]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-Ridge-params6]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-LinearRegression-params7]", "sklearn/tests/test_common.py::test_estimators[DictionaryLearning(max_iter=20,transform_algorithm='lasso_lars')-check_pipeline_consistency]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeCV-params8]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifierCV-params9]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/tests/test_pipeline.py::test_pipeline_invalid_parameters", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/tests/test_pipeline.py::test_pipeline_init_tuple", "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/tests/test_pipeline.py::test_pipeline_fit_params", "sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_supported", "sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_unsupported", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof", "sklearn/tests/test_pipeline.py::test_score_samples_on_pipeline_without_score_samples", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict]", "sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_proba]", "sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_log_proba]", "sklearn/tests/test_pipeline.py::test_pipeline_transform", "sklearn/tests/test_pipeline.py::test_set_pipeline_steps", "sklearn/tests/test_pipeline.py::test_pipeline_correctly_adjusts_steps[None]", "sklearn/tests/test_pipeline.py::test_pipeline_correctly_adjusts_steps[passthrough]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/model_selection/tests/test_search.py::test_grid_search_pipeline_steps", "sklearn/inspection/tests/test_partial_dependence.py::test_mixed_type_categorical", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_pipeline_consistency]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_classes_property", "sklearn/tests/test_pipeline.py::test_step_name_validation", "sklearn/tests/test_pipeline.py::test_pipeline_memory", "sklearn/tests/test_pipeline.py::test_features_names_passthrough", "sklearn/tests/test_pipeline.py::test_feature_names_count_vectorizer", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_pipeline_feature_names_out_error_without_definition", "sklearn/tests/test_pipeline.py::test_pipeline_param_error", "sklearn/tests/test_pipeline.py::test_verbose[est0-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_verbose[est2-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_verbose[est4-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_verbose[est6-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_verbose[est8-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_verbose[est10-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_n_features_in_pipeline", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor]", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier]", "sklearn/tests/test_pipeline.py::test_pipeline_check_if_fitted", "sklearn/tests/test_pipeline.py::test_pipeline_get_feature_names_out_passes_names_through", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_pipeline_set_output_integration", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[decision_function]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[fit]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[inverse_transform]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[predict]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[predict_log_proba]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[predict_proba]", "sklearn/model_selection/tests/test_search.py::test_grid_search_allows_nans", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[score]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[transform]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[fit]", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/tests/test_pipeline.py::test_pipeline_with_no_last_step[None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-None-10.0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/tests/test_pipeline.py::test_pipeline_with_no_last_step[passthrough]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_pipeline_consistency]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features0-dataframe]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_alpha_selection[aic]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features2-array]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_alpha_selection[bic]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_noise_variance[True]", "sklearn/neighbors/tests/test_kde.py::test_kde_pipeline_gridsearch", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_noise_variance[False]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-RandomizedSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf2]", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_pipeline_consistency]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf1]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf2]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_pipeline_consistency]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[GridSearchCV-param_grid]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[RandomizedSearchCV-param_distributions]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf1]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_predictions-clf1]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_predictions-clf2]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_pipeline_consistency]", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_fitted_icon[estimator1]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[HalvingGridSearchCV-param_grid]", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_fitted_icon[estimator2]", "sklearn/model_selection/tests/test_search.py::test_search_with_2d_array", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-0.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-auto]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_transformer_no_mixin", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/model_selection/tests/test_search.py::test_search_html_repr", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_pairwise", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-decision_function]", "sklearn/feature_selection/tests/test_from_model.py::test_importance_getter[estimator0-named_steps.logisticregression.coef_]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[CCA]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[PLSCanonical]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[PLSRegression]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-decision_function]", "sklearn/model_selection/tests/test_search.py::test_search_with_estimators_issue_29157", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/utils/tests/test_estimator_checks.py::test_xfail_ignored_in_check_estimator", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/model_selection/tests/test_search.py::test_cv_results_multi_size_array", "sklearn/feature_selection/tests/test_sequential.py::test_pipeline_support", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FeatureAgglomeration()-check_pipeline_consistency]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf0]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_string_labels", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_pipeline_consistency]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputClassifier-LogisticRegression]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-clf]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_route_pipeline", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-column_transformer-clf]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputRegressor-Ridge]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[FeatureUnion]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_pipeline_consistency]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[FixedThresholdClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_pipeline", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[GridSearchCV]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[HalvingGridSearchCV]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[HalvingRandomSearchCV]", "sklearn/feature_selection/tests/test_rfe.py::test_w_pipeline_2d_coef_", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingRegressor-LinearRegression-X3-y3]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[MultiOutputClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_estimators_samples_deterministic", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[MultiOutputRegressor]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[OneVsRestClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_regressor_with_missing_inputs", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[OutputCodeClassifier]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[RandomizedSearchCV]", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVC", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVR", "sklearn/svm/_classes.py::sklearn.svm._classes.NuSVC", "sklearn/svm/_classes.py::sklearn.svm._classes.NuSVR", "sklearn/svm/_classes.py::sklearn.svm._classes.SVC", "sklearn/svm/_classes.py::sklearn.svm._classes.SVR", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFE]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[SelectFromModel]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_pipeline_consistency]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_true", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingRegressor]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TransformedTargetRegressor]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_kneighbors_regressor", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/manifold/tests/test_locally_linear.py::test_pipeline", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[VotingClassifier]", "sklearn/feature_extraction/text.py::sklearn.feature_extraction.text.TfidfTransformer", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_pipeline_consistency]", "sklearn/pipeline.py::sklearn.pipeline.Pipeline", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[VotingRegressor]", "sklearn/linear_model/_stochastic_gradient.py::sklearn.linear_model._stochastic_gradient.SGDClassifier", "sklearn/linear_model/_stochastic_gradient.py::sklearn.linear_model._stochastic_gradient.SGDRegressor", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_pipeline_consistency]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_common.py::test_estimators[GaussianRandomProjection(n_components=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GenericUnivariateSelect()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline", "sklearn/tests/test_common.py::test_estimators[GraphicalLasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_calibration.py::test_plot_calibration_curve_pipeline", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HDBSCAN(min_samples=1)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Lars()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LarsCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLars(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLarsCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LocallyLinearEmbedding(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MDS(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPRegressor(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MaxAbsScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchNMF(batch_size=10,fresh_restarts=True,max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NMF(max_iter=500)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NearestNeighbors()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NuSVR()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OPTICS()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneClassSVM()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrdinalEncoder()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PowerTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuantileTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RegressorChain(base_estimator=Ridge(),cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RobustScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SVR()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFdr(alpha=0.5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFpr()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFwe()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectKBest(k=1)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectPercentile()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SparsePCA(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SparseRandomProjection(n_components=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralEmbedding(eigen_tol=1e-05)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TfidfTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TheilSenRegressor(max_iter=5,max_subpopulation=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VarianceThreshold()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]", "sklearn/tests/test_common.py::test_check_param_validation[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_param_validation[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_set_output_transform[Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-148
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 1698e1e95..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -471,6 +471,11 @@ class Pipeline(_BaseComposition):\n or hasattr(self._final_estimator, \"fit_transform\")\n )\n \n+ @available_if(_can_fit_transform)\n+ @_fit_context(\n+ # estimators in Pipeline.steps are not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit the model and transform with the final estimator.\n \n@@ -510,6 +515,22 @@ class Pipeline(_BaseComposition):\n Xt : ndarray of shape (n_samples, n_transformed_features)\n Transformed samples.\n \"\"\"\n+ routed_params = self._check_method_params(method=\"fit_transform\", props=params)\n+ Xt = self._fit(X, y, routed_params)\n+\n+ last_step = self._final_estimator\n+ with _print_elapsed_time(\"Pipeline\", self._log_message(len(self.steps) - 1)):\n+ if last_step == \"passthrough\":\n+ return Xt\n+ last_step_params = routed_params[self.steps[-1][0]]\n+ if hasattr(last_step, \"fit_transform\"):\n+ return last_step.fit_transform(\n+ Xt, y, **last_step_params[\"fit_transform\"]\n+ )\n+ else:\n+ return last_step.fit(Xt, y, **last_step_params[\"fit\"]).transform(\n+ Xt, **last_step_params[\"transform\"]\n+ )\n \n @available_if(_final_estimator_has(\"predict\"))\n def predict(self, X, **params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..1698e1e95 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -471,11 +471,6 @@ class Pipeline(_BaseComposition):\n or hasattr(self._final_estimator, \"fit_transform\")\n )\n \n- @available_if(_can_fit_transform)\n- @_fit_context(\n- # estimators in Pipeline.steps are not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit the model and transform with the final estimator.\n \n@@ -515,22 +510,6 @@ class Pipeline(_BaseComposition):\n Xt : ndarray of shape (n_samples, n_transformed_features)\n Transformed samples.\n \"\"\"\n- routed_params = self._check_method_params(method=\"fit_transform\", props=params)\n- Xt = self._fit(X, y, routed_params)\n-\n- last_step = self._final_estimator\n- with _print_elapsed_time(\"Pipeline\", self._log_message(len(self.steps) - 1)):\n- if last_step == \"passthrough\":\n- return Xt\n- last_step_params = routed_params[self.steps[-1][0]]\n- if hasattr(last_step, \"fit_transform\"):\n- return last_step.fit_transform(\n- Xt, y, **last_step_params[\"fit_transform\"]\n- )\n- else:\n- return last_step.fit(Xt, y, **last_step_params[\"fit\"]).transform(\n- Xt, **last_step_params[\"transform\"]\n- )\n \n @available_if(_final_estimator_has(\"predict\"))\n def predict(self, X, **params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit the model and transform with the final estimator.\n\n Fit all the transformers one after the other and sequentially transform\n the data. Only valid if the final estimator either implements\n `fit_transform` or `fit` and `transform`.\n\n Parameters\n ----------\n X : iterable\n Training data. Must fulfill input requirements of first step of the\n pipeline.\n\n y : iterable, default=None\n Training targets. Must fulfill label requirements for all steps of\n the pipeline.\n\n **params : dict of str -> object\n - If `enable_metadata_routing=False` (default): Parameters passed to the\n ``fit`` method of each step, where each parameter name is prefixed such\n that parameter ``p`` for step ``s`` has key ``s__p``.\n\n - If `enable_metadata_routing=True`: Parameters requested and accepted by\n steps. Each step must have requested certain metadata for these parameters\n to be forwarded to them.\n\n .. versionchanged:: 1.4\n Parameters are now passed to the ``transform`` method of the\n intermediate steps as well, if requested, and if\n `enable_metadata_routing=True`.\n\n See :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n Xt : ndarray of shape (n_samples, n_transformed_features)\n Transformed samples.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Binarizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Birch(n_clusters=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DictionaryLearning(max_iter=20,transform_algorithm='lasso_lars')-check_pipeline_consistency]", "sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_vocabulary_pipeline", "sklearn/tests/test_pipeline.py::test_pipeline_transform", "sklearn/tests/test_pipeline.py::test_pipeline_fit_transform", "sklearn/tests/test_pipeline.py::test_set_pipeline_steps", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_pipeline.py::test_step_name_validation", "sklearn/tests/test_pipeline.py::test_verbose[est7-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit_transform]", "sklearn/tests/test_pipeline.py::test_verbose[est9-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit_transform]", "sklearn/tests/test_pipeline.py::test_verbose[est11-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit_transform]", "sklearn/tests/test_pipeline.py::test_pipeline_inverse_transform_Xt_deprecation", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[fit_transform]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[fit_transform]", "sklearn/tests/test_metadata_routing.py::test_unsetmetadatapassederror_correct_for_composite_methods", "sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer[float64]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[True-one-to-one-expected0]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_pipeline_consistency]", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[True-<lambda>-expected1]", "sklearn/preprocessing/tests/test_function_transformer.py::test_consistence_column_name_between_steps", "sklearn/tests/test_common.py::test_estimators[FeatureAgglomeration()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_pipeline_consistency]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_pipeline_consistency]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/tests/test_common.py::test_estimators[GaussianRandomProjection(n_components=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GenericUnivariateSelect()-check_pipeline_consistency]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_spectral_embedding", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_isomap", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_tsne", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LocallyLinearEmbedding(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MDS(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MaxAbsScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchNMF(batch_size=10,fresh_restarts=True,max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NMF(max_iter=500)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Nystroem()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneHotEncoder(handle_unknown='ignore')-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrdinalEncoder()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PowerTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuantileTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RobustScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFdr(alpha=0.5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFpr()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFwe()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectKBest(k=1)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectPercentile()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SparsePCA(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SparseRandomProjection(n_components=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralEmbedding(eigen_tol=1e-05)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TfidfTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VarianceThreshold()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_check_param_validation[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_param_validation[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_set_output_transform[Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-149
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 72ecc2626..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -1035,6 +1035,16 @@ class Pipeline(_BaseComposition):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n+ feature_names_out = input_features\n+ for _, name, transform in self._iter():\n+ if not hasattr(transform, \"get_feature_names_out\"):\n+ raise AttributeError(\n+ \"Estimator {} does not provide get_feature_names_out. \"\n+ \"Did you mean to call pipeline[:-1].get_feature_names_out\"\n+ \"()?\".format(name)\n+ )\n+ feature_names_out = transform.get_feature_names_out(feature_names_out)\n+ return feature_names_out\n \n @property\n def n_features_in_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..72ecc2626 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -1035,16 +1035,6 @@ class Pipeline(_BaseComposition):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n- feature_names_out = input_features\n- for _, name, transform in self._iter():\n- if not hasattr(transform, \"get_feature_names_out\"):\n- raise AttributeError(\n- \"Estimator {} does not provide get_feature_names_out. \"\n- \"Did you mean to call pipeline[:-1].get_feature_names_out\"\n- \"()?\".format(name)\n- )\n- feature_names_out = transform.get_feature_names_out(feature_names_out)\n- return feature_names_out\n \n @property\n def n_features_in_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n\n Transform input features using the pipeline.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Input features.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_features_names_passthrough", "sklearn/tests/test_pipeline.py::test_feature_names_count_vectorizer", "sklearn/tests/test_pipeline.py::test_pipeline_feature_names_out_error_without_definition", "sklearn/tests/test_pipeline.py::test_pipeline_get_feature_names_out_passes_names_through", "sklearn/tests/test_pipeline.py::test_pipeline_set_output_integration", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[True-one-to-one-expected0]", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[True-<lambda>-expected1]", "sklearn/preprocessing/tests/test_function_transformer.py::test_consistence_column_name_between_steps", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-150
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex ac66cf3da..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -877,6 +877,7 @@ class Pipeline(_BaseComposition):\n def _can_inverse_transform(self):\n return all(hasattr(t, \"inverse_transform\") for _, _, t in self._iter())\n \n+ @available_if(_can_inverse_transform)\n def inverse_transform(self, X=None, *, Xt=None, **params):\n \"\"\"Apply `inverse_transform` for each step in a reverse order.\n \n@@ -915,6 +916,17 @@ class Pipeline(_BaseComposition):\n Inverse transformed data, that is, data in the original feature\n space.\n \"\"\"\n+ _raise_for_params(params, self, \"inverse_transform\")\n+\n+ X = _deprecate_Xt_in_inverse_transform(X, Xt)\n+\n+ # we don't have to branch here, since params is only non-empty if\n+ # enable_metadata_routing=True.\n+ routed_params = process_routing(self, \"inverse_transform\", **params)\n+ reverse_iter = reversed(list(self._iter()))\n+ for _, name, transform in reverse_iter:\n+ X = transform.inverse_transform(X, **routed_params[name].inverse_transform)\n+ return X\n \n @available_if(_final_estimator_has(\"score\"))\n def score(self, X, y=None, sample_weight=None, **params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..ac66cf3da 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -877,7 +877,6 @@ class Pipeline(_BaseComposition):\n def _can_inverse_transform(self):\n return all(hasattr(t, \"inverse_transform\") for _, _, t in self._iter())\n \n- @available_if(_can_inverse_transform)\n def inverse_transform(self, X=None, *, Xt=None, **params):\n \"\"\"Apply `inverse_transform` for each step in a reverse order.\n \n@@ -916,17 +915,6 @@ class Pipeline(_BaseComposition):\n Inverse transformed data, that is, data in the original feature\n space.\n \"\"\"\n- _raise_for_params(params, self, \"inverse_transform\")\n-\n- X = _deprecate_Xt_in_inverse_transform(X, Xt)\n-\n- # we don't have to branch here, since params is only non-empty if\n- # enable_metadata_routing=True.\n- routed_params = process_routing(self, \"inverse_transform\", **params)\n- reverse_iter = reversed(list(self._iter()))\n- for _, name, transform in reverse_iter:\n- X = transform.inverse_transform(X, **routed_params[name].inverse_transform)\n- return X\n \n @available_if(_final_estimator_has(\"score\"))\n def score(self, X, y=None, sample_weight=None, **params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def inverse_transform(self, X=None, *, Xt=None, **params):\n \"\"\"Apply `inverse_transform` for each step in a reverse order.\n\n All estimators in the pipeline must support `inverse_transform`.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_transformed_features)\n Data samples, where ``n_samples`` is the number of samples and\n ``n_features`` is the number of features. Must fulfill\n input requirements of last step of pipeline's\n ``inverse_transform`` method.\n\n Xt : array-like of shape (n_samples, n_transformed_features)\n Data samples, where ``n_samples`` is the number of samples and\n ``n_features`` is the number of features. Must fulfill\n input requirements of last step of pipeline's\n ``inverse_transform`` method.\n\n .. deprecated:: 1.5\n `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.\n\n **params : dict of str -> object\n Parameters requested and accepted by steps. Each step must have\n requested certain metadata for these parameters to be forwarded to\n them.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n Xt : ndarray of shape (n_samples, n_features)\n Inverse transformed data, that is, data in the original feature\n space.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_pipeline_transform", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_pipeline.py::test_pipeline_ducktyping", "sklearn/tests/test_pipeline.py::test_pipeline_inverse_transform_Xt_deprecation", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[inverse_transform]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[inverse_transform]", "sklearn/tests/test_pipeline.py::test_routing_passed_metadata_not_supported[inverse_transform]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-151
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 8cd1e6f3e..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -532,6 +532,7 @@ class Pipeline(_BaseComposition):\n Xt, **last_step_params[\"transform\"]\n )\n \n+ @available_if(_final_estimator_has(\"predict\"))\n def predict(self, X, **params):\n \"\"\"Transform the data, and apply `predict` with the final estimator.\n \n@@ -574,6 +575,18 @@ class Pipeline(_BaseComposition):\n y_pred : ndarray\n Result of calling `predict` on the final estimator.\n \"\"\"\n+ Xt = X\n+\n+ if not _routing_enabled():\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt)\n+ return self.steps[-1][1].predict(Xt, **params)\n+\n+ # metadata routing enabled\n+ routed_params = process_routing(self, \"predict\", **params)\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt, **routed_params[name].transform)\n+ return self.steps[-1][1].predict(Xt, **routed_params[self.steps[-1][0]].predict)\n \n @available_if(_final_estimator_has(\"fit_predict\"))\n @_fit_context(\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..8cd1e6f3e 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -532,7 +532,6 @@ class Pipeline(_BaseComposition):\n Xt, **last_step_params[\"transform\"]\n )\n \n- @available_if(_final_estimator_has(\"predict\"))\n def predict(self, X, **params):\n \"\"\"Transform the data, and apply `predict` with the final estimator.\n \n@@ -575,18 +574,6 @@ class Pipeline(_BaseComposition):\n y_pred : ndarray\n Result of calling `predict` on the final estimator.\n \"\"\"\n- Xt = X\n-\n- if not _routing_enabled():\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt)\n- return self.steps[-1][1].predict(Xt, **params)\n-\n- # metadata routing enabled\n- routed_params = process_routing(self, \"predict\", **params)\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt, **routed_params[name].transform)\n- return self.steps[-1][1].predict(Xt, **routed_params[self.steps[-1][0]].predict)\n \n @available_if(_final_estimator_has(\"fit_predict\"))\n @_fit_context(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def predict(self, X, **params):\n \"\"\"Transform the data, and apply `predict` with the final estimator.\n\n Call `transform` of each transformer in the pipeline. The transformed\n data are finally passed to the final estimator that calls `predict`\n method. Only valid if the final estimator implements `predict`.\n\n Parameters\n ----------\n X : iterable\n Data to predict on. Must fulfill input requirements of first step\n of the pipeline.\n\n **params : dict of str -> object\n - If `enable_metadata_routing=False` (default): Parameters to the\n ``predict`` called at the end of all transformations in the pipeline.\n\n - If `enable_metadata_routing=True`: Parameters requested and accepted by\n steps. Each step must have requested certain metadata for these parameters\n to be forwarded to them.\n\n .. versionadded:: 0.20\n\n .. versionchanged:: 1.4\n Parameters are now passed to the ``transform`` method of the\n intermediate steps as well, if requested, and if\n `enable_metadata_routing=True` is set via\n :func:`~sklearn.set_config`.\n\n See :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Note that while this may be used to return uncertainties from some\n models with ``return_std`` or ``return_cov``, uncertainties that are\n generated by the transformations in the pipeline are not propagated\n to the final estimator.\n\n Returns\n -------\n y_pred : ndarray\n Result of calling `predict` on the final estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]", "sklearn/linear_model/tests/test_sgd.py::test_ocsvm_vs_sgdocsvm", "sklearn/preprocessing/tests/test_data.py::test_cv_pipeline_precomputed", "sklearn/neighbors/tests/test_neighbors.py::test_pipeline_with_nearest_neighbors_transformer", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-Lasso-params0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-LassoCV-params1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNetCV-params2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifier-params3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNet-params4]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNet-params5]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-Ridge-params6]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-LinearRegression-params7]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeCV-params8]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-Lasso-params0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-LassoCV-params1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNetCV-params2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifier-params3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNet-params4]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNet-params5]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-Ridge-params6]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-LinearRegression-params7]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeCV-params8]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifierCV-params9]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/tests/test_pipeline.py::test_pipeline_fit_params", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_pipeline.py::test_pipeline_ducktyping", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/tests/test_pipeline.py::test_pipeline_memory", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor]", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[predict]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[predict]", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-RandomizedSearchCV]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_noise_variance[True]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_noise_variance[False]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-clf]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputClassifier-LogisticRegression]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-column_transformer-clf]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputRegressor-Ridge]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingRegressor]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingRegressor-LinearRegression-X3-y3]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_regressor_with_missing_inputs", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVC", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVR", "sklearn/svm/_classes.py::sklearn.svm._classes.NuSVC", "sklearn/svm/_classes.py::sklearn.svm._classes.SVC", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_true", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_kneighbors_regressor", "sklearn/linear_model/_stochastic_gradient.py::sklearn.linear_model._stochastic_gradient.SGDClassifier", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-152
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 3b0398319..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -772,6 +772,7 @@ class Pipeline(_BaseComposition):\n Xt = transformer.transform(Xt)\n return self.steps[-1][1].score_samples(Xt)\n \n+ @available_if(_final_estimator_has(\"predict_log_proba\"))\n def predict_log_proba(self, X, **params):\n \"\"\"Transform the data, and apply `predict_log_proba` with the final estimator.\n \n@@ -810,6 +811,20 @@ class Pipeline(_BaseComposition):\n y_log_proba : ndarray of shape (n_samples, n_classes)\n Result of calling `predict_log_proba` on the final estimator.\n \"\"\"\n+ Xt = X\n+\n+ if not _routing_enabled():\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt)\n+ return self.steps[-1][1].predict_log_proba(Xt, **params)\n+\n+ # metadata routing enabled\n+ routed_params = process_routing(self, \"predict_log_proba\", **params)\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt, **routed_params[name].transform)\n+ return self.steps[-1][1].predict_log_proba(\n+ Xt, **routed_params[self.steps[-1][0]].predict_log_proba\n+ )\n \n def _can_transform(self):\n return self._final_estimator == \"passthrough\" or hasattr(\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..3b0398319 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -772,7 +772,6 @@ class Pipeline(_BaseComposition):\n Xt = transformer.transform(Xt)\n return self.steps[-1][1].score_samples(Xt)\n \n- @available_if(_final_estimator_has(\"predict_log_proba\"))\n def predict_log_proba(self, X, **params):\n \"\"\"Transform the data, and apply `predict_log_proba` with the final estimator.\n \n@@ -811,20 +810,6 @@ class Pipeline(_BaseComposition):\n y_log_proba : ndarray of shape (n_samples, n_classes)\n Result of calling `predict_log_proba` on the final estimator.\n \"\"\"\n- Xt = X\n-\n- if not _routing_enabled():\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt)\n- return self.steps[-1][1].predict_log_proba(Xt, **params)\n-\n- # metadata routing enabled\n- routed_params = process_routing(self, \"predict_log_proba\", **params)\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt, **routed_params[name].transform)\n- return self.steps[-1][1].predict_log_proba(\n- Xt, **routed_params[self.steps[-1][0]].predict_log_proba\n- )\n \n def _can_transform(self):\n return self._final_estimator == \"passthrough\" or hasattr(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def predict_log_proba(self, X, **params):\n \"\"\"Transform the data, and apply `predict_log_proba` with the final estimator.\n\n Call `transform` of each transformer in the pipeline. The transformed\n data are finally passed to the final estimator that calls\n `predict_log_proba` method. Only valid if the final estimator\n implements `predict_log_proba`.\n\n Parameters\n ----------\n X : iterable\n Data to predict on. Must fulfill input requirements of first step\n of the pipeline.\n\n **params : dict of str -> object\n - If `enable_metadata_routing=False` (default): Parameters to the\n `predict_log_proba` called at the end of all transformations in the\n pipeline.\n\n - If `enable_metadata_routing=True`: Parameters requested and accepted by\n steps. Each step must have requested certain metadata for these parameters\n to be forwarded to them.\n\n .. versionadded:: 0.20\n\n .. versionchanged:: 1.4\n Parameters are now passed to the ``transform`` method of the\n intermediate steps as well, if requested, and if\n `enable_metadata_routing=True`.\n\n See :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n y_log_proba : ndarray of shape (n_samples, n_classes)\n Result of calling `predict_log_proba` on the final estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_log_proba]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_pipeline.py::test_pipeline_memory", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[predict_log_proba]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[predict_log_proba]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-153
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 861f75457..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -649,6 +649,7 @@ class Pipeline(_BaseComposition):\n )\n return y_pred\n \n+ @available_if(_final_estimator_has(\"predict_proba\"))\n def predict_proba(self, X, **params):\n \"\"\"Transform the data, and apply `predict_proba` with the final estimator.\n \n@@ -686,6 +687,20 @@ class Pipeline(_BaseComposition):\n y_proba : ndarray of shape (n_samples, n_classes)\n Result of calling `predict_proba` on the final estimator.\n \"\"\"\n+ Xt = X\n+\n+ if not _routing_enabled():\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt)\n+ return self.steps[-1][1].predict_proba(Xt, **params)\n+\n+ # metadata routing enabled\n+ routed_params = process_routing(self, \"predict_proba\", **params)\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt, **routed_params[name].transform)\n+ return self.steps[-1][1].predict_proba(\n+ Xt, **routed_params[self.steps[-1][0]].predict_proba\n+ )\n \n @available_if(_final_estimator_has(\"decision_function\"))\n def decision_function(self, X, **params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..861f75457 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -649,7 +649,6 @@ class Pipeline(_BaseComposition):\n )\n return y_pred\n \n- @available_if(_final_estimator_has(\"predict_proba\"))\n def predict_proba(self, X, **params):\n \"\"\"Transform the data, and apply `predict_proba` with the final estimator.\n \n@@ -687,20 +686,6 @@ class Pipeline(_BaseComposition):\n y_proba : ndarray of shape (n_samples, n_classes)\n Result of calling `predict_proba` on the final estimator.\n \"\"\"\n- Xt = X\n-\n- if not _routing_enabled():\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt)\n- return self.steps[-1][1].predict_proba(Xt, **params)\n-\n- # metadata routing enabled\n- routed_params = process_routing(self, \"predict_proba\", **params)\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt, **routed_params[name].transform)\n- return self.steps[-1][1].predict_proba(\n- Xt, **routed_params[self.steps[-1][0]].predict_proba\n- )\n \n @available_if(_final_estimator_has(\"decision_function\"))\n def decision_function(self, X, **params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def predict_proba(self, X, **params):\n \"\"\"Transform the data, and apply `predict_proba` with the final estimator.\n\n Call `transform` of each transformer in the pipeline. The transformed\n data are finally passed to the final estimator that calls\n `predict_proba` method. Only valid if the final estimator implements\n `predict_proba`.\n\n Parameters\n ----------\n X : iterable\n Data to predict on. Must fulfill input requirements of first step\n of the pipeline.\n\n **params : dict of str -> object\n - If `enable_metadata_routing=False` (default): Parameters to the\n `predict_proba` called at the end of all transformations in the pipeline.\n\n - If `enable_metadata_routing=True`: Parameters requested and accepted by\n steps. Each step must have requested certain metadata for these parameters\n to be forwarded to them.\n\n .. versionadded:: 0.20\n\n .. versionchanged:: 1.4\n Parameters are now passed to the ``transform`` method of the\n intermediate steps as well, if requested, and if\n `enable_metadata_routing=True`.\n\n See :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n y_proba : ndarray of shape (n_samples, n_classes)\n Result of calling `predict_proba` on the final estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_pipeline", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[mask]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_proba]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_pipeline.py::test_pipeline_memory", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[predict_proba]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[predict_proba]", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf1]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf2]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf2]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf0]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_string_labels", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_calibration.py::test_plot_calibration_curve_pipeline", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-154
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 7dcb74cee..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -928,6 +928,7 @@ class Pipeline(_BaseComposition):\n X = transform.inverse_transform(X, **routed_params[name].inverse_transform)\n return X\n \n+ @available_if(_final_estimator_has(\"score\"))\n def score(self, X, y=None, sample_weight=None, **params):\n \"\"\"Transform the data, and apply `score` with the final estimator.\n \n@@ -964,6 +965,24 @@ class Pipeline(_BaseComposition):\n score : float\n Result of calling `score` on the final estimator.\n \"\"\"\n+ Xt = X\n+ if not _routing_enabled():\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt)\n+ score_params = {}\n+ if sample_weight is not None:\n+ score_params[\"sample_weight\"] = sample_weight\n+ return self.steps[-1][1].score(Xt, y, **score_params)\n+\n+ # metadata routing is enabled.\n+ routed_params = process_routing(\n+ self, \"score\", sample_weight=sample_weight, **params\n+ )\n+\n+ Xt = X\n+ for _, name, transform in self._iter(with_final=False):\n+ Xt = transform.transform(Xt, **routed_params[name].transform)\n+ return self.steps[-1][1].score(Xt, y, **routed_params[self.steps[-1][0]].score)\n \n @property\n def classes_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..7dcb74cee 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -928,7 +928,6 @@ class Pipeline(_BaseComposition):\n X = transform.inverse_transform(X, **routed_params[name].inverse_transform)\n return X\n \n- @available_if(_final_estimator_has(\"score\"))\n def score(self, X, y=None, sample_weight=None, **params):\n \"\"\"Transform the data, and apply `score` with the final estimator.\n \n@@ -965,24 +964,6 @@ class Pipeline(_BaseComposition):\n score : float\n Result of calling `score` on the final estimator.\n \"\"\"\n- Xt = X\n- if not _routing_enabled():\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt)\n- score_params = {}\n- if sample_weight is not None:\n- score_params[\"sample_weight\"] = sample_weight\n- return self.steps[-1][1].score(Xt, y, **score_params)\n-\n- # metadata routing is enabled.\n- routed_params = process_routing(\n- self, \"score\", sample_weight=sample_weight, **params\n- )\n-\n- Xt = X\n- for _, name, transform in self._iter(with_final=False):\n- Xt = transform.transform(Xt, **routed_params[name].transform)\n- return self.steps[-1][1].score(Xt, y, **routed_params[self.steps[-1][0]].score)\n \n @property\n def classes_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def score(self, X, y=None, sample_weight=None, **params):\n \"\"\"Transform the data, and apply `score` with the final estimator.\n\n Call `transform` of each transformer in the pipeline. The transformed\n data are finally passed to the final estimator that calls\n `score` method. Only valid if the final estimator implements `score`.\n\n Parameters\n ----------\n X : iterable\n Data to predict on. Must fulfill input requirements of first step\n of the pipeline.\n\n y : iterable, default=None\n Targets used for scoring. Must fulfill label requirements for all\n steps of the pipeline.\n\n sample_weight : array-like, default=None\n If not None, this argument is passed as ``sample_weight`` keyword\n argument to the ``score`` method of the final estimator.\n\n **params : dict of str -> object\n Parameters requested and accepted by steps. Each step must have\n requested certain metadata for these parameters to be forwarded to\n them.\n\n .. versionadded:: 1.4\n Only available if `enable_metadata_routing=True`. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n score : float\n Result of calling `score` on the final estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-DecisionTreeRegressor-0]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-DecisionTreeRegressor-0]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_pipeline_consistency]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/tests/test_pipeline.py::test_pipeline_init_tuple", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_supported", "sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_unsupported", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_pipeline_consistency]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/tests/test_pipeline.py::test_pipeline_memory", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor]", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_pipeline.py::test_metadata_routing_for_pipeline[score]", "sklearn/tests/test_pipeline.py::test_metadata_routing_error_for_pipeline[score]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_pipeline_consistency]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-None-10.0]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_pipeline_consistency]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-GridSearchCV]", "sklearn/neighbors/tests/test_kde.py::test_kde_pipeline_gridsearch", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-RandomizedSearchCV]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-0.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-auto]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/model_selection/tests/test_search.py::test_search_html_repr", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_pairwise", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[CCA]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[PLSCanonical]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[PLSRegression]", "sklearn/utils/tests/test_estimator_checks.py::test_xfail_ignored_in_check_estimator", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_pipeline_consistency]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/manifold/tests/test_locally_linear.py::test_pipeline", "sklearn/pipeline.py::sklearn.pipeline.Pipeline", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/tests/test_common.py::test_estimators[GraphicalLasso(max_iter=5)-check_pipeline_consistency]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Lars()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LarsCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLars(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLarsCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPRegressor(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NuSVR()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OAS()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuit()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OrthogonalMatchingPursuitCV(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RegressorChain(base_estimator=Ridge(),cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SVR()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TheilSenRegressor(max_iter=5,max_subpopulation=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-155
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex f693b356b..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -187,6 +187,54 @@ class PolynomialCountSketch(\n Returns the instance itself.\n \"\"\"\n \n+ check_is_fitted(self)\n+ X = validate_data(self, X, accept_sparse=\"csc\", reset=False)\n+\n+ X_gamma = np.sqrt(self.gamma) * X\n+\n+ if sp.issparse(X_gamma) and self.coef0 != 0:\n+ X_gamma = sp.hstack(\n+ [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))],\n+ format=\"csc\",\n+ )\n+\n+ elif not sp.issparse(X_gamma) and self.coef0 != 0:\n+ X_gamma = np.hstack(\n+ [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))]\n+ )\n+\n+ if X_gamma.shape[1] != self.indexHash_.shape[1]:\n+ raise ValueError(\n+ \"Number of features of test samples does not\"\n+ \" match that of training samples.\"\n+ )\n+\n+ count_sketches = np.zeros((X_gamma.shape[0], self.degree, self.n_components))\n+\n+ if sp.issparse(X_gamma):\n+ for j in range(X_gamma.shape[1]):\n+ for d in range(self.degree):\n+ iHashIndex = self.indexHash_[d, j]\n+ iHashBit = self.bitHash_[d, j]\n+ count_sketches[:, d, iHashIndex] += (\n+ (iHashBit * X_gamma[:, [j]]).toarray().ravel()\n+ )\n+\n+ else:\n+ for j in range(X_gamma.shape[1]):\n+ for d in range(self.degree):\n+ iHashIndex = self.indexHash_[d, j]\n+ iHashBit = self.bitHash_[d, j]\n+ count_sketches[:, d, iHashIndex] += iHashBit * X_gamma[:, j]\n+\n+ # For each same, compute a count sketch of phi(x) using the polynomial\n+ # multiplication (via FFT) of p count sketches of x.\n+ count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True)\n+ count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1)\n+ data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True))\n+\n+ return data_sketch\n+\n \n class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n \"\"\"Approximate a RBF kernel feature map using random Fourier features.\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..f693b356b 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -187,54 +187,6 @@ class PolynomialCountSketch(\n Returns the instance itself.\n \"\"\"\n \n- check_is_fitted(self)\n- X = validate_data(self, X, accept_sparse=\"csc\", reset=False)\n-\n- X_gamma = np.sqrt(self.gamma) * X\n-\n- if sp.issparse(X_gamma) and self.coef0 != 0:\n- X_gamma = sp.hstack(\n- [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))],\n- format=\"csc\",\n- )\n-\n- elif not sp.issparse(X_gamma) and self.coef0 != 0:\n- X_gamma = np.hstack(\n- [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))]\n- )\n-\n- if X_gamma.shape[1] != self.indexHash_.shape[1]:\n- raise ValueError(\n- \"Number of features of test samples does not\"\n- \" match that of training samples.\"\n- )\n-\n- count_sketches = np.zeros((X_gamma.shape[0], self.degree, self.n_components))\n-\n- if sp.issparse(X_gamma):\n- for j in range(X_gamma.shape[1]):\n- for d in range(self.degree):\n- iHashIndex = self.indexHash_[d, j]\n- iHashBit = self.bitHash_[d, j]\n- count_sketches[:, d, iHashIndex] += (\n- (iHashBit * X_gamma[:, [j]]).toarray().ravel()\n- )\n-\n- else:\n- for j in range(X_gamma.shape[1]):\n- for d in range(self.degree):\n- iHashIndex = self.indexHash_[d, j]\n- iHashBit = self.bitHash_[d, j]\n- count_sketches[:, d, iHashIndex] += iHashBit * X_gamma[:, j]\n-\n- # For each same, compute a count sketch of phi(x) using the polynomial\n- # multiplication (via FFT) of p count sketches of x.\n- count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True)\n- count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1)\n- data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True))\n-\n- return data_sketch\n-\n \n class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n \"\"\"Approximate a RBF kernel feature map using random Fourier features.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Generate the feature map approximation for X.\n\n Parameters\n ----------\n X : {array-like}, shape (n_samples, n_features)\n New data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n Returns\n -------\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-500-0.1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-500-1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-500-2.5]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-500-0.1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-500-1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-500-2.5]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-5000-0.1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-5000-1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-5000-2.5]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-500-0.1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-500-1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-500-2.5]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-500-0.1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-500-1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-500-2.5]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-5000-0.1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-5000-1]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-5000-2.5]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-1-0.1-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-1-0.1-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-1-1.0-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-1-1.0-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-2-0.1-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-2-0.1-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-2-1.0-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-2-1.0-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-3-0.1-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-3-0.1-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-3-1.0-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[0-3-1.0-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-1-0.1-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-1-0.1-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-1-1.0-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-1-1.0-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-2-0.1-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-2-0.1-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-2-1.0-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-2-1.0-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-3-0.1-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-3-0.1-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-3-1.0-csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_dense_sparse[2.5-3-1.0-csr_array]", "sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[PolynomialCountSketch]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.PolynomialCountSketch", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PolynomialCountSketch()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_set_output_transform[PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-PolynomialCountSketch()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-156
1.0
{ "code": "diff --git b/sklearn/preprocessing/_polynomial.py a/sklearn/preprocessing/_polynomial.py\nindex c0530d1e0..5a3239f11 100644\n--- b/sklearn/preprocessing/_polynomial.py\n+++ a/sklearn/preprocessing/_polynomial.py\n@@ -306,6 +306,7 @@ class PolynomialFeatures(TransformerMixin, BaseEstimator):\n feature_names.append(name)\n return np.asarray(feature_names, dtype=object)\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"\n Compute number of output features.\n@@ -323,6 +324,84 @@ class PolynomialFeatures(TransformerMixin, BaseEstimator):\n self : object\n Fitted transformer.\n \"\"\"\n+ _, n_features = validate_data(self, X, accept_sparse=True).shape\n+\n+ if isinstance(self.degree, Integral):\n+ if self.degree == 0 and not self.include_bias:\n+ raise ValueError(\n+ \"Setting degree to zero and include_bias to False would result in\"\n+ \" an empty output array.\"\n+ )\n+\n+ self._min_degree = 0\n+ self._max_degree = self.degree\n+ elif (\n+ isinstance(self.degree, collections.abc.Iterable) and len(self.degree) == 2\n+ ):\n+ self._min_degree, self._max_degree = self.degree\n+ if not (\n+ isinstance(self._min_degree, Integral)\n+ and isinstance(self._max_degree, Integral)\n+ and self._min_degree >= 0\n+ and self._min_degree <= self._max_degree\n+ ):\n+ raise ValueError(\n+ \"degree=(min_degree, max_degree) must \"\n+ \"be non-negative integers that fulfil \"\n+ \"min_degree <= max_degree, got \"\n+ f\"{self.degree}.\"\n+ )\n+ elif self._max_degree == 0 and not self.include_bias:\n+ raise ValueError(\n+ \"Setting both min_degree and max_degree to zero and include_bias to\"\n+ \" False would result in an empty output array.\"\n+ )\n+ else:\n+ raise ValueError(\n+ \"degree must be a non-negative int or tuple \"\n+ \"(min_degree, max_degree), got \"\n+ f\"{self.degree}.\"\n+ )\n+\n+ self.n_output_features_ = self._num_combinations(\n+ n_features=n_features,\n+ min_degree=self._min_degree,\n+ max_degree=self._max_degree,\n+ interaction_only=self.interaction_only,\n+ include_bias=self.include_bias,\n+ )\n+ if self.n_output_features_ > np.iinfo(np.intp).max:\n+ msg = (\n+ \"The output that would result from the current configuration would\"\n+ f\" have {self.n_output_features_} features which is too large to be\"\n+ f\" indexed by {np.intp().dtype.name}. Please change some or all of the\"\n+ \" following:\\n- The number of features in the input, currently\"\n+ f\" {n_features=}\\n- The range of degrees to calculate, currently\"\n+ f\" [{self._min_degree}, {self._max_degree}]\\n- Whether to include only\"\n+ f\" interaction terms, currently {self.interaction_only}\\n- Whether to\"\n+ f\" include a bias term, currently {self.include_bias}.\"\n+ )\n+ if (\n+ np.intp == np.int32\n+ and self.n_output_features_ <= np.iinfo(np.int64).max\n+ ): # pragma: nocover\n+ msg += (\n+ \"\\nNote that the current Python runtime has a limited 32 bit \"\n+ \"address space and that this configuration would have been \"\n+ \"admissible if run on a 64 bit Python runtime.\"\n+ )\n+ raise ValueError(msg)\n+ # We also record the number of output features for\n+ # _max_degree = 0\n+ self._n_out_full = self._num_combinations(\n+ n_features=n_features,\n+ min_degree=0,\n+ max_degree=self._max_degree,\n+ interaction_only=self.interaction_only,\n+ include_bias=self.include_bias,\n+ )\n+\n+ return self\n \n def transform(self, X):\n \"\"\"Transform data to polynomial features.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py\nindex 5a3239f11..c0530d1e0 100644\n--- a/sklearn/preprocessing/_polynomial.py\n+++ b/sklearn/preprocessing/_polynomial.py\n@@ -306,7 +306,6 @@ class PolynomialFeatures(TransformerMixin, BaseEstimator):\n feature_names.append(name)\n return np.asarray(feature_names, dtype=object)\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"\n Compute number of output features.\n@@ -324,84 +323,6 @@ class PolynomialFeatures(TransformerMixin, BaseEstimator):\n self : object\n Fitted transformer.\n \"\"\"\n- _, n_features = validate_data(self, X, accept_sparse=True).shape\n-\n- if isinstance(self.degree, Integral):\n- if self.degree == 0 and not self.include_bias:\n- raise ValueError(\n- \"Setting degree to zero and include_bias to False would result in\"\n- \" an empty output array.\"\n- )\n-\n- self._min_degree = 0\n- self._max_degree = self.degree\n- elif (\n- isinstance(self.degree, collections.abc.Iterable) and len(self.degree) == 2\n- ):\n- self._min_degree, self._max_degree = self.degree\n- if not (\n- isinstance(self._min_degree, Integral)\n- and isinstance(self._max_degree, Integral)\n- and self._min_degree >= 0\n- and self._min_degree <= self._max_degree\n- ):\n- raise ValueError(\n- \"degree=(min_degree, max_degree) must \"\n- \"be non-negative integers that fulfil \"\n- \"min_degree <= max_degree, got \"\n- f\"{self.degree}.\"\n- )\n- elif self._max_degree == 0 and not self.include_bias:\n- raise ValueError(\n- \"Setting both min_degree and max_degree to zero and include_bias to\"\n- \" False would result in an empty output array.\"\n- )\n- else:\n- raise ValueError(\n- \"degree must be a non-negative int or tuple \"\n- \"(min_degree, max_degree), got \"\n- f\"{self.degree}.\"\n- )\n-\n- self.n_output_features_ = self._num_combinations(\n- n_features=n_features,\n- min_degree=self._min_degree,\n- max_degree=self._max_degree,\n- interaction_only=self.interaction_only,\n- include_bias=self.include_bias,\n- )\n- if self.n_output_features_ > np.iinfo(np.intp).max:\n- msg = (\n- \"The output that would result from the current configuration would\"\n- f\" have {self.n_output_features_} features which is too large to be\"\n- f\" indexed by {np.intp().dtype.name}. Please change some or all of the\"\n- \" following:\\n- The number of features in the input, currently\"\n- f\" {n_features=}\\n- The range of degrees to calculate, currently\"\n- f\" [{self._min_degree}, {self._max_degree}]\\n- Whether to include only\"\n- f\" interaction terms, currently {self.interaction_only}\\n- Whether to\"\n- f\" include a bias term, currently {self.include_bias}.\"\n- )\n- if (\n- np.intp == np.int32\n- and self.n_output_features_ <= np.iinfo(np.int64).max\n- ): # pragma: nocover\n- msg += (\n- \"\\nNote that the current Python runtime has a limited 32 bit \"\n- \"address space and that this configuration would have been \"\n- \"admissible if run on a 64 bit Python runtime.\"\n- )\n- raise ValueError(msg)\n- # We also record the number of output features for\n- # _max_degree = 0\n- self._n_out_full = self._num_combinations(\n- n_features=n_features,\n- min_degree=0,\n- max_degree=self._max_degree,\n- interaction_only=self.interaction_only,\n- include_bias=self.include_bias,\n- )\n-\n- return self\n \n def transform(self, X):\n \"\"\"Transform data to polynomial features.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_polynomial.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"\n Compute number of output features.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The data.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n Fitted transformer.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_and_spline_array_order[PolynomialFeatures]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params0-degree=\\\\(min_degree, max_degree\\\\) must]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params1-degree=\\\\(min_degree, max_degree\\\\) must]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params2-degree=\\\\(min_degree, max_degree\\\\) must]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params3-int or tuple \\\\(min_degree, max_degree\\\\)]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-3-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-3-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-3-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-3-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[None-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree7-False-True-indices7]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-3-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-3-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-3-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-3-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_array-degree7-False-True-indices7]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-False-False-indices1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-False-True-indices3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree6-True-True-indices6]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-3-True-False-indices0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-3-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-3-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-3-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_array-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-2-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-2-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-2-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-2-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-3-True-False-indices8]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-3-False-False-indices9]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-3-True-True-indices10]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-3-False-True-indices11]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree12-True-False-indices12]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree13-False-False-indices13]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree14-True-True-indices14]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree15-False-True-indices15]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree16-True-False-indices16]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree17-False-False-indices17]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree18-True-True-indices18]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[None-degree19-False-True-indices19]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-True-False-indices8]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-False-False-indices9]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-True-True-indices10]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-False-True-indices11]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree12-True-False-indices12]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree13-False-False-indices13]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree14-True-True-indices14]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree15-False-True-indices15]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree16-True-False-indices16]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree17-False-False-indices17]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree18-True-True-indices18]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree19-False-True-indices19]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-2-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-2-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-2-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-2-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-3-True-False-indices8]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-3-False-False-indices9]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-3-True-True-indices10]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-3-False-True-indices11]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree12-True-False-indices12]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree13-False-False-indices13]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree14-True-True-indices14]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree15-False-True-indices15]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree16-True-False-indices16]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree17-False-False-indices17]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree18-True-True-indices18]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_array-degree19-False-True-indices19]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-True-False-indices8]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-False-False-indices9]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-True-True-indices10]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-False-True-indices11]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree12-True-False-indices12]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree13-False-False-indices13]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree14-True-True-indices14]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree15-False-True-indices15]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree16-True-False-indices16]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree17-False-False-indices17]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree18-True-True-indices18]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree19-False-True-indices19]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-2-True-False-indices0]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-2-False-False-indices1]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-2-True-True-indices2]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-2-False-True-indices3]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree4-True-False-indices4]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree5-False-False-indices5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree6-True-True-indices6]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree7-False-True-indices7]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-3-True-False-indices8]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-3-False-False-indices9]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-3-True-True-indices10]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-3-False-True-indices11]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree12-True-False-indices12]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree13-False-False-indices13]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree14-True-True-indices14]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree15-False-True-indices15]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree16-True-False-indices16]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree17-False-False-indices17]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree18-True-True-indices18]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_array-degree19-False-True-indices19]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_feature_names", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-1-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-2-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-2-True-False-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-2-True-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-3-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-3-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-4-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_matrix-4-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-1-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-2-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-2-True-False-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-2-True-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-3-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-3-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-4-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[csc_array-4-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_matrix-1-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_matrix-2-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_matrix-2-True-False-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_matrix-2-True-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_matrix-3-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_matrix-3-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_array-1-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_array-2-True-False-int]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_array-2-True-False-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_array-2-True-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_array-3-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[csr_array-3-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-True-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-True-False-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-True-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_matrix-False-False-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-True-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-True-False-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-True-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-1-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-1-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-1-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-2-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-2-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-2-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-1-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-1-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-1-3-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-0-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-3-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-3-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[csr_array-False-False-3-4-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_matrix-2-True-False-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_matrix-2-True-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_matrix-3-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_matrix-3-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_array-2-True-False-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_array-2-True-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_array-3-False-False-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[csr_array-3-False-True-float64]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-0-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-1-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-2-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-0-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-1-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-2-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-0-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-1-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-2-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-0-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-1-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_matrix-2-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-0-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-1-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-2-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-0-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-1-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-2-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-0-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-1-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-2-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-0-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-1-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[csr_array-2-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_matrix-True-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_matrix-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_matrix-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_matrix-False-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_array-True-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_array-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_array-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[csr_array-False-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-2-1-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-2-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-3-1-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-3-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-3-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-2-1-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-2-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-3-1-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-3-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_matrix-3-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-2-1-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-2-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-3-1-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-3-2-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-3-3-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-2-1-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-2-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-3-1-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-3-2-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[csr_array-3-3-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_matrix-True-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_matrix-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_matrix-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_matrix-False-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_array-True-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_array-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_array-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow_non_regression[csr_array-False-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-True-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-True-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-True-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-True-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-True-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-False-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-False-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-False-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-False-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-True-False-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-True-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-True-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-True-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-True-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-True-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-False-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-False-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-False-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-False-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_matrix-False-False-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-True-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-True-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-True-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-True-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-True-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-False-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-False-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-False-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-False-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-True-False-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-True-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-True-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-True-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-True-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-True-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-False-2-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-False-3-2344]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-False-2-3037000500]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-False-3-65535]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_index_overflow[csr_array-False-False-2-3037000499]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_matrix-True-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_matrix-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_matrix-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_matrix-False-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_array-True-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_array-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_array-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_too_large_to_index[csr_array-False-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_behaviour_on_zero_degree[csr_matrix]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_behaviour_on_zero_degree[csr_array]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_behaviour_on_zero_degree[csc_matrix]", "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_behaviour_on_zero_degree[csc_array]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_windows_fail[csr_matrix]", "sklearn/preprocessing/tests/test_polynomial.py::test_csr_polynomial_expansion_windows_fail[csr_array]", "sklearn/preprocessing/_polynomial.py::sklearn.preprocessing._polynomial.PolynomialFeatures", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[PolynomialFeatures()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PolynomialFeatures()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PolynomialFeatures()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[PolynomialFeatures()]", "sklearn/tests/test_common.py::test_check_param_validation[PolynomialFeatures()]", "sklearn/tests/test_common.py::test_set_output_transform[PolynomialFeatures()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-PolynomialFeatures()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-PolynomialFeatures()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-157
1.0
{ "code": "diff --git b/sklearn/discriminant_analysis.py a/sklearn/discriminant_analysis.py\nindex 74ada12ce..69339491d 100644\n--- b/sklearn/discriminant_analysis.py\n+++ a/sklearn/discriminant_analysis.py\n@@ -878,6 +878,7 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):\n self.store_covariance = store_covariance\n self.tol = tol\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data and parameters.\n \n@@ -902,6 +903,61 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ X, y = validate_data(self, X, y)\n+ check_classification_targets(y)\n+ self.classes_, y = np.unique(y, return_inverse=True)\n+ n_samples, n_features = X.shape\n+ n_classes = len(self.classes_)\n+ if n_classes < 2:\n+ raise ValueError(\n+ \"The number of classes has to be greater than one; got %d class\"\n+ % (n_classes)\n+ )\n+ if self.priors is None:\n+ self.priors_ = np.bincount(y) / float(n_samples)\n+ else:\n+ self.priors_ = np.array(self.priors)\n+\n+ cov = None\n+ store_covariance = self.store_covariance\n+ if store_covariance:\n+ cov = []\n+ means = []\n+ scalings = []\n+ rotations = []\n+ for ind in range(n_classes):\n+ Xg = X[y == ind, :]\n+ meang = Xg.mean(0)\n+ means.append(meang)\n+ if len(Xg) == 1:\n+ raise ValueError(\n+ \"y has only 1 sample in class %s, covariance is ill defined.\"\n+ % str(self.classes_[ind])\n+ )\n+ Xgc = Xg - meang\n+ # Xgc = U * S * V.T\n+ _, S, Vt = np.linalg.svd(Xgc, full_matrices=False)\n+ S2 = (S**2) / (len(Xg) - 1)\n+ S2 = ((1 - self.reg_param) * S2) + self.reg_param\n+ rank = np.sum(S2 > self.tol)\n+ if rank < n_features:\n+ warnings.warn(\n+ f\"The covariance matrix of class {ind} is not full rank. \"\n+ \"Increasing the value of parameter `reg_param` might help\"\n+ \" reducing the collinearity.\",\n+ linalg.LinAlgWarning,\n+ )\n+ if self.store_covariance or store_covariance:\n+ # cov = V * (S^2 / (n-1)) * V.T\n+ cov.append(np.dot(S2 * Vt.T, Vt))\n+ scalings.append(S2)\n+ rotations.append(Vt.T)\n+ if self.store_covariance or store_covariance:\n+ self.covariance_ = cov\n+ self.means_ = np.asarray(means)\n+ self.scalings_ = scalings\n+ self.rotations_ = rotations\n+ return self\n \n def _decision_function(self, X):\n # return log posterior, see eq (4.12) p. 110 of the ESL.\n", "test": null }
null
{ "code": "diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py\nindex 69339491d..74ada12ce 100644\n--- a/sklearn/discriminant_analysis.py\n+++ b/sklearn/discriminant_analysis.py\n@@ -878,7 +878,6 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):\n self.store_covariance = store_covariance\n self.tol = tol\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data and parameters.\n \n@@ -903,61 +902,6 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- X, y = validate_data(self, X, y)\n- check_classification_targets(y)\n- self.classes_, y = np.unique(y, return_inverse=True)\n- n_samples, n_features = X.shape\n- n_classes = len(self.classes_)\n- if n_classes < 2:\n- raise ValueError(\n- \"The number of classes has to be greater than one; got %d class\"\n- % (n_classes)\n- )\n- if self.priors is None:\n- self.priors_ = np.bincount(y) / float(n_samples)\n- else:\n- self.priors_ = np.array(self.priors)\n-\n- cov = None\n- store_covariance = self.store_covariance\n- if store_covariance:\n- cov = []\n- means = []\n- scalings = []\n- rotations = []\n- for ind in range(n_classes):\n- Xg = X[y == ind, :]\n- meang = Xg.mean(0)\n- means.append(meang)\n- if len(Xg) == 1:\n- raise ValueError(\n- \"y has only 1 sample in class %s, covariance is ill defined.\"\n- % str(self.classes_[ind])\n- )\n- Xgc = Xg - meang\n- # Xgc = U * S * V.T\n- _, S, Vt = np.linalg.svd(Xgc, full_matrices=False)\n- S2 = (S**2) / (len(Xg) - 1)\n- S2 = ((1 - self.reg_param) * S2) + self.reg_param\n- rank = np.sum(S2 > self.tol)\n- if rank < n_features:\n- warnings.warn(\n- f\"The covariance matrix of class {ind} is not full rank. \"\n- \"Increasing the value of parameter `reg_param` might help\"\n- \" reducing the collinearity.\",\n- linalg.LinAlgWarning,\n- )\n- if self.store_covariance or store_covariance:\n- # cov = V * (S^2 / (n-1)) * V.T\n- cov.append(np.dot(S2 * Vt.T, Vt))\n- scalings.append(S2)\n- rotations.append(Vt.T)\n- if self.store_covariance or store_covariance:\n- self.covariance_ = cov\n- self.means_ = np.asarray(means)\n- self.scalings_ = scalings\n- self.rotations_ = rotations\n- return self\n \n def _decision_function(self, X):\n # return log posterior, see eq (4.12) p. 110 of the ESL.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/discriminant_analysis.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data and parameters.\n\n .. versionchanged:: 0.19\n ``store_covariances`` has been moved to main constructor as\n ``store_covariance``.\n\n .. versionchanged:: 0.19\n ``tol`` has been moved to main constructor.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target values (integers).\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_discriminant_analysis.py::test_qda", "sklearn/tests/test_discriminant_analysis.py::test_qda_priors", "sklearn/tests/test_discriminant_analysis.py::test_qda_prior_type[list]", "sklearn/tests/test_discriminant_analysis.py::test_qda_prior_type[tuple]", "sklearn/tests/test_discriminant_analysis.py::test_qda_prior_type[array]", "sklearn/tests/test_discriminant_analysis.py::test_qda_prior_copy", "sklearn/tests/test_discriminant_analysis.py::test_qda_store_covariance", "sklearn/tests/test_discriminant_analysis.py::test_qda_regularization", "sklearn/discriminant_analysis.py::sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[QuadraticDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[QuadraticDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_check_param_validation[QuadraticDiscriminantAnalysis()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-158
1.0
{ "code": "diff --git b/sklearn/linear_model/_quantile.py a/sklearn/linear_model/_quantile.py\nindex d6e8002f4..883a41558 100644\n--- b/sklearn/linear_model/_quantile.py\n+++ a/sklearn/linear_model/_quantile.py\n@@ -139,6 +139,7 @@ class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self.solver = solver\n self.solver_options = solver_options\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n \n@@ -158,3 +159,138 @@ class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self : object\n Returns self.\n \"\"\"\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=[\"csc\", \"csr\", \"coo\"],\n+ y_numeric=True,\n+ multi_output=False,\n+ )\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+\n+ n_features = X.shape[1]\n+ n_params = n_features\n+\n+ if self.fit_intercept:\n+ n_params += 1\n+ # Note that centering y and X with _preprocess_data does not work\n+ # for quantile regression.\n+\n+ # The objective is defined as 1/n * sum(pinball loss) + alpha * L1.\n+ # So we rescale the penalty term, which is equivalent.\n+ alpha = np.sum(sample_weight) * self.alpha\n+\n+ if self.solver == \"interior-point\" and sp_version >= parse_version(\"1.11.0\"):\n+ raise ValueError(\n+ f\"Solver {self.solver} is not anymore available in SciPy >= 1.11.0.\"\n+ )\n+\n+ if sparse.issparse(X) and self.solver not in [\"highs\", \"highs-ds\", \"highs-ipm\"]:\n+ raise ValueError(\n+ f\"Solver {self.solver} does not support sparse X. \"\n+ \"Use solver 'highs' for example.\"\n+ )\n+ # make default solver more stable\n+ if self.solver_options is None and self.solver == \"interior-point\":\n+ solver_options = {\"lstsq\": True}\n+ else:\n+ solver_options = self.solver_options\n+\n+ # After rescaling alpha, the minimization problem is\n+ # min sum(pinball loss) + alpha * L1\n+ # Use linear programming formulation of quantile regression\n+ # min_x c x\n+ # A_eq x = b_eq\n+ # 0 <= x\n+ # x = (s0, s, t0, t, u, v) = slack variables >= 0\n+ # intercept = s0 - t0\n+ # coef = s - t\n+ # c = (0, alpha * 1_p, 0, alpha * 1_p, quantile * 1_n, (1-quantile) * 1_n)\n+ # residual = y - X@coef - intercept = u - v\n+ # A_eq = (1_n, X, -1_n, -X, diag(1_n), -diag(1_n))\n+ # b_eq = y\n+ # p = n_features\n+ # n = n_samples\n+ # 1_n = vector of length n with entries equal one\n+ # see https://stats.stackexchange.com/questions/384909/\n+ #\n+ # Filtering out zero sample weights from the beginning makes life\n+ # easier for the linprog solver.\n+ indices = np.nonzero(sample_weight)[0]\n+ n_indices = len(indices) # use n_mask instead of n_samples\n+ if n_indices < len(sample_weight):\n+ sample_weight = sample_weight[indices]\n+ X = _safe_indexing(X, indices)\n+ y = _safe_indexing(y, indices)\n+ c = np.concatenate(\n+ [\n+ np.full(2 * n_params, fill_value=alpha),\n+ sample_weight * self.quantile,\n+ sample_weight * (1 - self.quantile),\n+ ]\n+ )\n+ if self.fit_intercept:\n+ # do not penalize the intercept\n+ c[0] = 0\n+ c[n_params] = 0\n+\n+ if self.solver in [\"highs\", \"highs-ds\", \"highs-ipm\"]:\n+ # Note that highs methods always use a sparse CSC memory layout internally,\n+ # even for optimization problems parametrized using dense numpy arrays.\n+ # Therefore, we work with CSC matrices as early as possible to limit\n+ # unnecessary repeated memory copies.\n+ eye = sparse.eye(n_indices, dtype=X.dtype, format=\"csc\")\n+ if self.fit_intercept:\n+ ones = sparse.csc_matrix(np.ones(shape=(n_indices, 1), dtype=X.dtype))\n+ A_eq = sparse.hstack([ones, X, -ones, -X, eye, -eye], format=\"csc\")\n+ else:\n+ A_eq = sparse.hstack([X, -X, eye, -eye], format=\"csc\")\n+ else:\n+ eye = np.eye(n_indices)\n+ if self.fit_intercept:\n+ ones = np.ones((n_indices, 1))\n+ A_eq = np.concatenate([ones, X, -ones, -X, eye, -eye], axis=1)\n+ else:\n+ A_eq = np.concatenate([X, -X, eye, -eye], axis=1)\n+\n+ b_eq = y\n+\n+ result = linprog(\n+ c=c,\n+ A_eq=A_eq,\n+ b_eq=b_eq,\n+ method=self.solver,\n+ options=solver_options,\n+ )\n+ solution = result.x\n+ if not result.success:\n+ failure = {\n+ 1: \"Iteration limit reached.\",\n+ 2: \"Problem appears to be infeasible.\",\n+ 3: \"Problem appears to be unbounded.\",\n+ 4: \"Numerical difficulties encountered.\",\n+ }\n+ warnings.warn(\n+ \"Linear programming for QuantileRegressor did not succeed.\\n\"\n+ f\"Status is {result.status}: \"\n+ + failure.setdefault(result.status, \"unknown reason\")\n+ + \"\\n\"\n+ + \"Result message of linprog:\\n\"\n+ + result.message,\n+ ConvergenceWarning,\n+ )\n+\n+ # positive slack - negative slack\n+ # solution is an array with (params_pos, params_neg, u, v)\n+ params = solution[:n_params] - solution[n_params : 2 * n_params]\n+\n+ self.n_iter_ = result.nit\n+\n+ if self.fit_intercept:\n+ self.coef_ = params[1:]\n+ self.intercept_ = params[0]\n+ else:\n+ self.coef_ = params\n+ self.intercept_ = 0.0\n+ return self\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_quantile.py b/sklearn/linear_model/_quantile.py\nindex 883a41558..d6e8002f4 100644\n--- a/sklearn/linear_model/_quantile.py\n+++ b/sklearn/linear_model/_quantile.py\n@@ -139,7 +139,6 @@ class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self.solver = solver\n self.solver_options = solver_options\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n \n@@ -159,138 +158,3 @@ class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self : object\n Returns self.\n \"\"\"\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=[\"csc\", \"csr\", \"coo\"],\n- y_numeric=True,\n- multi_output=False,\n- )\n- sample_weight = _check_sample_weight(sample_weight, X)\n-\n- n_features = X.shape[1]\n- n_params = n_features\n-\n- if self.fit_intercept:\n- n_params += 1\n- # Note that centering y and X with _preprocess_data does not work\n- # for quantile regression.\n-\n- # The objective is defined as 1/n * sum(pinball loss) + alpha * L1.\n- # So we rescale the penalty term, which is equivalent.\n- alpha = np.sum(sample_weight) * self.alpha\n-\n- if self.solver == \"interior-point\" and sp_version >= parse_version(\"1.11.0\"):\n- raise ValueError(\n- f\"Solver {self.solver} is not anymore available in SciPy >= 1.11.0.\"\n- )\n-\n- if sparse.issparse(X) and self.solver not in [\"highs\", \"highs-ds\", \"highs-ipm\"]:\n- raise ValueError(\n- f\"Solver {self.solver} does not support sparse X. \"\n- \"Use solver 'highs' for example.\"\n- )\n- # make default solver more stable\n- if self.solver_options is None and self.solver == \"interior-point\":\n- solver_options = {\"lstsq\": True}\n- else:\n- solver_options = self.solver_options\n-\n- # After rescaling alpha, the minimization problem is\n- # min sum(pinball loss) + alpha * L1\n- # Use linear programming formulation of quantile regression\n- # min_x c x\n- # A_eq x = b_eq\n- # 0 <= x\n- # x = (s0, s, t0, t, u, v) = slack variables >= 0\n- # intercept = s0 - t0\n- # coef = s - t\n- # c = (0, alpha * 1_p, 0, alpha * 1_p, quantile * 1_n, (1-quantile) * 1_n)\n- # residual = y - X@coef - intercept = u - v\n- # A_eq = (1_n, X, -1_n, -X, diag(1_n), -diag(1_n))\n- # b_eq = y\n- # p = n_features\n- # n = n_samples\n- # 1_n = vector of length n with entries equal one\n- # see https://stats.stackexchange.com/questions/384909/\n- #\n- # Filtering out zero sample weights from the beginning makes life\n- # easier for the linprog solver.\n- indices = np.nonzero(sample_weight)[0]\n- n_indices = len(indices) # use n_mask instead of n_samples\n- if n_indices < len(sample_weight):\n- sample_weight = sample_weight[indices]\n- X = _safe_indexing(X, indices)\n- y = _safe_indexing(y, indices)\n- c = np.concatenate(\n- [\n- np.full(2 * n_params, fill_value=alpha),\n- sample_weight * self.quantile,\n- sample_weight * (1 - self.quantile),\n- ]\n- )\n- if self.fit_intercept:\n- # do not penalize the intercept\n- c[0] = 0\n- c[n_params] = 0\n-\n- if self.solver in [\"highs\", \"highs-ds\", \"highs-ipm\"]:\n- # Note that highs methods always use a sparse CSC memory layout internally,\n- # even for optimization problems parametrized using dense numpy arrays.\n- # Therefore, we work with CSC matrices as early as possible to limit\n- # unnecessary repeated memory copies.\n- eye = sparse.eye(n_indices, dtype=X.dtype, format=\"csc\")\n- if self.fit_intercept:\n- ones = sparse.csc_matrix(np.ones(shape=(n_indices, 1), dtype=X.dtype))\n- A_eq = sparse.hstack([ones, X, -ones, -X, eye, -eye], format=\"csc\")\n- else:\n- A_eq = sparse.hstack([X, -X, eye, -eye], format=\"csc\")\n- else:\n- eye = np.eye(n_indices)\n- if self.fit_intercept:\n- ones = np.ones((n_indices, 1))\n- A_eq = np.concatenate([ones, X, -ones, -X, eye, -eye], axis=1)\n- else:\n- A_eq = np.concatenate([X, -X, eye, -eye], axis=1)\n-\n- b_eq = y\n-\n- result = linprog(\n- c=c,\n- A_eq=A_eq,\n- b_eq=b_eq,\n- method=self.solver,\n- options=solver_options,\n- )\n- solution = result.x\n- if not result.success:\n- failure = {\n- 1: \"Iteration limit reached.\",\n- 2: \"Problem appears to be infeasible.\",\n- 3: \"Problem appears to be unbounded.\",\n- 4: \"Numerical difficulties encountered.\",\n- }\n- warnings.warn(\n- \"Linear programming for QuantileRegressor did not succeed.\\n\"\n- f\"Status is {result.status}: \"\n- + failure.setdefault(result.status, \"unknown reason\")\n- + \"\\n\"\n- + \"Result message of linprog:\\n\"\n- + result.message,\n- ConvergenceWarning,\n- )\n-\n- # positive slack - negative slack\n- # solution is an array with (params_pos, params_neg, u, v)\n- params = solution[:n_params] - solution[n_params : 2 * n_params]\n-\n- self.n_iter_ = result.nit\n-\n- if self.fit_intercept:\n- self.coef_ = params[1:]\n- self.intercept_ = params[0]\n- else:\n- self.coef_ = params\n- self.intercept_ = 0.0\n- return self\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_quantile.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-0-1-None]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.51-0-1-10]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.49-0-1-1]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-0.01-1-1]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-100-2-0]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[True]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[False]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.5]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.9]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.05]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_sample_weight", "sklearn/linear_model/tests/test_quantile.py::test_asymmetric_error[0.2]", "sklearn/linear_model/tests/test_quantile.py::test_asymmetric_error[0.5]", "sklearn/linear_model/tests/test_quantile.py::test_asymmetric_error[0.8]", "sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.2]", "sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.5]", "sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.8]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csc_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csc_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csr_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-coo_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-coo_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csc_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csc_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csr_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-coo_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-coo_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csc_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csc_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csr_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-coo_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-coo_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csc_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csc_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csr_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-coo_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-coo_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csc_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csc_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csr_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-coo_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-coo_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csc_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csc_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csr_array]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-coo_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-coo_array]", "sklearn/linear_model/tests/test_quantile.py::test_error_interior_point_future", "sklearn/linear_model/_quantile.py::sklearn.linear_model._quantile.QuantileRegressor", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[QuantileRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[QuantileRegressor()]", "sklearn/tests/test_common.py::test_check_param_validation[QuantileRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-159
1.0
{ "code": "diff --git b/sklearn/linear_model/_ransac.py a/sklearn/linear_model/_ransac.py\nindex b604e9a0f..f3144f7e7 100644\n--- b/sklearn/linear_model/_ransac.py\n+++ a/sklearn/linear_model/_ransac.py\n@@ -314,6 +314,14 @@ class RANSACRegressor(\n self.random_state = random_state\n self.loss = loss\n \n+ @_fit_context(\n+ # RansacRegressor.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n+ # TODO(1.7): remove `sample_weight` from the signature after deprecation\n+ # cycle; for backwards compatibility: pop it from `fit_params` before the\n+ # `_raise_for_params` check and reinsert it after the check\n+ @_deprecate_positional_args(version=\"1.7\")\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit estimator using RANSAC algorithm.\n \n@@ -355,6 +363,247 @@ class RANSACRegressor(\n `is_data_valid` and `is_model_valid` return False for all\n `max_trials` randomly chosen sub-samples.\n \"\"\"\n+ # Need to validate separately here. We can't pass multi_output=True\n+ # because that would allow y to be csr. Delay expensive finiteness\n+ # check to the estimator's own input validation.\n+ _raise_for_params(fit_params, self, \"fit\")\n+ check_X_params = dict(accept_sparse=\"csr\", ensure_all_finite=False)\n+ check_y_params = dict(ensure_2d=False)\n+ X, y = validate_data(\n+ self, X, y, validate_separately=(check_X_params, check_y_params)\n+ )\n+ check_consistent_length(X, y)\n+\n+ if self.estimator is not None:\n+ estimator = clone(self.estimator)\n+ else:\n+ estimator = LinearRegression()\n+\n+ if self.min_samples is None:\n+ if not isinstance(estimator, LinearRegression):\n+ raise ValueError(\n+ \"`min_samples` needs to be explicitly set when estimator \"\n+ \"is not a LinearRegression.\"\n+ )\n+ min_samples = X.shape[1] + 1\n+ elif 0 < self.min_samples < 1:\n+ min_samples = np.ceil(self.min_samples * X.shape[0])\n+ elif self.min_samples >= 1:\n+ min_samples = self.min_samples\n+ if min_samples > X.shape[0]:\n+ raise ValueError(\n+ \"`min_samples` may not be larger than number \"\n+ \"of samples: n_samples = %d.\" % (X.shape[0])\n+ )\n+\n+ if self.residual_threshold is None:\n+ # MAD (median absolute deviation)\n+ residual_threshold = np.median(np.abs(y - np.median(y)))\n+ else:\n+ residual_threshold = self.residual_threshold\n+\n+ if self.loss == \"absolute_error\":\n+ if y.ndim == 1:\n+ loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)\n+ else:\n+ loss_function = lambda y_true, y_pred: np.sum(\n+ np.abs(y_true - y_pred), axis=1\n+ )\n+ elif self.loss == \"squared_error\":\n+ if y.ndim == 1:\n+ loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2\n+ else:\n+ loss_function = lambda y_true, y_pred: np.sum(\n+ (y_true - y_pred) ** 2, axis=1\n+ )\n+\n+ elif callable(self.loss):\n+ loss_function = self.loss\n+\n+ random_state = check_random_state(self.random_state)\n+\n+ try: # Not all estimator accept a random_state\n+ estimator.set_params(random_state=random_state)\n+ except ValueError:\n+ pass\n+\n+ estimator_fit_has_sample_weight = has_fit_parameter(estimator, \"sample_weight\")\n+ estimator_name = type(estimator).__name__\n+ if sample_weight is not None and not estimator_fit_has_sample_weight:\n+ raise ValueError(\n+ \"%s does not support sample_weight. Sample\"\n+ \" weights are only used for the calibration\"\n+ \" itself.\" % estimator_name\n+ )\n+\n+ if sample_weight is not None:\n+ fit_params[\"sample_weight\"] = sample_weight\n+\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit\", **fit_params)\n+ else:\n+ routed_params = Bunch()\n+ routed_params.estimator = Bunch(fit={}, predict={}, score={})\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+ routed_params.estimator.fit = {\"sample_weight\": sample_weight}\n+\n+ n_inliers_best = 1\n+ score_best = -np.inf\n+ inlier_mask_best = None\n+ X_inlier_best = None\n+ y_inlier_best = None\n+ inlier_best_idxs_subset = None\n+ self.n_skips_no_inliers_ = 0\n+ self.n_skips_invalid_data_ = 0\n+ self.n_skips_invalid_model_ = 0\n+\n+ # number of data samples\n+ n_samples = X.shape[0]\n+ sample_idxs = np.arange(n_samples)\n+\n+ self.n_trials_ = 0\n+ max_trials = self.max_trials\n+ while self.n_trials_ < max_trials:\n+ self.n_trials_ += 1\n+\n+ if (\n+ self.n_skips_no_inliers_\n+ + self.n_skips_invalid_data_\n+ + self.n_skips_invalid_model_\n+ ) > self.max_skips:\n+ break\n+\n+ # choose random sample set\n+ subset_idxs = sample_without_replacement(\n+ n_samples, min_samples, random_state=random_state\n+ )\n+ X_subset = X[subset_idxs]\n+ y_subset = y[subset_idxs]\n+\n+ # check if random sample set is valid\n+ if self.is_data_valid is not None and not self.is_data_valid(\n+ X_subset, y_subset\n+ ):\n+ self.n_skips_invalid_data_ += 1\n+ continue\n+\n+ # cut `fit_params` down to `subset_idxs`\n+ fit_params_subset = _check_method_params(\n+ X, params=routed_params.estimator.fit, indices=subset_idxs\n+ )\n+\n+ # fit model for current random sample set\n+ estimator.fit(X_subset, y_subset, **fit_params_subset)\n+\n+ # check if estimated model is valid\n+ if self.is_model_valid is not None and not self.is_model_valid(\n+ estimator, X_subset, y_subset\n+ ):\n+ self.n_skips_invalid_model_ += 1\n+ continue\n+\n+ # residuals of all data for current random sample model\n+ y_pred = estimator.predict(X)\n+ residuals_subset = loss_function(y, y_pred)\n+\n+ # classify data into inliers and outliers\n+ inlier_mask_subset = residuals_subset <= residual_threshold\n+ n_inliers_subset = np.sum(inlier_mask_subset)\n+\n+ # less inliers -> skip current random sample\n+ if n_inliers_subset < n_inliers_best:\n+ self.n_skips_no_inliers_ += 1\n+ continue\n+\n+ # extract inlier data set\n+ inlier_idxs_subset = sample_idxs[inlier_mask_subset]\n+ X_inlier_subset = X[inlier_idxs_subset]\n+ y_inlier_subset = y[inlier_idxs_subset]\n+\n+ # cut `fit_params` down to `inlier_idxs_subset`\n+ score_params_inlier_subset = _check_method_params(\n+ X, params=routed_params.estimator.score, indices=inlier_idxs_subset\n+ )\n+\n+ # score of inlier data set\n+ score_subset = estimator.score(\n+ X_inlier_subset,\n+ y_inlier_subset,\n+ **score_params_inlier_subset,\n+ )\n+\n+ # same number of inliers but worse score -> skip current random\n+ # sample\n+ if n_inliers_subset == n_inliers_best and score_subset < score_best:\n+ continue\n+\n+ # save current random sample as best sample\n+ n_inliers_best = n_inliers_subset\n+ score_best = score_subset\n+ inlier_mask_best = inlier_mask_subset\n+ X_inlier_best = X_inlier_subset\n+ y_inlier_best = y_inlier_subset\n+ inlier_best_idxs_subset = inlier_idxs_subset\n+\n+ max_trials = min(\n+ max_trials,\n+ _dynamic_max_trials(\n+ n_inliers_best, n_samples, min_samples, self.stop_probability\n+ ),\n+ )\n+\n+ # break if sufficient number of inliers or score is reached\n+ if n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score:\n+ break\n+\n+ # if none of the iterations met the required criteria\n+ if inlier_mask_best is None:\n+ if (\n+ self.n_skips_no_inliers_\n+ + self.n_skips_invalid_data_\n+ + self.n_skips_invalid_model_\n+ ) > self.max_skips:\n+ raise ValueError(\n+ \"RANSAC skipped more iterations than `max_skips` without\"\n+ \" finding a valid consensus set. Iterations were skipped\"\n+ \" because each randomly chosen sub-sample failed the\"\n+ \" passing criteria. See estimator attributes for\"\n+ \" diagnostics (n_skips*).\"\n+ )\n+ else:\n+ raise ValueError(\n+ \"RANSAC could not find a valid consensus set. All\"\n+ \" `max_trials` iterations were skipped because each\"\n+ \" randomly chosen sub-sample failed the passing criteria.\"\n+ \" See estimator attributes for diagnostics (n_skips*).\"\n+ )\n+ else:\n+ if (\n+ self.n_skips_no_inliers_\n+ + self.n_skips_invalid_data_\n+ + self.n_skips_invalid_model_\n+ ) > self.max_skips:\n+ warnings.warn(\n+ (\n+ \"RANSAC found a valid consensus set but exited\"\n+ \" early due to skipping more iterations than\"\n+ \" `max_skips`. See estimator attributes for\"\n+ \" diagnostics (n_skips*).\"\n+ ),\n+ ConvergenceWarning,\n+ )\n+\n+ # estimate final model using all inliers\n+ fit_params_best_idxs_subset = _check_method_params(\n+ X, params=routed_params.estimator.fit, indices=inlier_best_idxs_subset\n+ )\n+\n+ estimator.fit(X_inlier_best, y_inlier_best, **fit_params_best_idxs_subset)\n+\n+ self.estimator_ = estimator\n+ self.inlier_mask_ = inlier_mask_best\n+ return self\n \n def predict(self, X, **params):\n \"\"\"Predict using the estimated model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_ransac.py b/sklearn/linear_model/_ransac.py\nindex f3144f7e7..b604e9a0f 100644\n--- a/sklearn/linear_model/_ransac.py\n+++ b/sklearn/linear_model/_ransac.py\n@@ -314,14 +314,6 @@ class RANSACRegressor(\n self.random_state = random_state\n self.loss = loss\n \n- @_fit_context(\n- # RansacRegressor.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n- # TODO(1.7): remove `sample_weight` from the signature after deprecation\n- # cycle; for backwards compatibility: pop it from `fit_params` before the\n- # `_raise_for_params` check and reinsert it after the check\n- @_deprecate_positional_args(version=\"1.7\")\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit estimator using RANSAC algorithm.\n \n@@ -363,247 +355,6 @@ class RANSACRegressor(\n `is_data_valid` and `is_model_valid` return False for all\n `max_trials` randomly chosen sub-samples.\n \"\"\"\n- # Need to validate separately here. We can't pass multi_output=True\n- # because that would allow y to be csr. Delay expensive finiteness\n- # check to the estimator's own input validation.\n- _raise_for_params(fit_params, self, \"fit\")\n- check_X_params = dict(accept_sparse=\"csr\", ensure_all_finite=False)\n- check_y_params = dict(ensure_2d=False)\n- X, y = validate_data(\n- self, X, y, validate_separately=(check_X_params, check_y_params)\n- )\n- check_consistent_length(X, y)\n-\n- if self.estimator is not None:\n- estimator = clone(self.estimator)\n- else:\n- estimator = LinearRegression()\n-\n- if self.min_samples is None:\n- if not isinstance(estimator, LinearRegression):\n- raise ValueError(\n- \"`min_samples` needs to be explicitly set when estimator \"\n- \"is not a LinearRegression.\"\n- )\n- min_samples = X.shape[1] + 1\n- elif 0 < self.min_samples < 1:\n- min_samples = np.ceil(self.min_samples * X.shape[0])\n- elif self.min_samples >= 1:\n- min_samples = self.min_samples\n- if min_samples > X.shape[0]:\n- raise ValueError(\n- \"`min_samples` may not be larger than number \"\n- \"of samples: n_samples = %d.\" % (X.shape[0])\n- )\n-\n- if self.residual_threshold is None:\n- # MAD (median absolute deviation)\n- residual_threshold = np.median(np.abs(y - np.median(y)))\n- else:\n- residual_threshold = self.residual_threshold\n-\n- if self.loss == \"absolute_error\":\n- if y.ndim == 1:\n- loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)\n- else:\n- loss_function = lambda y_true, y_pred: np.sum(\n- np.abs(y_true - y_pred), axis=1\n- )\n- elif self.loss == \"squared_error\":\n- if y.ndim == 1:\n- loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2\n- else:\n- loss_function = lambda y_true, y_pred: np.sum(\n- (y_true - y_pred) ** 2, axis=1\n- )\n-\n- elif callable(self.loss):\n- loss_function = self.loss\n-\n- random_state = check_random_state(self.random_state)\n-\n- try: # Not all estimator accept a random_state\n- estimator.set_params(random_state=random_state)\n- except ValueError:\n- pass\n-\n- estimator_fit_has_sample_weight = has_fit_parameter(estimator, \"sample_weight\")\n- estimator_name = type(estimator).__name__\n- if sample_weight is not None and not estimator_fit_has_sample_weight:\n- raise ValueError(\n- \"%s does not support sample_weight. Sample\"\n- \" weights are only used for the calibration\"\n- \" itself.\" % estimator_name\n- )\n-\n- if sample_weight is not None:\n- fit_params[\"sample_weight\"] = sample_weight\n-\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit\", **fit_params)\n- else:\n- routed_params = Bunch()\n- routed_params.estimator = Bunch(fit={}, predict={}, score={})\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X)\n- routed_params.estimator.fit = {\"sample_weight\": sample_weight}\n-\n- n_inliers_best = 1\n- score_best = -np.inf\n- inlier_mask_best = None\n- X_inlier_best = None\n- y_inlier_best = None\n- inlier_best_idxs_subset = None\n- self.n_skips_no_inliers_ = 0\n- self.n_skips_invalid_data_ = 0\n- self.n_skips_invalid_model_ = 0\n-\n- # number of data samples\n- n_samples = X.shape[0]\n- sample_idxs = np.arange(n_samples)\n-\n- self.n_trials_ = 0\n- max_trials = self.max_trials\n- while self.n_trials_ < max_trials:\n- self.n_trials_ += 1\n-\n- if (\n- self.n_skips_no_inliers_\n- + self.n_skips_invalid_data_\n- + self.n_skips_invalid_model_\n- ) > self.max_skips:\n- break\n-\n- # choose random sample set\n- subset_idxs = sample_without_replacement(\n- n_samples, min_samples, random_state=random_state\n- )\n- X_subset = X[subset_idxs]\n- y_subset = y[subset_idxs]\n-\n- # check if random sample set is valid\n- if self.is_data_valid is not None and not self.is_data_valid(\n- X_subset, y_subset\n- ):\n- self.n_skips_invalid_data_ += 1\n- continue\n-\n- # cut `fit_params` down to `subset_idxs`\n- fit_params_subset = _check_method_params(\n- X, params=routed_params.estimator.fit, indices=subset_idxs\n- )\n-\n- # fit model for current random sample set\n- estimator.fit(X_subset, y_subset, **fit_params_subset)\n-\n- # check if estimated model is valid\n- if self.is_model_valid is not None and not self.is_model_valid(\n- estimator, X_subset, y_subset\n- ):\n- self.n_skips_invalid_model_ += 1\n- continue\n-\n- # residuals of all data for current random sample model\n- y_pred = estimator.predict(X)\n- residuals_subset = loss_function(y, y_pred)\n-\n- # classify data into inliers and outliers\n- inlier_mask_subset = residuals_subset <= residual_threshold\n- n_inliers_subset = np.sum(inlier_mask_subset)\n-\n- # less inliers -> skip current random sample\n- if n_inliers_subset < n_inliers_best:\n- self.n_skips_no_inliers_ += 1\n- continue\n-\n- # extract inlier data set\n- inlier_idxs_subset = sample_idxs[inlier_mask_subset]\n- X_inlier_subset = X[inlier_idxs_subset]\n- y_inlier_subset = y[inlier_idxs_subset]\n-\n- # cut `fit_params` down to `inlier_idxs_subset`\n- score_params_inlier_subset = _check_method_params(\n- X, params=routed_params.estimator.score, indices=inlier_idxs_subset\n- )\n-\n- # score of inlier data set\n- score_subset = estimator.score(\n- X_inlier_subset,\n- y_inlier_subset,\n- **score_params_inlier_subset,\n- )\n-\n- # same number of inliers but worse score -> skip current random\n- # sample\n- if n_inliers_subset == n_inliers_best and score_subset < score_best:\n- continue\n-\n- # save current random sample as best sample\n- n_inliers_best = n_inliers_subset\n- score_best = score_subset\n- inlier_mask_best = inlier_mask_subset\n- X_inlier_best = X_inlier_subset\n- y_inlier_best = y_inlier_subset\n- inlier_best_idxs_subset = inlier_idxs_subset\n-\n- max_trials = min(\n- max_trials,\n- _dynamic_max_trials(\n- n_inliers_best, n_samples, min_samples, self.stop_probability\n- ),\n- )\n-\n- # break if sufficient number of inliers or score is reached\n- if n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score:\n- break\n-\n- # if none of the iterations met the required criteria\n- if inlier_mask_best is None:\n- if (\n- self.n_skips_no_inliers_\n- + self.n_skips_invalid_data_\n- + self.n_skips_invalid_model_\n- ) > self.max_skips:\n- raise ValueError(\n- \"RANSAC skipped more iterations than `max_skips` without\"\n- \" finding a valid consensus set. Iterations were skipped\"\n- \" because each randomly chosen sub-sample failed the\"\n- \" passing criteria. See estimator attributes for\"\n- \" diagnostics (n_skips*).\"\n- )\n- else:\n- raise ValueError(\n- \"RANSAC could not find a valid consensus set. All\"\n- \" `max_trials` iterations were skipped because each\"\n- \" randomly chosen sub-sample failed the passing criteria.\"\n- \" See estimator attributes for diagnostics (n_skips*).\"\n- )\n- else:\n- if (\n- self.n_skips_no_inliers_\n- + self.n_skips_invalid_data_\n- + self.n_skips_invalid_model_\n- ) > self.max_skips:\n- warnings.warn(\n- (\n- \"RANSAC found a valid consensus set but exited\"\n- \" early due to skipping more iterations than\"\n- \" `max_skips`. See estimator attributes for\"\n- \" diagnostics (n_skips*).\"\n- ),\n- ConvergenceWarning,\n- )\n-\n- # estimate final model using all inliers\n- fit_params_best_idxs_subset = _check_method_params(\n- X, params=routed_params.estimator.fit, indices=inlier_best_idxs_subset\n- )\n-\n- estimator.fit(X_inlier_best, y_inlier_best, **fit_params_best_idxs_subset)\n-\n- self.estimator_ = estimator\n- self.inlier_mask_ = inlier_mask_best\n- return self\n \n def predict(self, X, **params):\n \"\"\"Predict using the estimated model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_ransac.py.\nHere is the description for the function:\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit estimator using RANSAC algorithm.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_targets)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Individual weights for each sample\n raises error if sample_weight is passed and estimator\n fit method does not support it.\n\n .. versionadded:: 0.18\n\n **fit_params : dict\n Parameters routed to the `fit` method of the sub-estimator via the\n metadata routing API.\n\n .. versionadded:: 1.5\n\n Only available if\n `sklearn.set_config(enable_metadata_routing=True)` is set. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n self : object\n Fitted `RANSACRegressor` estimator.\n\n Raises\n ------\n ValueError\n If no valid consensus set could be found. This occurs if\n `is_data_valid` and `is_model_valid` return False for all\n `max_trials` randomly chosen sub-samples.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RANSACRegressor]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RANSACRegressor]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RANSACRegressor]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_inliers_outliers", "sklearn/linear_model/tests/test_ransac.py::test_ransac_is_data_valid", "sklearn/linear_model/tests/test_ransac.py::test_ransac_is_model_valid", "sklearn/linear_model/tests/test_ransac.py::test_ransac_max_trials", "sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_n_inliers", "sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_score", "sklearn/linear_model/tests/test_ransac.py::test_ransac_score", "sklearn/linear_model/tests/test_ransac.py::test_ransac_predict", "sklearn/linear_model/tests/test_ransac.py::test_ransac_no_valid_data", "sklearn/linear_model/tests/test_ransac.py::test_ransac_no_valid_model", "sklearn/linear_model/tests/test_ransac.py::test_ransac_exceed_max_skips", "sklearn/linear_model/tests/test_ransac.py::test_ransac_warn_exceed_max_skips", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[coo_matrix]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[coo_array]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csr_matrix]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csr_array]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csc_matrix]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csc_array]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_none_estimator", "sklearn/linear_model/tests/test_ransac.py::test_ransac_min_n_samples", "sklearn/linear_model/tests/test_ransac.py::test_ransac_multi_dimensional_targets", "sklearn/linear_model/tests/test_ransac.py::test_ransac_residual_loss", "sklearn/linear_model/tests/test_ransac.py::test_ransac_default_residual_threshold", "sklearn/linear_model/tests/test_ransac.py::test_ransac_fit_sample_weight", "sklearn/linear_model/tests/test_ransac.py::test_ransac_final_model_fit_sample_weight", "sklearn/linear_model/tests/test_ransac.py::test_perfect_horizontal_line", "sklearn/linear_model/_ransac.py::sklearn.linear_model._ransac.RANSACRegressor", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_check_param_validation[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-160
1.0
{ "code": "diff --git b/sklearn/linear_model/_ransac.py a/sklearn/linear_model/_ransac.py\nindex 081a33626..f3144f7e7 100644\n--- b/sklearn/linear_model/_ransac.py\n+++ a/sklearn/linear_model/_ransac.py\n@@ -631,6 +631,25 @@ class RANSACRegressor(\n y : array, shape = [n_samples] or [n_samples, n_targets]\n Returns predicted values.\n \"\"\"\n+ check_is_fitted(self)\n+ X = validate_data(\n+ self,\n+ X,\n+ ensure_all_finite=False,\n+ accept_sparse=True,\n+ reset=False,\n+ )\n+\n+ _raise_for_params(params, self, \"predict\")\n+\n+ if _routing_enabled():\n+ predict_params = process_routing(self, \"predict\", **params).estimator[\n+ \"predict\"\n+ ]\n+ else:\n+ predict_params = {}\n+\n+ return self.estimator_.predict(X, **predict_params)\n \n def score(self, X, y, **params):\n \"\"\"Return the score of the prediction.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_ransac.py b/sklearn/linear_model/_ransac.py\nindex f3144f7e7..081a33626 100644\n--- a/sklearn/linear_model/_ransac.py\n+++ b/sklearn/linear_model/_ransac.py\n@@ -631,25 +631,6 @@ class RANSACRegressor(\n y : array, shape = [n_samples] or [n_samples, n_targets]\n Returns predicted values.\n \"\"\"\n- check_is_fitted(self)\n- X = validate_data(\n- self,\n- X,\n- ensure_all_finite=False,\n- accept_sparse=True,\n- reset=False,\n- )\n-\n- _raise_for_params(params, self, \"predict\")\n-\n- if _routing_enabled():\n- predict_params = process_routing(self, \"predict\", **params).estimator[\n- \"predict\"\n- ]\n- else:\n- predict_params = {}\n-\n- return self.estimator_.predict(X, **predict_params)\n \n def score(self, X, y, **params):\n \"\"\"Return the score of the prediction.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_ransac.py.\nHere is the description for the function:\n def predict(self, X, **params):\n \"\"\"Predict using the estimated model.\n\n This is a wrapper for `estimator_.predict(X)`.\n\n Parameters\n ----------\n X : {array-like or sparse matrix} of shape (n_samples, n_features)\n Input data.\n\n **params : dict\n Parameters routed to the `predict` method of the sub-estimator via\n the metadata routing API.\n\n .. versionadded:: 1.5\n\n Only available if\n `sklearn.set_config(enable_metadata_routing=True)` is set. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n y : array, shape = [n_samples] or [n_samples, n_targets]\n Returns predicted values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RANSACRegressor]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_predict", "sklearn/linear_model/tests/test_ransac.py::test_ransac_none_estimator", "sklearn/linear_model/tests/test_ransac.py::test_ransac_min_n_samples", "sklearn/linear_model/tests/test_ransac.py::test_ransac_residual_loss", "sklearn/linear_model/_ransac.py::sklearn.linear_model._ransac.RANSACRegressor", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RANSACRegressor]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_predict1d]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RANSACRegressor]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-161
1.0
{ "code": "diff --git b/sklearn/linear_model/_ransac.py a/sklearn/linear_model/_ransac.py\nindex 96310fa3c..f3144f7e7 100644\n--- b/sklearn/linear_model/_ransac.py\n+++ a/sklearn/linear_model/_ransac.py\n@@ -680,6 +680,22 @@ class RANSACRegressor(\n z : float\n Score of the prediction.\n \"\"\"\n+ check_is_fitted(self)\n+ X = validate_data(\n+ self,\n+ X,\n+ ensure_all_finite=False,\n+ accept_sparse=True,\n+ reset=False,\n+ )\n+\n+ _raise_for_params(params, self, \"score\")\n+ if _routing_enabled():\n+ score_params = process_routing(self, \"score\", **params).estimator[\"score\"]\n+ else:\n+ score_params = {}\n+\n+ return self.estimator_.score(X, y, **score_params)\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_ransac.py b/sklearn/linear_model/_ransac.py\nindex f3144f7e7..96310fa3c 100644\n--- a/sklearn/linear_model/_ransac.py\n+++ b/sklearn/linear_model/_ransac.py\n@@ -680,22 +680,6 @@ class RANSACRegressor(\n z : float\n Score of the prediction.\n \"\"\"\n- check_is_fitted(self)\n- X = validate_data(\n- self,\n- X,\n- ensure_all_finite=False,\n- accept_sparse=True,\n- reset=False,\n- )\n-\n- _raise_for_params(params, self, \"score\")\n- if _routing_enabled():\n- score_params = process_routing(self, \"score\", **params).estimator[\"score\"]\n- else:\n- score_params = {}\n-\n- return self.estimator_.score(X, y, **score_params)\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_ransac.py.\nHere is the description for the function:\n def score(self, X, y, **params):\n \"\"\"Return the score of the prediction.\n\n This is a wrapper for `estimator_.score(X, y)`.\n\n Parameters\n ----------\n X : (array-like or sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_targets)\n Target values.\n\n **params : dict\n Parameters routed to the `score` method of the sub-estimator via\n the metadata routing API.\n\n .. versionadded:: 1.5\n\n Only available if\n `sklearn.set_config(enable_metadata_routing=True)` is set. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n z : float\n Score of the prediction.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RANSACRegressor]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_score", "sklearn/linear_model/_ransac.py::sklearn.linear_model._ransac.RANSACRegressor", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RANSACRegressor]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RANSACRegressor]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-162
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex cf989de06..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -333,6 +333,7 @@ class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato\n self.n_components = n_components\n self.random_state = random_state\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model with X.\n \n@@ -353,6 +354,30 @@ class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X, accept_sparse=\"csr\")\n+ random_state = check_random_state(self.random_state)\n+ n_features = X.shape[1]\n+ sparse = sp.issparse(X)\n+ if self.gamma == \"scale\":\n+ # var = E[X^2] - E[X]^2 if sparse\n+ X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var()\n+ self._gamma = 1.0 / (n_features * X_var) if X_var != 0 else 1.0\n+ else:\n+ self._gamma = self.gamma\n+ self.random_weights_ = (2.0 * self._gamma) ** 0.5 * random_state.normal(\n+ size=(n_features, self.n_components)\n+ )\n+\n+ self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)\n+\n+ if X.dtype == np.float32:\n+ # Setting the data type of the fitted attribute will ensure the\n+ # output data type during `transform`.\n+ self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)\n+ self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)\n+\n+ self._n_features_out = self.n_components\n+ return self\n \n def transform(self, X):\n \"\"\"Apply the approximate feature map to X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..cf989de06 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -333,7 +333,6 @@ class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato\n self.n_components = n_components\n self.random_state = random_state\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model with X.\n \n@@ -354,30 +353,6 @@ class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X, accept_sparse=\"csr\")\n- random_state = check_random_state(self.random_state)\n- n_features = X.shape[1]\n- sparse = sp.issparse(X)\n- if self.gamma == \"scale\":\n- # var = E[X^2] - E[X]^2 if sparse\n- X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var()\n- self._gamma = 1.0 / (n_features * X_var) if X_var != 0 else 1.0\n- else:\n- self._gamma = self.gamma\n- self.random_weights_ = (2.0 * self._gamma) ** 0.5 * random_state.normal(\n- size=(n_features, self.n_components)\n- )\n-\n- self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)\n-\n- if X.dtype == np.float32:\n- # Setting the data type of the fitted attribute will ensure the\n- # output data type during `transform`.\n- self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)\n- self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)\n-\n- self._n_features_out = self.n_components\n- return self\n \n def transform(self, X):\n \"\"\"Apply the approximate feature map to X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the model with X.\n\n Samples random projection according to n_features.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : array-like, shape (n_samples,) or (n_samples, n_outputs), \\\n default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_kernel_approximation.py::test_rbf_sampler", "sklearn/tests/test_kernel_approximation.py::test_rbf_sampler_fitted_attributes_dtype[float64]", "sklearn/tests/test_kernel_approximation.py::test_rbf_sampler_dtype_equivalence", "sklearn/tests/test_kernel_approximation.py::test_rbf_sampler_gamma_scale", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[RBFSampler]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.RBFSampler", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RBFSampler(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RBFSampler()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RBFSampler()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RBFSampler()]", "sklearn/tests/test_common.py::test_check_param_validation[RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform[RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RBFSampler()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-163
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex 86334a7ba..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -393,6 +393,14 @@ class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ X = validate_data(self, X, accept_sparse=\"csr\", reset=False)\n+ projection = safe_sparse_dot(X, self.random_weights_)\n+ projection += self.random_offset_\n+ np.cos(projection, projection)\n+ projection *= (2.0 / self.n_components) ** 0.5\n+ return projection\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..86334a7ba 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -393,14 +393,6 @@ class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n- check_is_fitted(self)\n-\n- X = validate_data(self, X, accept_sparse=\"csr\", reset=False)\n- projection = safe_sparse_dot(X, self.random_weights_)\n- projection += self.random_offset_\n- np.cos(projection, projection)\n- projection *= (2.0 / self.n_components) ** 0.5\n- return projection\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Apply the approximate feature map to X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n New data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n Returns\n -------\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_kernel_approximation.py::test_rbf_sampler", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[RBFSampler]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.RBFSampler", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RBFSampler(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RBFSampler()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RBFSampler()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RBFSampler()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform[RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RBFSampler()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-164
1.0
{ "code": "diff --git b/sklearn/feature_selection/_rfe.py a/sklearn/feature_selection/_rfe.py\nindex 4850fc269..5cf787631 100644\n--- b/sklearn/feature_selection/_rfe.py\n+++ a/sklearn/feature_selection/_rfe.py\n@@ -385,6 +385,7 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n \n return self\n \n+ @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n \"\"\"Reduce X to the selected features and predict using the estimator.\n \n@@ -409,6 +410,16 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n y : array of shape [n_samples]\n The predicted target values.\n \"\"\"\n+ _raise_for_params(predict_params, self, \"predict\")\n+ check_is_fitted(self)\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"predict\", **predict_params)\n+ else:\n+ routed_params = Bunch(estimator=Bunch(predict={}))\n+\n+ return self.estimator_.predict(\n+ self.transform(X), **routed_params.estimator.predict\n+ )\n \n @available_if(_estimator_has(\"score\"))\n def score(self, X, y, **score_params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_selection/_rfe.py b/sklearn/feature_selection/_rfe.py\nindex 5cf787631..4850fc269 100644\n--- a/sklearn/feature_selection/_rfe.py\n+++ b/sklearn/feature_selection/_rfe.py\n@@ -385,7 +385,6 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n \n return self\n \n- @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n \"\"\"Reduce X to the selected features and predict using the estimator.\n \n@@ -410,16 +409,6 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n y : array of shape [n_samples]\n The predicted target values.\n \"\"\"\n- _raise_for_params(predict_params, self, \"predict\")\n- check_is_fitted(self)\n- if _routing_enabled():\n- routed_params = process_routing(self, \"predict\", **predict_params)\n- else:\n- routed_params = Bunch(estimator=Bunch(predict={}))\n-\n- return self.estimator_.predict(\n- self.transform(X), **routed_params.estimator.predict\n- )\n \n @available_if(_estimator_has(\"score\"))\n def score(self, X, y, **score_params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_selection/_rfe.py.\nHere is the description for the function:\n def predict(self, X, **predict_params):\n \"\"\"Reduce X to the selected features and predict using the estimator.\n\n Parameters\n ----------\n X : array of shape [n_samples, n_features]\n The input samples.\n\n **predict_params : dict\n Parameters to route to the ``predict`` method of the\n underlying estimator.\n\n .. versionadded:: 1.6\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>`\n for more details.\n\n Returns\n -------\n y : array of shape [n_samples]\n The predicted target values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RFE]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe[csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe[csr_array]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[CCA-RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSCanonical-RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSRegression-RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RFE]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RFE]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RFECV]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-165
1.0
{ "code": "diff --git b/sklearn/feature_selection/_rfe.py a/sklearn/feature_selection/_rfe.py\nindex 55689c056..5cf787631 100644\n--- b/sklearn/feature_selection/_rfe.py\n+++ a/sklearn/feature_selection/_rfe.py\n@@ -421,6 +421,7 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n self.transform(X), **routed_params.estimator.predict\n )\n \n+ @available_if(_estimator_has(\"score\"))\n def score(self, X, y, **score_params):\n \"\"\"Reduce X to the selected features and return the score of the estimator.\n \n@@ -451,6 +452,15 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n Score of the underlying base estimator computed with the selected\n features returned by `rfe.transform(X)` and `y`.\n \"\"\"\n+ check_is_fitted(self)\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"score\", **score_params)\n+ else:\n+ routed_params = Bunch(estimator=Bunch(score=score_params))\n+\n+ return self.estimator_.score(\n+ self.transform(X), y, **routed_params.estimator.score\n+ )\n \n def _get_support_mask(self):\n check_is_fitted(self)\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_selection/_rfe.py b/sklearn/feature_selection/_rfe.py\nindex 5cf787631..55689c056 100644\n--- a/sklearn/feature_selection/_rfe.py\n+++ b/sklearn/feature_selection/_rfe.py\n@@ -421,7 +421,6 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n self.transform(X), **routed_params.estimator.predict\n )\n \n- @available_if(_estimator_has(\"score\"))\n def score(self, X, y, **score_params):\n \"\"\"Reduce X to the selected features and return the score of the estimator.\n \n@@ -452,15 +451,6 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):\n Score of the underlying base estimator computed with the selected\n features returned by `rfe.transform(X)` and `y`.\n \"\"\"\n- check_is_fitted(self)\n- if _routing_enabled():\n- routed_params = process_routing(self, \"score\", **score_params)\n- else:\n- routed_params = Bunch(estimator=Bunch(score=score_params))\n-\n- return self.estimator_.score(\n- self.transform(X), y, **routed_params.estimator.score\n- )\n \n def _get_support_mask(self):\n check_is_fitted(self)\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_selection/_rfe.py.\nHere is the description for the function:\n def score(self, X, y, **score_params):\n \"\"\"Reduce X to the selected features and return the score of the estimator.\n\n Parameters\n ----------\n X : array of shape [n_samples, n_features]\n The input samples.\n\n y : array of shape [n_samples]\n The target values.\n\n **score_params : dict\n - If `enable_metadata_routing=False` (default): Parameters directly passed\n to the ``score`` method of the underlying estimator.\n\n - If `enable_metadata_routing=True`: Parameters safely routed to the `score`\n method of the underlying estimator.\n\n .. versionadded:: 1.0\n\n .. versionchanged:: 1.6\n See :ref:`Metadata Routing User Guide <metadata_routing>`\n for more details.\n\n Returns\n -------\n score : float\n Score of the underlying base estimator computed with the selected\n features returned by `rfe.transform(X)` and `y`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RFE]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe[csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe[csr_array]", "sklearn/feature_selection/tests/test_rfe.py::test_RFE_fit_score_params", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_tags", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[CCA-RFE]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSCanonical-RFE]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSRegression-RFE]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RFE]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RFE]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFE(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-166
1.0
{ "code": "diff --git b/sklearn/feature_selection/_rfe.py a/sklearn/feature_selection/_rfe.py\nindex eec2887e8..5cf787631 100644\n--- b/sklearn/feature_selection/_rfe.py\n+++ a/sklearn/feature_selection/_rfe.py\n@@ -773,6 +773,11 @@ class RFECV(RFE):\n self.min_features_to_select = min_features_to_select\n \n # TODO(1.8): remove `groups` from the signature after deprecation cycle.\n+ @_deprecate_positional_args(version=\"1.8\")\n+ @_fit_context(\n+ # RFECV.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, *, groups=None, **params):\n \"\"\"Fit the RFE model and automatically tune the number of selected features.\n \n@@ -809,6 +814,110 @@ class RFECV(RFE):\n self : object\n Fitted estimator.\n \"\"\"\n+ _raise_for_params(params, self, \"fit\")\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=\"csr\",\n+ ensure_min_features=2,\n+ ensure_all_finite=False,\n+ multi_output=True,\n+ )\n+\n+ if _routing_enabled():\n+ if groups is not None:\n+ params.update({\"groups\": groups})\n+ routed_params = process_routing(self, \"fit\", **params)\n+ else:\n+ routed_params = Bunch(\n+ estimator=Bunch(fit={}),\n+ splitter=Bunch(split={\"groups\": groups}),\n+ scorer=Bunch(score={}),\n+ )\n+\n+ # Initialization\n+ cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))\n+ scorer = self._get_scorer()\n+\n+ # Build an RFE object, which will evaluate and score each possible\n+ # feature count, down to self.min_features_to_select\n+ n_features = X.shape[1]\n+ if self.min_features_to_select > n_features:\n+ warnings.warn(\n+ (\n+ f\"Found min_features_to_select={self.min_features_to_select} > \"\n+ f\"{n_features=}. There will be no feature selection and all \"\n+ \"features will be kept.\"\n+ ),\n+ UserWarning,\n+ )\n+ rfe = RFE(\n+ estimator=self.estimator,\n+ n_features_to_select=min(self.min_features_to_select, n_features),\n+ importance_getter=self.importance_getter,\n+ step=self.step,\n+ verbose=self.verbose,\n+ )\n+\n+ # Determine the number of subsets of features by fitting across\n+ # the train folds and choosing the \"features_to_select\" parameter\n+ # that gives the least averaged error across all folds.\n+\n+ # Note that joblib raises a non-picklable error for bound methods\n+ # even if n_jobs is set to 1 with the default multiprocessing\n+ # backend.\n+ # This branching is done so that to\n+ # make sure that user code that sets n_jobs to 1\n+ # and provides bound methods as scorers is not broken with the\n+ # addition of n_jobs parameter in version 0.18.\n+\n+ if effective_n_jobs(self.n_jobs) == 1:\n+ parallel, func = list, _rfe_single_fit\n+ else:\n+ parallel = Parallel(n_jobs=self.n_jobs)\n+ func = delayed(_rfe_single_fit)\n+\n+ scores_features = parallel(\n+ func(rfe, self.estimator, X, y, train, test, scorer, routed_params)\n+ for train, test in cv.split(X, y, **routed_params.splitter.split)\n+ )\n+ scores, step_n_features = zip(*scores_features)\n+\n+ step_n_features_rev = np.array(step_n_features[0])[::-1]\n+ scores = np.array(scores)\n+\n+ # Reverse order such that lowest number of features is selected in case of tie.\n+ scores_sum_rev = np.sum(scores, axis=0)[::-1]\n+ n_features_to_select = step_n_features_rev[np.argmax(scores_sum_rev)]\n+\n+ # Re-execute an elimination with best_k over the whole set\n+ rfe = RFE(\n+ estimator=self.estimator,\n+ n_features_to_select=n_features_to_select,\n+ step=self.step,\n+ importance_getter=self.importance_getter,\n+ verbose=self.verbose,\n+ )\n+\n+ rfe.fit(X, y, **routed_params.estimator.fit)\n+\n+ # Set final attributes\n+ self.support_ = rfe.support_\n+ self.n_features_ = rfe.n_features_\n+ self.ranking_ = rfe.ranking_\n+ self.estimator_ = clone(self.estimator)\n+ self.estimator_.fit(self._transform(X), y, **routed_params.estimator.fit)\n+\n+ # reverse to stay consistent with before\n+ scores_rev = scores[:, ::-1]\n+ self.cv_results_ = {\n+ \"mean_test_score\": np.mean(scores_rev, axis=0),\n+ \"std_test_score\": np.std(scores_rev, axis=0),\n+ **{f\"split{i}_test_score\": scores_rev[i] for i in range(scores.shape[0])},\n+ \"n_features\": step_n_features_rev,\n+ }\n+ return self\n \n def score(self, X, y, **score_params):\n \"\"\"Score using the `scoring` option on the given test data and labels.\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_selection/_rfe.py b/sklearn/feature_selection/_rfe.py\nindex 5cf787631..eec2887e8 100644\n--- a/sklearn/feature_selection/_rfe.py\n+++ b/sklearn/feature_selection/_rfe.py\n@@ -773,11 +773,6 @@ class RFECV(RFE):\n self.min_features_to_select = min_features_to_select\n \n # TODO(1.8): remove `groups` from the signature after deprecation cycle.\n- @_deprecate_positional_args(version=\"1.8\")\n- @_fit_context(\n- # RFECV.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, *, groups=None, **params):\n \"\"\"Fit the RFE model and automatically tune the number of selected features.\n \n@@ -814,110 +809,6 @@ class RFECV(RFE):\n self : object\n Fitted estimator.\n \"\"\"\n- _raise_for_params(params, self, \"fit\")\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=\"csr\",\n- ensure_min_features=2,\n- ensure_all_finite=False,\n- multi_output=True,\n- )\n-\n- if _routing_enabled():\n- if groups is not None:\n- params.update({\"groups\": groups})\n- routed_params = process_routing(self, \"fit\", **params)\n- else:\n- routed_params = Bunch(\n- estimator=Bunch(fit={}),\n- splitter=Bunch(split={\"groups\": groups}),\n- scorer=Bunch(score={}),\n- )\n-\n- # Initialization\n- cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))\n- scorer = self._get_scorer()\n-\n- # Build an RFE object, which will evaluate and score each possible\n- # feature count, down to self.min_features_to_select\n- n_features = X.shape[1]\n- if self.min_features_to_select > n_features:\n- warnings.warn(\n- (\n- f\"Found min_features_to_select={self.min_features_to_select} > \"\n- f\"{n_features=}. There will be no feature selection and all \"\n- \"features will be kept.\"\n- ),\n- UserWarning,\n- )\n- rfe = RFE(\n- estimator=self.estimator,\n- n_features_to_select=min(self.min_features_to_select, n_features),\n- importance_getter=self.importance_getter,\n- step=self.step,\n- verbose=self.verbose,\n- )\n-\n- # Determine the number of subsets of features by fitting across\n- # the train folds and choosing the \"features_to_select\" parameter\n- # that gives the least averaged error across all folds.\n-\n- # Note that joblib raises a non-picklable error for bound methods\n- # even if n_jobs is set to 1 with the default multiprocessing\n- # backend.\n- # This branching is done so that to\n- # make sure that user code that sets n_jobs to 1\n- # and provides bound methods as scorers is not broken with the\n- # addition of n_jobs parameter in version 0.18.\n-\n- if effective_n_jobs(self.n_jobs) == 1:\n- parallel, func = list, _rfe_single_fit\n- else:\n- parallel = Parallel(n_jobs=self.n_jobs)\n- func = delayed(_rfe_single_fit)\n-\n- scores_features = parallel(\n- func(rfe, self.estimator, X, y, train, test, scorer, routed_params)\n- for train, test in cv.split(X, y, **routed_params.splitter.split)\n- )\n- scores, step_n_features = zip(*scores_features)\n-\n- step_n_features_rev = np.array(step_n_features[0])[::-1]\n- scores = np.array(scores)\n-\n- # Reverse order such that lowest number of features is selected in case of tie.\n- scores_sum_rev = np.sum(scores, axis=0)[::-1]\n- n_features_to_select = step_n_features_rev[np.argmax(scores_sum_rev)]\n-\n- # Re-execute an elimination with best_k over the whole set\n- rfe = RFE(\n- estimator=self.estimator,\n- n_features_to_select=n_features_to_select,\n- step=self.step,\n- importance_getter=self.importance_getter,\n- verbose=self.verbose,\n- )\n-\n- rfe.fit(X, y, **routed_params.estimator.fit)\n-\n- # Set final attributes\n- self.support_ = rfe.support_\n- self.n_features_ = rfe.n_features_\n- self.ranking_ = rfe.ranking_\n- self.estimator_ = clone(self.estimator)\n- self.estimator_.fit(self._transform(X), y, **routed_params.estimator.fit)\n-\n- # reverse to stay consistent with before\n- scores_rev = scores[:, ::-1]\n- self.cv_results_ = {\n- \"mean_test_score\": np.mean(scores_rev, axis=0),\n- \"std_test_score\": np.std(scores_rev, axis=0),\n- **{f\"split{i}_test_score\": scores_rev[i] for i in range(scores.shape[0])},\n- \"n_features\": step_n_features_rev,\n- }\n- return self\n \n def score(self, X, y, **score_params):\n \"\"\"Score using the `scoring` option on the given test data and labels.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_selection/_rfe.py.\nHere is the description for the function:\n def fit(self, X, y, *, groups=None, **params):\n \"\"\"Fit the RFE model and automatically tune the number of selected features.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the total number of features.\n\n y : array-like of shape (n_samples,)\n Target values (integers for classification, real numbers for\n regression).\n\n groups : array-like of shape (n_samples,) or None, default=None\n Group labels for the samples used while splitting the dataset into\n train/test set. Only used in conjunction with a \"Group\" :term:`cv`\n instance (e.g., :class:`~sklearn.model_selection.GroupKFold`).\n\n .. versionadded:: 0.20\n\n **params : dict of str -> object\n Parameters passed to the ``fit`` method of the estimator,\n the scorer, and the CV splitter.\n\n .. versionadded:: 1.6\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>`\n for more details.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_array]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_mockclassifier", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_verbose_output", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_size[42]", "sklearn/feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_n_jobs[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[5]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_std_and_mean[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-1-cv_results_n_features0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-1-cv_results_n_features1]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-2-cv_results_n_features2]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-2-cv_results_n_features3]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-3-cv_results_n_features4]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-3-cv_results_n_features5]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-4-cv_results_n_features6]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-4-cv_results_n_features7]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-4-2-cv_results_n_features8]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-1-cv_results_n_features9]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-2-cv_results_n_features10]", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[CCA-RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSCanonical-RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSRegression-RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_n_features_to_select_warning[RFECV-min_features_to_select]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/feature_selection/_rfe.py::sklearn.feature_selection._rfe.RFECV", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RFECV]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-167
1.0
{ "code": "diff --git b/sklearn/ensemble/_forest.py a/sklearn/ensemble/_forest.py\nindex 5650fcbd3..ae729f4df 100644\n--- b/sklearn/ensemble/_forest.py\n+++ a/sklearn/ensemble/_forest.py\n@@ -2900,6 +2900,7 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit estimator and transform dataset.\n@@ -2925,6 +2926,14 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):\n X_transformed : sparse matrix of shape (n_samples, n_out)\n Transformed dataset.\n \"\"\"\n+ rnd = check_random_state(self.random_state)\n+ y = rnd.uniform(size=_num_samples(X))\n+ super().fit(X, y, sample_weight=sample_weight)\n+\n+ self.one_hot_encoder_ = OneHotEncoder(sparse_output=self.sparse_output)\n+ output = self.one_hot_encoder_.fit_transform(self.apply(X))\n+ self._n_features_out = output.shape[1]\n+ return output\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py\nindex ae729f4df..5650fcbd3 100644\n--- a/sklearn/ensemble/_forest.py\n+++ b/sklearn/ensemble/_forest.py\n@@ -2900,7 +2900,6 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit estimator and transform dataset.\n@@ -2926,14 +2925,6 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):\n X_transformed : sparse matrix of shape (n_samples, n_out)\n Transformed dataset.\n \"\"\"\n- rnd = check_random_state(self.random_state)\n- y = rnd.uniform(size=_num_samples(X))\n- super().fit(X, y, sample_weight=sample_weight)\n-\n- self.one_hot_encoder_ = OneHotEncoder(sparse_output=self.sparse_output)\n- output = self.one_hot_encoder_.fit_transform(self.apply(X))\n- self._n_features_out = output.shape[1]\n- return output\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_forest.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit estimator and transform dataset.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Input data used to build forests. Use ``dtype=np.float32`` for\n maximum efficiency.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted. Splits\n that would create child nodes with net zero or negative weight are\n ignored while searching for a split in each node. In the case of\n classification, splits are also ignored if they would result in any\n single class carrying a negative weight in either child node.\n\n Returns\n -------\n X_transformed : sparse matrix of shape (n_samples, n_out)\n Transformed dataset.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_type", "sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_equal", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data[csc_matrix]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data[csc_array]", "sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-RandomTreesEmbedding]", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomTreesEmbedding]", "sklearn/ensemble/tests/test_forest.py::test_random_trees_embedding_feature_names_out", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.RandomTreesEmbedding", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_param_validation[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RandomTreesEmbedding(n_estimators=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-168
1.0
{ "code": "diff --git b/sklearn/feature_selection/_from_model.py a/sklearn/feature_selection/_from_model.py\nindex d2b91a69d..d5476e3f0 100644\n--- b/sklearn/feature_selection/_from_model.py\n+++ a/sklearn/feature_selection/_from_model.py\n@@ -335,6 +335,10 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n )\n self.max_features_ = max_features\n \n+ @_fit_context(\n+ # SelectFromModel.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y=None, **fit_params):\n \"\"\"Fit the SelectFromModel meta-transformer.\n \n@@ -364,6 +368,33 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ self._check_max_features(X)\n+\n+ if self.prefit:\n+ try:\n+ check_is_fitted(self.estimator)\n+ except NotFittedError as exc:\n+ raise NotFittedError(\n+ \"When `prefit=True`, `estimator` is expected to be a fitted \"\n+ \"estimator.\"\n+ ) from exc\n+ self.estimator_ = deepcopy(self.estimator)\n+ else:\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit\", **fit_params)\n+ self.estimator_ = clone(self.estimator)\n+ self.estimator_.fit(X, y, **routed_params.estimator.fit)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ self.estimator_ = clone(self.estimator)\n+ self.estimator_.fit(X, y, **fit_params)\n+\n+ if hasattr(self.estimator_, \"feature_names_in_\"):\n+ self.feature_names_in_ = self.estimator_.feature_names_in_\n+ else:\n+ _check_feature_names(self, X, reset=True)\n+\n+ return self\n \n @property\n def threshold_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_selection/_from_model.py b/sklearn/feature_selection/_from_model.py\nindex d5476e3f0..d2b91a69d 100644\n--- a/sklearn/feature_selection/_from_model.py\n+++ b/sklearn/feature_selection/_from_model.py\n@@ -335,10 +335,6 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n )\n self.max_features_ = max_features\n \n- @_fit_context(\n- # SelectFromModel.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y=None, **fit_params):\n \"\"\"Fit the SelectFromModel meta-transformer.\n \n@@ -368,33 +364,6 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- self._check_max_features(X)\n-\n- if self.prefit:\n- try:\n- check_is_fitted(self.estimator)\n- except NotFittedError as exc:\n- raise NotFittedError(\n- \"When `prefit=True`, `estimator` is expected to be a fitted \"\n- \"estimator.\"\n- ) from exc\n- self.estimator_ = deepcopy(self.estimator)\n- else:\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit\", **fit_params)\n- self.estimator_ = clone(self.estimator)\n- self.estimator_.fit(X, y, **routed_params.estimator.fit)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- self.estimator_ = clone(self.estimator)\n- self.estimator_.fit(X, y, **fit_params)\n-\n- if hasattr(self.estimator_, \"feature_names_in_\"):\n- self.feature_names_in_ = self.estimator_.feature_names_in_\n- else:\n- _check_feature_names(self, X, reset=True)\n-\n- return self\n \n @property\n def threshold_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_selection/_from_model.py.\nHere is the description for the function:\n def fit(self, X, y=None, **fit_params):\n \"\"\"Fit the SelectFromModel meta-transformer.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The training input samples.\n\n y : array-like of shape (n_samples,), default=None\n The target values (integers that correspond to classes in\n classification, real numbers in regression).\n\n **fit_params : dict\n - If `enable_metadata_routing=False` (default): Parameters directly passed\n to the `fit` method of the sub-estimator. They are ignored if\n `prefit=True`.\n\n - If `enable_metadata_routing=True`: Parameters safely routed to the `fit`\n method of the sub-estimator. They are ignored if `prefit=True`.\n\n .. versionchanged:: 1.4\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[SelectFromModel]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SelectFromModel]", "sklearn/feature_selection/tests/test_from_model.py::test_invalid_input", "sklearn/feature_selection/tests/test_from_model.py::test_input_estimator_unchanged", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_error[5-ValueError-max_features ==]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_error[<lambda>-TypeError-max_features must be an instance of int, not float.]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_error[<lambda>-ValueError-max_features ==0]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_error[<lambda>-ValueError-max_features ==1]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[0]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[2]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[4]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[None]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_callable[<lambda>0]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_callable[<lambda>1]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_callable[<lambda>2]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_array_like[<lambda>]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_array_like[2]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_callable_data[<lambda>0]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_callable_data[<lambda>1]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_callable_data[<lambda>2]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_tiebreak", "sklearn/feature_selection/tests/test_from_model.py::test_threshold_and_max_features", "sklearn/feature_selection/tests/test_from_model.py::test_feature_importances", "sklearn/feature_selection/tests/test_from_model.py::test_sample_weight", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator0]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator1]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator2]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator3]", "sklearn/feature_selection/tests/test_from_model.py::test_2d_coef", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit", "sklearn/feature_selection/tests/test_from_model.py::test_calling_fit_reinitializes", "sklearn/feature_selection/tests/test_from_model.py::test_prefit", "sklearn/feature_selection/tests/test_from_model.py::test_prefit_get_feature_names_out", "sklearn/feature_selection/tests/test_from_model.py::test_threshold_string", "sklearn/feature_selection/tests/test_from_model.py::test_threshold_without_refitting", "sklearn/feature_selection/tests/test_from_model.py::test_fit_accepts_nan_inf", "sklearn/feature_selection/tests/test_from_model.py::test_transform_accepts_nan_inf", "sklearn/feature_selection/tests/test_from_model.py::test_importance_getter[estimator0-named_steps.logisticregression.coef_]", "sklearn/feature_selection/tests/test_from_model.py::test_importance_getter[estimator1-_pca_importances]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[CCA]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[PLSCanonical]", "sklearn/feature_selection/tests/test_from_model.py::test_select_from_model_pls[PLSRegression]", "sklearn/feature_selection/tests/test_from_model.py::test_estimator_does_not_support_feature_names", "sklearn/feature_selection/tests/test_from_model.py::test_from_model_estimator_attribute_error", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[SelectFromModel]", "sklearn/feature_selection/_from_model.py::sklearn.feature_selection._from_model.SelectFromModel", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SelectFromModel]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_check_param_validation[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SelectFromModel(estimator=SGDRegressor(random_state=0))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-169
1.0
{ "code": "diff --git b/sklearn/feature_selection/_from_model.py a/sklearn/feature_selection/_from_model.py\nindex 11a38d226..d5476e3f0 100644\n--- b/sklearn/feature_selection/_from_model.py\n+++ a/sklearn/feature_selection/_from_model.py\n@@ -407,6 +407,11 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n )\n return _calculate_threshold(self.estimator, scores, self.threshold)\n \n+ @available_if(_estimator_has(\"partial_fit\"))\n+ @_fit_context(\n+ # SelectFromModel.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def partial_fit(self, X, y=None, **partial_fit_params):\n \"\"\"Fit the SelectFromModel meta-transformer only once.\n \n@@ -440,6 +445,39 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ first_call = not hasattr(self, \"estimator_\")\n+\n+ if first_call:\n+ self._check_max_features(X)\n+\n+ if self.prefit:\n+ if first_call:\n+ try:\n+ check_is_fitted(self.estimator)\n+ except NotFittedError as exc:\n+ raise NotFittedError(\n+ \"When `prefit=True`, `estimator` is expected to be a fitted \"\n+ \"estimator.\"\n+ ) from exc\n+ self.estimator_ = deepcopy(self.estimator)\n+ return self\n+\n+ if first_call:\n+ self.estimator_ = clone(self.estimator)\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"partial_fit\", **partial_fit_params)\n+ self.estimator_ = clone(self.estimator)\n+ self.estimator_.partial_fit(X, y, **routed_params.estimator.partial_fit)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ self.estimator_.partial_fit(X, y, **partial_fit_params)\n+\n+ if hasattr(self.estimator_, \"feature_names_in_\"):\n+ self.feature_names_in_ = self.estimator_.feature_names_in_\n+ else:\n+ _check_feature_names(self, X, reset=first_call)\n+\n+ return self\n \n @property\n def n_features_in_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_selection/_from_model.py b/sklearn/feature_selection/_from_model.py\nindex d5476e3f0..11a38d226 100644\n--- a/sklearn/feature_selection/_from_model.py\n+++ b/sklearn/feature_selection/_from_model.py\n@@ -407,11 +407,6 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n )\n return _calculate_threshold(self.estimator, scores, self.threshold)\n \n- @available_if(_estimator_has(\"partial_fit\"))\n- @_fit_context(\n- # SelectFromModel.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def partial_fit(self, X, y=None, **partial_fit_params):\n \"\"\"Fit the SelectFromModel meta-transformer only once.\n \n@@ -445,39 +440,6 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- first_call = not hasattr(self, \"estimator_\")\n-\n- if first_call:\n- self._check_max_features(X)\n-\n- if self.prefit:\n- if first_call:\n- try:\n- check_is_fitted(self.estimator)\n- except NotFittedError as exc:\n- raise NotFittedError(\n- \"When `prefit=True`, `estimator` is expected to be a fitted \"\n- \"estimator.\"\n- ) from exc\n- self.estimator_ = deepcopy(self.estimator)\n- return self\n-\n- if first_call:\n- self.estimator_ = clone(self.estimator)\n- if _routing_enabled():\n- routed_params = process_routing(self, \"partial_fit\", **partial_fit_params)\n- self.estimator_ = clone(self.estimator)\n- self.estimator_.partial_fit(X, y, **routed_params.estimator.partial_fit)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- self.estimator_.partial_fit(X, y, **partial_fit_params)\n-\n- if hasattr(self.estimator_, \"feature_names_in_\"):\n- self.feature_names_in_ = self.estimator_.feature_names_in_\n- else:\n- _check_feature_names(self, X, reset=first_call)\n-\n- return self\n \n @property\n def n_features_in_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_selection/_from_model.py.\nHere is the description for the function:\n def partial_fit(self, X, y=None, **partial_fit_params):\n \"\"\"Fit the SelectFromModel meta-transformer only once.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The training input samples.\n\n y : array-like of shape (n_samples,), default=None\n The target values (integers that correspond to classes in\n classification, real numbers in regression).\n\n **partial_fit_params : dict\n - If `enable_metadata_routing=False` (default): Parameters directly passed\n to the `partial_fit` method of the sub-estimator.\n\n - If `enable_metadata_routing=True`: Parameters passed to the `partial_fit`\n method of the sub-estimator. They are ignored if `prefit=True`.\n\n .. versionchanged:: 1.4\n\n `**partial_fit_params` are routed to the sub-estimator, if\n `enable_metadata_routing=True` is set via\n :func:`~sklearn.set_config`, which allows for aliasing.\n\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[SelectFromModel]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SelectFromModel]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit", "sklearn/feature_selection/tests/test_from_model.py::test_prefit", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit_validate_max_features[ValueError-max_features == 10, must be <= 4-10]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit_validate_max_features[ValueError-max_features == 5, must be <= 4-<lambda>]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit_validate_feature_names[True]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit_validate_feature_names[False]", "sklearn/feature_selection/tests/test_from_model.py::test_from_model_estimator_attribute_error", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SelectFromModel]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_check_param_validation[SelectFromModel(estimator=SGDRegressor(random_state=0))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-170
1.0
{ "code": "diff --git b/sklearn/semi_supervised/_self_training.py a/sklearn/semi_supervised/_self_training.py\nindex c970d44a5..59bd93cb9 100644\n--- b/sklearn/semi_supervised/_self_training.py\n+++ a/sklearn/semi_supervised/_self_training.py\n@@ -244,6 +244,10 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n estimator_ = clone(self.estimator)\n return estimator_\n \n+ @_fit_context(\n+ # SelfTrainingClassifier.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, **params):\n \"\"\"\n Fit self-training classifier using `X`, `y` as training data.\n@@ -272,6 +276,112 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ _raise_for_params(params, self, \"fit\")\n+\n+ self.estimator_ = self._get_estimator()\n+\n+ # we need row slicing support for sparse matrices, but costly finiteness check\n+ # can be delegated to the base estimator.\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=[\"csr\", \"csc\", \"lil\", \"dok\"],\n+ ensure_all_finite=False,\n+ )\n+\n+ if y.dtype.kind in [\"U\", \"S\"]:\n+ raise ValueError(\n+ \"y has dtype string. If you wish to predict on \"\n+ \"string targets, use dtype object, and use -1\"\n+ \" as the label for unlabeled samples.\"\n+ )\n+\n+ has_label = y != -1\n+\n+ if np.all(has_label):\n+ warnings.warn(\"y contains no unlabeled samples\", UserWarning)\n+\n+ if self.criterion == \"k_best\" and (\n+ self.k_best > X.shape[0] - np.sum(has_label)\n+ ):\n+ warnings.warn(\n+ (\n+ \"k_best is larger than the amount of unlabeled \"\n+ \"samples. All unlabeled samples will be labeled in \"\n+ \"the first iteration\"\n+ ),\n+ UserWarning,\n+ )\n+\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit\", **params)\n+ else:\n+ routed_params = Bunch(estimator=Bunch(fit={}))\n+\n+ self.transduction_ = np.copy(y)\n+ self.labeled_iter_ = np.full_like(y, -1)\n+ self.labeled_iter_[has_label] = 0\n+\n+ self.n_iter_ = 0\n+\n+ while not np.all(has_label) and (\n+ self.max_iter is None or self.n_iter_ < self.max_iter\n+ ):\n+ self.n_iter_ += 1\n+ self.estimator_.fit(\n+ X[safe_mask(X, has_label)],\n+ self.transduction_[has_label],\n+ **routed_params.estimator.fit,\n+ )\n+\n+ # Predict on the unlabeled samples\n+ prob = self.estimator_.predict_proba(X[safe_mask(X, ~has_label)])\n+ pred = self.estimator_.classes_[np.argmax(prob, axis=1)]\n+ max_proba = np.max(prob, axis=1)\n+\n+ # Select new labeled samples\n+ if self.criterion == \"threshold\":\n+ selected = max_proba > self.threshold\n+ else:\n+ n_to_select = min(self.k_best, max_proba.shape[0])\n+ if n_to_select == max_proba.shape[0]:\n+ selected = np.ones_like(max_proba, dtype=bool)\n+ else:\n+ # NB these are indices, not a mask\n+ selected = np.argpartition(-max_proba, n_to_select)[:n_to_select]\n+\n+ # Map selected indices into original array\n+ selected_full = np.nonzero(~has_label)[0][selected]\n+\n+ # Add newly labeled confident predictions to the dataset\n+ self.transduction_[selected_full] = pred[selected]\n+ has_label[selected_full] = True\n+ self.labeled_iter_[selected_full] = self.n_iter_\n+\n+ if selected_full.shape[0] == 0:\n+ # no changed labels\n+ self.termination_condition_ = \"no_change\"\n+ break\n+\n+ if self.verbose:\n+ print(\n+ f\"End of iteration {self.n_iter_},\"\n+ f\" added {selected_full.shape[0]} new labels.\"\n+ )\n+\n+ if self.n_iter_ == self.max_iter:\n+ self.termination_condition_ = \"max_iter\"\n+ if np.all(has_label):\n+ self.termination_condition_ = \"all_labeled\"\n+\n+ self.estimator_.fit(\n+ X[safe_mask(X, has_label)],\n+ self.transduction_[has_label],\n+ **routed_params.estimator.fit,\n+ )\n+ self.classes_ = self.estimator_.classes_\n+ return self\n \n @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/semi_supervised/_self_training.py b/sklearn/semi_supervised/_self_training.py\nindex 59bd93cb9..c970d44a5 100644\n--- a/sklearn/semi_supervised/_self_training.py\n+++ b/sklearn/semi_supervised/_self_training.py\n@@ -244,10 +244,6 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n estimator_ = clone(self.estimator)\n return estimator_\n \n- @_fit_context(\n- # SelfTrainingClassifier.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, **params):\n \"\"\"\n Fit self-training classifier using `X`, `y` as training data.\n@@ -276,112 +272,6 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- _raise_for_params(params, self, \"fit\")\n-\n- self.estimator_ = self._get_estimator()\n-\n- # we need row slicing support for sparse matrices, but costly finiteness check\n- # can be delegated to the base estimator.\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=[\"csr\", \"csc\", \"lil\", \"dok\"],\n- ensure_all_finite=False,\n- )\n-\n- if y.dtype.kind in [\"U\", \"S\"]:\n- raise ValueError(\n- \"y has dtype string. If you wish to predict on \"\n- \"string targets, use dtype object, and use -1\"\n- \" as the label for unlabeled samples.\"\n- )\n-\n- has_label = y != -1\n-\n- if np.all(has_label):\n- warnings.warn(\"y contains no unlabeled samples\", UserWarning)\n-\n- if self.criterion == \"k_best\" and (\n- self.k_best > X.shape[0] - np.sum(has_label)\n- ):\n- warnings.warn(\n- (\n- \"k_best is larger than the amount of unlabeled \"\n- \"samples. All unlabeled samples will be labeled in \"\n- \"the first iteration\"\n- ),\n- UserWarning,\n- )\n-\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit\", **params)\n- else:\n- routed_params = Bunch(estimator=Bunch(fit={}))\n-\n- self.transduction_ = np.copy(y)\n- self.labeled_iter_ = np.full_like(y, -1)\n- self.labeled_iter_[has_label] = 0\n-\n- self.n_iter_ = 0\n-\n- while not np.all(has_label) and (\n- self.max_iter is None or self.n_iter_ < self.max_iter\n- ):\n- self.n_iter_ += 1\n- self.estimator_.fit(\n- X[safe_mask(X, has_label)],\n- self.transduction_[has_label],\n- **routed_params.estimator.fit,\n- )\n-\n- # Predict on the unlabeled samples\n- prob = self.estimator_.predict_proba(X[safe_mask(X, ~has_label)])\n- pred = self.estimator_.classes_[np.argmax(prob, axis=1)]\n- max_proba = np.max(prob, axis=1)\n-\n- # Select new labeled samples\n- if self.criterion == \"threshold\":\n- selected = max_proba > self.threshold\n- else:\n- n_to_select = min(self.k_best, max_proba.shape[0])\n- if n_to_select == max_proba.shape[0]:\n- selected = np.ones_like(max_proba, dtype=bool)\n- else:\n- # NB these are indices, not a mask\n- selected = np.argpartition(-max_proba, n_to_select)[:n_to_select]\n-\n- # Map selected indices into original array\n- selected_full = np.nonzero(~has_label)[0][selected]\n-\n- # Add newly labeled confident predictions to the dataset\n- self.transduction_[selected_full] = pred[selected]\n- has_label[selected_full] = True\n- self.labeled_iter_[selected_full] = self.n_iter_\n-\n- if selected_full.shape[0] == 0:\n- # no changed labels\n- self.termination_condition_ = \"no_change\"\n- break\n-\n- if self.verbose:\n- print(\n- f\"End of iteration {self.n_iter_},\"\n- f\" added {selected_full.shape[0]} new labels.\"\n- )\n-\n- if self.n_iter_ == self.max_iter:\n- self.termination_condition_ = \"max_iter\"\n- if np.all(has_label):\n- self.termination_condition_ = \"all_labeled\"\n-\n- self.estimator_.fit(\n- X[safe_mask(X, has_label)],\n- self.transduction_[has_label],\n- **routed_params.estimator.fit,\n- )\n- self.classes_ = self.estimator_.classes_\n- return self\n \n @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/semi_supervised/_self_training.py.\nHere is the description for the function:\n def fit(self, X, y, **params):\n \"\"\"\n Fit self-training classifier using `X`, `y` as training data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Array representing the data.\n\n y : {array-like, sparse matrix} of shape (n_samples,)\n Array representing the labels. Unlabeled samples should have the\n label -1.\n\n **params : dict\n Parameters to pass to the underlying estimators.\n\n .. versionadded:: 1.6\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[SelfTrainingClassifier]", "sklearn/semi_supervised/tests/test_self_training.py::test_warns_k_best", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_k_best", "sklearn/semi_supervised/tests/test_self_training.py::test_sanity_classification", "sklearn/semi_supervised/tests/test_self_training.py::test_none_iter", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y0-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y0-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y1-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y1-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_labeled_iter[1]", "sklearn/semi_supervised/tests/test_self_training.py::test_labeled_iter[2]", "sklearn/semi_supervised/tests/test_self_training.py::test_labeled_iter[3]", "sklearn/semi_supervised/tests/test_self_training.py::test_labeled_iter[4]", "sklearn/semi_supervised/tests/test_self_training.py::test_no_unlabeled", "sklearn/semi_supervised/tests/test_self_training.py::test_early_stopping", "sklearn/semi_supervised/tests/test_self_training.py::test_strings_dtype", "sklearn/semi_supervised/tests/test_self_training.py::test_verbose[True]", "sklearn/semi_supervised/tests/test_self_training.py::test_verbose[False]", "sklearn/semi_supervised/tests/test_self_training.py::test_verbose_k_best", "sklearn/semi_supervised/tests/test_self_training.py::test_k_best_selects_best", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/semi_supervised/tests/test_self_training.py::test_self_training_estimator_attribute_error", "sklearn/semi_supervised/tests/test_self_training.py::test_deprecation_warning_base_estimator", "sklearn/semi_supervised/tests/test_self_training.py::test_routing_passed_metadata_not_supported[decision_function]", "sklearn/semi_supervised/tests/test_self_training.py::test_routing_passed_metadata_not_supported[predict_log_proba]", "sklearn/semi_supervised/tests/test_self_training.py::test_routing_passed_metadata_not_supported[predict_proba]", "sklearn/semi_supervised/tests/test_self_training.py::test_routing_passed_metadata_not_supported[predict]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/semi_supervised/_self_training.py::sklearn.semi_supervised._self_training.SelfTrainingClassifier", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SelfTrainingClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SelfTrainingClassifier]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-171
1.0
{ "code": "diff --git b/sklearn/semi_supervised/_self_training.py a/sklearn/semi_supervised/_self_training.py\nindex cc61c9861..59bd93cb9 100644\n--- b/sklearn/semi_supervised/_self_training.py\n+++ a/sklearn/semi_supervised/_self_training.py\n@@ -383,6 +383,7 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n self.classes_ = self.estimator_.classes_\n return self\n \n+ @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **params):\n \"\"\"Predict the classes of `X`.\n \n@@ -406,6 +407,23 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n y : ndarray of shape (n_samples,)\n Array with predicted labels.\n \"\"\"\n+ check_is_fitted(self)\n+ _raise_for_params(params, self, \"predict\")\n+\n+ if _routing_enabled():\n+ # metadata routing is enabled.\n+ routed_params = process_routing(self, \"predict\", **params)\n+ else:\n+ routed_params = Bunch(estimator=Bunch(predict={}))\n+\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=True,\n+ ensure_all_finite=False,\n+ reset=False,\n+ )\n+ return self.estimator_.predict(X, **routed_params.estimator.predict)\n \n @available_if(_estimator_has(\"predict_proba\"))\n def predict_proba(self, X, **params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/semi_supervised/_self_training.py b/sklearn/semi_supervised/_self_training.py\nindex 59bd93cb9..cc61c9861 100644\n--- a/sklearn/semi_supervised/_self_training.py\n+++ b/sklearn/semi_supervised/_self_training.py\n@@ -383,7 +383,6 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n self.classes_ = self.estimator_.classes_\n return self\n \n- @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **params):\n \"\"\"Predict the classes of `X`.\n \n@@ -407,23 +406,6 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n y : ndarray of shape (n_samples,)\n Array with predicted labels.\n \"\"\"\n- check_is_fitted(self)\n- _raise_for_params(params, self, \"predict\")\n-\n- if _routing_enabled():\n- # metadata routing is enabled.\n- routed_params = process_routing(self, \"predict\", **params)\n- else:\n- routed_params = Bunch(estimator=Bunch(predict={}))\n-\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=True,\n- ensure_all_finite=False,\n- reset=False,\n- )\n- return self.estimator_.predict(X, **routed_params.estimator.predict)\n \n @available_if(_estimator_has(\"predict_proba\"))\n def predict_proba(self, X, **params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/semi_supervised/_self_training.py.\nHere is the description for the function:\n def predict(self, X, **params):\n \"\"\"Predict the classes of `X`.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Array representing the data.\n\n **params : dict of str -> object\n Parameters to pass to the underlying estimator's ``predict`` method.\n\n .. versionadded:: 1.6\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n y : ndarray of shape (n_samples,)\n Array with predicted labels.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[SelfTrainingClassifier]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_sanity_classification", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y0-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y0-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y1-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y1-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_prefitted_throws_error", "sklearn/semi_supervised/tests/test_self_training.py::test_no_unlabeled", "sklearn/semi_supervised/tests/test_self_training.py::test_routing_passed_metadata_not_supported[predict]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SelfTrainingClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SelfTrainingClassifier]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-172
1.0
{ "code": "diff --git b/sklearn/semi_supervised/_self_training.py a/sklearn/semi_supervised/_self_training.py\nindex 19407145f..59bd93cb9 100644\n--- b/sklearn/semi_supervised/_self_training.py\n+++ a/sklearn/semi_supervised/_self_training.py\n@@ -425,6 +425,7 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n )\n return self.estimator_.predict(X, **routed_params.estimator.predict)\n \n+ @available_if(_estimator_has(\"predict_proba\"))\n def predict_proba(self, X, **params):\n \"\"\"Predict probability for each possible outcome.\n \n@@ -449,6 +450,23 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n y : ndarray of shape (n_samples, n_features)\n Array with prediction probabilities.\n \"\"\"\n+ check_is_fitted(self)\n+ _raise_for_params(params, self, \"predict_proba\")\n+\n+ if _routing_enabled():\n+ # metadata routing is enabled.\n+ routed_params = process_routing(self, \"predict_proba\", **params)\n+ else:\n+ routed_params = Bunch(estimator=Bunch(predict_proba={}))\n+\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=True,\n+ ensure_all_finite=False,\n+ reset=False,\n+ )\n+ return self.estimator_.predict_proba(X, **routed_params.estimator.predict_proba)\n \n @available_if(_estimator_has(\"decision_function\"))\n def decision_function(self, X, **params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/semi_supervised/_self_training.py b/sklearn/semi_supervised/_self_training.py\nindex 59bd93cb9..19407145f 100644\n--- a/sklearn/semi_supervised/_self_training.py\n+++ b/sklearn/semi_supervised/_self_training.py\n@@ -425,7 +425,6 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n )\n return self.estimator_.predict(X, **routed_params.estimator.predict)\n \n- @available_if(_estimator_has(\"predict_proba\"))\n def predict_proba(self, X, **params):\n \"\"\"Predict probability for each possible outcome.\n \n@@ -450,23 +449,6 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):\n y : ndarray of shape (n_samples, n_features)\n Array with prediction probabilities.\n \"\"\"\n- check_is_fitted(self)\n- _raise_for_params(params, self, \"predict_proba\")\n-\n- if _routing_enabled():\n- # metadata routing is enabled.\n- routed_params = process_routing(self, \"predict_proba\", **params)\n- else:\n- routed_params = Bunch(estimator=Bunch(predict_proba={}))\n-\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=True,\n- ensure_all_finite=False,\n- reset=False,\n- )\n- return self.estimator_.predict_proba(X, **routed_params.estimator.predict_proba)\n \n @available_if(_estimator_has(\"decision_function\"))\n def decision_function(self, X, **params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/semi_supervised/_self_training.py.\nHere is the description for the function:\n def predict_proba(self, X, **params):\n \"\"\"Predict probability for each possible outcome.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Array representing the data.\n\n **params : dict of str -> object\n Parameters to pass to the underlying estimator's\n ``predict_proba`` method.\n\n .. versionadded:: 1.6\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n y : ndarray of shape (n_samples, n_features)\n Array with prediction probabilities.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[SelfTrainingClassifier]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator1]", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/semi_supervised/tests/test_self_training.py::test_routing_passed_metadata_not_supported[predict_proba]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SelfTrainingClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SelfTrainingClassifier]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-173
1.0
{ "code": "diff --git b/sklearn/feature_selection/_sequential.py a/sklearn/feature_selection/_sequential.py\nindex ed99624d1..ac5f13fd0 100644\n--- b/sklearn/feature_selection/_sequential.py\n+++ a/sklearn/feature_selection/_sequential.py\n@@ -192,6 +192,10 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin, BaseEstimator\n self.cv = cv\n self.n_jobs = n_jobs\n \n+ @_fit_context(\n+ # SequentialFeatureSelector.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y=None, **params):\n \"\"\"Learn the features to select from X.\n \n@@ -222,6 +226,75 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin, BaseEstimator\n self : object\n Returns the instance itself.\n \"\"\"\n+ _raise_for_params(params, self, \"fit\")\n+ tags = self.__sklearn_tags__()\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=\"csc\",\n+ ensure_min_features=2,\n+ ensure_all_finite=not tags.input_tags.allow_nan,\n+ )\n+ n_features = X.shape[1]\n+\n+ if self.n_features_to_select == \"auto\":\n+ if self.tol is not None:\n+ # With auto feature selection, `n_features_to_select_` will be updated\n+ # to `support_.sum()` after features are selected.\n+ self.n_features_to_select_ = n_features - 1\n+ else:\n+ self.n_features_to_select_ = n_features // 2\n+ elif isinstance(self.n_features_to_select, Integral):\n+ if self.n_features_to_select >= n_features:\n+ raise ValueError(\"n_features_to_select must be < n_features.\")\n+ self.n_features_to_select_ = self.n_features_to_select\n+ elif isinstance(self.n_features_to_select, Real):\n+ self.n_features_to_select_ = int(n_features * self.n_features_to_select)\n+\n+ if self.tol is not None and self.tol < 0 and self.direction == \"forward\":\n+ raise ValueError(\n+ \"tol must be strictly positive when doing forward selection\"\n+ )\n+\n+ cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))\n+\n+ cloned_estimator = clone(self.estimator)\n+\n+ # the current mask corresponds to the set of features:\n+ # - that we have already *selected* if we do forward selection\n+ # - that we have already *excluded* if we do backward selection\n+ current_mask = np.zeros(shape=n_features, dtype=bool)\n+ n_iterations = (\n+ self.n_features_to_select_\n+ if self.n_features_to_select == \"auto\" or self.direction == \"forward\"\n+ else n_features - self.n_features_to_select_\n+ )\n+\n+ old_score = -np.inf\n+ is_auto_select = self.tol is not None and self.n_features_to_select == \"auto\"\n+\n+ # We only need to verify the routing here and not use the routed params\n+ # because internally the actual routing will also take place inside the\n+ # `cross_val_score` function.\n+ if _routing_enabled():\n+ process_routing(self, \"fit\", **params)\n+ for _ in range(n_iterations):\n+ new_feature_idx, new_score = self._get_best_new_feature_score(\n+ cloned_estimator, X, y, cv, current_mask, **params\n+ )\n+ if is_auto_select and ((new_score - old_score) < self.tol):\n+ break\n+\n+ old_score = new_score\n+ current_mask[new_feature_idx] = True\n+\n+ if self.direction == \"backward\":\n+ current_mask = ~current_mask\n+\n+ self.support_ = current_mask\n+ self.n_features_to_select_ = self.support_.sum()\n+\n+ return self\n \n def _get_best_new_feature_score(self, estimator, X, y, cv, current_mask, **params):\n # Return the best new feature and its score to add to the current_mask,\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_selection/_sequential.py b/sklearn/feature_selection/_sequential.py\nindex ac5f13fd0..ed99624d1 100644\n--- a/sklearn/feature_selection/_sequential.py\n+++ b/sklearn/feature_selection/_sequential.py\n@@ -192,10 +192,6 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin, BaseEstimator\n self.cv = cv\n self.n_jobs = n_jobs\n \n- @_fit_context(\n- # SequentialFeatureSelector.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y=None, **params):\n \"\"\"Learn the features to select from X.\n \n@@ -226,75 +222,6 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin, BaseEstimator\n self : object\n Returns the instance itself.\n \"\"\"\n- _raise_for_params(params, self, \"fit\")\n- tags = self.__sklearn_tags__()\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=\"csc\",\n- ensure_min_features=2,\n- ensure_all_finite=not tags.input_tags.allow_nan,\n- )\n- n_features = X.shape[1]\n-\n- if self.n_features_to_select == \"auto\":\n- if self.tol is not None:\n- # With auto feature selection, `n_features_to_select_` will be updated\n- # to `support_.sum()` after features are selected.\n- self.n_features_to_select_ = n_features - 1\n- else:\n- self.n_features_to_select_ = n_features // 2\n- elif isinstance(self.n_features_to_select, Integral):\n- if self.n_features_to_select >= n_features:\n- raise ValueError(\"n_features_to_select must be < n_features.\")\n- self.n_features_to_select_ = self.n_features_to_select\n- elif isinstance(self.n_features_to_select, Real):\n- self.n_features_to_select_ = int(n_features * self.n_features_to_select)\n-\n- if self.tol is not None and self.tol < 0 and self.direction == \"forward\":\n- raise ValueError(\n- \"tol must be strictly positive when doing forward selection\"\n- )\n-\n- cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))\n-\n- cloned_estimator = clone(self.estimator)\n-\n- # the current mask corresponds to the set of features:\n- # - that we have already *selected* if we do forward selection\n- # - that we have already *excluded* if we do backward selection\n- current_mask = np.zeros(shape=n_features, dtype=bool)\n- n_iterations = (\n- self.n_features_to_select_\n- if self.n_features_to_select == \"auto\" or self.direction == \"forward\"\n- else n_features - self.n_features_to_select_\n- )\n-\n- old_score = -np.inf\n- is_auto_select = self.tol is not None and self.n_features_to_select == \"auto\"\n-\n- # We only need to verify the routing here and not use the routed params\n- # because internally the actual routing will also take place inside the\n- # `cross_val_score` function.\n- if _routing_enabled():\n- process_routing(self, \"fit\", **params)\n- for _ in range(n_iterations):\n- new_feature_idx, new_score = self._get_best_new_feature_score(\n- cloned_estimator, X, y, cv, current_mask, **params\n- )\n- if is_auto_select and ((new_score - old_score) < self.tol):\n- break\n-\n- old_score = new_score\n- current_mask[new_feature_idx] = True\n-\n- if self.direction == \"backward\":\n- current_mask = ~current_mask\n-\n- self.support_ = current_mask\n- self.n_features_to_select_ = self.support_.sum()\n-\n- return self\n \n def _get_best_new_feature_score(self, estimator, X, y, cv, current_mask, **params):\n # Return the best new feature and its score to add to the current_mask,\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_selection/_sequential.py.\nHere is the description for the function:\n def fit(self, X, y=None, **params):\n \"\"\"Learn the features to select from X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training vectors, where `n_samples` is the number of samples and\n `n_features` is the number of predictors.\n\n y : array-like of shape (n_samples,), default=None\n Target values. This parameter may be ignored for\n unsupervised learning.\n\n **params : dict, default=None\n Parameters to be passed to the underlying `estimator`, `cv`\n and `scorer` objects.\n\n .. versionadded:: 1.6\n\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[SequentialFeatureSelector]", "sklearn/feature_selection/tests/test_sequential.py::test_bad_n_features_to_select", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[1.0-10-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[1.0-10-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_array]", "sklearn/feature_selection/tests/test_sequential.py::test_nan_support", "sklearn/feature_selection/tests/test_sequential.py::test_pipeline_support", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[2]", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[3]", "sklearn/feature_selection/tests/test_sequential.py::test_no_y_validation_model_fit[no_validation]", "sklearn/feature_selection/tests/test_sequential.py::test_no_y_validation_model_fit[1j]", "sklearn/feature_selection/tests/test_sequential.py::test_no_y_validation_model_fit[99.9]", "sklearn/feature_selection/tests/test_sequential.py::test_no_y_validation_model_fit[nan]", "sklearn/feature_selection/tests/test_sequential.py::test_no_y_validation_model_fit[3]", "sklearn/feature_selection/tests/test_sequential.py::test_forward_neg_tol_error", "sklearn/feature_selection/tests/test_sequential.py::test_backward_neg_tol", "sklearn/feature_selection/tests/test_sequential.py::test_cv_generator_support", "sklearn/feature_selection/tests/test_sequential.py::test_fit_rejects_params_with_no_routing_enabled", "sklearn/feature_selection/_sequential.py::sklearn.feature_selection._sequential.SequentialFeatureSelector", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SequentialFeatureSelector]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SequentialFeatureSelector]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[SequentialFeatureSelector]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[SequentialFeatureSelector]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-174
1.0
{ "code": "diff --git b/sklearn/covariance/_shrunk_covariance.py a/sklearn/covariance/_shrunk_covariance.py\nindex e04189da8..2a5e09f2c 100644\n--- b/sklearn/covariance/_shrunk_covariance.py\n+++ a/sklearn/covariance/_shrunk_covariance.py\n@@ -251,6 +251,7 @@ class ShrunkCovariance(EmpiricalCovariance):\n )\n self.shrinkage = shrinkage\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the shrunk covariance model to X.\n \n@@ -268,6 +269,18 @@ class ShrunkCovariance(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X)\n+ # Not calling the parent object to fit, to avoid a potential\n+ # matrix inversion when setting the precision\n+ if self.assume_centered:\n+ self.location_ = np.zeros(X.shape[1])\n+ else:\n+ self.location_ = X.mean(0)\n+ covariance = empirical_covariance(X, assume_centered=self.assume_centered)\n+ covariance = shrunk_covariance(covariance, self.shrinkage)\n+ self._set_covariance(covariance)\n+\n+ return self\n \n \n # Ledoit-Wolf estimator\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_shrunk_covariance.py b/sklearn/covariance/_shrunk_covariance.py\nindex 2a5e09f2c..e04189da8 100644\n--- a/sklearn/covariance/_shrunk_covariance.py\n+++ b/sklearn/covariance/_shrunk_covariance.py\n@@ -251,7 +251,6 @@ class ShrunkCovariance(EmpiricalCovariance):\n )\n self.shrinkage = shrinkage\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the shrunk covariance model to X.\n \n@@ -269,18 +268,6 @@ class ShrunkCovariance(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X)\n- # Not calling the parent object to fit, to avoid a potential\n- # matrix inversion when setting the precision\n- if self.assume_centered:\n- self.location_ = np.zeros(X.shape[1])\n- else:\n- self.location_ = X.mean(0)\n- covariance = empirical_covariance(X, assume_centered=self.assume_centered)\n- covariance = shrunk_covariance(covariance, self.shrinkage)\n- self._set_covariance(covariance)\n-\n- return self\n \n \n # Ledoit-Wolf estimator\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_shrunk_covariance.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the shrunk covariance model to X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[0]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[1]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[4]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[5]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[6]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[7]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[8]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[9]", "sklearn/covariance/tests/test_covariance.py::test_shrunk_covariance", "sklearn/covariance/tests/test_covariance.py::test_ledoit_wolf", "sklearn/covariance/tests/test_covariance.py::test_oas", "sklearn/covariance/_shrunk_covariance.py::sklearn.covariance._shrunk_covariance.ShrunkCovariance", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[ShrunkCovariance()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ShrunkCovariance()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ShrunkCovariance()]", "sklearn/tests/test_common.py::test_check_param_validation[ShrunkCovariance()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-175
1.0
{ "code": "diff --git b/sklearn/impute/_base.py a/sklearn/impute/_base.py\nindex de4579daf..aecc235ec 100644\n--- b/sklearn/impute/_base.py\n+++ a/sklearn/impute/_base.py\n@@ -408,6 +408,7 @@ class SimpleImputer(_BaseImputer):\n \n return X\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the imputer on `X`.\n \n@@ -425,6 +426,28 @@ class SimpleImputer(_BaseImputer):\n self : object\n Fitted estimator.\n \"\"\"\n+ X = self._validate_input(X, in_fit=True)\n+\n+ # default fill_value is 0 for numerical input and \"missing_value\"\n+ # otherwise\n+ if self.fill_value is None:\n+ if X.dtype.kind in (\"i\", \"u\", \"f\"):\n+ fill_value = 0\n+ else:\n+ fill_value = \"missing_value\"\n+ else:\n+ fill_value = self.fill_value\n+\n+ if sp.issparse(X):\n+ self.statistics_ = self._sparse_fit(\n+ X, self.strategy, self.missing_values, fill_value\n+ )\n+ else:\n+ self.statistics_ = self._dense_fit(\n+ X, self.strategy, self.missing_values, fill_value\n+ )\n+\n+ return self\n \n def _sparse_fit(self, X, strategy, missing_values, fill_value):\n \"\"\"Fit the transformer on sparse data.\"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py\nindex aecc235ec..de4579daf 100644\n--- a/sklearn/impute/_base.py\n+++ b/sklearn/impute/_base.py\n@@ -408,7 +408,6 @@ class SimpleImputer(_BaseImputer):\n \n return X\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the imputer on `X`.\n \n@@ -426,28 +425,6 @@ class SimpleImputer(_BaseImputer):\n self : object\n Fitted estimator.\n \"\"\"\n- X = self._validate_input(X, in_fit=True)\n-\n- # default fill_value is 0 for numerical input and \"missing_value\"\n- # otherwise\n- if self.fill_value is None:\n- if X.dtype.kind in (\"i\", \"u\", \"f\"):\n- fill_value = 0\n- else:\n- fill_value = \"missing_value\"\n- else:\n- fill_value = self.fill_value\n-\n- if sp.issparse(X):\n- self.statistics_ = self._sparse_fit(\n- X, self.strategy, self.missing_values, fill_value\n- )\n- else:\n- self.statistics_ = self._dense_fit(\n- X, self.strategy, self.missing_values, fill_value\n- )\n-\n- return self\n \n def _sparse_fit(self, X, strategy, missing_values, fill_value):\n \"\"\"Fit the transformer on sparse data.\"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_base.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the imputer on `X`.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n Input data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[mean]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[median]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning_feature_names[mean]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning_feature_names[median]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning_feature_names[most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median[csc_array]", "sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases[csc_array]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-median]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-mean]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-median]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-median]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-median]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-median]", "sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent[csc_array]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[None]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[nan]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[NAN]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[0]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[object]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[category]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1-0]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1.0-nan]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_integer", "sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_array]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_float[asarray]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[None]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[nan]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[NAN]", "sklearn/model_selection/tests/test_search.py::test_grid_search_allows_nans", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[0]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[object]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[category]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X0]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X1]", "sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search", "sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency", "sklearn/impute/tests/test_impute.py::test_imputation_copy", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_all_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_warning", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[100-0-min_value >= max_value.]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[inf--inf-min_value >= max_value.]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[min_value2-max_value2-_value' should be of shape]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X0-a-X_trans_exp0]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X1-nan-X_trans_exp1]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X2-nan-X_trans_exp2]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X3-None-X_trans_exp3]", "sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input X contains NaN-SimpleImputer]", "sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-SimpleImputer]", "sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[SimpleImputer]", "sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[most_frequent-b]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[constant-missing_value]", "sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]", "sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[nan]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[nan]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[constant]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-DecisionTreeRegressor-0]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_constant_fill_value", "sklearn/impute/tests/test_impute.py::test_simple_impute_pd_na", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/impute/tests/test_impute.py::test_imputer_lists_fit_transform", "sklearn/impute/tests/test_impute.py::test_imputer_transform_preserves_numeric_dtype[float32]", "sklearn/impute/tests/test_impute.py::test_imputer_transform_preserves_numeric_dtype[float64]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[True-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[True-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[False-array]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[False-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-mean-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-mean-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-median-array]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-DecisionTreeRegressor-0]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-median-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-most_frequent-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-most_frequent-sparse]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-mean-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-mean-sparse]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-median-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-median-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-most_frequent-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-most_frequent-sparse]", "sklearn/impute/tests/test_impute.py::test_imputation_custom[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_custom[csc_array]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_fill_value_casting", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer--1]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputClassifier-LogisticRegression]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_matrix-SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_matrix-SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_array-SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_array-SimpleImputer--1]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputRegressor-Ridge]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-False]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[SimpleImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[SimpleImputer-False]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFE]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-SimpleImputer]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingRegressor-LinearRegression-X3-y3]", "sklearn/impute/_iterative.py::sklearn.impute._iterative.IterativeImputer", "sklearn/impute/_base.py::sklearn.impute._base.SimpleImputer", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[IterativeImputer]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[IterativeImputer]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IterativeImputer()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SimpleImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IterativeImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SimpleImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[IterativeImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SimpleImputer()]", "sklearn/tests/test_common.py::test_check_param_validation[SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SimpleImputer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SimpleImputer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-176
1.0
{ "code": "diff --git b/sklearn/impute/_base.py a/sklearn/impute/_base.py\nindex dd808d967..aecc235ec 100644\n--- b/sklearn/impute/_base.py\n+++ a/sklearn/impute/_base.py\n@@ -674,6 +674,39 @@ class SimpleImputer(_BaseImputer):\n The original `X` with missing values as it was prior\n to imputation.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ if not self.add_indicator:\n+ raise ValueError(\n+ \"'inverse_transform' works only when \"\n+ \"'SimpleImputer' is instantiated with \"\n+ \"'add_indicator=True'. \"\n+ f\"Got 'add_indicator={self.add_indicator}' \"\n+ \"instead.\"\n+ )\n+\n+ n_features_missing = len(self.indicator_.features_)\n+ non_empty_feature_count = X.shape[1] - n_features_missing\n+ array_imputed = X[:, :non_empty_feature_count].copy()\n+ missing_mask = X[:, non_empty_feature_count:].astype(bool)\n+\n+ n_features_original = len(self.statistics_)\n+ shape_original = (X.shape[0], n_features_original)\n+ X_original = np.zeros(shape_original)\n+ X_original[:, self.indicator_.features_] = missing_mask\n+ full_mask = X_original.astype(bool)\n+\n+ imputed_idx, original_idx = 0, 0\n+ while imputed_idx < len(array_imputed.T):\n+ if not np.all(X_original[:, original_idx]):\n+ X_original[:, original_idx] = array_imputed.T[imputed_idx]\n+ imputed_idx += 1\n+ original_idx += 1\n+ else:\n+ original_idx += 1\n+\n+ X_original[full_mask] = self.missing_values\n+ return X_original\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py\nindex aecc235ec..dd808d967 100644\n--- a/sklearn/impute/_base.py\n+++ b/sklearn/impute/_base.py\n@@ -674,39 +674,6 @@ class SimpleImputer(_BaseImputer):\n The original `X` with missing values as it was prior\n to imputation.\n \"\"\"\n- check_is_fitted(self)\n-\n- if not self.add_indicator:\n- raise ValueError(\n- \"'inverse_transform' works only when \"\n- \"'SimpleImputer' is instantiated with \"\n- \"'add_indicator=True'. \"\n- f\"Got 'add_indicator={self.add_indicator}' \"\n- \"instead.\"\n- )\n-\n- n_features_missing = len(self.indicator_.features_)\n- non_empty_feature_count = X.shape[1] - n_features_missing\n- array_imputed = X[:, :non_empty_feature_count].copy()\n- missing_mask = X[:, non_empty_feature_count:].astype(bool)\n-\n- n_features_original = len(self.statistics_)\n- shape_original = (X.shape[0], n_features_original)\n- X_original = np.zeros(shape_original)\n- X_original[:, self.indicator_.features_] = missing_mask\n- full_mask = X_original.astype(bool)\n-\n- imputed_idx, original_idx = 0, 0\n- while imputed_idx < len(array_imputed.T):\n- if not np.all(X_original[:, original_idx]):\n- X_original[:, original_idx] = array_imputed.T[imputed_idx]\n- imputed_idx += 1\n- original_idx += 1\n- else:\n- original_idx += 1\n-\n- X_original[full_mask] = self.missing_values\n- return X_original\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_base.py.\nHere is the description for the function:\n def inverse_transform(self, X):\n \"\"\"Convert the data back to the original representation.\n\n Inverts the `transform` operation performed on an array.\n This operation can only be performed after :class:`SimpleImputer` is\n instantiated with `add_indicator=True`.\n\n Note that `inverse_transform` can only invert the transform in\n features that have binary indicators for missing values. If a feature\n has no missing values at `fit` time, the feature won't have a binary\n indicator, and the imputation done at `transform` time won't be\n inverted.\n\n .. versionadded:: 0.24\n\n Parameters\n ----------\n X : array-like of shape \\\n (n_samples, n_features + n_features_missing_indicator)\n The imputed data to be reverted to original data. It has to be\n an augmented array of imputed data and the missing indicator mask.\n\n Returns\n -------\n X_original : ndarray of shape (n_samples, n_features)\n The original `X` with missing values as it was prior\n to imputation.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[nan]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[nan]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-177
1.0
{ "code": "diff --git b/sklearn/impute/_base.py a/sklearn/impute/_base.py\nindex 10ecc9cbd..aecc235ec 100644\n--- b/sklearn/impute/_base.py\n+++ a/sklearn/impute/_base.py\n@@ -573,6 +573,78 @@ class SimpleImputer(_BaseImputer):\n (n_samples, n_features_out)\n `X` with imputed values.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ X = self._validate_input(X, in_fit=False)\n+ statistics = self.statistics_\n+\n+ if X.shape[1] != statistics.shape[0]:\n+ raise ValueError(\n+ \"X has %d features per sample, expected %d\"\n+ % (X.shape[1], self.statistics_.shape[0])\n+ )\n+\n+ # compute mask before eliminating invalid features\n+ missing_mask = _get_mask(X, self.missing_values)\n+\n+ # Decide whether to keep missing features\n+ if self.strategy == \"constant\" or self.keep_empty_features:\n+ valid_statistics = statistics\n+ valid_statistics_indexes = None\n+ else:\n+ # same as np.isnan but also works for object dtypes\n+ invalid_mask = _get_mask(statistics, np.nan)\n+ valid_mask = np.logical_not(invalid_mask)\n+ valid_statistics = statistics[valid_mask]\n+ valid_statistics_indexes = np.flatnonzero(valid_mask)\n+\n+ if invalid_mask.any():\n+ invalid_features = np.arange(X.shape[1])[invalid_mask]\n+ # use feature names warning if features are provided\n+ if hasattr(self, \"feature_names_in_\"):\n+ invalid_features = self.feature_names_in_[invalid_features]\n+ warnings.warn(\n+ \"Skipping features without any observed values:\"\n+ f\" {invalid_features}. At least one non-missing value is needed\"\n+ f\" for imputation with strategy='{self.strategy}'.\"\n+ )\n+ X = X[:, valid_statistics_indexes]\n+\n+ # Do actual imputation\n+ if sp.issparse(X):\n+ if self.missing_values == 0:\n+ raise ValueError(\n+ \"Imputation not possible when missing_values \"\n+ \"== 0 and input is sparse. Provide a dense \"\n+ \"array instead.\"\n+ )\n+ else:\n+ # if no invalid statistics are found, use the mask computed\n+ # before, else recompute mask\n+ if valid_statistics_indexes is None:\n+ mask = missing_mask.data\n+ else:\n+ mask = _get_mask(X.data, self.missing_values)\n+ indexes = np.repeat(\n+ np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr)\n+ )[mask]\n+\n+ X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False)\n+ else:\n+ # use mask computed before eliminating invalid mask\n+ if valid_statistics_indexes is None:\n+ mask_valid_features = missing_mask\n+ else:\n+ mask_valid_features = missing_mask[:, valid_statistics_indexes]\n+ n_missing = np.sum(mask_valid_features, axis=0)\n+ values = np.repeat(valid_statistics, n_missing)\n+ coordinates = np.where(mask_valid_features.transpose())[::-1]\n+\n+ X[coordinates] = values\n+\n+ X_indicator = super()._transform_indicator(missing_mask)\n+\n+ return super()._concatenate_indicator(X, X_indicator)\n \n def inverse_transform(self, X):\n \"\"\"Convert the data back to the original representation.\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py\nindex aecc235ec..10ecc9cbd 100644\n--- a/sklearn/impute/_base.py\n+++ b/sklearn/impute/_base.py\n@@ -573,78 +573,6 @@ class SimpleImputer(_BaseImputer):\n (n_samples, n_features_out)\n `X` with imputed values.\n \"\"\"\n- check_is_fitted(self)\n-\n- X = self._validate_input(X, in_fit=False)\n- statistics = self.statistics_\n-\n- if X.shape[1] != statistics.shape[0]:\n- raise ValueError(\n- \"X has %d features per sample, expected %d\"\n- % (X.shape[1], self.statistics_.shape[0])\n- )\n-\n- # compute mask before eliminating invalid features\n- missing_mask = _get_mask(X, self.missing_values)\n-\n- # Decide whether to keep missing features\n- if self.strategy == \"constant\" or self.keep_empty_features:\n- valid_statistics = statistics\n- valid_statistics_indexes = None\n- else:\n- # same as np.isnan but also works for object dtypes\n- invalid_mask = _get_mask(statistics, np.nan)\n- valid_mask = np.logical_not(invalid_mask)\n- valid_statistics = statistics[valid_mask]\n- valid_statistics_indexes = np.flatnonzero(valid_mask)\n-\n- if invalid_mask.any():\n- invalid_features = np.arange(X.shape[1])[invalid_mask]\n- # use feature names warning if features are provided\n- if hasattr(self, \"feature_names_in_\"):\n- invalid_features = self.feature_names_in_[invalid_features]\n- warnings.warn(\n- \"Skipping features without any observed values:\"\n- f\" {invalid_features}. At least one non-missing value is needed\"\n- f\" for imputation with strategy='{self.strategy}'.\"\n- )\n- X = X[:, valid_statistics_indexes]\n-\n- # Do actual imputation\n- if sp.issparse(X):\n- if self.missing_values == 0:\n- raise ValueError(\n- \"Imputation not possible when missing_values \"\n- \"== 0 and input is sparse. Provide a dense \"\n- \"array instead.\"\n- )\n- else:\n- # if no invalid statistics are found, use the mask computed\n- # before, else recompute mask\n- if valid_statistics_indexes is None:\n- mask = missing_mask.data\n- else:\n- mask = _get_mask(X.data, self.missing_values)\n- indexes = np.repeat(\n- np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr)\n- )[mask]\n-\n- X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False)\n- else:\n- # use mask computed before eliminating invalid mask\n- if valid_statistics_indexes is None:\n- mask_valid_features = missing_mask\n- else:\n- mask_valid_features = missing_mask[:, valid_statistics_indexes]\n- n_missing = np.sum(mask_valid_features, axis=0)\n- values = np.repeat(valid_statistics, n_missing)\n- coordinates = np.where(mask_valid_features.transpose())[::-1]\n-\n- X[coordinates] = values\n-\n- X_indicator = super()._transform_indicator(missing_mask)\n-\n- return super()._concatenate_indicator(X, X_indicator)\n \n def inverse_transform(self, X):\n \"\"\"Convert the data back to the original representation.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_base.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Impute all missing values in `X`.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n The input data to complete.\n\n Returns\n -------\n X_imputed : {ndarray, sparse matrix} of shape \\\n (n_samples, n_features_out)\n `X` with imputed values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[mean]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[median]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning_feature_names[mean]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning_feature_names[median]", "sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning_feature_names[most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[csc_array-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_mean_median[csc_array]", "sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases[csc_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent[csc_array]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[None]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[nan]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[NAN]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[0]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[object]", "sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[category]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_integer", "sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_array]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_float[asarray]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[None]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[nan]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[NAN]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_object[0]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[object]", "sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[category]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X0]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X1]", "sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search", "sklearn/impute/tests/test_impute.py::test_imputation_copy", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters", "sklearn/model_selection/tests/test_search.py::test_grid_search_allows_nans", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_all_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]", "sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_warning", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[100-0-min_value >= max_value.]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[inf--inf-min_value >= max_value.]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[min_value2-max_value2-_value' should be of shape]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X0-a-X_trans_exp0]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X1-nan-X_trans_exp1]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X2-nan-X_trans_exp2]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X3-None-X_trans_exp3]", "sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[most_frequent-b]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[constant-missing_value]", "sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]", "sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[nan]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[nan]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[constant]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_constant_fill_value", "sklearn/impute/tests/test_impute.py::test_simple_impute_pd_na", "sklearn/impute/tests/test_impute.py::test_imputer_lists_fit_transform", "sklearn/impute/tests/test_impute.py::test_imputer_transform_preserves_numeric_dtype[float32]", "sklearn/impute/tests/test_impute.py::test_imputer_transform_preserves_numeric_dtype[float64]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[True-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[True-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[False-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_keep_empty_features[False-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-mean-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-mean-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-median-array]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-DecisionTreeRegressor-0]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-median-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-most_frequent-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[True-most_frequent-sparse]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-mean-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-mean-sparse]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-median-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-median-sparse]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-most_frequent-array]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_keep_empty_features[False-most_frequent-sparse]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-DecisionTreeRegressor-0]", "sklearn/impute/tests/test_impute.py::test_imputation_custom[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_imputation_custom[csc_array]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/impute/tests/test_impute.py::test_simple_imputer_constant_fill_value_casting", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[IterativeImputer]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputClassifier-LogisticRegression]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer--1]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputRegressor-Ridge]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_matrix-SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_matrix-SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_array-SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_array-SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-False]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[SimpleImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[SimpleImputer-False]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFE]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-SimpleImputer]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingRegressor-LinearRegression-X3-y3]", "sklearn/impute/_iterative.py::sklearn.impute._iterative.IterativeImputer", "sklearn/impute/_base.py::sklearn.impute._base.SimpleImputer", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[IterativeImputer]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[IterativeImputer]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SimpleImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IterativeImputer()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SimpleImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IterativeImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SimpleImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[IterativeImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SimpleImputer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SimpleImputer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-178
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex ea3fdcd07..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -494,6 +494,7 @@ class SkewedChi2Sampler(\n self.n_components = n_components\n self.random_state = random_state\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model with X.\n \n@@ -514,6 +515,22 @@ class SkewedChi2Sampler(\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X)\n+ random_state = check_random_state(self.random_state)\n+ n_features = X.shape[1]\n+ uniform = random_state.uniform(size=(n_features, self.n_components))\n+ # transform by inverse CDF of sech\n+ self.random_weights_ = 1.0 / np.pi * np.log(np.tan(np.pi / 2.0 * uniform))\n+ self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)\n+\n+ if X.dtype == np.float32:\n+ # Setting the data type of the fitted attribute will ensure the\n+ # output data type during `transform`.\n+ self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)\n+ self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)\n+\n+ self._n_features_out = self.n_components\n+ return self\n \n def transform(self, X):\n \"\"\"Apply the approximate feature map to X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..ea3fdcd07 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -494,7 +494,6 @@ class SkewedChi2Sampler(\n self.n_components = n_components\n self.random_state = random_state\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model with X.\n \n@@ -515,22 +514,6 @@ class SkewedChi2Sampler(\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X)\n- random_state = check_random_state(self.random_state)\n- n_features = X.shape[1]\n- uniform = random_state.uniform(size=(n_features, self.n_components))\n- # transform by inverse CDF of sech\n- self.random_weights_ = 1.0 / np.pi * np.log(np.tan(np.pi / 2.0 * uniform))\n- self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)\n-\n- if X.dtype == np.float32:\n- # Setting the data type of the fitted attribute will ensure the\n- # output data type during `transform`.\n- self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)\n- self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)\n-\n- self._n_features_out = self.n_components\n- return self\n \n def transform(self, X):\n \"\"\"Apply the approximate feature map to X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the model with X.\n\n Samples random projection according to n_features.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : array-like, shape (n_samples,) or (n_samples, n_outputs), \\\n default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler", "sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler_fitted_attributes_dtype[float64]", "sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler_dtype_equivalence", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[SkewedChi2Sampler]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.SkewedChi2Sampler", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_check_param_validation[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SkewedChi2Sampler()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-179
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex d6d620838..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -547,6 +547,20 @@ class SkewedChi2Sampler(\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n+ check_is_fitted(self)\n+ X = validate_data(\n+ self, X, copy=True, dtype=[np.float64, np.float32], reset=False\n+ )\n+ if (X <= -self.skewedness).any():\n+ raise ValueError(\"X may not contain entries smaller than -skewedness.\")\n+\n+ X += self.skewedness\n+ np.log(X, X)\n+ projection = safe_sparse_dot(X, self.random_weights_)\n+ projection += self.random_offset_\n+ np.cos(projection, projection)\n+ projection *= np.sqrt(2.0) / np.sqrt(self.n_components)\n+ return projection\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..d6d620838 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -547,20 +547,6 @@ class SkewedChi2Sampler(\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n- check_is_fitted(self)\n- X = validate_data(\n- self, X, copy=True, dtype=[np.float64, np.float32], reset=False\n- )\n- if (X <= -self.skewedness).any():\n- raise ValueError(\"X may not contain entries smaller than -skewedness.\")\n-\n- X += self.skewedness\n- np.log(X, X)\n- projection = safe_sparse_dot(X, self.random_weights_)\n- projection += self.random_offset_\n- np.cos(projection, projection)\n- projection *= np.sqrt(2.0) / np.sqrt(self.n_components)\n- return projection\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Apply the approximate feature map to X.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n New data, where `n_samples` is the number of samples\n and `n_features` is the number of features. All values of X must be\n strictly greater than \"-skewedness\".\n\n Returns\n -------\n X_new : array-like, shape (n_samples, n_components)\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[SkewedChi2Sampler]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.SkewedChi2Sampler", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SkewedChi2Sampler()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SkewedChi2Sampler()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-180
1.0
{ "code": "diff --git b/sklearn/cluster/_spectral.py a/sklearn/cluster/_spectral.py\nindex 6cb68f2f2..e588aa6ce 100644\n--- b/sklearn/cluster/_spectral.py\n+++ a/sklearn/cluster/_spectral.py\n@@ -663,6 +663,7 @@ class SpectralClustering(ClusterMixin, BaseEstimator):\n self.n_jobs = n_jobs\n self.verbose = verbose\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Perform spectral clustering from features, or affinity matrix.\n \n@@ -685,6 +686,85 @@ class SpectralClustering(ClusterMixin, BaseEstimator):\n self : object\n A fitted instance of the estimator.\n \"\"\"\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=[\"csr\", \"csc\", \"coo\"],\n+ dtype=np.float64,\n+ ensure_min_samples=2,\n+ )\n+ allow_squared = self.affinity in [\n+ \"precomputed\",\n+ \"precomputed_nearest_neighbors\",\n+ ]\n+ if X.shape[0] == X.shape[1] and not allow_squared:\n+ warnings.warn(\n+ \"The spectral clustering API has changed. ``fit``\"\n+ \"now constructs an affinity matrix from data. To use\"\n+ \" a custom affinity matrix, \"\n+ \"set ``affinity=precomputed``.\"\n+ )\n+\n+ if self.affinity == \"nearest_neighbors\":\n+ connectivity = kneighbors_graph(\n+ X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs\n+ )\n+ self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)\n+ elif self.affinity == \"precomputed_nearest_neighbors\":\n+ estimator = NearestNeighbors(\n+ n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric=\"precomputed\"\n+ ).fit(X)\n+ connectivity = estimator.kneighbors_graph(X=X, mode=\"connectivity\")\n+ self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)\n+ elif self.affinity == \"precomputed\":\n+ self.affinity_matrix_ = X\n+ else:\n+ params = self.kernel_params\n+ if params is None:\n+ params = {}\n+ if not callable(self.affinity):\n+ params[\"gamma\"] = self.gamma\n+ params[\"degree\"] = self.degree\n+ params[\"coef0\"] = self.coef0\n+ self.affinity_matrix_ = pairwise_kernels(\n+ X, metric=self.affinity, filter_params=True, **params\n+ )\n+\n+ random_state = check_random_state(self.random_state)\n+ n_components = (\n+ self.n_clusters if self.n_components is None else self.n_components\n+ )\n+ # We now obtain the real valued solution matrix to the\n+ # relaxed Ncut problem, solving the eigenvalue problem\n+ # L_sym x = lambda x and recovering u = D^-1/2 x.\n+ # The first eigenvector is constant only for fully connected graphs\n+ # and should be kept for spectral clustering (drop_first = False)\n+ # See spectral_embedding documentation.\n+ maps = _spectral_embedding(\n+ self.affinity_matrix_,\n+ n_components=n_components,\n+ eigen_solver=self.eigen_solver,\n+ random_state=random_state,\n+ eigen_tol=self.eigen_tol,\n+ drop_first=False,\n+ )\n+ if self.verbose:\n+ print(f\"Computing label assignment using {self.assign_labels}\")\n+\n+ if self.assign_labels == \"kmeans\":\n+ _, self.labels_, _ = k_means(\n+ maps,\n+ self.n_clusters,\n+ random_state=random_state,\n+ n_init=self.n_init,\n+ verbose=self.verbose,\n+ )\n+ elif self.assign_labels == \"cluster_qr\":\n+ self.labels_ = cluster_qr(maps)\n+ else:\n+ self.labels_ = discretize(maps, random_state=random_state)\n+\n+ return self\n \n def fit_predict(self, X, y=None):\n \"\"\"Perform spectral clustering on `X` and return cluster labels.\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_spectral.py b/sklearn/cluster/_spectral.py\nindex e588aa6ce..6cb68f2f2 100644\n--- a/sklearn/cluster/_spectral.py\n+++ b/sklearn/cluster/_spectral.py\n@@ -663,7 +663,6 @@ class SpectralClustering(ClusterMixin, BaseEstimator):\n self.n_jobs = n_jobs\n self.verbose = verbose\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Perform spectral clustering from features, or affinity matrix.\n \n@@ -686,85 +685,6 @@ class SpectralClustering(ClusterMixin, BaseEstimator):\n self : object\n A fitted instance of the estimator.\n \"\"\"\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=[\"csr\", \"csc\", \"coo\"],\n- dtype=np.float64,\n- ensure_min_samples=2,\n- )\n- allow_squared = self.affinity in [\n- \"precomputed\",\n- \"precomputed_nearest_neighbors\",\n- ]\n- if X.shape[0] == X.shape[1] and not allow_squared:\n- warnings.warn(\n- \"The spectral clustering API has changed. ``fit``\"\n- \"now constructs an affinity matrix from data. To use\"\n- \" a custom affinity matrix, \"\n- \"set ``affinity=precomputed``.\"\n- )\n-\n- if self.affinity == \"nearest_neighbors\":\n- connectivity = kneighbors_graph(\n- X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs\n- )\n- self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)\n- elif self.affinity == \"precomputed_nearest_neighbors\":\n- estimator = NearestNeighbors(\n- n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric=\"precomputed\"\n- ).fit(X)\n- connectivity = estimator.kneighbors_graph(X=X, mode=\"connectivity\")\n- self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)\n- elif self.affinity == \"precomputed\":\n- self.affinity_matrix_ = X\n- else:\n- params = self.kernel_params\n- if params is None:\n- params = {}\n- if not callable(self.affinity):\n- params[\"gamma\"] = self.gamma\n- params[\"degree\"] = self.degree\n- params[\"coef0\"] = self.coef0\n- self.affinity_matrix_ = pairwise_kernels(\n- X, metric=self.affinity, filter_params=True, **params\n- )\n-\n- random_state = check_random_state(self.random_state)\n- n_components = (\n- self.n_clusters if self.n_components is None else self.n_components\n- )\n- # We now obtain the real valued solution matrix to the\n- # relaxed Ncut problem, solving the eigenvalue problem\n- # L_sym x = lambda x and recovering u = D^-1/2 x.\n- # The first eigenvector is constant only for fully connected graphs\n- # and should be kept for spectral clustering (drop_first = False)\n- # See spectral_embedding documentation.\n- maps = _spectral_embedding(\n- self.affinity_matrix_,\n- n_components=n_components,\n- eigen_solver=self.eigen_solver,\n- random_state=random_state,\n- eigen_tol=self.eigen_tol,\n- drop_first=False,\n- )\n- if self.verbose:\n- print(f\"Computing label assignment using {self.assign_labels}\")\n-\n- if self.assign_labels == \"kmeans\":\n- _, self.labels_, _ = k_means(\n- maps,\n- self.n_clusters,\n- random_state=random_state,\n- n_init=self.n_init,\n- verbose=self.verbose,\n- )\n- elif self.assign_labels == \"cluster_qr\":\n- self.labels_ = cluster_qr(maps)\n- else:\n- self.labels_ = discretize(maps, random_state=random_state)\n-\n- return self\n \n def fit_predict(self, X, y=None):\n \"\"\"Perform spectral clustering on `X` and return cluster labels.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_spectral.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Perform spectral clustering from features, or affinity matrix.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features) or \\\n (n_samples, n_samples)\n Training instances to cluster, similarities / affinities between\n instances if ``affinity='precomputed'``, or distances between\n instances if ``affinity='precomputed_nearest_neighbors``. If a\n sparse matrix is provided in a format other than ``csr_matrix``,\n ``csc_matrix``, or ``coo_matrix``, it will be converted into a\n sparse ``csr_matrix``.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n A fitted instance of the estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.cluster.spectral_clustering-sklearn.cluster.SpectralClustering]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack-csr_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg-csr_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-arpack-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-arpack-csr_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-lobpcg-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-lobpcg-csr_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[cluster_qr-arpack-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[cluster_qr-arpack-csr_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[cluster_qr-lobpcg-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[cluster_qr-lobpcg-csr_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans-coo_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans-coo_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[discretize-coo_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[discretize-coo_array]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[cluster_qr-coo_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[cluster_qr-coo_array]", "sklearn/cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering", "sklearn/cluster/tests/test_spectral.py::test_affinities", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_with_arpack_amg_solvers", "sklearn/cluster/tests/test_spectral.py::test_n_components", "sklearn/cluster/tests/test_spectral.py::test_verbose[kmeans]", "sklearn/cluster/tests/test_spectral.py::test_verbose[discretize]", "sklearn/cluster/tests/test_spectral.py::test_verbose[cluster_qr]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_np_matrix_raises", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_spectral_clustering", "sklearn/cluster/_spectral.py::sklearn.cluster._spectral.SpectralClustering", "sklearn/cluster/_spectral.py::sklearn.cluster._spectral.spectral_clustering", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=1,n_components=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_param_validation[SpectralClustering(n_clusters=2,n_init=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-181
1.0
{ "code": "diff --git b/sklearn/preprocessing/_polynomial.py a/sklearn/preprocessing/_polynomial.py\nindex df30c9db3..5a3239f11 100644\n--- b/sklearn/preprocessing/_polynomial.py\n+++ a/sklearn/preprocessing/_polynomial.py\n@@ -817,6 +817,7 @@ class SplineTransformer(TransformerMixin, BaseEstimator):\n feature_names.append(f\"{input_features[i]}_sp_{j}\")\n return np.asarray(feature_names, dtype=object)\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute knot positions of splines.\n \n@@ -838,6 +839,118 @@ class SplineTransformer(TransformerMixin, BaseEstimator):\n self : object\n Fitted transformer.\n \"\"\"\n+ X = validate_data(\n+ self,\n+ X,\n+ reset=True,\n+ accept_sparse=False,\n+ ensure_min_samples=2,\n+ ensure_2d=True,\n+ )\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+\n+ _, n_features = X.shape\n+\n+ if isinstance(self.knots, str):\n+ base_knots = self._get_base_knot_positions(\n+ X, n_knots=self.n_knots, knots=self.knots, sample_weight=sample_weight\n+ )\n+ else:\n+ base_knots = check_array(self.knots, dtype=np.float64)\n+ if base_knots.shape[0] < 2:\n+ raise ValueError(\"Number of knots, knots.shape[0], must be >= 2.\")\n+ elif base_knots.shape[1] != n_features:\n+ raise ValueError(\"knots.shape[1] == n_features is violated.\")\n+ elif not np.all(np.diff(base_knots, axis=0) > 0):\n+ raise ValueError(\"knots must be sorted without duplicates.\")\n+\n+ if self.sparse_output and sp_version < parse_version(\"1.8.0\"):\n+ raise ValueError(\n+ \"Option sparse_output=True is only available with scipy>=1.8.0, \"\n+ f\"but here scipy=={sp_version} is used.\"\n+ )\n+\n+ # number of knots for base interval\n+ n_knots = base_knots.shape[0]\n+\n+ if self.extrapolation == \"periodic\" and n_knots <= self.degree:\n+ raise ValueError(\n+ \"Periodic splines require degree < n_knots. Got n_knots=\"\n+ f\"{n_knots} and degree={self.degree}.\"\n+ )\n+\n+ # number of splines basis functions\n+ if self.extrapolation != \"periodic\":\n+ n_splines = n_knots + self.degree - 1\n+ else:\n+ # periodic splines have self.degree less degrees of freedom\n+ n_splines = n_knots - 1\n+\n+ degree = self.degree\n+ n_out = n_features * n_splines\n+ # We have to add degree number of knots below, and degree number knots\n+ # above the base knots in order to make the spline basis complete.\n+ if self.extrapolation == \"periodic\":\n+ # For periodic splines the spacing of the first / last degree knots\n+ # needs to be a continuation of the spacing of the last / first\n+ # base knots.\n+ period = base_knots[-1] - base_knots[0]\n+ knots = np.r_[\n+ base_knots[-(degree + 1) : -1] - period,\n+ base_knots,\n+ base_knots[1 : (degree + 1)] + period,\n+ ]\n+\n+ else:\n+ # Eilers & Marx in \"Flexible smoothing with B-splines and\n+ # penalties\" https://doi.org/10.1214/ss/1038425655 advice\n+ # against repeating first and last knot several times, which\n+ # would have inferior behaviour at boundaries if combined with\n+ # a penalty (hence P-Spline). We follow this advice even if our\n+ # splines are unpenalized. Meaning we do not:\n+ # knots = np.r_[\n+ # np.tile(base_knots.min(axis=0), reps=[degree, 1]),\n+ # base_knots,\n+ # np.tile(base_knots.max(axis=0), reps=[degree, 1])\n+ # ]\n+ # Instead, we reuse the distance of the 2 fist/last knots.\n+ dist_min = base_knots[1] - base_knots[0]\n+ dist_max = base_knots[-1] - base_knots[-2]\n+\n+ knots = np.r_[\n+ np.linspace(\n+ base_knots[0] - degree * dist_min,\n+ base_knots[0] - dist_min,\n+ num=degree,\n+ ),\n+ base_knots,\n+ np.linspace(\n+ base_knots[-1] + dist_max,\n+ base_knots[-1] + degree * dist_max,\n+ num=degree,\n+ ),\n+ ]\n+\n+ # With a diagonal coefficient matrix, we get back the spline basis\n+ # elements, i.e. the design matrix of the spline.\n+ # Note, BSpline appreciates C-contiguous float64 arrays as c=coef.\n+ coef = np.eye(n_splines, dtype=np.float64)\n+ if self.extrapolation == \"periodic\":\n+ coef = np.concatenate((coef, coef[:degree, :]))\n+\n+ extrapolate = self.extrapolation in [\"periodic\", \"continue\"]\n+\n+ bsplines = [\n+ BSpline.construct_fast(\n+ knots[:, i], coef, self.degree, extrapolate=extrapolate\n+ )\n+ for i in range(n_features)\n+ ]\n+ self.bsplines_ = bsplines\n+\n+ self.n_features_out_ = n_out - n_features * (1 - self.include_bias)\n+ return self\n \n def transform(self, X):\n \"\"\"Transform each feature data to B-splines.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py\nindex 5a3239f11..df30c9db3 100644\n--- a/sklearn/preprocessing/_polynomial.py\n+++ b/sklearn/preprocessing/_polynomial.py\n@@ -817,7 +817,6 @@ class SplineTransformer(TransformerMixin, BaseEstimator):\n feature_names.append(f\"{input_features[i]}_sp_{j}\")\n return np.asarray(feature_names, dtype=object)\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute knot positions of splines.\n \n@@ -839,118 +838,6 @@ class SplineTransformer(TransformerMixin, BaseEstimator):\n self : object\n Fitted transformer.\n \"\"\"\n- X = validate_data(\n- self,\n- X,\n- reset=True,\n- accept_sparse=False,\n- ensure_min_samples=2,\n- ensure_2d=True,\n- )\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n-\n- _, n_features = X.shape\n-\n- if isinstance(self.knots, str):\n- base_knots = self._get_base_knot_positions(\n- X, n_knots=self.n_knots, knots=self.knots, sample_weight=sample_weight\n- )\n- else:\n- base_knots = check_array(self.knots, dtype=np.float64)\n- if base_knots.shape[0] < 2:\n- raise ValueError(\"Number of knots, knots.shape[0], must be >= 2.\")\n- elif base_knots.shape[1] != n_features:\n- raise ValueError(\"knots.shape[1] == n_features is violated.\")\n- elif not np.all(np.diff(base_knots, axis=0) > 0):\n- raise ValueError(\"knots must be sorted without duplicates.\")\n-\n- if self.sparse_output and sp_version < parse_version(\"1.8.0\"):\n- raise ValueError(\n- \"Option sparse_output=True is only available with scipy>=1.8.0, \"\n- f\"but here scipy=={sp_version} is used.\"\n- )\n-\n- # number of knots for base interval\n- n_knots = base_knots.shape[0]\n-\n- if self.extrapolation == \"periodic\" and n_knots <= self.degree:\n- raise ValueError(\n- \"Periodic splines require degree < n_knots. Got n_knots=\"\n- f\"{n_knots} and degree={self.degree}.\"\n- )\n-\n- # number of splines basis functions\n- if self.extrapolation != \"periodic\":\n- n_splines = n_knots + self.degree - 1\n- else:\n- # periodic splines have self.degree less degrees of freedom\n- n_splines = n_knots - 1\n-\n- degree = self.degree\n- n_out = n_features * n_splines\n- # We have to add degree number of knots below, and degree number knots\n- # above the base knots in order to make the spline basis complete.\n- if self.extrapolation == \"periodic\":\n- # For periodic splines the spacing of the first / last degree knots\n- # needs to be a continuation of the spacing of the last / first\n- # base knots.\n- period = base_knots[-1] - base_knots[0]\n- knots = np.r_[\n- base_knots[-(degree + 1) : -1] - period,\n- base_knots,\n- base_knots[1 : (degree + 1)] + period,\n- ]\n-\n- else:\n- # Eilers & Marx in \"Flexible smoothing with B-splines and\n- # penalties\" https://doi.org/10.1214/ss/1038425655 advice\n- # against repeating first and last knot several times, which\n- # would have inferior behaviour at boundaries if combined with\n- # a penalty (hence P-Spline). We follow this advice even if our\n- # splines are unpenalized. Meaning we do not:\n- # knots = np.r_[\n- # np.tile(base_knots.min(axis=0), reps=[degree, 1]),\n- # base_knots,\n- # np.tile(base_knots.max(axis=0), reps=[degree, 1])\n- # ]\n- # Instead, we reuse the distance of the 2 fist/last knots.\n- dist_min = base_knots[1] - base_knots[0]\n- dist_max = base_knots[-1] - base_knots[-2]\n-\n- knots = np.r_[\n- np.linspace(\n- base_knots[0] - degree * dist_min,\n- base_knots[0] - dist_min,\n- num=degree,\n- ),\n- base_knots,\n- np.linspace(\n- base_knots[-1] + dist_max,\n- base_knots[-1] + degree * dist_max,\n- num=degree,\n- ),\n- ]\n-\n- # With a diagonal coefficient matrix, we get back the spline basis\n- # elements, i.e. the design matrix of the spline.\n- # Note, BSpline appreciates C-contiguous float64 arrays as c=coef.\n- coef = np.eye(n_splines, dtype=np.float64)\n- if self.extrapolation == \"periodic\":\n- coef = np.concatenate((coef, coef[:degree, :]))\n-\n- extrapolate = self.extrapolation in [\"periodic\", \"continue\"]\n-\n- bsplines = [\n- BSpline.construct_fast(\n- knots[:, i], coef, self.degree, extrapolate=extrapolate\n- )\n- for i in range(n_features)\n- ]\n- self.bsplines_ = bsplines\n-\n- self.n_features_out_ = n_out - n_features * (1 - self.include_bias)\n- return self\n \n def transform(self, X):\n \"\"\"Transform each feature data to B-splines.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_polynomial.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute knot positions of splines.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The data.\n\n y : None\n Ignored.\n\n sample_weight : array-like of shape (n_samples,), default = None\n Individual weights for each sample. Used to calculate quantiles if\n `knots=\"quantile\"`. For `knots=\"uniform\"`, zero weighted\n observations are ignored for finding the min and max of `X`.\n\n Returns\n -------\n self : object\n Fitted transformer.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_and_spline_array_order[SplineTransformer]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params0-Number of knots, knots.shape\\\\[0\\\\], must be >= 2.]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params1-knots.shape\\\\[1\\\\] == n_features is violated]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params2-knots must be sorted without duplicates.]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_integer_knots[continue]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_integer_knots[periodic]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_feature_names", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-constant]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-linear]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-continue]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-periodic]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-constant]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-linear]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-continue]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-periodic]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_spline_backport", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_periodicity", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_smoothness[3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_smoothness[5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-False-10]", "sklearn/model_selection/tests/test_search.py::test_cv_results_multi_size_array", "sklearn/preprocessing/_polynomial.py::sklearn.preprocessing._polynomial.SplineTransformer", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SplineTransformer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SplineTransformer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SplineTransformer()]", "sklearn/tests/test_common.py::test_check_param_validation[SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform[SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SplineTransformer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-182
1.0
{ "code": "diff --git b/sklearn/preprocessing/_polynomial.py a/sklearn/preprocessing/_polynomial.py\nindex f4205e7de..5a3239f11 100644\n--- b/sklearn/preprocessing/_polynomial.py\n+++ a/sklearn/preprocessing/_polynomial.py\n@@ -966,6 +966,211 @@ class SplineTransformer(TransformerMixin, BaseEstimator):\n The matrix of features, where n_splines is the number of bases\n elements of the B-splines, n_knots + degree - 1.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ X = validate_data(self, X, reset=False, accept_sparse=False, ensure_2d=True)\n+\n+ n_samples, n_features = X.shape\n+ n_splines = self.bsplines_[0].c.shape[1]\n+ degree = self.degree\n+\n+ # TODO: Remove this condition, once scipy 1.10 is the minimum version.\n+ # Only scipy => 1.10 supports design_matrix(.., extrapolate=..).\n+ # The default (implicit in scipy < 1.10) is extrapolate=False.\n+ scipy_1_10 = sp_version >= parse_version(\"1.10.0\")\n+ # Note: self.bsplines_[0].extrapolate is True for extrapolation in\n+ # [\"periodic\", \"continue\"]\n+ if scipy_1_10:\n+ use_sparse = self.sparse_output\n+ kwargs_extrapolate = {\"extrapolate\": self.bsplines_[0].extrapolate}\n+ else:\n+ use_sparse = self.sparse_output and not self.bsplines_[0].extrapolate\n+ kwargs_extrapolate = dict()\n+\n+ # Note that scipy BSpline returns float64 arrays and converts input\n+ # x=X[:, i] to c-contiguous float64.\n+ n_out = self.n_features_out_ + n_features * (1 - self.include_bias)\n+ if X.dtype in FLOAT_DTYPES:\n+ dtype = X.dtype\n+ else:\n+ dtype = np.float64\n+ if use_sparse:\n+ output_list = []\n+ else:\n+ XBS = np.zeros((n_samples, n_out), dtype=dtype, order=self.order)\n+\n+ for i in range(n_features):\n+ spl = self.bsplines_[i]\n+\n+ if self.extrapolation in (\"continue\", \"error\", \"periodic\"):\n+ if self.extrapolation == \"periodic\":\n+ # With periodic extrapolation we map x to the segment\n+ # [spl.t[k], spl.t[n]].\n+ # This is equivalent to BSpline(.., extrapolate=\"periodic\")\n+ # for scipy>=1.0.0.\n+ n = spl.t.size - spl.k - 1\n+ # Assign to new array to avoid inplace operation\n+ x = spl.t[spl.k] + (X[:, i] - spl.t[spl.k]) % (\n+ spl.t[n] - spl.t[spl.k]\n+ )\n+ else:\n+ x = X[:, i]\n+\n+ if use_sparse:\n+ XBS_sparse = BSpline.design_matrix(\n+ x, spl.t, spl.k, **kwargs_extrapolate\n+ )\n+ if self.extrapolation == \"periodic\":\n+ # See the construction of coef in fit. We need to add the last\n+ # degree spline basis function to the first degree ones and\n+ # then drop the last ones.\n+ # Note: See comment about SparseEfficiencyWarning below.\n+ XBS_sparse = XBS_sparse.tolil()\n+ XBS_sparse[:, :degree] += XBS_sparse[:, -degree:]\n+ XBS_sparse = XBS_sparse[:, :-degree]\n+ else:\n+ XBS[:, (i * n_splines) : ((i + 1) * n_splines)] = spl(x)\n+ else: # extrapolation in (\"constant\", \"linear\")\n+ xmin, xmax = spl.t[degree], spl.t[-degree - 1]\n+ # spline values at boundaries\n+ f_min, f_max = spl(xmin), spl(xmax)\n+ mask = (xmin <= X[:, i]) & (X[:, i] <= xmax)\n+ if use_sparse:\n+ mask_inv = ~mask\n+ x = X[:, i].copy()\n+ # Set some arbitrary values outside boundary that will be reassigned\n+ # later.\n+ x[mask_inv] = spl.t[self.degree]\n+ XBS_sparse = BSpline.design_matrix(x, spl.t, spl.k)\n+ # Note: Without converting to lil_matrix we would get:\n+ # scipy.sparse._base.SparseEfficiencyWarning: Changing the sparsity\n+ # structure of a csr_matrix is expensive. lil_matrix is more\n+ # efficient.\n+ if np.any(mask_inv):\n+ XBS_sparse = XBS_sparse.tolil()\n+ XBS_sparse[mask_inv, :] = 0\n+ else:\n+ XBS[mask, (i * n_splines) : ((i + 1) * n_splines)] = spl(X[mask, i])\n+\n+ # Note for extrapolation:\n+ # 'continue' is already returned as is by scipy BSplines\n+ if self.extrapolation == \"error\":\n+ # BSpline with extrapolate=False does not raise an error, but\n+ # outputs np.nan.\n+ if (use_sparse and np.any(np.isnan(XBS_sparse.data))) or (\n+ not use_sparse\n+ and np.any(\n+ np.isnan(XBS[:, (i * n_splines) : ((i + 1) * n_splines)])\n+ )\n+ ):\n+ raise ValueError(\n+ \"X contains values beyond the limits of the knots.\"\n+ )\n+ elif self.extrapolation == \"constant\":\n+ # Set all values beyond xmin and xmax to the value of the\n+ # spline basis functions at those two positions.\n+ # Only the first degree and last degree number of splines\n+ # have non-zero values at the boundaries.\n+\n+ mask = X[:, i] < xmin\n+ if np.any(mask):\n+ if use_sparse:\n+ # Note: See comment about SparseEfficiencyWarning above.\n+ XBS_sparse = XBS_sparse.tolil()\n+ XBS_sparse[mask, :degree] = f_min[:degree]\n+\n+ else:\n+ XBS[mask, (i * n_splines) : (i * n_splines + degree)] = f_min[\n+ :degree\n+ ]\n+\n+ mask = X[:, i] > xmax\n+ if np.any(mask):\n+ if use_sparse:\n+ # Note: See comment about SparseEfficiencyWarning above.\n+ XBS_sparse = XBS_sparse.tolil()\n+ XBS_sparse[mask, -degree:] = f_max[-degree:]\n+ else:\n+ XBS[\n+ mask,\n+ ((i + 1) * n_splines - degree) : ((i + 1) * n_splines),\n+ ] = f_max[-degree:]\n+\n+ elif self.extrapolation == \"linear\":\n+ # Continue the degree first and degree last spline bases\n+ # linearly beyond the boundaries, with slope = derivative at\n+ # the boundary.\n+ # Note that all others have derivative = value = 0 at the\n+ # boundaries.\n+\n+ # spline derivatives = slopes at boundaries\n+ fp_min, fp_max = spl(xmin, nu=1), spl(xmax, nu=1)\n+ # Compute the linear continuation.\n+ if degree <= 1:\n+ # For degree=1, the derivative of 2nd spline is not zero at\n+ # boundary. For degree=0 it is the same as 'constant'.\n+ degree += 1\n+ for j in range(degree):\n+ mask = X[:, i] < xmin\n+ if np.any(mask):\n+ linear_extr = f_min[j] + (X[mask, i] - xmin) * fp_min[j]\n+ if use_sparse:\n+ # Note: See comment about SparseEfficiencyWarning above.\n+ XBS_sparse = XBS_sparse.tolil()\n+ XBS_sparse[mask, j] = linear_extr\n+ else:\n+ XBS[mask, i * n_splines + j] = linear_extr\n+\n+ mask = X[:, i] > xmax\n+ if np.any(mask):\n+ k = n_splines - 1 - j\n+ linear_extr = f_max[k] + (X[mask, i] - xmax) * fp_max[k]\n+ if use_sparse:\n+ # Note: See comment about SparseEfficiencyWarning above.\n+ XBS_sparse = XBS_sparse.tolil()\n+ XBS_sparse[mask, k : k + 1] = linear_extr[:, None]\n+ else:\n+ XBS[mask, i * n_splines + k] = linear_extr\n+\n+ if use_sparse:\n+ XBS_sparse = XBS_sparse.tocsr()\n+ output_list.append(XBS_sparse)\n+\n+ if use_sparse:\n+ # TODO: Remove this conditional error when the minimum supported version of\n+ # SciPy is 1.9.2\n+ # `scipy.sparse.hstack` breaks in scipy<1.9.2\n+ # when `n_features_out_ > max_int32`\n+ max_int32 = np.iinfo(np.int32).max\n+ all_int32 = True\n+ for mat in output_list:\n+ all_int32 &= mat.indices.dtype == np.int32\n+ if (\n+ sp_version < parse_version(\"1.9.2\")\n+ and self.n_features_out_ > max_int32\n+ and all_int32\n+ ):\n+ raise ValueError(\n+ \"In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`\"\n+ \" produces negative columns when:\\n1. The output shape contains\"\n+ \" `n_cols` too large to be represented by a 32bit signed\"\n+ \" integer.\\n. All sub-matrices to be stacked have indices of\"\n+ \" dtype `np.int32`.\\nTo avoid this error, either use a version\"\n+ \" of scipy `>=1.9.2` or alter the `SplineTransformer`\"\n+ \" transformer to produce fewer than 2^31 output features\"\n+ )\n+ XBS = sparse.hstack(output_list, format=\"csr\")\n+ elif self.sparse_output:\n+ # TODO: Remove ones scipy 1.10 is the minimum version. See comments above.\n+ XBS = sparse.csr_matrix(XBS)\n+\n+ if self.include_bias:\n+ return XBS\n+ else:\n+ # We throw away one spline basis per feature.\n+ # We chose the last one.\n+ indices = [j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0]\n+ return XBS[:, indices]\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py\nindex 5a3239f11..f4205e7de 100644\n--- a/sklearn/preprocessing/_polynomial.py\n+++ b/sklearn/preprocessing/_polynomial.py\n@@ -966,211 +966,6 @@ class SplineTransformer(TransformerMixin, BaseEstimator):\n The matrix of features, where n_splines is the number of bases\n elements of the B-splines, n_knots + degree - 1.\n \"\"\"\n- check_is_fitted(self)\n-\n- X = validate_data(self, X, reset=False, accept_sparse=False, ensure_2d=True)\n-\n- n_samples, n_features = X.shape\n- n_splines = self.bsplines_[0].c.shape[1]\n- degree = self.degree\n-\n- # TODO: Remove this condition, once scipy 1.10 is the minimum version.\n- # Only scipy => 1.10 supports design_matrix(.., extrapolate=..).\n- # The default (implicit in scipy < 1.10) is extrapolate=False.\n- scipy_1_10 = sp_version >= parse_version(\"1.10.0\")\n- # Note: self.bsplines_[0].extrapolate is True for extrapolation in\n- # [\"periodic\", \"continue\"]\n- if scipy_1_10:\n- use_sparse = self.sparse_output\n- kwargs_extrapolate = {\"extrapolate\": self.bsplines_[0].extrapolate}\n- else:\n- use_sparse = self.sparse_output and not self.bsplines_[0].extrapolate\n- kwargs_extrapolate = dict()\n-\n- # Note that scipy BSpline returns float64 arrays and converts input\n- # x=X[:, i] to c-contiguous float64.\n- n_out = self.n_features_out_ + n_features * (1 - self.include_bias)\n- if X.dtype in FLOAT_DTYPES:\n- dtype = X.dtype\n- else:\n- dtype = np.float64\n- if use_sparse:\n- output_list = []\n- else:\n- XBS = np.zeros((n_samples, n_out), dtype=dtype, order=self.order)\n-\n- for i in range(n_features):\n- spl = self.bsplines_[i]\n-\n- if self.extrapolation in (\"continue\", \"error\", \"periodic\"):\n- if self.extrapolation == \"periodic\":\n- # With periodic extrapolation we map x to the segment\n- # [spl.t[k], spl.t[n]].\n- # This is equivalent to BSpline(.., extrapolate=\"periodic\")\n- # for scipy>=1.0.0.\n- n = spl.t.size - spl.k - 1\n- # Assign to new array to avoid inplace operation\n- x = spl.t[spl.k] + (X[:, i] - spl.t[spl.k]) % (\n- spl.t[n] - spl.t[spl.k]\n- )\n- else:\n- x = X[:, i]\n-\n- if use_sparse:\n- XBS_sparse = BSpline.design_matrix(\n- x, spl.t, spl.k, **kwargs_extrapolate\n- )\n- if self.extrapolation == \"periodic\":\n- # See the construction of coef in fit. We need to add the last\n- # degree spline basis function to the first degree ones and\n- # then drop the last ones.\n- # Note: See comment about SparseEfficiencyWarning below.\n- XBS_sparse = XBS_sparse.tolil()\n- XBS_sparse[:, :degree] += XBS_sparse[:, -degree:]\n- XBS_sparse = XBS_sparse[:, :-degree]\n- else:\n- XBS[:, (i * n_splines) : ((i + 1) * n_splines)] = spl(x)\n- else: # extrapolation in (\"constant\", \"linear\")\n- xmin, xmax = spl.t[degree], spl.t[-degree - 1]\n- # spline values at boundaries\n- f_min, f_max = spl(xmin), spl(xmax)\n- mask = (xmin <= X[:, i]) & (X[:, i] <= xmax)\n- if use_sparse:\n- mask_inv = ~mask\n- x = X[:, i].copy()\n- # Set some arbitrary values outside boundary that will be reassigned\n- # later.\n- x[mask_inv] = spl.t[self.degree]\n- XBS_sparse = BSpline.design_matrix(x, spl.t, spl.k)\n- # Note: Without converting to lil_matrix we would get:\n- # scipy.sparse._base.SparseEfficiencyWarning: Changing the sparsity\n- # structure of a csr_matrix is expensive. lil_matrix is more\n- # efficient.\n- if np.any(mask_inv):\n- XBS_sparse = XBS_sparse.tolil()\n- XBS_sparse[mask_inv, :] = 0\n- else:\n- XBS[mask, (i * n_splines) : ((i + 1) * n_splines)] = spl(X[mask, i])\n-\n- # Note for extrapolation:\n- # 'continue' is already returned as is by scipy BSplines\n- if self.extrapolation == \"error\":\n- # BSpline with extrapolate=False does not raise an error, but\n- # outputs np.nan.\n- if (use_sparse and np.any(np.isnan(XBS_sparse.data))) or (\n- not use_sparse\n- and np.any(\n- np.isnan(XBS[:, (i * n_splines) : ((i + 1) * n_splines)])\n- )\n- ):\n- raise ValueError(\n- \"X contains values beyond the limits of the knots.\"\n- )\n- elif self.extrapolation == \"constant\":\n- # Set all values beyond xmin and xmax to the value of the\n- # spline basis functions at those two positions.\n- # Only the first degree and last degree number of splines\n- # have non-zero values at the boundaries.\n-\n- mask = X[:, i] < xmin\n- if np.any(mask):\n- if use_sparse:\n- # Note: See comment about SparseEfficiencyWarning above.\n- XBS_sparse = XBS_sparse.tolil()\n- XBS_sparse[mask, :degree] = f_min[:degree]\n-\n- else:\n- XBS[mask, (i * n_splines) : (i * n_splines + degree)] = f_min[\n- :degree\n- ]\n-\n- mask = X[:, i] > xmax\n- if np.any(mask):\n- if use_sparse:\n- # Note: See comment about SparseEfficiencyWarning above.\n- XBS_sparse = XBS_sparse.tolil()\n- XBS_sparse[mask, -degree:] = f_max[-degree:]\n- else:\n- XBS[\n- mask,\n- ((i + 1) * n_splines - degree) : ((i + 1) * n_splines),\n- ] = f_max[-degree:]\n-\n- elif self.extrapolation == \"linear\":\n- # Continue the degree first and degree last spline bases\n- # linearly beyond the boundaries, with slope = derivative at\n- # the boundary.\n- # Note that all others have derivative = value = 0 at the\n- # boundaries.\n-\n- # spline derivatives = slopes at boundaries\n- fp_min, fp_max = spl(xmin, nu=1), spl(xmax, nu=1)\n- # Compute the linear continuation.\n- if degree <= 1:\n- # For degree=1, the derivative of 2nd spline is not zero at\n- # boundary. For degree=0 it is the same as 'constant'.\n- degree += 1\n- for j in range(degree):\n- mask = X[:, i] < xmin\n- if np.any(mask):\n- linear_extr = f_min[j] + (X[mask, i] - xmin) * fp_min[j]\n- if use_sparse:\n- # Note: See comment about SparseEfficiencyWarning above.\n- XBS_sparse = XBS_sparse.tolil()\n- XBS_sparse[mask, j] = linear_extr\n- else:\n- XBS[mask, i * n_splines + j] = linear_extr\n-\n- mask = X[:, i] > xmax\n- if np.any(mask):\n- k = n_splines - 1 - j\n- linear_extr = f_max[k] + (X[mask, i] - xmax) * fp_max[k]\n- if use_sparse:\n- # Note: See comment about SparseEfficiencyWarning above.\n- XBS_sparse = XBS_sparse.tolil()\n- XBS_sparse[mask, k : k + 1] = linear_extr[:, None]\n- else:\n- XBS[mask, i * n_splines + k] = linear_extr\n-\n- if use_sparse:\n- XBS_sparse = XBS_sparse.tocsr()\n- output_list.append(XBS_sparse)\n-\n- if use_sparse:\n- # TODO: Remove this conditional error when the minimum supported version of\n- # SciPy is 1.9.2\n- # `scipy.sparse.hstack` breaks in scipy<1.9.2\n- # when `n_features_out_ > max_int32`\n- max_int32 = np.iinfo(np.int32).max\n- all_int32 = True\n- for mat in output_list:\n- all_int32 &= mat.indices.dtype == np.int32\n- if (\n- sp_version < parse_version(\"1.9.2\")\n- and self.n_features_out_ > max_int32\n- and all_int32\n- ):\n- raise ValueError(\n- \"In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`\"\n- \" produces negative columns when:\\n1. The output shape contains\"\n- \" `n_cols` too large to be represented by a 32bit signed\"\n- \" integer.\\n. All sub-matrices to be stacked have indices of\"\n- \" dtype `np.int32`.\\nTo avoid this error, either use a version\"\n- \" of scipy `>=1.9.2` or alter the `SplineTransformer`\"\n- \" transformer to produce fewer than 2^31 output features\"\n- )\n- XBS = sparse.hstack(output_list, format=\"csr\")\n- elif self.sparse_output:\n- # TODO: Remove ones scipy 1.10 is the minimum version. See comments above.\n- XBS = sparse.csr_matrix(XBS)\n-\n- if self.include_bias:\n- return XBS\n- else:\n- # We throw away one spline basis per feature.\n- # We chose the last one.\n- indices = [j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0]\n- return XBS[:, indices]\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_polynomial.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Transform each feature data to B-splines.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The data to transform.\n\n Returns\n -------\n XBS : {ndarray, sparse matrix} of shape (n_samples, n_features * n_splines)\n The matrix of features, where n_splines is the number of bases\n elements of the B-splines, n_knots + degree - 1.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_and_spline_array_order[SplineTransformer]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_integer_knots[continue]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_integer_knots[periodic]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-constant]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-linear]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-continue]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[2-periodic]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-constant]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-linear]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-continue]", "sklearn/preprocessing/tests/test_polynomial.py::test_split_transform_feature_names_extrapolation_degree[3-periodic]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-4]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_spline_backport", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_periodicity", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_smoothness[3]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_smoothness[5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-error-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-constant-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-linear-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-continue-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-False-periodic-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-error-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-constant-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-linear-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-continue-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-uniform-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-uniform-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-quantile-1]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output[42-True-periodic-quantile-2]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-error-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-constant-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-linear-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-3-False-10]", "sklearn/model_selection/tests/test_search.py::test_cv_results_multi_size_array", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-continue-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[False-periodic-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-error-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-constant-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-linear-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-continue-4-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-3-False-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-True-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-True-10]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-False-5]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[True-periodic-4-False-10]", "sklearn/preprocessing/_polynomial.py::sklearn.preprocessing._polynomial.SplineTransformer", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SplineTransformer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SplineTransformer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform[SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SplineTransformer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-183
1.0
{ "code": "diff --git b/sklearn/ensemble/_stacking.py a/sklearn/ensemble/_stacking.py\nindex 45c19f45c..57bc63a18 100644\n--- b/sklearn/ensemble/_stacking.py\n+++ a/sklearn/ensemble/_stacking.py\n@@ -676,6 +676,7 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n # TODO(1.7): remove `sample_weight` from the signature after deprecation\n # cycle; pop it from `fit_params` before the `_raise_for_params` check and\n # reinsert afterwards, for backwards compatibility\n+ @_deprecate_positional_args(version=\"1.7\")\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit the estimators.\n \n@@ -711,6 +712,25 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n self : object\n Returns a fitted instance of estimator.\n \"\"\"\n+ _raise_for_params(fit_params, self, \"fit\")\n+ check_classification_targets(y)\n+ if type_of_target(y) == \"multilabel-indicator\":\n+ self._label_encoder = [LabelEncoder().fit(yk) for yk in y.T]\n+ self.classes_ = [le.classes_ for le in self._label_encoder]\n+ y_encoded = np.array(\n+ [\n+ self._label_encoder[target_idx].transform(target)\n+ for target_idx, target in enumerate(y.T)\n+ ]\n+ ).T\n+ else:\n+ self._label_encoder = LabelEncoder().fit(y)\n+ self.classes_ = self._label_encoder.classes_\n+ y_encoded = self._label_encoder.transform(y)\n+\n+ if sample_weight is not None:\n+ fit_params[\"sample_weight\"] = sample_weight\n+ return super().fit(X, y_encoded, **fit_params)\n \n @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_stacking.py b/sklearn/ensemble/_stacking.py\nindex 57bc63a18..45c19f45c 100644\n--- a/sklearn/ensemble/_stacking.py\n+++ b/sklearn/ensemble/_stacking.py\n@@ -676,7 +676,6 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n # TODO(1.7): remove `sample_weight` from the signature after deprecation\n # cycle; pop it from `fit_params` before the `_raise_for_params` check and\n # reinsert afterwards, for backwards compatibility\n- @_deprecate_positional_args(version=\"1.7\")\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit the estimators.\n \n@@ -712,25 +711,6 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n self : object\n Returns a fitted instance of estimator.\n \"\"\"\n- _raise_for_params(fit_params, self, \"fit\")\n- check_classification_targets(y)\n- if type_of_target(y) == \"multilabel-indicator\":\n- self._label_encoder = [LabelEncoder().fit(yk) for yk in y.T]\n- self.classes_ = [le.classes_ for le in self._label_encoder]\n- y_encoded = np.array(\n- [\n- self._label_encoder[target_idx].transform(target)\n- for target_idx, target in enumerate(y.T)\n- ]\n- ).T\n- else:\n- self._label_encoder = LabelEncoder().fit(y)\n- self.classes_ = self._label_encoder.classes_\n- y_encoded = self._label_encoder.transform(y)\n-\n- if sample_weight is not None:\n- fit_params[\"sample_weight\"] = sample_weight\n- return super().fit(X, y_encoded, **fit_params)\n \n @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_stacking.py.\nHere is the description for the function:\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit the estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vectors, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target values. Note that `y` will be internally encoded in\n numerically increasing order or lexicographic order. If the order\n matter (e.g. for ordinal regression), one should numerically encode\n the target `y` before calling :term:`fit`.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted.\n Note that this is supported only if all underlying estimators\n support sample weights.\n\n **fit_params : dict\n Parameters to pass to the underlying estimators.\n\n .. versionadded:: 1.6\n\n Only available if `enable_metadata_routing=True`, which can be\n set by using ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Returns a fitted instance of estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y0-params0-ValueError-Invalid 'estimators' attribute,]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y1-params1-ValueError-does not implement the method predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y2-params2-TypeError-does not support sample weight]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingClassifier-DummyClassifier-predict_proba-final_estimator0-X0-y0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit_error[stacker0-X0-y0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_classification-StackingClassifier-LogisticRegression]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/ensemble/tests/test_stacking.py::test_routing_passed_metadata_not_supported[StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_error_for_stacking_estimators[StackingClassifier-ConsumingClassifier]", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_name_validation[X0-y0-StackingClassifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_all_dropped[stacking-classifier]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_param_validation[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-184
1.0
{ "code": "diff --git b/sklearn/ensemble/_stacking.py a/sklearn/ensemble/_stacking.py\nindex 6d9db31c3..57bc63a18 100644\n--- b/sklearn/ensemble/_stacking.py\n+++ a/sklearn/ensemble/_stacking.py\n@@ -732,6 +732,7 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n fit_params[\"sample_weight\"] = sample_weight\n return super().fit(X, y_encoded, **fit_params)\n \n+ @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n \"\"\"Predict target for X.\n \n@@ -763,6 +764,26 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)\n Predicted targets.\n \"\"\"\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"predict\", **predict_params)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ routed_params = Bunch()\n+ routed_params.final_estimator_ = Bunch(predict={})\n+ routed_params.final_estimator_.predict = predict_params\n+\n+ y_pred = super().predict(X, **routed_params.final_estimator_[\"predict\"])\n+ if isinstance(self._label_encoder, list):\n+ # Handle the multilabel-indicator case\n+ y_pred = np.array(\n+ [\n+ self._label_encoder[target_idx].inverse_transform(target)\n+ for target_idx, target in enumerate(y_pred.T)\n+ ]\n+ ).T\n+ else:\n+ y_pred = self._label_encoder.inverse_transform(y_pred)\n+ return y_pred\n \n @available_if(_estimator_has(\"predict_proba\"))\n def predict_proba(self, X):\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_stacking.py b/sklearn/ensemble/_stacking.py\nindex 57bc63a18..6d9db31c3 100644\n--- a/sklearn/ensemble/_stacking.py\n+++ b/sklearn/ensemble/_stacking.py\n@@ -732,7 +732,6 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n fit_params[\"sample_weight\"] = sample_weight\n return super().fit(X, y_encoded, **fit_params)\n \n- @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n \"\"\"Predict target for X.\n \n@@ -764,26 +763,6 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):\n y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)\n Predicted targets.\n \"\"\"\n- if _routing_enabled():\n- routed_params = process_routing(self, \"predict\", **predict_params)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- routed_params = Bunch()\n- routed_params.final_estimator_ = Bunch(predict={})\n- routed_params.final_estimator_.predict = predict_params\n-\n- y_pred = super().predict(X, **routed_params.final_estimator_[\"predict\"])\n- if isinstance(self._label_encoder, list):\n- # Handle the multilabel-indicator case\n- y_pred = np.array(\n- [\n- self._label_encoder[target_idx].inverse_transform(target)\n- for target_idx, target in enumerate(y_pred.T)\n- ]\n- ).T\n- else:\n- y_pred = self._label_encoder.inverse_transform(y_pred)\n- return y_pred\n \n @available_if(_estimator_has(\"predict_proba\"))\n def predict_proba(self, X):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_stacking.py.\nHere is the description for the function:\n def predict(self, X, **predict_params):\n \"\"\"Predict target for X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vectors, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n **predict_params : dict of str -> obj\n Parameters to the `predict` called by the `final_estimator`. Note\n that this may be used to return uncertainties from some estimators\n with `return_std` or `return_cov`. Be aware that it will only\n account for uncertainty in the final estimator.\n\n - If `enable_metadata_routing=False` (default):\n Parameters directly passed to the `predict` method of the\n `final_estimator`.\n\n - If `enable_metadata_routing=True`: Parameters safely routed to\n the `predict` method of the `final_estimator`. See :ref:`Metadata\n Routing User Guide <metadata_routing>` for more details.\n\n .. versionchanged:: 1.6\n `**predict_params` can be routed via metadata routing API.\n\n Returns\n -------\n y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)\n Predicted targets.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-185
1.0
{ "code": "diff --git b/sklearn/ensemble/_stacking.py a/sklearn/ensemble/_stacking.py\nindex 59a87f593..57bc63a18 100644\n--- b/sklearn/ensemble/_stacking.py\n+++ a/sklearn/ensemble/_stacking.py\n@@ -1125,6 +1125,7 @@ class StackingRegressor(RegressorMixin, _BaseStacking):\n fit_params[\"sample_weight\"] = sample_weight\n return super().fit_transform(X, y, **fit_params)\n \n+ @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n \"\"\"Predict target for X.\n \n@@ -1156,6 +1157,17 @@ class StackingRegressor(RegressorMixin, _BaseStacking):\n y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)\n Predicted targets.\n \"\"\"\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"predict\", **predict_params)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ routed_params = Bunch()\n+ routed_params.final_estimator_ = Bunch(predict={})\n+ routed_params.final_estimator_.predict = predict_params\n+\n+ y_pred = super().predict(X, **routed_params.final_estimator_[\"predict\"])\n+\n+ return y_pred\n \n def _sk_visual_block_(self):\n # If final_estimator's default changes then this should be\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_stacking.py b/sklearn/ensemble/_stacking.py\nindex 57bc63a18..59a87f593 100644\n--- a/sklearn/ensemble/_stacking.py\n+++ b/sklearn/ensemble/_stacking.py\n@@ -1125,7 +1125,6 @@ class StackingRegressor(RegressorMixin, _BaseStacking):\n fit_params[\"sample_weight\"] = sample_weight\n return super().fit_transform(X, y, **fit_params)\n \n- @available_if(_estimator_has(\"predict\"))\n def predict(self, X, **predict_params):\n \"\"\"Predict target for X.\n \n@@ -1157,17 +1156,6 @@ class StackingRegressor(RegressorMixin, _BaseStacking):\n y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)\n Predicted targets.\n \"\"\"\n- if _routing_enabled():\n- routed_params = process_routing(self, \"predict\", **predict_params)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- routed_params = Bunch()\n- routed_params.final_estimator_ = Bunch(predict={})\n- routed_params.final_estimator_.predict = predict_params\n-\n- y_pred = super().predict(X, **routed_params.final_estimator_[\"predict\"])\n-\n- return y_pred\n \n def _sk_visual_block_(self):\n # If final_estimator's default changes then this should be\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_stacking.py.\nHere is the description for the function:\n def predict(self, X, **predict_params):\n \"\"\"Predict target for X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vectors, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n **predict_params : dict of str -> obj\n Parameters to the `predict` called by the `final_estimator`. Note\n that this may be used to return uncertainties from some estimators\n with `return_std` or `return_cov`. Be aware that it will only\n account for uncertainty in the final estimator.\n\n - If `enable_metadata_routing=False` (default):\n Parameters directly passed to the `predict` method of the\n `final_estimator`.\n\n - If `enable_metadata_routing=True`: Parameters safely routed to\n the `predict` method of the `final_estimator`. See :ref:`Metadata\n Routing User Guide <metadata_routing>` for more details.\n\n .. versionchanged:: 1.6\n `**predict_params` can be routed via metadata routing API.\n\n Returns\n -------\n y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)\n Predicted targets.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_drop_estimator", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingRegressor]", "sklearn/tests/test_multioutput.py::test_multioutputregressor_ducktypes_fitted_estimator", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingRegressor", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingRegressor-ConsumingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingRegressor-ConsumingRegressor]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-186
1.0
{ "code": "diff --git b/sklearn/preprocessing/_data.py a/sklearn/preprocessing/_data.py\nindex fca29a784..007e5b002 100644\n--- b/sklearn/preprocessing/_data.py\n+++ a/sklearn/preprocessing/_data.py\n@@ -1098,6 +1098,32 @@ class StandardScaler(OneToOneFeatureMixin, TransformerMixin, BaseEstimator):\n X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)\n Transformed array.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ copy = copy if copy is not None else self.copy\n+ X = check_array(\n+ X,\n+ accept_sparse=\"csr\",\n+ copy=copy,\n+ dtype=FLOAT_DTYPES,\n+ force_writeable=True,\n+ ensure_all_finite=\"allow-nan\",\n+ )\n+\n+ if sparse.issparse(X):\n+ if self.with_mean:\n+ raise ValueError(\n+ \"Cannot uncenter sparse matrices: pass `with_mean=False` \"\n+ \"instead See docstring for motivation and alternatives.\"\n+ )\n+ if self.scale_ is not None:\n+ inplace_column_scale(X, self.scale_)\n+ else:\n+ if self.with_std:\n+ X *= self.scale_\n+ if self.with_mean:\n+ X += self.mean_\n+ return X\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py\nindex 007e5b002..fca29a784 100644\n--- a/sklearn/preprocessing/_data.py\n+++ b/sklearn/preprocessing/_data.py\n@@ -1098,32 +1098,6 @@ class StandardScaler(OneToOneFeatureMixin, TransformerMixin, BaseEstimator):\n X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)\n Transformed array.\n \"\"\"\n- check_is_fitted(self)\n-\n- copy = copy if copy is not None else self.copy\n- X = check_array(\n- X,\n- accept_sparse=\"csr\",\n- copy=copy,\n- dtype=FLOAT_DTYPES,\n- force_writeable=True,\n- ensure_all_finite=\"allow-nan\",\n- )\n-\n- if sparse.issparse(X):\n- if self.with_mean:\n- raise ValueError(\n- \"Cannot uncenter sparse matrices: pass `with_mean=False` \"\n- \"instead See docstring for motivation and alternatives.\"\n- )\n- if self.scale_ is not None:\n- inplace_column_scale(X, self.scale_)\n- else:\n- if self.with_std:\n- X *= self.scale_\n- if self.with_mean:\n- X += self.mean_\n- return X\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_data.py.\nHere is the description for the function:\n def inverse_transform(self, X, copy=None):\n \"\"\"Scale back the data to the original representation.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The data used to scale along the features axis.\n copy : bool, default=None\n Copy the input X or not.\n\n Returns\n -------\n X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)\n Transformed array.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_1d", "sklearn/preprocessing/tests/test_data.py::test_scaler_2d_arrays", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_matrix-True]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_matrix-None]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_array-True]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_array-None]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_matrix-True]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_matrix-None]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_array-True]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_array-None]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[True]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[None]", "sklearn/preprocessing/tests/test_data.py::test_standard_check_array_of_inverse_transform", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csc_matrix-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csc_matrix-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csc_array-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csc_array-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_matrix-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_matrix-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_array-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_array-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_int[csc_matrix]", "sklearn/preprocessing/tests/test_data.py::test_scaler_int[csc_array]", "sklearn/preprocessing/tests/test_data.py::test_scaler_int[csr_matrix]", "sklearn/preprocessing/tests/test_data.py::test_scaler_int[csr_array]", "sklearn/preprocessing/tests/test_data.py::test_scale_sparse_with_mean_raise_exception[csr_matrix]", "sklearn/preprocessing/tests/test_data.py::test_scale_sparse_with_mean_raise_exception[csr_array]", "sklearn/preprocessing/tests/test_data.py::test_scale_sparse_with_mean_raise_exception[csc_matrix]", "sklearn/preprocessing/tests/test_data.py::test_scale_sparse_with_mean_raise_exception[csc_array]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-True-box-cox]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-True-yeo-johnson]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-True-box-cox]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-True-yeo-johnson]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_1d", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_2d", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[True-box-cox]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[True-yeo-johnson]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[True-box-cox]", "sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[True-yeo-johnson]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_raise_error_for_1d_input", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_error", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer_multioutput", "sklearn/preprocessing/tests/test_common.py::test_missing_value_handling[est2-scale-False-False-omit_kwargs2]", "sklearn/preprocessing/tests/test_common.py::test_missing_value_handling[est3-scale-True-False-omit_kwargs3]", "sklearn/preprocessing/tests/test_common.py::test_missing_value_handling[est4-power_transform-False-False-omit_kwargs4]", "sklearn/preprocessing/tests/test_common.py::test_missing_value_handling[est5-power_transform-False-True-omit_kwargs5]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-187
1.0
{ "code": "diff --git b/sklearn/model_selection/_split.py a/sklearn/model_selection/_split.py\nindex 27cb6683f..1453e42b8 100644\n--- b/sklearn/model_selection/_split.py\n+++ a/sklearn/model_selection/_split.py\n@@ -847,6 +847,13 @@ class StratifiedKFold(_BaseKFold):\n split. You can make the results identical by setting `random_state`\n to an integer.\n \"\"\"\n+ if groups is not None:\n+ warnings.warn(\n+ f\"The groups parameter is ignored by {self.__class__.__name__}\",\n+ UserWarning,\n+ )\n+ y = check_array(y, input_name=\"y\", ensure_2d=False, dtype=None)\n+ return super().split(X, y, groups)\n \n \n class StratifiedGroupKFold(GroupsConsumerMixin, _BaseKFold):\n", "test": null }
null
{ "code": "diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py\nindex 1453e42b8..27cb6683f 100644\n--- a/sklearn/model_selection/_split.py\n+++ b/sklearn/model_selection/_split.py\n@@ -847,13 +847,6 @@ class StratifiedKFold(_BaseKFold):\n split. You can make the results identical by setting `random_state`\n to an integer.\n \"\"\"\n- if groups is not None:\n- warnings.warn(\n- f\"The groups parameter is ignored by {self.__class__.__name__}\",\n- UserWarning,\n- )\n- y = check_array(y, input_name=\"y\", ensure_2d=False, dtype=None)\n- return super().split(X, y, groups)\n \n \n class StratifiedGroupKFold(GroupsConsumerMixin, _BaseKFold):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/model_selection/_split.py.\nHere is the description for the function:\n def split(self, X, y, groups=None):\n \"\"\"Generate indices to split data into training and test set.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n Note that providing ``y`` is sufficient to generate the splits and\n hence ``np.zeros(n_samples)`` may be used as a placeholder for\n ``X`` instead of actual training data.\n\n y : array-like of shape (n_samples,)\n The target variable for supervised learning problems.\n Stratification is done based on the y labels.\n\n groups : object\n Always ignored, exists for compatibility.\n\n Yields\n ------\n train : ndarray\n The training set indices for that split.\n\n test : ndarray\n The testing set indices for that split.\n\n Notes\n -----\n Randomized CV splitters may return different results for each call of\n split. You can make the results identical by setting `random_state`\n to an integer.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_split.py::test_cross_validator_with_default_params", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_mock_scorer", "sklearn/model_selection/tests/test_split.py::test_2d_y", "sklearn/model_selection/tests/test_split.py::test_kfold_valueerrors", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_no_shuffle", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-4-False]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-4-True]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-5-False]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-5-True]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-6-False]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-6-True]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-7-False]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-7-True]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-8-False]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_logistic_regression_string_inputs", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_matrix]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-8-True]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-9-False]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-9-True]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight1]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-10-False]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight1]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-10-True]", "sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-4-False]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-4-True]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse[csr_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_saga_sparse[csr_matrix]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-6-False]", "sklearn/linear_model/tests/test_logistic.py::test_saga_sparse[csr_array]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-6-True]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-7-False]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l1-42]", "sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-7-True]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l2-42]", "sklearn/linear_model/tests/test_sgd.py::test_multi_core_gridsearch_and_early_stopping", "sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance[StratifiedKFold]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[liblinear]", "sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[StratifiedKFold]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cholesky]", "sklearn/model_selection/tests/test_split.py::test_shuffle_stratifiedkfold", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[sag]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[saga]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring0]", "sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring1]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring2]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring3]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_cross_validation", "sklearn/model_selection/tests/test_split.py::test_repeated_stratified_kfold_determinstic_split", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[0.001]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[100]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1000000.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[2]", "sklearn/model_selection/tests/test_split.py::test_check_cv", "sklearn/ensemble/tests/test_forest.py::test_gridsearch[ExtraTreesClassifier]", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[3]", "sklearn/ensemble/tests/test_forest.py::test_gridsearch[RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-l2]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-elasticnet]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-l2]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-elasticnet]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-l2]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-elasticnet]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_elasticnet_attribute_shapes", "sklearn/model_selection/tests/test_split.py::test_no_group_splitters_warns_with_groups[StratifiedKFold(n_splits=5, random_state=None, shuffle=False)]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[lbfgs-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegressionCV]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-DecisionTreeClassifier-0.85]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegressionCV]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-ExtraTreeClassifier-0.53]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_scores_attribute_layout_elasticnet", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_differ_when_sample_weight_is_requested", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_without_enabling_metadata_routing", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TunedThresholdClassifierCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_array]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[RandomizedSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_many_jobs", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-3]", "sklearn/linear_model/tests/test_logistic.py::test_multi_class_deprecated", "sklearn/model_selection/tests/test_search.py::test_grid_search_no_score", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/model_selection/tests/test_search.py::test_grid_search_groups", "sklearn/model_selection/tests/test_search.py::test_classes__property", "sklearn/model_selection/tests/test_search.py::test_grid_search_one_grid_point", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_array]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_array]", "sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel", "sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel_error_nonsquare", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[fit-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[fit-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_invalid_type", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[predict-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[predict-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV--1]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV-2]", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV--1]", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_array]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV-2]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric", "sklearn/model_selection/tests/test_search.py::test_pandas_input", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_params", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results_multimetric", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingRandomSearchCV]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/tests/test_naive_bayes.py::test_check_accuracy_on_digits", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv1]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_results_rank_tie_breaking", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape", "sklearn/model_selection/tests/test_search.py::test_search_cv_timing", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingGridSearchCV]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingRandomSearchCV]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_array]", "sklearn/tests/test_calibration.py::test_calibration_default_estimator", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingRandomSearchCV]", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_predict_proba_disabled", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas", "sklearn/model_selection/tests/test_search.py::test_stochastic_gradient_loss_param", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/model_selection/tests/test_search.py::test_search_train_scores_set_to_false", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingRandomSearchCV]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-5.0-categories0-4]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingGridSearchCV]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_params", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-5.0-categories1-6.0]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingRandomSearchCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-5.0-categories2-bear]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-5.0-auto-3]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingGridSearchCV]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-auto-categories0-4]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingGridSearchCV]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-auto-categories1-6.0]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_params", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-auto-categories2-bear]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingRandomSearchCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding[42-binary-auto-auto-3]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels0-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels0-categories1-unknown_values1]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels1-categories0-auto]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingGridSearchCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels1-categories1-unknown_values1]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels0-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels0-categories1-unknown_values1]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels1-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels1-categories1-unknown_values1]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingGridSearchCV]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_use_regression_target", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y0-feature_names0]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingGridSearchCV]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y1-feature_names1]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingRandomSearchCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y2-feature_names2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator1]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-ints-1.0-True]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-False]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingGridSearchCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-ints-1.0-False]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingRandomSearchCV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingRandomSearchCV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-ints-auto-True]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-ints-auto-False]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_mockclassifier", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingGridSearchCV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_verbose_output", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator1]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-str-1.0-True]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-str-1.0-False]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_size[42]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-True]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-str-auto-True]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/preprocessing/tests/test_target_encoder.py::test_multiple_features_quick[binary-str-auto-False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingGridSearchCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_constant_target_and_feature[auto-binary]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/preprocessing/tests/test_target_encoder.py::test_constant_target_and_feature[auto-binary-string]", "sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingGridSearchCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_tags", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[512-exhaust-128]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/tests/test_multiclass.py::test_ovo_gridsearch", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features[42]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-exhaust-8]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-8-8]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_n_jobs[42]", "sklearn/tests/test_multiclass.py::test_ecoc_gridsearch", "sklearn/preprocessing/tests/test_target_encoder.py::test_constant_target_and_feature[4.0-binary]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/preprocessing/tests/test_target_encoder.py::test_constant_target_and_feature[4.0-binary-string]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_constant_target_and_feature[0.0-binary]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-7-7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-decision_function]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/preprocessing/tests/test_target_encoder.py::test_constant_target_and_feature[0.0-binary-string]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsOneClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-9-9]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/tests/test_multioutput.py::test_multi_output_predict_proba", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions0-2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_on_invalid_key", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions1-10]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-True]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X1]", "sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-nan]", "sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-False]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[list]", "sklearn/model_selection/tests/test_search.py::test_n_features_in", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-0]", "sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[array]", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence", "sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_thresholds_array", "sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_equivalence_of_precomputed", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-raise]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[True]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[GridSearchCV-param_search0]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-nan]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[False]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[RandomizedSearchCV-param_search1]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[GridSearchCV-param_search0]", "sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_error_constant_predictor", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-0]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-raise]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[RandomizedSearchCV-param_search1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_halving_random_search_list_of_dicts", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]", "sklearn/ensemble/tests/test_bagging.py::test_gridsearch", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[list]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[array]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_array]", "sklearn/model_selection/tests/test_search.py::test_search_with_2d_array", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[5]", "sklearn/tests/test_calibration.py::test_calibration_with_non_sample_aligned_fit_param", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_std_and_mean[42]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/tests/test_calibration.py::test_float32_predict_proba", "sklearn/model_selection/tests/test_search.py::test_search_html_repr", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-1-cv_results_n_features0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_some_failing_fits_warning[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-1-cv_results_n_features1]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[GridSearchCV-param_grid]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_proba]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[RandomizedSearchCV-param_distributions]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_log_proba]", "sklearn/ensemble/tests/test_voting.py::test_gridsearch", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[GridSearchCV-param_grid]", "sklearn/tests/test_calibration.py::test_error_less_class_samples_than_folds", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[RandomizedSearchCV-param_distributions]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-2-cv_results_n_features2]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-decision_function]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-2-cv_results_n_features3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_classification-StackingClassifier-LogisticRegression]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-3-cv_results_n_features4]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-3-cv_results_n_features5]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[ValidationCurveDisplay-specific_params0-params0-ValueError-Unknown std_display_style:]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[HalvingGridSearchCV-param_grid]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-4-cv_results_n_features6]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[ValidationCurveDisplay-specific_params0-params1-ValueError-Unknown score_type:]", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-4-cv_results_n_features7]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[LearningCurveDisplay-specific_params1-params0-ValueError-Unknown std_display_style:]", "sklearn/model_selection/tests/test_search.py::test_cv_results_dtype_issue_29074", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[LearningCurveDisplay-specific_params1-params1-ValueError-Unknown score_type:]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-4-2-cv_results_n_features8]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegressionCV]", "sklearn/model_selection/tests/test_search.py::test_cv_results_multi_size_array", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_default_usage", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-1-cv_results_n_features9]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-2-cv_results_n_features10]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_display_default_usage", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[ValidationCurveDisplay-specific_params0]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LogisticRegressionCV]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_validate-extra_args0]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[LearningCurveDisplay-specific_params1]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[ValidationCurveDisplay-specific_params0-None-Score]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_val_score-extra_args1]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_n_features_to_select_warning[RFECV-min_features_to_select]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[ValidationCurveDisplay-specific_params0-Accuracy-Accuracy]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[LearningCurveDisplay-specific_params1-None-Score]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_val_predict-extra_args2]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[CalibratedClassifierCV]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[LearningCurveDisplay-specific_params1-Accuracy-Accuracy]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[learning_curve-extra_args3]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_score_type[None]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[GridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[permutation_test_score-extra_args4]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_score_type[errorbar]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[validation_curve-extra_args5]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_display_score_type[None]", "sklearn/model_selection/_split.py::sklearn.model_selection._split.RepeatedStratifiedKFold", "sklearn/model_selection/_split.py::sklearn.model_selection._split.StratifiedKFold", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_display_score_type[errorbar]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[RandomizedSearchCV]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[ValidationCurveDisplay-specific_params0-linear]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[LearningCurveDisplay-specific_params1-linear]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[ValidationCurveDisplay-specific_params2-log]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[LearningCurveDisplay-specific_params3-log]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_std_display_style[ValidationCurveDisplay-specific_params0]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_std_display_style[LearningCurveDisplay-specific_params1]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_plot_kwargs[ValidationCurveDisplay-specific_params0]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_plot_kwargs[LearningCurveDisplay-specific_params1]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_xscale_from_param_range_provided_as_a_list[param_range0-linear]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_xscale_from_param_range_provided_as_a_list[param_range1-symlog]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_xscale_from_param_range_provided_as_a_list[param_range2-log]", "sklearn/model_selection/tests/test_plot.py::test_subclassing_displays[LearningCurveDisplay-params0]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/model_selection/tests/test_plot.py::test_subclassing_displays[ValidationCurveDisplay-params1]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/calibration.py::sklearn.calibration.CalibratedClassifierCV", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.learning_curve", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.permutation_test_score", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.validation_curve", "sklearn/model_selection/_search.py::sklearn.model_selection._search.GridSearchCV", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.LearningCurveDisplay", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.LearningCurveDisplay.from_estimator", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.ValidationCurveDisplay", "sklearn/model_selection/_search.py::sklearn.model_selection._search.RandomizedSearchCV", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.ValidationCurveDisplay.from_estimator", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_matrix]", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/linear_model/_logistic.py::sklearn.linear_model._logistic.LogisticRegressionCV", "sklearn/model_selection/_search_successive_halving.py::sklearn.model_selection._search_successive_halving.HalvingGridSearchCV", "sklearn/model_selection/_search_successive_halving.py::sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/feature_selection/_sequential.py::sklearn.feature_selection._sequential.SequentialFeatureSelector", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TunedThresholdClassifierCV]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[TargetEncoder(cv=3)]", "sklearn/tests/test_common.py::test_set_output_transform[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[TargetEncoder(cv=3)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-TargetEncoder(cv=3)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-TargetEncoder(cv=3)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-188
1.0
{ "code": "diff --git b/sklearn/model_selection/_split.py a/sklearn/model_selection/_split.py\nindex 4aa16b2e6..1453e42b8 100644\n--- b/sklearn/model_selection/_split.py\n+++ a/sklearn/model_selection/_split.py\n@@ -2371,6 +2371,13 @@ class StratifiedShuffleSplit(BaseShuffleSplit):\n split. You can make the results identical by setting `random_state`\n to an integer.\n \"\"\"\n+ if groups is not None:\n+ warnings.warn(\n+ f\"The groups parameter is ignored by {self.__class__.__name__}\",\n+ UserWarning,\n+ )\n+ y = check_array(y, input_name=\"y\", ensure_2d=False, dtype=None)\n+ return super().split(X, y, groups)\n \n \n def _validate_shuffle_split(n_samples, test_size, train_size, default_test_size=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py\nindex 1453e42b8..4aa16b2e6 100644\n--- a/sklearn/model_selection/_split.py\n+++ b/sklearn/model_selection/_split.py\n@@ -2371,13 +2371,6 @@ class StratifiedShuffleSplit(BaseShuffleSplit):\n split. You can make the results identical by setting `random_state`\n to an integer.\n \"\"\"\n- if groups is not None:\n- warnings.warn(\n- f\"The groups parameter is ignored by {self.__class__.__name__}\",\n- UserWarning,\n- )\n- y = check_array(y, input_name=\"y\", ensure_2d=False, dtype=None)\n- return super().split(X, y, groups)\n \n \n def _validate_shuffle_split(n_samples, test_size, train_size, default_test_size=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/model_selection/_split.py.\nHere is the description for the function:\n def split(self, X, y, groups=None):\n \"\"\"Generate indices to split data into training and test set.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n Note that providing ``y`` is sufficient to generate the splits and\n hence ``np.zeros(n_samples)`` may be used as a placeholder for\n ``X`` instead of actual training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_labels)\n The target variable for supervised learning problems.\n Stratification is done based on the y labels.\n\n groups : object\n Always ignored, exists for compatibility.\n\n Yields\n ------\n train : ndarray\n The training set indices for that split.\n\n test : ndarray\n The testing set indices for that split.\n\n Notes\n -----\n Randomized CV splitters may return different results for each call of\n split. You can make the results identical by setting `random_state`\n to an integer.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_split.py::test_2d_y", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[accuracy-accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[balanced_accuracy-balanced_accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_weighted-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_macro-metric3]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_micro-metric4]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_macro-metric6]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SparseSGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_micro-metric7]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_weighted-metric8]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_macro-metric9]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_micro-metric10]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_weighted-metric11]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_macro-metric12]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_micro-metric13]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SparseSGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SparseSGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SparseSGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_average_precision_pos_label", "sklearn/metrics/tests/test_score_objects.py::test_brier_score_loss_pos_label", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[f1_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[jaccard_score]", "sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-StratifiedShuffleSplit]", "sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-StratifiedShuffleSplit]", "sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-StratifiedShuffleSplit]", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_init", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_respects_test_size", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_iter", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_even", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_overlap_train_test_bug", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel", "sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel_many_labels", "sklearn/linear_model/tests/test_sgd.py::test_multi_thread_multi_class_and_early_stopping", "sklearn/model_selection/tests/test_split.py::test_train_test_split[coo_matrix]", "sklearn/model_selection/tests/test_split.py::test_train_test_split[coo_array]", "sklearn/linear_model/tests/test_sgd.py::test_multi_core_gridsearch_and_early_stopping", "sklearn/model_selection/tests/test_split.py::test_train_test_split_32bit_overflow", "sklearn/model_selection/tests/test_split.py::test_train_test_split_list_input", "sklearn/model_selection/tests/test_split.py::test_stratifiedshufflesplit_list_input", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[StratifiedShuffleSplit]", "sklearn/model_selection/tests/test_split.py::test_no_group_splitters_warns_with_groups[StratifiedShuffleSplit(n_splits=10, random_state=None, test_size=0.5,\\n train_size=None)]", "sklearn/linear_model/tests/test_sgd.py::test_validation_mask_correctly_subsets", "sklearn/linear_model/tests/test_sgd.py::test_sgd_error_on_zero_validation_weight", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X1-y1]", "sklearn/model_selection/tests/test_search.py::test_grid_search_groups", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_binning_train_validation_are_separated", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_estimator-predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_estimator-decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_predictions-predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_predictions-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[decision_function-from_predictions]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingClassifier-X0-y0]", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping_stratified", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingClassifier-X0-y0]", "sklearn/model_selection/_split.py::sklearn.model_selection._split.StratifiedShuffleSplit", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingClassifier-X0-y0]", "sklearn/neural_network/tests/test_mlp.py::test_preserve_feature_names[MLPClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingClassifier-X0-y0]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/neural_network/_multilayer_perceptron.py::sklearn.neural_network._multilayer_perceptron.MLPClassifier", "sklearn/ensemble/tests/test_gradient_boosting.py::test_early_stopping_stratified", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.FixedThresholdClassifier", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[RandomForestClassifier]", "sklearn/neighbors/_nca.py::sklearn.neighbors._nca.NeighborhoodComponentsAnalysis", "sklearn/ensemble/tests/test_gradient_boosting.py::test_early_stopping_n_classes", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_float", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Perceptron(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-189
1.0
{ "code": "diff --git b/sklearn/manifold/_t_sne.py a/sklearn/manifold/_t_sne.py\nindex 9d582d1b1..71125d8b9 100644\n--- b/sklearn/manifold/_t_sne.py\n+++ a/sklearn/manifold/_t_sne.py\n@@ -1127,6 +1127,10 @@ class TSNE(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n \n return X_embedded\n \n+ @_fit_context(\n+ # TSNE.metric is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit_transform(self, X, y=None):\n \"\"\"Fit X into an embedded space and return that transformed output.\n \n@@ -1148,6 +1152,32 @@ class TSNE(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n X_new : ndarray of shape (n_samples, n_components)\n Embedding of the training data in low-dimensional space.\n \"\"\"\n+ # TODO(1.7): remove\n+ # Also make sure to change `max_iter` default back to 1000 and deprecate None\n+ if self.n_iter != \"deprecated\":\n+ if self.max_iter is not None:\n+ raise ValueError(\n+ \"Both 'n_iter' and 'max_iter' attributes were set. Attribute\"\n+ \" 'n_iter' was deprecated in version 1.5 and will be removed in\"\n+ \" 1.7. To avoid this error, only set the 'max_iter' attribute.\"\n+ )\n+ warnings.warn(\n+ (\n+ \"'n_iter' was renamed to 'max_iter' in version 1.5 and \"\n+ \"will be removed in 1.7.\"\n+ ),\n+ FutureWarning,\n+ )\n+ self._max_iter = self.n_iter\n+ elif self.max_iter is None:\n+ self._max_iter = 1000\n+ else:\n+ self._max_iter = self.max_iter\n+\n+ self._check_params_vs_input(X)\n+ embedding = self._fit(X)\n+ self.embedding_ = embedding\n+ return self.embedding_\n \n @_fit_context(\n # TSNE.metric is not validated yet\n", "test": null }
null
{ "code": "diff --git a/sklearn/manifold/_t_sne.py b/sklearn/manifold/_t_sne.py\nindex 71125d8b9..9d582d1b1 100644\n--- a/sklearn/manifold/_t_sne.py\n+++ b/sklearn/manifold/_t_sne.py\n@@ -1127,10 +1127,6 @@ class TSNE(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n \n return X_embedded\n \n- @_fit_context(\n- # TSNE.metric is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit_transform(self, X, y=None):\n \"\"\"Fit X into an embedded space and return that transformed output.\n \n@@ -1152,32 +1148,6 @@ class TSNE(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n X_new : ndarray of shape (n_samples, n_components)\n Embedding of the training data in low-dimensional space.\n \"\"\"\n- # TODO(1.7): remove\n- # Also make sure to change `max_iter` default back to 1000 and deprecate None\n- if self.n_iter != \"deprecated\":\n- if self.max_iter is not None:\n- raise ValueError(\n- \"Both 'n_iter' and 'max_iter' attributes were set. Attribute\"\n- \" 'n_iter' was deprecated in version 1.5 and will be removed in\"\n- \" 1.7. To avoid this error, only set the 'max_iter' attribute.\"\n- )\n- warnings.warn(\n- (\n- \"'n_iter' was renamed to 'max_iter' in version 1.5 and \"\n- \"will be removed in 1.7.\"\n- ),\n- FutureWarning,\n- )\n- self._max_iter = self.n_iter\n- elif self.max_iter is None:\n- self._max_iter = 1000\n- else:\n- self._max_iter = self.max_iter\n-\n- self._check_params_vs_input(X)\n- embedding = self._fit(X)\n- self.embedding_ = embedding\n- return self.embedding_\n \n @_fit_context(\n # TSNE.metric is not validated yet\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/manifold/_t_sne.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None):\n \"\"\"Fit X into an embedded space and return that transformed output.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features) or \\\n (n_samples, n_samples)\n If the metric is 'precomputed' X must be a square distance\n matrix. Otherwise it contains a sample per row. If the method\n is 'exact', X may be a sparse matrix of type 'csr', 'csc'\n or 'coo'. If the method is 'barnes_hut' and the metric is\n 'precomputed', X may be a precomputed sparse graph.\n\n y : None\n Ignored.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components)\n Embedding of the training data in low-dimensional space.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately[random-exact]", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately[random-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately[pca-exact]", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately[pca-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_optimization_minimizes_kl_divergence", "sklearn/manifold/tests/test_t_sne.py::test_fit_transform_csr_matrix[csr_matrix-exact]", "sklearn/manifold/tests/test_t_sne.py::test_fit_transform_csr_matrix[csr_matrix-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_fit_transform_csr_matrix[csr_array-exact]", "sklearn/manifold/tests/test_t_sne.py::test_fit_transform_csr_matrix[csr_array-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately_with_precomputed_distances", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D0-.* square distance matrix-exact-asarray]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D0-.* square distance matrix-barnes_hut-asarray]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D0-.* square distance matrix-barnes_hut-csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D0-.* square distance matrix-barnes_hut-csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D1-.* positive.*-exact-asarray]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D1-.* positive.*-barnes_hut-asarray]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D1-.* positive.*-barnes_hut-csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_bad_precomputed_distances[D1-.* positive.*-barnes_hut-csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_exact_no_precomputed_sparse[csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_exact_no_precomputed_sparse[csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_high_perplexity_precomputed_sparse_distances[csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_high_perplexity_precomputed_sparse_distances[csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[lil_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[lil_array]", "sklearn/manifold/tests/test_t_sne.py::test_non_positive_computed_distances", "sklearn/manifold/tests/test_t_sne.py::test_init_ndarray", "sklearn/manifold/tests/test_t_sne.py::test_init_ndarray_precomputed", "sklearn/manifold/tests/test_t_sne.py::test_pca_initialization_not_compatible_with_precomputed_kernel", "sklearn/manifold/tests/test_t_sne.py::test_pca_initialization_not_compatible_with_sparse_input[csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_pca_initialization_not_compatible_with_sparse_input[csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_n_components_range", "sklearn/manifold/tests/test_t_sne.py::test_early_exaggeration_used", "sklearn/manifold/tests/test_t_sne.py::test_max_iter_used", "sklearn/manifold/tests/test_t_sne.py::test_verbose", "sklearn/manifold/tests/test_t_sne.py::test_chebyshev_metric", "sklearn/manifold/tests/test_t_sne.py::test_reduction_to_one_component", "sklearn/manifold/tests/test_t_sne.py::test_64bit[float32-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_64bit[float32-exact]", "sklearn/manifold/tests/test_t_sne.py::test_64bit[float64-barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_64bit[float64-exact]", "sklearn/manifold/tests/test_t_sne.py::test_kl_divergence_not_nan[barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_kl_divergence_not_nan[exact]", "sklearn/manifold/tests/test_t_sne.py::test_n_iter_without_progress", "sklearn/manifold/tests/test_t_sne.py::test_min_grad_norm", "sklearn/manifold/tests/test_t_sne.py::test_accessible_kl_divergence", "sklearn/manifold/tests/test_t_sne.py::test_uniform_grid[barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_uniform_grid[exact]", "sklearn/manifold/tests/test_t_sne.py::test_bh_match_exact", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_different_distance_metrics[barnes_hut-cosine-cosine_distances]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_different_distance_metrics[exact-manhattan-manhattan_distances]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_different_distance_metrics[exact-cosine-cosine_distances]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_n_jobs[exact]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_n_jobs[barnes_hut]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_mahalanobis_distance", "sklearn/manifold/tests/test_t_sne.py::test_tsne_perplexity_validation[20]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_perplexity_validation[30]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_works_with_pandas_output", "sklearn/manifold/tests/test_t_sne.py::test_tnse_n_iter_deprecated", "sklearn/manifold/tests/test_t_sne.py::test_tnse_n_iter_max_iter_both_set", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_tsne", "sklearn/manifold/_t_sne.py::sklearn.manifold._t_sne.TSNE", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TSNE(n_components=1,perplexity=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TSNE(perplexity=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_check_param_validation[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-TSNE(perplexity=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-190
1.0
{ "code": "diff --git b/sklearn/compose/_target.py a/sklearn/compose/_target.py\nindex e5fb6de0a..d90ee17d1 100644\n--- b/sklearn/compose/_target.py\n+++ a/sklearn/compose/_target.py\n@@ -217,6 +217,10 @@ class TransformedTargetRegressor(RegressorMixin, BaseEstimator):\n UserWarning,\n )\n \n+ @_fit_context(\n+ # TransformedTargetRegressor.regressor/transformer are not validated yet.\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit the model according to the given training data.\n \n@@ -245,6 +249,53 @@ class TransformedTargetRegressor(RegressorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ if y is None:\n+ raise ValueError(\n+ f\"This {self.__class__.__name__} estimator \"\n+ \"requires y to be passed, but the target y is None.\"\n+ )\n+ y = check_array(\n+ y,\n+ input_name=\"y\",\n+ accept_sparse=False,\n+ ensure_all_finite=True,\n+ ensure_2d=False,\n+ dtype=\"numeric\",\n+ allow_nd=True,\n+ )\n+\n+ # store the number of dimension of the target to predict an array of\n+ # similar shape at predict\n+ self._training_dim = y.ndim\n+\n+ # transformers are designed to modify X which is 2d dimensional, we\n+ # need to modify y accordingly.\n+ if y.ndim == 1:\n+ y_2d = y.reshape(-1, 1)\n+ else:\n+ y_2d = y\n+ self._fit_transformer(y_2d)\n+\n+ # transform y and convert back to 1d array if needed\n+ y_trans = self.transformer_.transform(y_2d)\n+ # FIXME: a FunctionTransformer can return a 1D array even when validate\n+ # is set to True. Therefore, we need to check the number of dimension\n+ # first.\n+ if y_trans.ndim == 2 and y_trans.shape[1] == 1:\n+ y_trans = y_trans.squeeze(axis=1)\n+\n+ self.regressor_ = self._get_regressor(get_clone=True)\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit\", **fit_params)\n+ else:\n+ routed_params = Bunch(regressor=Bunch(fit=fit_params))\n+\n+ self.regressor_.fit(X, y_trans, **routed_params.regressor.fit)\n+\n+ if hasattr(self.regressor_, \"feature_names_in_\"):\n+ self.feature_names_in_ = self.regressor_.feature_names_in_\n+\n+ return self\n \n def predict(self, X, **predict_params):\n \"\"\"Predict using the base regressor, applying inverse.\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_target.py b/sklearn/compose/_target.py\nindex d90ee17d1..e5fb6de0a 100644\n--- a/sklearn/compose/_target.py\n+++ b/sklearn/compose/_target.py\n@@ -217,10 +217,6 @@ class TransformedTargetRegressor(RegressorMixin, BaseEstimator):\n UserWarning,\n )\n \n- @_fit_context(\n- # TransformedTargetRegressor.regressor/transformer are not validated yet.\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, **fit_params):\n \"\"\"Fit the model according to the given training data.\n \n@@ -249,53 +245,6 @@ class TransformedTargetRegressor(RegressorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- if y is None:\n- raise ValueError(\n- f\"This {self.__class__.__name__} estimator \"\n- \"requires y to be passed, but the target y is None.\"\n- )\n- y = check_array(\n- y,\n- input_name=\"y\",\n- accept_sparse=False,\n- ensure_all_finite=True,\n- ensure_2d=False,\n- dtype=\"numeric\",\n- allow_nd=True,\n- )\n-\n- # store the number of dimension of the target to predict an array of\n- # similar shape at predict\n- self._training_dim = y.ndim\n-\n- # transformers are designed to modify X which is 2d dimensional, we\n- # need to modify y accordingly.\n- if y.ndim == 1:\n- y_2d = y.reshape(-1, 1)\n- else:\n- y_2d = y\n- self._fit_transformer(y_2d)\n-\n- # transform y and convert back to 1d array if needed\n- y_trans = self.transformer_.transform(y_2d)\n- # FIXME: a FunctionTransformer can return a 1D array even when validate\n- # is set to True. Therefore, we need to check the number of dimension\n- # first.\n- if y_trans.ndim == 2 and y_trans.shape[1] == 1:\n- y_trans = y_trans.squeeze(axis=1)\n-\n- self.regressor_ = self._get_regressor(get_clone=True)\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit\", **fit_params)\n- else:\n- routed_params = Bunch(regressor=Bunch(fit=fit_params))\n-\n- self.regressor_.fit(X, y_trans, **routed_params.regressor.fit)\n-\n- if hasattr(self.regressor_, \"feature_names_in_\"):\n- self.feature_names_in_ = self.regressor_.feature_names_in_\n-\n- return self\n \n def predict(self, X, **predict_params):\n \"\"\"Predict using the base regressor, applying inverse.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_target.py.\nHere is the description for the function:\n def fit(self, X, y, **fit_params):\n \"\"\"Fit the model according to the given training data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n **fit_params : dict\n - If `enable_metadata_routing=False` (default): Parameters directly passed\n to the `fit` method of the underlying regressor.\n\n - If `enable_metadata_routing=True`: Parameters safely routed to the `fit`\n method of the underlying regressor.\n\n .. versionchanged:: 1.6\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[TransformedTargetRegressor]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_error", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_invertible", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_3d_target", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_multi_to_single", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_ensure_y_array", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_count_fit[False]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_count_fit[True]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_fit_parameters", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_route_pipeline", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_extra_predict_parameters", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[pandas]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TransformedTargetRegressor]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[polars]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-importance_getter0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-regressor_.coef_]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-auto-ValueError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-<lambda>-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]", "sklearn/compose/_target.py::sklearn.compose._target.TransformedTargetRegressor", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TransformedTargetRegressor]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TransformedTargetRegressor]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_check_param_validation[TransformedTargetRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-191
1.0
{ "code": "diff --git b/sklearn/compose/_target.py a/sklearn/compose/_target.py\nindex 1feb3356c..d90ee17d1 100644\n--- b/sklearn/compose/_target.py\n+++ a/sklearn/compose/_target.py\n@@ -324,6 +324,25 @@ class TransformedTargetRegressor(RegressorMixin, BaseEstimator):\n y_hat : ndarray of shape (n_samples,)\n Predicted values.\n \"\"\"\n+ check_is_fitted(self)\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"predict\", **predict_params)\n+ else:\n+ routed_params = Bunch(regressor=Bunch(predict=predict_params))\n+\n+ pred = self.regressor_.predict(X, **routed_params.regressor.predict)\n+ if pred.ndim == 1:\n+ pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1))\n+ else:\n+ pred_trans = self.transformer_.inverse_transform(pred)\n+ if (\n+ self._training_dim == 1\n+ and pred_trans.ndim == 2\n+ and pred_trans.shape[1] == 1\n+ ):\n+ pred_trans = pred_trans.squeeze(axis=1)\n+\n+ return pred_trans\n \n def __sklearn_tags__(self):\n regressor = self._get_regressor()\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_target.py b/sklearn/compose/_target.py\nindex d90ee17d1..1feb3356c 100644\n--- a/sklearn/compose/_target.py\n+++ b/sklearn/compose/_target.py\n@@ -324,25 +324,6 @@ class TransformedTargetRegressor(RegressorMixin, BaseEstimator):\n y_hat : ndarray of shape (n_samples,)\n Predicted values.\n \"\"\"\n- check_is_fitted(self)\n- if _routing_enabled():\n- routed_params = process_routing(self, \"predict\", **predict_params)\n- else:\n- routed_params = Bunch(regressor=Bunch(predict=predict_params))\n-\n- pred = self.regressor_.predict(X, **routed_params.regressor.predict)\n- if pred.ndim == 1:\n- pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1))\n- else:\n- pred_trans = self.transformer_.inverse_transform(pred)\n- if (\n- self._training_dim == 1\n- and pred_trans.ndim == 2\n- and pred_trans.shape[1] == 1\n- ):\n- pred_trans = pred_trans.squeeze(axis=1)\n-\n- return pred_trans\n \n def __sklearn_tags__(self):\n regressor = self._get_regressor()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_target.py.\nHere is the description for the function:\n def predict(self, X, **predict_params):\n \"\"\"Predict using the base regressor, applying inverse.\n\n The regressor is used to predict and the `inverse_func` or\n `inverse_transform` is applied before returning the prediction.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Samples.\n\n **predict_params : dict of str -> object\n - If `enable_metadata_routing=False` (default): Parameters directly passed\n to the `predict` method of the underlying regressor.\n\n - If `enable_metadata_routing=True`: Parameters safely routed to the\n `predict` method of the underlying regressor.\n\n .. versionchanged:: 1.6\n See :ref:`Metadata Routing User Guide <metadata_routing>`\n for more details.\n\n Returns\n -------\n y_hat : ndarray of shape (n_samples,)\n Predicted values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[TransformedTargetRegressor]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_3d_target", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_multi_to_single", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_ensure_y_array", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_extra_predict_parameters", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/compose/_target.py::sklearn.compose._target.TransformedTargetRegressor", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TransformedTargetRegressor]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TransformedTargetRegressor]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TransformedTargetRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-192
1.0
{ "code": "diff --git b/sklearn/ensemble/_hist_gradient_boosting/grower.py a/sklearn/ensemble/_hist_gradient_boosting/grower.py\nindex 93ce330c6..a71e56405 100644\n--- b/sklearn/ensemble/_hist_gradient_boosting/grower.py\n+++ a/sklearn/ensemble/_hist_gradient_boosting/grower.py\n@@ -709,6 +709,24 @@ class TreeGrower:\n -------\n A TreePredictor object.\n \"\"\"\n+ predictor_nodes = np.zeros(self.n_nodes, dtype=PREDICTOR_RECORD_DTYPE)\n+ binned_left_cat_bitsets = np.zeros(\n+ (self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE\n+ )\n+ raw_left_cat_bitsets = np.zeros(\n+ (self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE\n+ )\n+ _fill_predictor_arrays(\n+ predictor_nodes,\n+ binned_left_cat_bitsets,\n+ raw_left_cat_bitsets,\n+ self.root,\n+ binning_thresholds,\n+ self.n_bins_non_missing,\n+ )\n+ return TreePredictor(\n+ predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets\n+ )\n \n \n def _fill_predictor_arrays(\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_hist_gradient_boosting/grower.py b/sklearn/ensemble/_hist_gradient_boosting/grower.py\nindex a71e56405..93ce330c6 100644\n--- a/sklearn/ensemble/_hist_gradient_boosting/grower.py\n+++ b/sklearn/ensemble/_hist_gradient_boosting/grower.py\n@@ -709,24 +709,6 @@ class TreeGrower:\n -------\n A TreePredictor object.\n \"\"\"\n- predictor_nodes = np.zeros(self.n_nodes, dtype=PREDICTOR_RECORD_DTYPE)\n- binned_left_cat_bitsets = np.zeros(\n- (self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE\n- )\n- raw_left_cat_bitsets = np.zeros(\n- (self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE\n- )\n- _fill_predictor_arrays(\n- predictor_nodes,\n- binned_left_cat_bitsets,\n- raw_left_cat_bitsets,\n- self.root,\n- binning_thresholds,\n- self.n_bins_non_missing,\n- )\n- return TreePredictor(\n- predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets\n- )\n \n \n def _fill_predictor_arrays(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_hist_gradient_boosting/grower.py.\nHere is the description for the function:\n def make_predictor(self, binning_thresholds):\n \"\"\"Make a TreePredictor object out of the current tree.\n\n Parameters\n ----------\n binning_thresholds : array-like of floats\n Corresponds to the bin_thresholds_ attribute of the BinMapper.\n For each feature, this stores:\n\n - the bin frontiers for continuous features\n - the unique raw category values for categorical features\n\n Returns\n -------\n A TreePredictor object.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-False-5-0.0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-False-5-0.0-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-False-5-0.0-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X3-y3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error_sample_weight", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_gamma", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.8]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_poisson", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_binning_train_validation_are_separated", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_trivial", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-classification]", "sklearn/tests/test_pipeline.py::test_n_features_in_pipeline", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_division_hessians[binary_log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_division_hessians[multiclass_log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values_missing_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_string_target_early_stopping[None]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_string_target_early_stopping[loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_regression", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_classification", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_max_depth_max_leaf_nodes", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_on_test_set_with_warm_start", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_with_sample_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_raw_predict_is_called_with_custom_scorer", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingClassifier]", "sklearn/model_selection/tests/test_search.py::test_n_features_in", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_custom_loss[HistGradientBoostingClassifier-loss0-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_custom_loss[HistGradientBoostingRegressor-loss1-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features1-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features1-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features1-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features1-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_interaction_cst_numerically", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_no_user_warning_with_scoring", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_class_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_different_order_same_model[pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_features_warn", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_pickle", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_joblib_pickle", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_hist_gbdt_sw_not_supported", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_pandas_nullable_dtype", "sklearn/feature_selection/tests/test_sequential.py::test_nan_support", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_predictor_from_grower", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[11-10-7-True-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[13-10-42-False-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[56-10-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[101-3-7-True-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[200-42-42-False-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[300-55-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[300-301-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_missing_value_predict_only", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_split_on_nan_with_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_grow_tree_categories", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-1]", "sklearn/feature_selection/tests/test_from_model.py::test_fit_accepts_nan_inf", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_max_iter_with_warm_start_validation[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_max_iter_with_warm_start_validation[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.NO_CST-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.NO_CST-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.NO_CST-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.POS-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.POS-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.POS-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.NEG-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.NEG-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_nodes_values[MonotonicConstraint.NEG-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[200]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingRegressor", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-193
1.0
{ "code": "diff --git b/sklearn/ensemble/_hist_gradient_boosting/predictor.py a/sklearn/ensemble/_hist_gradient_boosting/predictor.py\nindex 243199f1a..59bb6499c 100644\n--- b/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n+++ a/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n@@ -66,6 +66,18 @@ class TreePredictor:\n y : ndarray, shape (n_samples,)\n The raw predicted values.\n \"\"\"\n+ out = np.empty(X.shape[0], dtype=Y_DTYPE)\n+\n+ _predict_from_raw_data(\n+ self.nodes,\n+ X,\n+ self.raw_left_cat_bitsets,\n+ known_cat_bitsets,\n+ f_idx_map,\n+ n_threads,\n+ out,\n+ )\n+ return out\n \n def predict_binned(self, X, missing_values_bin_idx, n_threads):\n \"\"\"Predict raw values for binned data.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_hist_gradient_boosting/predictor.py b/sklearn/ensemble/_hist_gradient_boosting/predictor.py\nindex 59bb6499c..243199f1a 100644\n--- a/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n+++ b/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n@@ -66,18 +66,6 @@ class TreePredictor:\n y : ndarray, shape (n_samples,)\n The raw predicted values.\n \"\"\"\n- out = np.empty(X.shape[0], dtype=Y_DTYPE)\n-\n- _predict_from_raw_data(\n- self.nodes,\n- X,\n- self.raw_left_cat_bitsets,\n- known_cat_bitsets,\n- f_idx_map,\n- n_threads,\n- out,\n- )\n- return out\n \n def predict_binned(self, X, missing_values_bin_idx, n_threads):\n \"\"\"Predict raw values for binned data.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_hist_gradient_boosting/predictor.py.\nHere is the description for the function:\n def predict(self, X, known_cat_bitsets, f_idx_map, n_threads):\n \"\"\"Predict raw values for non-binned data.\n\n Parameters\n ----------\n X : ndarray, shape (n_samples, n_features)\n The input samples.\n\n known_cat_bitsets : ndarray of shape (n_categorical_features, 8)\n Array of bitsets of known categories, for each categorical feature.\n\n f_idx_map : ndarray of shape (n_features,)\n Map from original feature index to the corresponding index in the\n known_cat_bitsets array.\n\n n_threads : int\n Number of OpenMP threads to use.\n\n Returns\n -------\n y : ndarray, shape (n_samples,)\n The raw predicted values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_gamma", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.8]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_poisson", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_trivial", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values_missing_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_regression", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_classification", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_interaction_cst_numerically", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_missing_value_predict_only", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_split_on_nan_with_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_grow_tree_categories", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_class_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_pickle", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_joblib_pickle", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[200]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_infinite_values_and_thresholds[-inf-expected_predictions0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_infinite_values_and_thresholds[10-expected_predictions1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_infinite_values_and_thresholds[20-expected_predictions2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_infinite_values_and_thresholds[1e+300-expected_predictions3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_infinite_values_and_thresholds[inf-expected_predictions4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_categorical_predictor[bins_go_left0-expected_predictions0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_categorical_predictor[bins_go_left1-expected_predictions1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_categorical_predictor[bins_go_left2-expected_predictions2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingRegressor", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-194
1.0
{ "code": "diff --git b/sklearn/ensemble/_hist_gradient_boosting/predictor.py a/sklearn/ensemble/_hist_gradient_boosting/predictor.py\nindex 0ae39c764..59bb6499c 100644\n--- b/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n+++ a/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n@@ -98,6 +98,16 @@ class TreePredictor:\n y : ndarray, shape (n_samples,)\n The raw predicted values.\n \"\"\"\n+ out = np.empty(X.shape[0], dtype=Y_DTYPE)\n+ _predict_from_binned_data(\n+ self.nodes,\n+ X,\n+ self.binned_left_cat_bitsets,\n+ missing_values_bin_idx,\n+ n_threads,\n+ out,\n+ )\n+ return out\n \n def compute_partial_dependence(self, grid, target_features, out):\n \"\"\"Fast partial dependence computation.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_hist_gradient_boosting/predictor.py b/sklearn/ensemble/_hist_gradient_boosting/predictor.py\nindex 59bb6499c..0ae39c764 100644\n--- a/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n+++ b/sklearn/ensemble/_hist_gradient_boosting/predictor.py\n@@ -98,16 +98,6 @@ class TreePredictor:\n y : ndarray, shape (n_samples,)\n The raw predicted values.\n \"\"\"\n- out = np.empty(X.shape[0], dtype=Y_DTYPE)\n- _predict_from_binned_data(\n- self.nodes,\n- X,\n- self.binned_left_cat_bitsets,\n- missing_values_bin_idx,\n- n_threads,\n- out,\n- )\n- return out\n \n def compute_partial_dependence(self, grid, target_features, out):\n \"\"\"Fast partial dependence computation.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_hist_gradient_boosting/predictor.py.\nHere is the description for the function:\n def predict_binned(self, X, missing_values_bin_idx, n_threads):\n \"\"\"Predict raw values for binned data.\n\n Parameters\n ----------\n X : ndarray, shape (n_samples, n_features)\n The input samples.\n missing_values_bin_idx : uint8\n Index of the bin that is used for missing values. This is the\n index of the last bin and is always equal to max_bins (as passed\n to the GBDT classes), or equivalently to n_bins - 1.\n n_threads : int\n Number of OpenMP threads to use.\n\n Returns\n -------\n y : ndarray, shape (n_samples,)\n The raw predicted values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X3-y3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_binning_train_validation_are_separated", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_on_test_set_with_warm_start", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_with_sample_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_raw_predict_is_called_with_custom_scorer", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_no_user_warning_with_scoring", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_predictor_from_grower", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_split_on_nan_with_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_grow_tree_categories", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[binary-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[random-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-2-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-10-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_ohe_equivalence[equal-100-20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_categorical_predictor[bins_go_left0-expected_predictions0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_categorical_predictor[bins_go_left1-expected_predictions1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_categorical_predictor[bins_go_left2-expected_predictions2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingRegressor-X1-y1]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-195
1.0
{ "code": "diff --git b/sklearn/decomposition/_truncated_svd.py a/sklearn/decomposition/_truncated_svd.py\nindex 18182c4ad..b87a53684 100644\n--- b/sklearn/decomposition/_truncated_svd.py\n+++ a/sklearn/decomposition/_truncated_svd.py\n@@ -206,6 +206,7 @@ class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n self.fit_transform(X)\n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None):\n \"\"\"Fit model to X and perform dimensionality reduction on X.\n \n@@ -222,6 +223,57 @@ class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n X_new : ndarray of shape (n_samples, n_components)\n Reduced version of X. This will always be a dense array.\n \"\"\"\n+ X = validate_data(self, X, accept_sparse=[\"csr\", \"csc\"], ensure_min_features=2)\n+ random_state = check_random_state(self.random_state)\n+\n+ if self.algorithm == \"arpack\":\n+ v0 = _init_arpack_v0(min(X.shape), random_state)\n+ U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol, v0=v0)\n+ # svds doesn't abide by scipy.linalg.svd/randomized_svd\n+ # conventions, so reverse its outputs.\n+ Sigma = Sigma[::-1]\n+ # u_based_decision=False is needed to be consistent with PCA.\n+ U, VT = svd_flip(U[:, ::-1], VT[::-1], u_based_decision=False)\n+\n+ elif self.algorithm == \"randomized\":\n+ if self.n_components > X.shape[1]:\n+ raise ValueError(\n+ f\"n_components({self.n_components}) must be <=\"\n+ f\" n_features({X.shape[1]}).\"\n+ )\n+ U, Sigma, VT = randomized_svd(\n+ X,\n+ self.n_components,\n+ n_iter=self.n_iter,\n+ n_oversamples=self.n_oversamples,\n+ power_iteration_normalizer=self.power_iteration_normalizer,\n+ random_state=random_state,\n+ flip_sign=False,\n+ )\n+ U, VT = svd_flip(U, VT, u_based_decision=False)\n+\n+ self.components_ = VT\n+\n+ # As a result of the SVD approximation error on X ~ U @ Sigma @ V.T,\n+ # X @ V is not the same as U @ Sigma\n+ if self.algorithm == \"randomized\" or (\n+ self.algorithm == \"arpack\" and self.tol > 0\n+ ):\n+ X_transformed = safe_sparse_dot(X, self.components_.T)\n+ else:\n+ X_transformed = U * Sigma\n+\n+ # Calculate explained variance & explained variance ratio\n+ self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)\n+ if sp.issparse(X):\n+ _, full_var = mean_variance_axis(X, axis=0)\n+ full_var = full_var.sum()\n+ else:\n+ full_var = np.var(X, axis=0).sum()\n+ self.explained_variance_ratio_ = exp_var / full_var\n+ self.singular_values_ = Sigma # Store the singular values.\n+\n+ return X_transformed\n \n def transform(self, X):\n \"\"\"Perform dimensionality reduction on X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_truncated_svd.py b/sklearn/decomposition/_truncated_svd.py\nindex b87a53684..18182c4ad 100644\n--- a/sklearn/decomposition/_truncated_svd.py\n+++ b/sklearn/decomposition/_truncated_svd.py\n@@ -206,7 +206,6 @@ class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n self.fit_transform(X)\n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None):\n \"\"\"Fit model to X and perform dimensionality reduction on X.\n \n@@ -223,57 +222,6 @@ class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n X_new : ndarray of shape (n_samples, n_components)\n Reduced version of X. This will always be a dense array.\n \"\"\"\n- X = validate_data(self, X, accept_sparse=[\"csr\", \"csc\"], ensure_min_features=2)\n- random_state = check_random_state(self.random_state)\n-\n- if self.algorithm == \"arpack\":\n- v0 = _init_arpack_v0(min(X.shape), random_state)\n- U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol, v0=v0)\n- # svds doesn't abide by scipy.linalg.svd/randomized_svd\n- # conventions, so reverse its outputs.\n- Sigma = Sigma[::-1]\n- # u_based_decision=False is needed to be consistent with PCA.\n- U, VT = svd_flip(U[:, ::-1], VT[::-1], u_based_decision=False)\n-\n- elif self.algorithm == \"randomized\":\n- if self.n_components > X.shape[1]:\n- raise ValueError(\n- f\"n_components({self.n_components}) must be <=\"\n- f\" n_features({X.shape[1]}).\"\n- )\n- U, Sigma, VT = randomized_svd(\n- X,\n- self.n_components,\n- n_iter=self.n_iter,\n- n_oversamples=self.n_oversamples,\n- power_iteration_normalizer=self.power_iteration_normalizer,\n- random_state=random_state,\n- flip_sign=False,\n- )\n- U, VT = svd_flip(U, VT, u_based_decision=False)\n-\n- self.components_ = VT\n-\n- # As a result of the SVD approximation error on X ~ U @ Sigma @ V.T,\n- # X @ V is not the same as U @ Sigma\n- if self.algorithm == \"randomized\" or (\n- self.algorithm == \"arpack\" and self.tol > 0\n- ):\n- X_transformed = safe_sparse_dot(X, self.components_.T)\n- else:\n- X_transformed = U * Sigma\n-\n- # Calculate explained variance & explained variance ratio\n- self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)\n- if sp.issparse(X):\n- _, full_var = mean_variance_axis(X, axis=0)\n- full_var = full_var.sum()\n- else:\n- full_var = np.var(X, axis=0).sum()\n- self.explained_variance_ratio_ = exp_var / full_var\n- self.singular_values_ = Sigma # Store the singular values.\n-\n- return X_transformed\n \n def transform(self, X):\n \"\"\"Perform dimensionality reduction on X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_truncated_svd.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None):\n \"\"\"Fit model to X and perform dimensionality reduction on X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components)\n Reduced version of X. This will always be a dense array.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_feature_union[csr_matrix]", "sklearn/tests/test_pipeline.py::test_feature_union[csr_array]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/decomposition/tests/test_truncated_svd.py::test_solvers[dense-randomized]", "sklearn/decomposition/tests/test_truncated_svd.py::test_solvers[sparse-randomized]", "sklearn/decomposition/tests/test_truncated_svd.py::test_attributes[10]", "sklearn/decomposition/tests/test_truncated_svd.py::test_attributes[25]", "sklearn/decomposition/tests/test_truncated_svd.py::test_attributes[41]", "sklearn/decomposition/tests/test_truncated_svd.py::test_attributes[55]", "sklearn/decomposition/tests/test_truncated_svd.py::test_too_many_components[arpack-55]", "sklearn/decomposition/tests/test_truncated_svd.py::test_too_many_components[arpack-56]", "sklearn/decomposition/tests/test_truncated_svd.py::test_too_many_components[randomized-56]", "sklearn/decomposition/tests/test_truncated_svd.py::test_sparse_formats[array]", "sklearn/decomposition/tests/test_truncated_svd.py::test_sparse_formats[csr]", "sklearn/decomposition/tests/test_truncated_svd.py::test_sparse_formats[csc]", "sklearn/decomposition/tests/test_truncated_svd.py::test_sparse_formats[coo]", "sklearn/decomposition/tests/test_truncated_svd.py::test_sparse_formats[lil]", "sklearn/decomposition/tests/test_truncated_svd.py::test_inverse_transform[arpack]", "sklearn/decomposition/tests/test_truncated_svd.py::test_inverse_transform[randomized]", "sklearn/decomposition/tests/test_truncated_svd.py::test_integers", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[arpack-10-dense]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[arpack-10-sparse]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[arpack-20-dense]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[arpack-20-sparse]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[randomized-10-dense]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[randomized-10-sparse]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[randomized-20-dense]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance[randomized-20-sparse]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance_components_10_20[arpack-dense]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance_components_10_20[arpack-sparse]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance_components_10_20[randomized-dense]", "sklearn/decomposition/tests/test_truncated_svd.py::test_explained_variance_components_10_20[randomized-sparse]", "sklearn/decomposition/tests/test_truncated_svd.py::test_singular_values_consistency[arpack]", "sklearn/decomposition/tests/test_truncated_svd.py::test_singular_values_consistency[randomized]", "sklearn/decomposition/tests/test_truncated_svd.py::test_singular_values_expected[arpack]", "sklearn/decomposition/tests/test_truncated_svd.py::test_singular_values_expected[randomized]", "sklearn/decomposition/tests/test_truncated_svd.py::test_truncated_svd_eq_pca", "sklearn/decomposition/tests/test_truncated_svd.py::test_fit_transform[dense-randomized-0.0]", "sklearn/decomposition/tests/test_truncated_svd.py::test_fit_transform[dense-arpack-1e-06]", "sklearn/decomposition/tests/test_truncated_svd.py::test_fit_transform[dense-arpack-0.0]", "sklearn/decomposition/tests/test_truncated_svd.py::test_fit_transform[sparse-randomized-0.0]", "sklearn/decomposition/tests/test_truncated_svd.py::test_fit_transform[sparse-arpack-1e-06]", "sklearn/decomposition/tests/test_truncated_svd.py::test_fit_transform[sparse-arpack-0.0]", "sklearn/pipeline.py::sklearn.pipeline.FeatureUnion", "sklearn/decomposition/_truncated_svd.py::sklearn.decomposition._truncated_svd.TruncatedSVD", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TruncatedSVD(n_components=1)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_check_param_validation[TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform[TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-TruncatedSVD(n_components=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-196
1.0
{ "code": "diff --git b/sklearn/ensemble/_voting.py a/sklearn/ensemble/_voting.py\nindex 46affae1c..5c9a4de58 100644\n--- b/sklearn/ensemble/_voting.py\n+++ a/sklearn/ensemble/_voting.py\n@@ -348,6 +348,14 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n self.flatten_transform = flatten_transform\n self.verbose = verbose\n \n+ @_fit_context(\n+ # estimators in VotingClassifier.estimators are not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n+ # TODO(1.7): remove `sample_weight` from the signature after deprecation\n+ # cycle; pop it from `fit_params` before the `_raise_for_params` check and\n+ # reinsert later, for backwards compatibility\n+ @_deprecate_positional_args(version=\"1.7\")\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit the estimators.\n \n@@ -383,6 +391,32 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n self : object\n Returns the instance itself.\n \"\"\"\n+ _raise_for_params(fit_params, self, \"fit\")\n+ y_type = type_of_target(y, input_name=\"y\")\n+ if y_type in (\"unknown\", \"continuous\"):\n+ # raise a specific ValueError for non-classification tasks\n+ raise ValueError(\n+ f\"Unknown label type: {y_type}. Maybe you are trying to fit a \"\n+ \"classifier, which expects discrete classes on a \"\n+ \"regression target with continuous values.\"\n+ )\n+ elif y_type not in (\"binary\", \"multiclass\"):\n+ # raise a NotImplementedError for backward compatibility for non-supported\n+ # classification tasks\n+ raise NotImplementedError(\n+ f\"{self.__class__.__name__} only supports binary or multiclass \"\n+ \"classification. Multilabel and multi-output classification are not \"\n+ \"supported.\"\n+ )\n+\n+ self.le_ = LabelEncoder().fit(y)\n+ self.classes_ = self.le_.classes_\n+ transformed_y = self.le_.transform(y)\n+\n+ if sample_weight is not None:\n+ fit_params[\"sample_weight\"] = sample_weight\n+\n+ return super().fit(X, transformed_y, **fit_params)\n \n def predict(self, X):\n \"\"\"Predict class labels for X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_voting.py b/sklearn/ensemble/_voting.py\nindex 5c9a4de58..46affae1c 100644\n--- a/sklearn/ensemble/_voting.py\n+++ b/sklearn/ensemble/_voting.py\n@@ -348,14 +348,6 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n self.flatten_transform = flatten_transform\n self.verbose = verbose\n \n- @_fit_context(\n- # estimators in VotingClassifier.estimators are not validated yet\n- prefer_skip_nested_validation=False\n- )\n- # TODO(1.7): remove `sample_weight` from the signature after deprecation\n- # cycle; pop it from `fit_params` before the `_raise_for_params` check and\n- # reinsert later, for backwards compatibility\n- @_deprecate_positional_args(version=\"1.7\")\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit the estimators.\n \n@@ -391,32 +383,6 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n self : object\n Returns the instance itself.\n \"\"\"\n- _raise_for_params(fit_params, self, \"fit\")\n- y_type = type_of_target(y, input_name=\"y\")\n- if y_type in (\"unknown\", \"continuous\"):\n- # raise a specific ValueError for non-classification tasks\n- raise ValueError(\n- f\"Unknown label type: {y_type}. Maybe you are trying to fit a \"\n- \"classifier, which expects discrete classes on a \"\n- \"regression target with continuous values.\"\n- )\n- elif y_type not in (\"binary\", \"multiclass\"):\n- # raise a NotImplementedError for backward compatibility for non-supported\n- # classification tasks\n- raise NotImplementedError(\n- f\"{self.__class__.__name__} only supports binary or multiclass \"\n- \"classification. Multilabel and multi-output classification are not \"\n- \"supported.\"\n- )\n-\n- self.le_ = LabelEncoder().fit(y)\n- self.classes_ = self.le_.classes_\n- transformed_y = self.le_.transform(y)\n-\n- if sample_weight is not None:\n- fit_params[\"sample_weight\"] = sample_weight\n-\n- return super().fit(X, transformed_y, **fit_params)\n \n def predict(self, X):\n \"\"\"Predict class labels for X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_voting.py.\nHere is the description for the function:\n def fit(self, X, y, *, sample_weight=None, **fit_params):\n \"\"\"Fit the estimators.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vectors, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted.\n Note that this is supported only if all underlying estimators\n support sample weights.\n\n .. versionadded:: 0.18\n\n **fit_params : dict\n Parameters to pass to the underlying estimators.\n\n .. versionadded:: 1.5\n\n Only available if `enable_metadata_routing=True`,\n which can be set by using\n ``sklearn.set_config(enable_metadata_routing=True)``.\n See :ref:`Metadata Routing User Guide <metadata_routing>` for\n more details.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_estimator_init[params0-Invalid 'estimators' attribute, 'estimators' should be a non-empty list]", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_estimator_init[params1-Number of `estimators` and weights must be equal]", "sklearn/ensemble/tests/test_voting.py::test_predictproba_hardvoting", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_tie_situation", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]", "sklearn/ensemble/tests/test_voting.py::test_predict_proba_on_toy_problem", "sklearn/ensemble/tests/test_voting.py::test_multilabel", "sklearn/ensemble/tests/test_voting.py::test_gridsearch", "sklearn/ensemble/tests/test_voting.py::test_parallel_fit[42]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight[42]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight_kwargs", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_set_params[42]", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/ensemble/tests/test_voting.py::test_estimator_weights_format[42]", "sklearn/ensemble/tests/test_voting.py::test_transform[42]", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X0-y0-voter0]", "sklearn/ensemble/tests/test_voting.py::test_n_features_in[VotingClassifier]", "sklearn/ensemble/tests/test_voting.py::test_voting_verbose[estimator1]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs0-expected_names0]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs1-expected_names1]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier_error", "sklearn/ensemble/tests/test_voting.py::test_routing_passed_metadata_not_supported[VotingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_voting.py::test_metadata_routing_for_voting_estimators[sample_weight-VotingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_voting.py::test_metadata_routing_for_voting_estimators[metadata-VotingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_voting.py::test_metadata_routing_error_for_voting_estimators[VotingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[voting-classifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_type[VotingClassifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_name_validation[X1-y1-VotingClassifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_all_dropped[voting-classifier]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[VotingClassifier]", "sklearn/tests/test_calibration.py::test_calibration_votingclassifier", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_param_validation[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-197
1.0
{ "code": "diff --git b/sklearn/ensemble/_voting.py a/sklearn/ensemble/_voting.py\nindex 35ce129a4..5c9a4de58 100644\n--- b/sklearn/ensemble/_voting.py\n+++ a/sklearn/ensemble/_voting.py\n@@ -523,6 +523,29 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n+ check_is_fitted(self, \"n_features_in_\")\n+ if self.voting == \"soft\" and not self.flatten_transform:\n+ raise ValueError(\n+ \"get_feature_names_out is not supported when `voting='soft'` and \"\n+ \"`flatten_transform=False`\"\n+ )\n+\n+ _check_feature_names_in(self, input_features, generate_names=False)\n+ class_name = self.__class__.__name__.lower()\n+\n+ active_names = [name for name, est in self.estimators if est != \"drop\"]\n+\n+ if self.voting == \"hard\":\n+ return np.asarray(\n+ [f\"{class_name}_{name}\" for name in active_names], dtype=object\n+ )\n+\n+ # voting == \"soft\"\n+ n_classes = len(self.classes_)\n+ names_out = [\n+ f\"{class_name}_{name}{i}\" for name in active_names for i in range(n_classes)\n+ ]\n+ return np.asarray(names_out, dtype=object)\n \n \n class VotingRegressor(RegressorMixin, _BaseVoting):\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_voting.py b/sklearn/ensemble/_voting.py\nindex 5c9a4de58..35ce129a4 100644\n--- a/sklearn/ensemble/_voting.py\n+++ b/sklearn/ensemble/_voting.py\n@@ -523,29 +523,6 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n- check_is_fitted(self, \"n_features_in_\")\n- if self.voting == \"soft\" and not self.flatten_transform:\n- raise ValueError(\n- \"get_feature_names_out is not supported when `voting='soft'` and \"\n- \"`flatten_transform=False`\"\n- )\n-\n- _check_feature_names_in(self, input_features, generate_names=False)\n- class_name = self.__class__.__name__.lower()\n-\n- active_names = [name for name, est in self.estimators if est != \"drop\"]\n-\n- if self.voting == \"hard\":\n- return np.asarray(\n- [f\"{class_name}_{name}\" for name in active_names], dtype=object\n- )\n-\n- # voting == \"soft\"\n- n_classes = len(self.classes_)\n- names_out = [\n- f\"{class_name}_{name}{i}\" for name in active_names for i in range(n_classes)\n- ]\n- return np.asarray(names_out, dtype=object)\n \n \n class VotingRegressor(RegressorMixin, _BaseVoting):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_voting.py.\nHere is the description for the function:\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs0-expected_names0]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs1-expected_names1]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier_error", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-198
1.0
{ "code": "diff --git b/sklearn/ensemble/_voting.py a/sklearn/ensemble/_voting.py\nindex e0affca13..5c9a4de58 100644\n--- b/sklearn/ensemble/_voting.py\n+++ a/sklearn/ensemble/_voting.py\n@@ -431,6 +431,21 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n maj : array-like of shape (n_samples,)\n Predicted class labels.\n \"\"\"\n+ check_is_fitted(self)\n+ if self.voting == \"soft\":\n+ maj = np.argmax(self.predict_proba(X), axis=1)\n+\n+ else: # 'hard' voting\n+ predictions = self._predict(X)\n+ maj = np.apply_along_axis(\n+ lambda x: np.argmax(np.bincount(x, weights=self._weights_not_none)),\n+ axis=1,\n+ arr=predictions,\n+ )\n+\n+ maj = self.le_.inverse_transform(maj)\n+\n+ return maj\n \n def _collect_probas(self, X):\n \"\"\"Collect results from clf.predict calls.\"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_voting.py b/sklearn/ensemble/_voting.py\nindex 5c9a4de58..e0affca13 100644\n--- a/sklearn/ensemble/_voting.py\n+++ b/sklearn/ensemble/_voting.py\n@@ -431,21 +431,6 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n maj : array-like of shape (n_samples,)\n Predicted class labels.\n \"\"\"\n- check_is_fitted(self)\n- if self.voting == \"soft\":\n- maj = np.argmax(self.predict_proba(X), axis=1)\n-\n- else: # 'hard' voting\n- predictions = self._predict(X)\n- maj = np.apply_along_axis(\n- lambda x: np.argmax(np.bincount(x, weights=self._weights_not_none)),\n- axis=1,\n- arr=predictions,\n- )\n-\n- maj = self.le_.inverse_transform(maj)\n-\n- return maj\n \n def _collect_probas(self, X):\n \"\"\"Collect results from clf.predict calls.\"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_voting.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict class labels for X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input samples.\n\n Returns\n -------\n maj : array-like of shape (n_samples,)\n Predicted class labels.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_voting.py::test_notfitted", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_tie_situation", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]", "sklearn/ensemble/tests/test_voting.py::test_parallel_fit[42]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight[42]", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_set_params[42]", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X0-y0-voter0]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-199
1.0
{ "code": "diff --git b/sklearn/ensemble/_voting.py a/sklearn/ensemble/_voting.py\nindex 764f6c2b6..5c9a4de58 100644\n--- b/sklearn/ensemble/_voting.py\n+++ a/sklearn/ensemble/_voting.py\n@@ -499,6 +499,16 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n ndarray of shape (n_samples, n_classifiers), being\n class labels predicted by each classifier.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ if self.voting == \"soft\":\n+ probas = self._collect_probas(X)\n+ if not self.flatten_transform:\n+ return probas\n+ return np.hstack(probas)\n+\n+ else:\n+ return self._predict(X)\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_voting.py b/sklearn/ensemble/_voting.py\nindex 5c9a4de58..764f6c2b6 100644\n--- a/sklearn/ensemble/_voting.py\n+++ b/sklearn/ensemble/_voting.py\n@@ -499,16 +499,6 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):\n ndarray of shape (n_samples, n_classifiers), being\n class labels predicted by each classifier.\n \"\"\"\n- check_is_fitted(self)\n-\n- if self.voting == \"soft\":\n- probas = self._collect_probas(X)\n- if not self.flatten_transform:\n- return probas\n- return np.hstack(probas)\n-\n- else:\n- return self._predict(X)\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_voting.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Return class labels or probabilities for X for each estimator.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vectors, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n Returns\n -------\n probabilities_or_labels\n If `voting='soft'` and `flatten_transform=True`:\n returns ndarray of shape (n_samples, n_classifiers * n_classes),\n being class probabilities calculated by each classifier.\n If `voting='soft' and `flatten_transform=False`:\n ndarray of shape (n_classifiers, n_samples, n_classes)\n If `voting='hard'`:\n ndarray of shape (n_samples, n_classifiers), being\n class labels predicted by each classifier.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_voting.py::test_notfitted", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/ensemble/tests/test_voting.py::test_transform[42]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs0-expected_names0]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs1-expected_names1]", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-200
1.0
{ "code": "diff --git b/sklearn/ensemble/_voting.py a/sklearn/ensemble/_voting.py\nindex 6e98efd83..5c9a4de58 100644\n--- b/sklearn/ensemble/_voting.py\n+++ a/sklearn/ensemble/_voting.py\n@@ -743,3 +743,10 @@ class VotingRegressor(RegressorMixin, _BaseVoting):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n+ check_is_fitted(self, \"n_features_in_\")\n+ _check_feature_names_in(self, input_features, generate_names=False)\n+ class_name = self.__class__.__name__.lower()\n+ return np.asarray(\n+ [f\"{class_name}_{name}\" for name, est in self.estimators if est != \"drop\"],\n+ dtype=object,\n+ )\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_voting.py b/sklearn/ensemble/_voting.py\nindex 5c9a4de58..6e98efd83 100644\n--- a/sklearn/ensemble/_voting.py\n+++ b/sklearn/ensemble/_voting.py\n@@ -743,10 +743,3 @@ class VotingRegressor(RegressorMixin, _BaseVoting):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n- check_is_fitted(self, \"n_features_in_\")\n- _check_feature_names_in(self, input_features, generate_names=False)\n- class_name = self.__class__.__name__.lower()\n- return np.asarray(\n- [f\"{class_name}_{name}\" for name, est in self.estimators if est != \"drop\"],\n- dtype=object,\n- )\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_voting.py.\nHere is the description for the function:\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_regressor", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-201
1.0
{ "code": "diff --git b/sklearn/ensemble/_hist_gradient_boosting/binning.py a/sklearn/ensemble/_hist_gradient_boosting/binning.py\nindex b5e81112b..c428c742a 100644\n--- b/sklearn/ensemble/_hist_gradient_boosting/binning.py\n+++ a/sklearn/ensemble/_hist_gradient_boosting/binning.py\n@@ -186,6 +186,74 @@ class _BinMapper(TransformerMixin, BaseEstimator):\n -------\n self : object\n \"\"\"\n+ if not (3 <= self.n_bins <= 256):\n+ # min is 3: at least 2 distinct bins and a missing values bin\n+ raise ValueError(\n+ \"n_bins={} should be no smaller than 3 and no larger than 256.\".format(\n+ self.n_bins\n+ )\n+ )\n+\n+ X = check_array(X, dtype=[X_DTYPE], ensure_all_finite=False)\n+ max_bins = self.n_bins - 1\n+\n+ rng = check_random_state(self.random_state)\n+ if self.subsample is not None and X.shape[0] > self.subsample:\n+ subset = rng.choice(X.shape[0], self.subsample, replace=False)\n+ X = X.take(subset, axis=0)\n+\n+ if self.is_categorical is None:\n+ self.is_categorical_ = np.zeros(X.shape[1], dtype=np.uint8)\n+ else:\n+ self.is_categorical_ = np.asarray(self.is_categorical, dtype=np.uint8)\n+\n+ n_features = X.shape[1]\n+ known_categories = self.known_categories\n+ if known_categories is None:\n+ known_categories = [None] * n_features\n+\n+ # validate is_categorical and known_categories parameters\n+ for f_idx in range(n_features):\n+ is_categorical = self.is_categorical_[f_idx]\n+ known_cats = known_categories[f_idx]\n+ if is_categorical and known_cats is None:\n+ raise ValueError(\n+ f\"Known categories for feature {f_idx} must be provided.\"\n+ )\n+ if not is_categorical and known_cats is not None:\n+ raise ValueError(\n+ f\"Feature {f_idx} isn't marked as a categorical feature, \"\n+ \"but categories were passed.\"\n+ )\n+\n+ self.missing_values_bin_idx_ = self.n_bins - 1\n+\n+ self.bin_thresholds_ = [None] * n_features\n+ n_bins_non_missing = [None] * n_features\n+\n+ non_cat_thresholds = Parallel(n_jobs=self.n_threads, backend=\"threading\")(\n+ delayed(_find_binning_thresholds)(X[:, f_idx], max_bins)\n+ for f_idx in range(n_features)\n+ if not self.is_categorical_[f_idx]\n+ )\n+\n+ non_cat_idx = 0\n+ for f_idx in range(n_features):\n+ if self.is_categorical_[f_idx]:\n+ # Since categories are assumed to be encoded in\n+ # [0, n_cats] and since n_cats <= max_bins,\n+ # the thresholds *are* the unique categorical values. This will\n+ # lead to the correct mapping in transform()\n+ thresholds = known_categories[f_idx]\n+ n_bins_non_missing[f_idx] = thresholds.shape[0]\n+ self.bin_thresholds_[f_idx] = thresholds\n+ else:\n+ self.bin_thresholds_[f_idx] = non_cat_thresholds[non_cat_idx]\n+ n_bins_non_missing[f_idx] = self.bin_thresholds_[f_idx].shape[0] + 1\n+ non_cat_idx += 1\n+\n+ self.n_bins_non_missing_ = np.array(n_bins_non_missing, dtype=np.uint32)\n+ return self\n \n def transform(self, X):\n \"\"\"Bin data X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_hist_gradient_boosting/binning.py b/sklearn/ensemble/_hist_gradient_boosting/binning.py\nindex c428c742a..b5e81112b 100644\n--- a/sklearn/ensemble/_hist_gradient_boosting/binning.py\n+++ b/sklearn/ensemble/_hist_gradient_boosting/binning.py\n@@ -186,74 +186,6 @@ class _BinMapper(TransformerMixin, BaseEstimator):\n -------\n self : object\n \"\"\"\n- if not (3 <= self.n_bins <= 256):\n- # min is 3: at least 2 distinct bins and a missing values bin\n- raise ValueError(\n- \"n_bins={} should be no smaller than 3 and no larger than 256.\".format(\n- self.n_bins\n- )\n- )\n-\n- X = check_array(X, dtype=[X_DTYPE], ensure_all_finite=False)\n- max_bins = self.n_bins - 1\n-\n- rng = check_random_state(self.random_state)\n- if self.subsample is not None and X.shape[0] > self.subsample:\n- subset = rng.choice(X.shape[0], self.subsample, replace=False)\n- X = X.take(subset, axis=0)\n-\n- if self.is_categorical is None:\n- self.is_categorical_ = np.zeros(X.shape[1], dtype=np.uint8)\n- else:\n- self.is_categorical_ = np.asarray(self.is_categorical, dtype=np.uint8)\n-\n- n_features = X.shape[1]\n- known_categories = self.known_categories\n- if known_categories is None:\n- known_categories = [None] * n_features\n-\n- # validate is_categorical and known_categories parameters\n- for f_idx in range(n_features):\n- is_categorical = self.is_categorical_[f_idx]\n- known_cats = known_categories[f_idx]\n- if is_categorical and known_cats is None:\n- raise ValueError(\n- f\"Known categories for feature {f_idx} must be provided.\"\n- )\n- if not is_categorical and known_cats is not None:\n- raise ValueError(\n- f\"Feature {f_idx} isn't marked as a categorical feature, \"\n- \"but categories were passed.\"\n- )\n-\n- self.missing_values_bin_idx_ = self.n_bins - 1\n-\n- self.bin_thresholds_ = [None] * n_features\n- n_bins_non_missing = [None] * n_features\n-\n- non_cat_thresholds = Parallel(n_jobs=self.n_threads, backend=\"threading\")(\n- delayed(_find_binning_thresholds)(X[:, f_idx], max_bins)\n- for f_idx in range(n_features)\n- if not self.is_categorical_[f_idx]\n- )\n-\n- non_cat_idx = 0\n- for f_idx in range(n_features):\n- if self.is_categorical_[f_idx]:\n- # Since categories are assumed to be encoded in\n- # [0, n_cats] and since n_cats <= max_bins,\n- # the thresholds *are* the unique categorical values. This will\n- # lead to the correct mapping in transform()\n- thresholds = known_categories[f_idx]\n- n_bins_non_missing[f_idx] = thresholds.shape[0]\n- self.bin_thresholds_[f_idx] = thresholds\n- else:\n- self.bin_thresholds_[f_idx] = non_cat_thresholds[non_cat_idx]\n- n_bins_non_missing[f_idx] = self.bin_thresholds_[f_idx].shape[0] + 1\n- non_cat_idx += 1\n-\n- self.n_bins_non_missing_ = np.array(n_bins_non_missing, dtype=np.uint32)\n- return self\n \n def transform(self, X):\n \"\"\"Bin data X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_hist_gradient_boosting/binning.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit data X by computing the binning thresholds.\n\n The last bin is reserved for missing values, whether missing values\n are present in the data or not.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The data to bin.\n y: None\n Ignored.\n\n Returns\n -------\n self : object\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-False-5-0.0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-False-5-0.0-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-False-5-0.0-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X3-y3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error_sample_weight", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_gamma", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.8]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_poisson", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_binning_train_validation_are_separated", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_trivial", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-classification]", "sklearn/tests/test_pipeline.py::test_n_features_in_pipeline", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_division_hessians[binary_log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_division_hessians[multiclass_log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values_missing_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_string_target_early_stopping[None]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_string_target_early_stopping[loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_regression", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_classification", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sum_hessians_are_sample_weight[HalfSquaredError]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sum_hessians_are_sample_weight[AbsoluteError]", "sklearn/model_selection/tests/test_search.py::test_n_features_in", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_max_depth_max_leaf_nodes", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_on_test_set_with_warm_start", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_with_sample_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_raw_predict_is_called_with_custom_scorer", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_custom_loss[HistGradientBoostingClassifier-loss0-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_custom_loss[HistGradientBoostingRegressor-loss1-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features0-HistGradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features0-HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features1-HistGradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features1-HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features0-HistGradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features0-HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features1-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features1-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_interaction_cst_numerically", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_no_user_warning_with_scoring", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_class_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_different_order_same_model[pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_features_warn", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_pickle", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_joblib_pickle", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_hist_gbdt_sw_not_supported", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_pandas_nullable_dtype", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_invalid_n_bins[2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_invalid_n_bins[257]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_n_features_transform", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_random_data[5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_random_data[10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_random_data[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[5-5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[5-10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[5-11]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[42-255]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_repeated_values[5-5-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_repeated_values[5-5-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_repeated_values[255-12-42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_repeated_values_invariance[2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_repeated_values_invariance[7]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_repeated_values_invariance[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_small[3-2--1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_small[42-1-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_small[255-0.3-42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[2-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[3-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[4-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[42-42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[255-255]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[5-17]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[42-255]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[-5-10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[-5-100]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[-5-256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[0-10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[0-100]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[0-256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[5-10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[5-100]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_n_bins_non_missing[5-256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_subsample", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_missing_values_support[256-n_bins_non_missing0-X_trans_expected0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_missing_values_support[3-n_bins_non_missing1-X_trans_expected1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_feature[15]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_feature[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_feature_negative_missing", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_with_numerical_features[128]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_with_numerical_features[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_make_known_categories_bitsets", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_parameters[is_categorical0-known_categories0-Known categories for feature 0 must be provided]", "sklearn/feature_selection/tests/test_sequential.py::test_nan_support", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[11-10-7-True-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[13-10-42-False-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[56-10-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[101-3-7-True-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[200-42-42-False-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[300-55-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[300-301-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf_root[99-50]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf_root[100-50]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_max_depth[1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_max_depth[2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_max_depth[3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_split_on_nan_with_infinite_values", "sklearn/feature_selection/tests/test_from_model.py::test_fit_accepts_nan_inf", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_parameters[is_categorical1-known_categories1-isn't marked as a categorical feature, but categories were passed]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_max_iter_with_warm_start_validation[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_max_iter_with_warm_start_validation[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[200]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingRegressor", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-202
1.0
{ "code": "diff --git b/sklearn/ensemble/_hist_gradient_boosting/binning.py a/sklearn/ensemble/_hist_gradient_boosting/binning.py\nindex 3d6aff650..c428c742a 100644\n--- b/sklearn/ensemble/_hist_gradient_boosting/binning.py\n+++ a/sklearn/ensemble/_hist_gradient_boosting/binning.py\n@@ -275,6 +275,25 @@ class _BinMapper(TransformerMixin, BaseEstimator):\n X_binned : array-like of shape (n_samples, n_features)\n The binned data (fortran-aligned).\n \"\"\"\n+ X = check_array(X, dtype=[X_DTYPE], ensure_all_finite=False)\n+ check_is_fitted(self)\n+ if X.shape[1] != self.n_bins_non_missing_.shape[0]:\n+ raise ValueError(\n+ \"This estimator was fitted with {} features but {} got passed \"\n+ \"to transform()\".format(self.n_bins_non_missing_.shape[0], X.shape[1])\n+ )\n+\n+ n_threads = _openmp_effective_n_threads(self.n_threads)\n+ binned = np.zeros_like(X, dtype=X_BINNED_DTYPE, order=\"F\")\n+ _map_to_bins(\n+ X,\n+ self.bin_thresholds_,\n+ self.is_categorical_,\n+ self.missing_values_bin_idx_,\n+ n_threads,\n+ binned,\n+ )\n+ return binned\n \n def make_known_categories_bitsets(self):\n \"\"\"Create bitsets of known categories.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_hist_gradient_boosting/binning.py b/sklearn/ensemble/_hist_gradient_boosting/binning.py\nindex c428c742a..3d6aff650 100644\n--- a/sklearn/ensemble/_hist_gradient_boosting/binning.py\n+++ b/sklearn/ensemble/_hist_gradient_boosting/binning.py\n@@ -275,25 +275,6 @@ class _BinMapper(TransformerMixin, BaseEstimator):\n X_binned : array-like of shape (n_samples, n_features)\n The binned data (fortran-aligned).\n \"\"\"\n- X = check_array(X, dtype=[X_DTYPE], ensure_all_finite=False)\n- check_is_fitted(self)\n- if X.shape[1] != self.n_bins_non_missing_.shape[0]:\n- raise ValueError(\n- \"This estimator was fitted with {} features but {} got passed \"\n- \"to transform()\".format(self.n_bins_non_missing_.shape[0], X.shape[1])\n- )\n-\n- n_threads = _openmp_effective_n_threads(self.n_threads)\n- binned = np.zeros_like(X, dtype=X_BINNED_DTYPE, order=\"F\")\n- _map_to_bins(\n- X,\n- self.bin_thresholds_,\n- self.is_categorical_,\n- self.missing_values_bin_idx_,\n- n_threads,\n- binned,\n- )\n- return binned\n \n def make_known_categories_bitsets(self):\n \"\"\"Create bitsets of known categories.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_hist_gradient_boosting/binning.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Bin data X.\n\n Missing values will be mapped to the last bin.\n\n For categorical features, the mapping will be incorrect for unknown\n categories. Since the BinMapper is given known_categories of the\n entire training data (i.e. before the call to train_test_split() in\n case of early-stopping), this never happens.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The data to bin.\n\n Returns\n -------\n X_binned : array-like of shape (n_samples, n_features)\n The binned data (fortran-aligned).\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est3-brute-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est4-recursion-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_hist_gbdt_sw_not_supported", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-0.1-True-5-1e-07]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[loss-None-True-5-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[None-None-False-5-0.0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-None-True-5-0.1-data0]", "sklearn/tests/test_pipeline.py::test_n_features_in_pipeline", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[loss-None-True-5-0.1-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-False-5-0.0-data0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-False-5-0.0-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingClassifier-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_default[HistGradientBoostingRegressor-X3-y3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error_sample_weight", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_gamma", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_quantile_asymmetric_error[0.8]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_poisson", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_binning_train_validation_are_separated", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_trivial", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_division_hessians[binary_log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_division_hessians[multiclass_log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values_missing_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_string_target_early_stopping[None]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_string_target_early_stopping[loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_regression", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_classification", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-regression]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-binary_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-multiclass_classification]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sum_hessians_are_sample_weight[HalfSquaredError]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sum_hessians_are_sample_weight[AbsoluteError]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_max_depth_max_leaf_nodes", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_on_test_set_with_warm_start", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_with_sample_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_raw_predict_is_called_with_custom_scorer", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_single_node_trees[HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_custom_loss[HistGradientBoostingClassifier-loss0-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_custom_loss[HistGradientBoostingRegressor-loss1-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_staged_predict[HistGradientBoostingClassifier-X2-y2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/model_selection/tests/test_search.py::test_n_features_in", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features1-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[True-categorical_features1-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features1-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_n_features_transform", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_no_categories[False-categorical_features1-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_random_data[5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_uint8_predict[HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_random_data[10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_interaction_cst_numerically", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_random_data[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[5-5]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[5-10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[5-11]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_no_user_warning_with_scoring", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_small_random_data[42-255]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_repeated_values[5-5-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_repeated_values[5-5-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_repeated_values[255-12-42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_repeated_values_invariance[2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_class_weights", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_repeated_values_invariance[7]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_repeated_values_invariance[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_small[3-2--1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_small[42-1-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_identity_small[255-0.3-42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[2-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[3-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[4-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[42-42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[11-10-7-True-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[255-255]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[5-17]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_bin_mapper_idempotence[42-255]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_different_order_same_model[pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[13-10-42-False-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_features_warn", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[56-10-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[101-3-7-True-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_missing_values_support[256-n_bins_non_missing0-X_trans_expected0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_pickle", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_missing_values_support[3-n_bins_non_missing1-X_trans_expected1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[200-42-42-False-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_infinite_values", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_feature[15]", "sklearn/feature_selection/tests/test_sequential.py::test_nan_support", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_feature[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[300-55-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_feature_negative_missing", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_with_numerical_features[128]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_joblib_pickle", "sklearn/ensemble/_hist_gradient_boosting/tests/test_binning.py::test_categorical_with_numerical_features[256]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf[300-301-255-True-0.1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf_root[99-50]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_min_samples_leaf_root[100-50]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_max_depth[1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_max_depth[2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_max_depth[3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_pandas_nullable_dtype", "sklearn/ensemble/_hist_gradient_boosting/tests/test_grower.py::test_split_on_nan_with_infinite_values", "sklearn/feature_selection/tests/test_from_model.py::test_fit_accepts_nan_inf", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_max_iter_with_warm_start_validation[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_max_iter_with_warm_start_validation[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_yields_identical_results[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_max_depth[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[loss-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_equal_n_estimators[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_clear[HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[200]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingRegressor-X1-y1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_predictor.py::test_regression_dataset[256]", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingRegressor", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingRegressor(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-203
1.0
{ "code": "diff --git b/sklearn/calibration.py a/sklearn/calibration.py\nindex ad23676d9..8b053f538 100644\n--- b/sklearn/calibration.py\n+++ a/sklearn/calibration.py\n@@ -707,6 +707,47 @@ class _CalibratedClassifier:\n proba : array, shape (n_samples, n_classes)\n The predicted probabilities. Can be exact zeros.\n \"\"\"\n+ predictions, _ = _get_response_values(\n+ self.estimator,\n+ X,\n+ response_method=[\"decision_function\", \"predict_proba\"],\n+ )\n+ if predictions.ndim == 1:\n+ # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`\n+ predictions = predictions.reshape(-1, 1)\n+\n+ n_classes = len(self.classes)\n+\n+ label_encoder = LabelEncoder().fit(self.classes)\n+ pos_class_indices = label_encoder.transform(self.estimator.classes_)\n+\n+ proba = np.zeros((_num_samples(X), n_classes))\n+ for class_idx, this_pred, calibrator in zip(\n+ pos_class_indices, predictions.T, self.calibrators\n+ ):\n+ if n_classes == 2:\n+ # When binary, `predictions` consists only of predictions for\n+ # clf.classes_[1] but `pos_class_indices` = 0\n+ class_idx += 1\n+ proba[:, class_idx] = calibrator.predict(this_pred)\n+\n+ # Normalize the probabilities\n+ if n_classes == 2:\n+ proba[:, 0] = 1.0 - proba[:, 1]\n+ else:\n+ denominator = np.sum(proba, axis=1)[:, np.newaxis]\n+ # In the edge case where for each class calibrator returns a null\n+ # probability for a given sample, use the uniform distribution\n+ # instead.\n+ uniform_proba = np.full_like(proba, 1 / n_classes)\n+ proba = np.divide(\n+ proba, denominator, out=uniform_proba, where=denominator != 0\n+ )\n+\n+ # Deal with cases where the predicted probability minimally exceeds 1.0\n+ proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0\n+\n+ return proba\n \n \n # The max_abs_prediction_threshold was approximated using\n", "test": null }
null
{ "code": "diff --git a/sklearn/calibration.py b/sklearn/calibration.py\nindex 8b053f538..ad23676d9 100644\n--- a/sklearn/calibration.py\n+++ b/sklearn/calibration.py\n@@ -707,47 +707,6 @@ class _CalibratedClassifier:\n proba : array, shape (n_samples, n_classes)\n The predicted probabilities. Can be exact zeros.\n \"\"\"\n- predictions, _ = _get_response_values(\n- self.estimator,\n- X,\n- response_method=[\"decision_function\", \"predict_proba\"],\n- )\n- if predictions.ndim == 1:\n- # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`\n- predictions = predictions.reshape(-1, 1)\n-\n- n_classes = len(self.classes)\n-\n- label_encoder = LabelEncoder().fit(self.classes)\n- pos_class_indices = label_encoder.transform(self.estimator.classes_)\n-\n- proba = np.zeros((_num_samples(X), n_classes))\n- for class_idx, this_pred, calibrator in zip(\n- pos_class_indices, predictions.T, self.calibrators\n- ):\n- if n_classes == 2:\n- # When binary, `predictions` consists only of predictions for\n- # clf.classes_[1] but `pos_class_indices` = 0\n- class_idx += 1\n- proba[:, class_idx] = calibrator.predict(this_pred)\n-\n- # Normalize the probabilities\n- if n_classes == 2:\n- proba[:, 0] = 1.0 - proba[:, 1]\n- else:\n- denominator = np.sum(proba, axis=1)[:, np.newaxis]\n- # In the edge case where for each class calibrator returns a null\n- # probability for a given sample, use the uniform distribution\n- # instead.\n- uniform_proba = np.full_like(proba, 1 / n_classes)\n- proba = np.divide(\n- proba, denominator, out=uniform_proba, where=denominator != 0\n- )\n-\n- # Deal with cases where the predicted probability minimally exceeds 1.0\n- proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0\n-\n- return proba\n \n \n # The max_abs_prediction_threshold was approximated using\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/calibration.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Calculate calibrated probabilities.\n\n Calculates classification calibrated probabilities\n for each class, in a one-vs-all manner, for `X`.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples, n_features)\n The sample data.\n\n Returns\n -------\n proba : array, shape (n_samples, n_classes)\n The predicted probabilities. Can be exact zeros.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_zero_probability", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[True]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/calibration.py::sklearn.calibration.CalibratedClassifierCV", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-204
1.0
{ "code": "diff --git b/sklearn/linear_model/_glm/glm.py a/sklearn/linear_model/_glm/glm.py\nindex b721bedee..093a813f6 100644\n--- b/sklearn/linear_model/_glm/glm.py\n+++ a/sklearn/linear_model/_glm/glm.py\n@@ -167,6 +167,7 @@ class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):\n self.warm_start = warm_start\n self.verbose = verbose\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit a Generalized Linear Model.\n \n@@ -186,6 +187,138 @@ class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):\n self : object\n Fitted model.\n \"\"\"\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=[\"csc\", \"csr\"],\n+ dtype=[np.float64, np.float32],\n+ y_numeric=True,\n+ multi_output=False,\n+ )\n+\n+ # required by losses\n+ if self.solver == \"lbfgs\":\n+ # lbfgs will force coef and therefore raw_prediction to be float64. The\n+ # base_loss needs y, X @ coef and sample_weight all of same dtype\n+ # (and contiguous).\n+ loss_dtype = np.float64\n+ else:\n+ loss_dtype = min(max(y.dtype, X.dtype), np.float64)\n+ y = check_array(y, dtype=loss_dtype, order=\"C\", ensure_2d=False)\n+\n+ if sample_weight is not None:\n+ # Note that _check_sample_weight calls check_array(order=\"C\") required by\n+ # losses.\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=loss_dtype)\n+\n+ n_samples, n_features = X.shape\n+ self._base_loss = self._get_loss()\n+\n+ linear_loss = LinearModelLoss(\n+ base_loss=self._base_loss,\n+ fit_intercept=self.fit_intercept,\n+ )\n+\n+ if not linear_loss.base_loss.in_y_true_range(y):\n+ raise ValueError(\n+ \"Some value(s) of y are out of the valid range of the loss\"\n+ f\" {self._base_loss.__class__.__name__!r}.\"\n+ )\n+\n+ # TODO: if alpha=0 check that X is not rank deficient\n+\n+ # NOTE: Rescaling of sample_weight:\n+ # We want to minimize\n+ # obj = 1/(2 * sum(sample_weight)) * sum(sample_weight * deviance)\n+ # + 1/2 * alpha * L2,\n+ # with\n+ # deviance = 2 * loss.\n+ # The objective is invariant to multiplying sample_weight by a constant. We\n+ # could choose this constant such that sum(sample_weight) = 1 in order to end\n+ # up with\n+ # obj = sum(sample_weight * loss) + 1/2 * alpha * L2.\n+ # But LinearModelLoss.loss() already computes\n+ # average(loss, weights=sample_weight)\n+ # Thus, without rescaling, we have\n+ # obj = LinearModelLoss.loss(...)\n+\n+ if self.warm_start and hasattr(self, \"coef_\"):\n+ if self.fit_intercept:\n+ # LinearModelLoss needs intercept at the end of coefficient array.\n+ coef = np.concatenate((self.coef_, np.array([self.intercept_])))\n+ else:\n+ coef = self.coef_\n+ coef = coef.astype(loss_dtype, copy=False)\n+ else:\n+ coef = linear_loss.init_zero_coef(X, dtype=loss_dtype)\n+ if self.fit_intercept:\n+ coef[-1] = linear_loss.base_loss.link.link(\n+ np.average(y, weights=sample_weight)\n+ )\n+\n+ l2_reg_strength = self.alpha\n+ n_threads = _openmp_effective_n_threads()\n+\n+ # Algorithms for optimization:\n+ # Note again that our losses implement 1/2 * deviance.\n+ if self.solver == \"lbfgs\":\n+ func = linear_loss.loss_gradient\n+\n+ opt_res = scipy.optimize.minimize(\n+ func,\n+ coef,\n+ method=\"L-BFGS-B\",\n+ jac=True,\n+ options={\n+ \"maxiter\": self.max_iter,\n+ \"maxls\": 50, # default is 20\n+ \"iprint\": self.verbose - 1,\n+ \"gtol\": self.tol,\n+ # The constant 64 was found empirically to pass the test suite.\n+ # The point is that ftol is very small, but a bit larger than\n+ # machine precision for float64, which is the dtype used by lbfgs.\n+ \"ftol\": 64 * np.finfo(float).eps,\n+ },\n+ args=(X, y, sample_weight, l2_reg_strength, n_threads),\n+ )\n+ self.n_iter_ = _check_optimize_result(\"lbfgs\", opt_res)\n+ coef = opt_res.x\n+ elif self.solver == \"newton-cholesky\":\n+ sol = NewtonCholeskySolver(\n+ coef=coef,\n+ linear_loss=linear_loss,\n+ l2_reg_strength=l2_reg_strength,\n+ tol=self.tol,\n+ max_iter=self.max_iter,\n+ n_threads=n_threads,\n+ verbose=self.verbose,\n+ )\n+ coef = sol.solve(X, y, sample_weight)\n+ self.n_iter_ = sol.iteration\n+ elif issubclass(self.solver, NewtonSolver):\n+ sol = self.solver(\n+ coef=coef,\n+ linear_loss=linear_loss,\n+ l2_reg_strength=l2_reg_strength,\n+ tol=self.tol,\n+ max_iter=self.max_iter,\n+ n_threads=n_threads,\n+ )\n+ coef = sol.solve(X, y, sample_weight)\n+ self.n_iter_ = sol.iteration\n+ else:\n+ raise ValueError(f\"Invalid solver={self.solver}.\")\n+\n+ if self.fit_intercept:\n+ self.intercept_ = coef[-1]\n+ self.coef_ = coef[:-1]\n+ else:\n+ # set intercept to zero as the other linear models do\n+ self.intercept_ = 0.0\n+ self.coef_ = coef\n+\n+ return self\n \n def _linear_predictor(self, X):\n \"\"\"Compute the linear_predictor = `X @ coef_ + intercept_`.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_glm/glm.py b/sklearn/linear_model/_glm/glm.py\nindex 093a813f6..b721bedee 100644\n--- a/sklearn/linear_model/_glm/glm.py\n+++ b/sklearn/linear_model/_glm/glm.py\n@@ -167,7 +167,6 @@ class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):\n self.warm_start = warm_start\n self.verbose = verbose\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit a Generalized Linear Model.\n \n@@ -187,138 +186,6 @@ class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):\n self : object\n Fitted model.\n \"\"\"\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=[\"csc\", \"csr\"],\n- dtype=[np.float64, np.float32],\n- y_numeric=True,\n- multi_output=False,\n- )\n-\n- # required by losses\n- if self.solver == \"lbfgs\":\n- # lbfgs will force coef and therefore raw_prediction to be float64. The\n- # base_loss needs y, X @ coef and sample_weight all of same dtype\n- # (and contiguous).\n- loss_dtype = np.float64\n- else:\n- loss_dtype = min(max(y.dtype, X.dtype), np.float64)\n- y = check_array(y, dtype=loss_dtype, order=\"C\", ensure_2d=False)\n-\n- if sample_weight is not None:\n- # Note that _check_sample_weight calls check_array(order=\"C\") required by\n- # losses.\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=loss_dtype)\n-\n- n_samples, n_features = X.shape\n- self._base_loss = self._get_loss()\n-\n- linear_loss = LinearModelLoss(\n- base_loss=self._base_loss,\n- fit_intercept=self.fit_intercept,\n- )\n-\n- if not linear_loss.base_loss.in_y_true_range(y):\n- raise ValueError(\n- \"Some value(s) of y are out of the valid range of the loss\"\n- f\" {self._base_loss.__class__.__name__!r}.\"\n- )\n-\n- # TODO: if alpha=0 check that X is not rank deficient\n-\n- # NOTE: Rescaling of sample_weight:\n- # We want to minimize\n- # obj = 1/(2 * sum(sample_weight)) * sum(sample_weight * deviance)\n- # + 1/2 * alpha * L2,\n- # with\n- # deviance = 2 * loss.\n- # The objective is invariant to multiplying sample_weight by a constant. We\n- # could choose this constant such that sum(sample_weight) = 1 in order to end\n- # up with\n- # obj = sum(sample_weight * loss) + 1/2 * alpha * L2.\n- # But LinearModelLoss.loss() already computes\n- # average(loss, weights=sample_weight)\n- # Thus, without rescaling, we have\n- # obj = LinearModelLoss.loss(...)\n-\n- if self.warm_start and hasattr(self, \"coef_\"):\n- if self.fit_intercept:\n- # LinearModelLoss needs intercept at the end of coefficient array.\n- coef = np.concatenate((self.coef_, np.array([self.intercept_])))\n- else:\n- coef = self.coef_\n- coef = coef.astype(loss_dtype, copy=False)\n- else:\n- coef = linear_loss.init_zero_coef(X, dtype=loss_dtype)\n- if self.fit_intercept:\n- coef[-1] = linear_loss.base_loss.link.link(\n- np.average(y, weights=sample_weight)\n- )\n-\n- l2_reg_strength = self.alpha\n- n_threads = _openmp_effective_n_threads()\n-\n- # Algorithms for optimization:\n- # Note again that our losses implement 1/2 * deviance.\n- if self.solver == \"lbfgs\":\n- func = linear_loss.loss_gradient\n-\n- opt_res = scipy.optimize.minimize(\n- func,\n- coef,\n- method=\"L-BFGS-B\",\n- jac=True,\n- options={\n- \"maxiter\": self.max_iter,\n- \"maxls\": 50, # default is 20\n- \"iprint\": self.verbose - 1,\n- \"gtol\": self.tol,\n- # The constant 64 was found empirically to pass the test suite.\n- # The point is that ftol is very small, but a bit larger than\n- # machine precision for float64, which is the dtype used by lbfgs.\n- \"ftol\": 64 * np.finfo(float).eps,\n- },\n- args=(X, y, sample_weight, l2_reg_strength, n_threads),\n- )\n- self.n_iter_ = _check_optimize_result(\"lbfgs\", opt_res)\n- coef = opt_res.x\n- elif self.solver == \"newton-cholesky\":\n- sol = NewtonCholeskySolver(\n- coef=coef,\n- linear_loss=linear_loss,\n- l2_reg_strength=l2_reg_strength,\n- tol=self.tol,\n- max_iter=self.max_iter,\n- n_threads=n_threads,\n- verbose=self.verbose,\n- )\n- coef = sol.solve(X, y, sample_weight)\n- self.n_iter_ = sol.iteration\n- elif issubclass(self.solver, NewtonSolver):\n- sol = self.solver(\n- coef=coef,\n- linear_loss=linear_loss,\n- l2_reg_strength=l2_reg_strength,\n- tol=self.tol,\n- max_iter=self.max_iter,\n- n_threads=n_threads,\n- )\n- coef = sol.solve(X, y, sample_weight)\n- self.n_iter_ = sol.iteration\n- else:\n- raise ValueError(f\"Invalid solver={self.solver}.\")\n-\n- if self.fit_intercept:\n- self.intercept_ = coef[-1]\n- self.coef_ = coef[:-1]\n- else:\n- # set intercept to zero as the other linear models do\n- self.intercept_ = 0.0\n- self.coef_ = coef\n-\n- return self\n \n def _linear_predictor(self, X):\n \"\"\"Compute the linear_predictor = `X @ coef_ + intercept_`.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_glm/glm.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit a Generalized Linear Model.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n Returns\n -------\n self : object\n Fitted model.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_sample_weights_validation", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_wrong_y_range[glm0]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_wrong_y_range[glm1]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-PoissonRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_wrong_y_range[glm2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_wrong_y_range[glm3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_identity_regression[False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_identity_regression[True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-0.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-0.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-1.0-False]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-TweedieRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-1.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-0.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-0.0-True]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-1.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-1.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-0.0-False]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-0.0-True]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-PoissonRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-1.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-1.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-True-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-True-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-False-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-100-10]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-100-10]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-100-10]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-10-100]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-100-10]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet[lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_convergence_warning", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_argument[identity-IdentityLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_argument[log-LogLink]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_dtype_object]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[0-IdentityLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[1-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[2-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[3-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-1.5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-3]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-1.5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_linalg_warning_with_newton_solver[42]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-TweedieRegressor]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/_glm/glm.py::sklearn.linear_model._glm.glm.GammaRegressor", "sklearn/linear_model/_glm/glm.py::sklearn.linear_model._glm.glm.PoissonRegressor", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/linear_model/_glm/glm.py::sklearn.linear_model._glm.glm.TweedieRegressor", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GammaRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PoissonRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TweedieRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GammaRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PoissonRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TweedieRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[GammaRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[PoissonRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[TweedieRegressor(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-205
1.0
{ "code": "diff --git b/sklearn/utils/_estimator_html_repr.py a/sklearn/utils/_estimator_html_repr.py\nindex 1aad599a9..90a700a26 100644\n--- b/sklearn/utils/_estimator_html_repr.py\n+++ a/sklearn/utils/_estimator_html_repr.py\n@@ -529,3 +529,21 @@ class _HTMLDocumentationLinkMixin:\n not belong to module `_doc_link_module`, the empty string (i.e. `\"\"`) is\n returned.\n \"\"\"\n+ if self.__class__.__module__.split(\".\")[0] != self._doc_link_module:\n+ return \"\"\n+\n+ if self._doc_link_url_param_generator is None:\n+ estimator_name = self.__class__.__name__\n+ # Construct the estimator's module name, up to the first private submodule.\n+ # This works because in scikit-learn all public estimators are exposed at\n+ # that level, even if they actually live in a private sub-module.\n+ estimator_module = \".\".join(\n+ itertools.takewhile(\n+ lambda part: not part.startswith(\"_\"),\n+ self.__class__.__module__.split(\".\"),\n+ )\n+ )\n+ return self._doc_link_template.format(\n+ estimator_module=estimator_module, estimator_name=estimator_name\n+ )\n+ return self._doc_link_template.format(**self._doc_link_url_param_generator())\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/_estimator_html_repr.py b/sklearn/utils/_estimator_html_repr.py\nindex 90a700a26..1aad599a9 100644\n--- a/sklearn/utils/_estimator_html_repr.py\n+++ b/sklearn/utils/_estimator_html_repr.py\n@@ -529,21 +529,3 @@ class _HTMLDocumentationLinkMixin:\n not belong to module `_doc_link_module`, the empty string (i.e. `\"\"`) is\n returned.\n \"\"\"\n- if self.__class__.__module__.split(\".\")[0] != self._doc_link_module:\n- return \"\"\n-\n- if self._doc_link_url_param_generator is None:\n- estimator_name = self.__class__.__name__\n- # Construct the estimator's module name, up to the first private submodule.\n- # This works because in scikit-learn all public estimators are exposed at\n- # that level, even if they actually live in a private sub-module.\n- estimator_module = \".\".join(\n- itertools.takewhile(\n- lambda part: not part.startswith(\"_\"),\n- self.__class__.__module__.split(\".\"),\n- )\n- )\n- return self._doc_link_template.format(\n- estimator_module=estimator_module, estimator_name=estimator_name\n- )\n- return self._doc_link_template.format(**self._doc_link_url_param_generator())\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/_estimator_html_repr.py.\nHere is the description for the function:\n def _get_doc_link(self):\n \"\"\"Generates a link to the API documentation for a given estimator.\n\n This method generates the link to the estimator's documentation page\n by using the template defined by the attribute `_doc_link_template`.\n\n Returns\n -------\n url : str\n The URL to the API documentation for this estimator. If the estimator does\n not belong to module `_doc_link_module`, the empty string (i.e. `\"\"`) is\n returned.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_search.py::test_search_html_repr", "sklearn/tests/test_base.py::test_repr_mimebundle_", "sklearn/tests/test_base.py::test_repr_html_wraps", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_pipeline", "sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_classifier[None]", "sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_classifier[final_estimator1]", "sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_regressor[None]", "sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_regressor[final_estimator1]", "sklearn/utils/tests/test_estimator_html_repr.py::test_birch_duck_typing_meta", "sklearn/utils/tests/test_estimator_html_repr.py::test_ovo_classifier_duck_typing_meta", "sklearn/utils/tests/test_estimator_html_repr.py::test_duck_typing_nested_estimator", "sklearn/utils/tests/test_estimator_html_repr.py::test_one_estimator_print_change_only[True]", "sklearn/utils/tests/test_estimator_html_repr.py::test_one_estimator_print_change_only[False]", "sklearn/utils/tests/test_estimator_html_repr.py::test_fallback_exists", "sklearn/utils/tests/test_estimator_html_repr.py::test_show_arrow_pipeline", "sklearn/utils/tests/test_estimator_html_repr.py::test_invalid_parameters_in_stacking", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_unfitted_vs_fitted", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_fitted_icon[estimator0]", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_fitted_icon[estimator1]", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_fitted_icon[estimator2]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_sklearn[1.3.0.dev0]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_sklearn[1.3.0]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_instance[prefix.mymodule-prefix.mymodule]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_instance[prefix._mymodule-prefix]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_instance[prefix.mypackage._mymodule-prefix.mypackage]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_instance[prefix.mypackage._mymodule.submodule-prefix.mypackage]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_instance[prefix.mypackage.mymodule.submodule-prefix.mypackage.mymodule.submodule]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_class[prefix.mymodule-prefix.mymodule]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_class[prefix._mymodule-prefix]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_class[prefix.mypackage._mymodule-prefix.mypackage]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_class[prefix.mypackage._mymodule.submodule-prefix.mypackage]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_class[prefix.mypackage.mymodule.submodule-prefix.mypackage.mymodule.submodule]", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_get_doc_link_out_of_library", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_doc_link_url_param_generator_instance", "sklearn/utils/tests/test_estimator_html_repr.py::test_html_documentation_link_mixin_doc_link_url_param_generator_class", "sklearn/utils/tests/test_estimator_html_repr.py::test_function_transformer_show_caption[<lambda>-&lt;lambda&gt;]", "sklearn/utils/tests/test_estimator_html_repr.py::test_function_transformer_show_caption[dummy_function-dummy_function]", "sklearn/utils/tests/test_estimator_html_repr.py::test_function_transformer_show_caption[func2-dummy_function]", "sklearn/utils/tests/test_estimator_html_repr.py::test_function_transformer_show_caption[func3-vectorize\\\\(\\\\.\\\\.\\\\.\\\\)]", "sklearn/utils/_estimator_html_repr.py::sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin", "sklearn/utils/_estimator_html_repr.py::sklearn.utils._estimator_html_repr.estimator_html_repr" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-206
1.0
{ "code": "diff --git b/sklearn/linear_model/_ridge.py a/sklearn/linear_model/_ridge.py\nindex 3dea4a0bc..827366fab 100644\n--- b/sklearn/linear_model/_ridge.py\n+++ a/sklearn/linear_model/_ridge.py\n@@ -1843,6 +1843,25 @@ class _RidgeGCV(LinearModel):\n The centered X is never actually computed because centering would break\n the sparsity of X.\n \"\"\"\n+ if not self.fit_intercept:\n+ # in this case centering has been done in preprocessing\n+ # or we are not fitting an intercept.\n+ X_mean = np.zeros(X.shape[1], dtype=X.dtype)\n+ return safe_sparse_dot(X.T, X, dense_output=True), X_mean\n+ # this function only gets called for sparse X\n+ n_samples = X.shape[0]\n+ sample_weight_matrix = sparse.dia_matrix(\n+ (sqrt_sw, 0), shape=(n_samples, n_samples)\n+ )\n+ X_weighted = sample_weight_matrix.dot(X)\n+ X_mean, _ = mean_variance_axis(X_weighted, axis=0)\n+ X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)\n+ weight_sum = sqrt_sw.dot(sqrt_sw)\n+ return (\n+ safe_sparse_dot(X.T, X, dense_output=True)\n+ - weight_sum * np.outer(X_mean, X_mean),\n+ X_mean,\n+ )\n \n def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):\n \"\"\"Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py\nindex 827366fab..3dea4a0bc 100644\n--- a/sklearn/linear_model/_ridge.py\n+++ b/sklearn/linear_model/_ridge.py\n@@ -1843,25 +1843,6 @@ class _RidgeGCV(LinearModel):\n The centered X is never actually computed because centering would break\n the sparsity of X.\n \"\"\"\n- if not self.fit_intercept:\n- # in this case centering has been done in preprocessing\n- # or we are not fitting an intercept.\n- X_mean = np.zeros(X.shape[1], dtype=X.dtype)\n- return safe_sparse_dot(X.T, X, dense_output=True), X_mean\n- # this function only gets called for sparse X\n- n_samples = X.shape[0]\n- sample_weight_matrix = sparse.dia_matrix(\n- (sqrt_sw, 0), shape=(n_samples, n_samples)\n- )\n- X_weighted = sample_weight_matrix.dot(X)\n- X_mean, _ = mean_variance_axis(X_weighted, axis=0)\n- X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)\n- weight_sum = sqrt_sw.dot(sqrt_sw)\n- return (\n- safe_sparse_dot(X.T, X, dense_output=True)\n- - weight_sum * np.outer(X_mean, X_mean),\n- X_mean,\n- )\n \n def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):\n \"\"\"Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_ridge.py.\nHere is the description for the function:\n def _compute_covariance(self, X, sqrt_sw):\n \"\"\"Computes covariance matrix X^TX with possible centering.\n\n Parameters\n ----------\n X : sparse matrix of shape (n_samples, n_features)\n The preprocessed design matrix.\n\n sqrt_sw : ndarray of shape (n_samples,)\n square roots of sample weights\n\n Returns\n -------\n covariance : ndarray of shape (n_features, n_features)\n The covariance matrix.\n X_mean : ndarray of shape (n_feature,)\n The weighted mean of ``X`` for each feature.\n\n Notes\n -----\n Since X is sparse it has not been centered in preprocessing, but it has\n been scaled by sqrt(sample weights).\n\n When self.fit_intercept is False no centering is done.\n\n The centered X is never actually computed because centering would break\n the sparsity of X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-True-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-True-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-True-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-True-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-True-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-False-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-False-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-False-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-False-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_matrix-False-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-True-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-True-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-True-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-True-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-True-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-False-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-False-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-False-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-False-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[csr_array-False-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeCV-params8]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeCV-params8]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-None]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-_accuracy_callable]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-_accuracy_callable]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-None]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_loo]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_cv]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_classifiers]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_loo]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_cv]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_matrix]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-207
1.0
{ "code": "diff --git b/sklearn/linear_model/_ridge.py a/sklearn/linear_model/_ridge.py\nindex 54d17acfd..827366fab 100644\n--- b/sklearn/linear_model/_ridge.py\n+++ a/sklearn/linear_model/_ridge.py\n@@ -1794,6 +1794,26 @@ class _RidgeGCV(LinearModel):\n The centered X is never actually computed because centering would break\n the sparsity of X.\n \"\"\"\n+ center = self.fit_intercept and sparse.issparse(X)\n+ if not center:\n+ # in this case centering has been done in preprocessing\n+ # or we are not fitting an intercept.\n+ X_mean = np.zeros(X.shape[1], dtype=X.dtype)\n+ return safe_sparse_dot(X, X.T, dense_output=True), X_mean\n+ # X is sparse\n+ n_samples = X.shape[0]\n+ sample_weight_matrix = sparse.dia_matrix(\n+ (sqrt_sw, 0), shape=(n_samples, n_samples)\n+ )\n+ X_weighted = sample_weight_matrix.dot(X)\n+ X_mean, _ = mean_variance_axis(X_weighted, axis=0)\n+ X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)\n+ X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True)\n+ X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)\n+ return (\n+ safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T,\n+ X_mean,\n+ )\n \n def _compute_covariance(self, X, sqrt_sw):\n \"\"\"Computes covariance matrix X^TX with possible centering.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py\nindex 827366fab..54d17acfd 100644\n--- a/sklearn/linear_model/_ridge.py\n+++ b/sklearn/linear_model/_ridge.py\n@@ -1794,26 +1794,6 @@ class _RidgeGCV(LinearModel):\n The centered X is never actually computed because centering would break\n the sparsity of X.\n \"\"\"\n- center = self.fit_intercept and sparse.issparse(X)\n- if not center:\n- # in this case centering has been done in preprocessing\n- # or we are not fitting an intercept.\n- X_mean = np.zeros(X.shape[1], dtype=X.dtype)\n- return safe_sparse_dot(X, X.T, dense_output=True), X_mean\n- # X is sparse\n- n_samples = X.shape[0]\n- sample_weight_matrix = sparse.dia_matrix(\n- (sqrt_sw, 0), shape=(n_samples, n_samples)\n- )\n- X_weighted = sample_weight_matrix.dot(X)\n- X_mean, _ = mean_variance_axis(X_weighted, axis=0)\n- X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)\n- X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True)\n- X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)\n- return (\n- safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T,\n- X_mean,\n- )\n \n def _compute_covariance(self, X, sqrt_sw):\n \"\"\"Computes covariance matrix X^TX with possible centering.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_ridge.py.\nHere is the description for the function:\n def _compute_gram(self, X, sqrt_sw):\n \"\"\"Computes the Gram matrix XX^T with possible centering.\n\n Parameters\n ----------\n X : {ndarray, sparse matrix} of shape (n_samples, n_features)\n The preprocessed design matrix.\n\n sqrt_sw : ndarray of shape (n_samples,)\n square roots of sample weights\n\n Returns\n -------\n gram : ndarray of shape (n_samples, n_samples)\n The Gram matrix.\n X_mean : ndarray of shape (n_feature,)\n The weighted mean of ``X`` for each feature.\n\n Notes\n -----\n When X is dense the centering has been done in preprocessing\n so the mean is 0 and we just compute XX^T.\n\n When X is sparse it has not been centered in preprocessing, but it has\n been scaled by sqrt(sample weights).\n\n When self.fit_intercept is False no centering is done.\n\n The centered X is never actually computed because centering would break\n the sparsity of X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-True-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-True-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-True-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-True-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-True-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-False-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-False-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-False-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-False-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_matrix-False-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-True-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-True-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-True-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-True-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-True-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-False-shape0]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-False-shape1]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-False-shape2]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-False-shape3]", "sklearn/linear_model/tests/test_ridge.py::test_compute_gram[csr_array-False-shape4]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-ridgecv-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-ridgecv-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-ridgecv-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-ridgecv-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-ridgecv-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-ridgecv-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-ridgecv-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-ridgecv-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_results_not_stored[ridge0-make_regression]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_results_not_stored[ridge1-make_classification]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_store_cv_values_deprecated", "sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_values_deprecated", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1sample]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-208
1.0
{ "code": "diff --git b/sklearn/utils/validation.py a/sklearn/utils/validation.py\nindex b8d878a60..401e72cef 100644\n--- b/sklearn/utils/validation.py\n+++ a/sklearn/utils/validation.py\n@@ -2154,6 +2154,21 @@ def _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):\n more tolerant than the default for numpy.testing.assert_allclose, where\n atol=0.\n \"\"\"\n+ if sp.issparse(x) and sp.issparse(y):\n+ x = x.tocsr()\n+ y = y.tocsr()\n+ x.sum_duplicates()\n+ y.sum_duplicates()\n+ return (\n+ np.array_equal(x.indices, y.indices)\n+ and np.array_equal(x.indptr, y.indptr)\n+ and np.allclose(x.data, y.data, rtol=rtol, atol=atol)\n+ )\n+ elif not sp.issparse(x) and not sp.issparse(y):\n+ return np.allclose(x, y, rtol=rtol, atol=atol)\n+ raise ValueError(\n+ \"Can only compare two sparse matrices, not a sparse matrix and an array\"\n+ )\n \n \n def _check_response_method(estimator, response_method):\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py\nindex 401e72cef..b8d878a60 100644\n--- a/sklearn/utils/validation.py\n+++ b/sklearn/utils/validation.py\n@@ -2154,21 +2154,6 @@ def _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):\n more tolerant than the default for numpy.testing.assert_allclose, where\n atol=0.\n \"\"\"\n- if sp.issparse(x) and sp.issparse(y):\n- x = x.tocsr()\n- y = y.tocsr()\n- x.sum_duplicates()\n- y.sum_duplicates()\n- return (\n- np.array_equal(x.indices, y.indices)\n- and np.array_equal(x.indptr, y.indptr)\n- and np.allclose(x.data, y.data, rtol=rtol, atol=atol)\n- )\n- elif not sp.issparse(x) and not sp.issparse(y):\n- return np.allclose(x, y, rtol=rtol, atol=atol)\n- raise ValueError(\n- \"Can only compare two sparse matrices, not a sparse matrix and an array\"\n- )\n \n \n def _check_response_method(estimator, response_method):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/validation.py.\nHere is the description for the function:\ndef _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):\n \"\"\"Check allclose for sparse and dense data.\n\n Both x and y need to be either sparse or dense, they\n can't be mixed.\n\n Parameters\n ----------\n x : {array-like, sparse matrix}\n First array to compare.\n\n y : {array-like, sparse matrix}\n Second array to compare.\n\n rtol : float, default=1e-7\n Relative tolerance; see numpy.allclose.\n\n atol : float, default=1e-9\n absolute tolerance; see numpy.allclose. Note that the default here is\n more tolerant than the default for numpy.testing.assert_allclose, where\n atol=0.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]", "sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_distance_matrix", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distance_matrix[csr_matrix]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distance_matrix[csr_array]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distance_matrix[csc_matrix]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distance_matrix[csc_array]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_usable_inputs[kwargs0-X0]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_usable_inputs[kwargs1-X1]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distances_too_few_nonzero[csr_matrix]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distances_too_few_nonzero[csr_array]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distances_disconnected_graph[csr_matrix]", "sklearn/cluster/tests/test_hdbscan.py::test_hdbscan_sparse_distances_disconnected_graph[csr_array]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[None]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csc_matrix]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csc_array]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csr_matrix]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csr_array]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_support_all_nummerical_dataframes_check_inverse_True", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_validate_inverse", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_invertible", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X1-y1]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-importance_getter0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_3d_target", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[pandas]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[polars]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-regressor_.coef_]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-auto-ValueError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-<lambda>-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]", "sklearn/compose/_target.py::sklearn.compose._target.TransformedTargetRegressor", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HDBSCAN(min_samples=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-209
1.0
{ "code": "diff --git b/sklearn/decomposition/_pca.py a/sklearn/decomposition/_pca.py\nindex 378addad6..24cb1649c 100644\n--- b/sklearn/decomposition/_pca.py\n+++ a/sklearn/decomposition/_pca.py\n@@ -52,6 +52,50 @@ def _assess_dimension(spectrum, rank, n_samples):\n Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604\n <https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_\n \"\"\"\n+ xp, _ = get_namespace(spectrum)\n+\n+ n_features = spectrum.shape[0]\n+ if not 1 <= rank < n_features:\n+ raise ValueError(\"the tested rank should be in [1, n_features - 1]\")\n+\n+ eps = 1e-15\n+\n+ if spectrum[rank - 1] < eps:\n+ # When the tested rank is associated with a small eigenvalue, there's\n+ # no point in computing the log-likelihood: it's going to be very\n+ # small and won't be the max anyway. Also, it can lead to numerical\n+ # issues below when computing pa, in particular in log((spectrum[i] -\n+ # spectrum[j]) because this will take the log of something very small.\n+ return -xp.inf\n+\n+ pu = -rank * log(2.0)\n+ for i in range(1, rank + 1):\n+ pu += (\n+ gammaln((n_features - i + 1) / 2.0)\n+ - log(xp.pi) * (n_features - i + 1) / 2.0\n+ )\n+\n+ pl = xp.sum(xp.log(spectrum[:rank]))\n+ pl = -pl * n_samples / 2.0\n+\n+ v = max(eps, xp.sum(spectrum[rank:]) / (n_features - rank))\n+ pv = -log(v) * n_samples * (n_features - rank) / 2.0\n+\n+ m = n_features * rank - rank * (rank + 1.0) / 2.0\n+ pp = log(2.0 * xp.pi) * (m + rank) / 2.0\n+\n+ pa = 0.0\n+ spectrum_ = xp.asarray(spectrum, copy=True)\n+ spectrum_[rank:n_features] = v\n+ for i in range(rank):\n+ for j in range(i + 1, spectrum.shape[0]):\n+ pa += log(\n+ (spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])\n+ ) + log(n_samples)\n+\n+ ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0\n+\n+ return ll\n \n \n def _infer_dimension(spectrum, n_samples):\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_pca.py b/sklearn/decomposition/_pca.py\nindex 24cb1649c..378addad6 100644\n--- a/sklearn/decomposition/_pca.py\n+++ b/sklearn/decomposition/_pca.py\n@@ -52,50 +52,6 @@ def _assess_dimension(spectrum, rank, n_samples):\n Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604\n <https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_\n \"\"\"\n- xp, _ = get_namespace(spectrum)\n-\n- n_features = spectrum.shape[0]\n- if not 1 <= rank < n_features:\n- raise ValueError(\"the tested rank should be in [1, n_features - 1]\")\n-\n- eps = 1e-15\n-\n- if spectrum[rank - 1] < eps:\n- # When the tested rank is associated with a small eigenvalue, there's\n- # no point in computing the log-likelihood: it's going to be very\n- # small and won't be the max anyway. Also, it can lead to numerical\n- # issues below when computing pa, in particular in log((spectrum[i] -\n- # spectrum[j]) because this will take the log of something very small.\n- return -xp.inf\n-\n- pu = -rank * log(2.0)\n- for i in range(1, rank + 1):\n- pu += (\n- gammaln((n_features - i + 1) / 2.0)\n- - log(xp.pi) * (n_features - i + 1) / 2.0\n- )\n-\n- pl = xp.sum(xp.log(spectrum[:rank]))\n- pl = -pl * n_samples / 2.0\n-\n- v = max(eps, xp.sum(spectrum[rank:]) / (n_features - rank))\n- pv = -log(v) * n_samples * (n_features - rank) / 2.0\n-\n- m = n_features * rank - rank * (rank + 1.0) / 2.0\n- pp = log(2.0 * xp.pi) * (m + rank) / 2.0\n-\n- pa = 0.0\n- spectrum_ = xp.asarray(spectrum, copy=True)\n- spectrum_[rank:n_features] = v\n- for i in range(rank):\n- for j in range(i + 1, spectrum.shape[0]):\n- pa += log(\n- (spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])\n- ) + log(n_samples)\n-\n- ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0\n-\n- return ll\n \n \n def _infer_dimension(spectrum, n_samples):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_pca.py.\nHere is the description for the function:\ndef _assess_dimension(spectrum, rank, n_samples):\n \"\"\"Compute the log-likelihood of a rank ``rank`` dataset.\n\n The dataset is assumed to be embedded in gaussian noise of shape(n,\n dimf) having spectrum ``spectrum``. This implements the method of\n T. P. Minka.\n\n Parameters\n ----------\n spectrum : ndarray of shape (n_features,)\n Data spectrum.\n rank : int\n Tested rank value. It should be strictly lower than n_features,\n otherwise the method isn't specified (division by zero in equation\n (31) from the paper).\n n_samples : int\n Number of samples.\n\n Returns\n -------\n ll : float\n The log-likelihood.\n\n References\n ----------\n This implements the method of `Thomas P. Minka:\n Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604\n <https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_pca.py::test_n_components_mle[auto]", "sklearn/decomposition/tests/test_pca.py::test_n_components_mle[full]", "sklearn/decomposition/tests/test_pca.py::test_pca_dim", "sklearn/decomposition/tests/test_pca.py::test_infer_dim_1", "sklearn/decomposition/tests/test_pca.py::test_infer_dim_2", "sklearn/decomposition/tests/test_pca.py::test_infer_dim_3", "sklearn/decomposition/tests/test_pca.py::test_assess_dimension_bad_rank", "sklearn/decomposition/tests/test_pca.py::test_small_eigenvalues_mle", "sklearn/decomposition/tests/test_pca.py::test_mle_redundant_data", "sklearn/decomposition/tests/test_pca.py::test_mle_simple_case", "sklearn/decomposition/tests/test_pca.py::test_assess_dimesion_rank_one", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-210
1.0
{ "code": "diff --git b/sklearn/metrics/_base.py a/sklearn/metrics/_base.py\nindex 5ee16bcc4..ee797e1bc 100644\n--- b/sklearn/metrics/_base.py\n+++ a/sklearn/metrics/_base.py\n@@ -57,6 +57,70 @@ def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight\n classes.\n \n \"\"\"\n+ average_options = (None, \"micro\", \"macro\", \"weighted\", \"samples\")\n+ if average not in average_options:\n+ raise ValueError(\"average has to be one of {0}\".format(average_options))\n+\n+ y_type = type_of_target(y_true)\n+ if y_type not in (\"binary\", \"multilabel-indicator\"):\n+ raise ValueError(\"{0} format is not supported\".format(y_type))\n+\n+ if y_type == \"binary\":\n+ return binary_metric(y_true, y_score, sample_weight=sample_weight)\n+\n+ check_consistent_length(y_true, y_score, sample_weight)\n+ y_true = check_array(y_true)\n+ y_score = check_array(y_score)\n+\n+ not_average_axis = 1\n+ score_weight = sample_weight\n+ average_weight = None\n+\n+ if average == \"micro\":\n+ if score_weight is not None:\n+ score_weight = np.repeat(score_weight, y_true.shape[1])\n+ y_true = y_true.ravel()\n+ y_score = y_score.ravel()\n+\n+ elif average == \"weighted\":\n+ if score_weight is not None:\n+ average_weight = np.sum(\n+ np.multiply(y_true, np.reshape(score_weight, (-1, 1))), axis=0\n+ )\n+ else:\n+ average_weight = np.sum(y_true, axis=0)\n+ if np.isclose(average_weight.sum(), 0.0):\n+ return 0\n+\n+ elif average == \"samples\":\n+ # swap average_weight <-> score_weight\n+ average_weight = score_weight\n+ score_weight = None\n+ not_average_axis = 0\n+\n+ if y_true.ndim == 1:\n+ y_true = y_true.reshape((-1, 1))\n+\n+ if y_score.ndim == 1:\n+ y_score = y_score.reshape((-1, 1))\n+\n+ n_classes = y_score.shape[not_average_axis]\n+ score = np.zeros((n_classes,))\n+ for c in range(n_classes):\n+ y_true_c = y_true.take([c], axis=not_average_axis).ravel()\n+ y_score_c = y_score.take([c], axis=not_average_axis).ravel()\n+ score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight)\n+\n+ # Average the results\n+ if average is not None:\n+ if average_weight is not None:\n+ # Scores with 0 weights are forced to be 0, preventing the average\n+ # score from being affected by 0-weighted NaN elements.\n+ average_weight = np.asarray(average_weight)\n+ score[average_weight == 0] = 0\n+ return np.average(score, weights=average_weight)\n+ else:\n+ return score\n \n \n def _average_multiclass_ovo_score(binary_metric, y_true, y_score, average=\"macro\"):\n", "test": null }
null
{ "code": "diff --git a/sklearn/metrics/_base.py b/sklearn/metrics/_base.py\nindex ee797e1bc..5ee16bcc4 100644\n--- a/sklearn/metrics/_base.py\n+++ b/sklearn/metrics/_base.py\n@@ -57,70 +57,6 @@ def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight\n classes.\n \n \"\"\"\n- average_options = (None, \"micro\", \"macro\", \"weighted\", \"samples\")\n- if average not in average_options:\n- raise ValueError(\"average has to be one of {0}\".format(average_options))\n-\n- y_type = type_of_target(y_true)\n- if y_type not in (\"binary\", \"multilabel-indicator\"):\n- raise ValueError(\"{0} format is not supported\".format(y_type))\n-\n- if y_type == \"binary\":\n- return binary_metric(y_true, y_score, sample_weight=sample_weight)\n-\n- check_consistent_length(y_true, y_score, sample_weight)\n- y_true = check_array(y_true)\n- y_score = check_array(y_score)\n-\n- not_average_axis = 1\n- score_weight = sample_weight\n- average_weight = None\n-\n- if average == \"micro\":\n- if score_weight is not None:\n- score_weight = np.repeat(score_weight, y_true.shape[1])\n- y_true = y_true.ravel()\n- y_score = y_score.ravel()\n-\n- elif average == \"weighted\":\n- if score_weight is not None:\n- average_weight = np.sum(\n- np.multiply(y_true, np.reshape(score_weight, (-1, 1))), axis=0\n- )\n- else:\n- average_weight = np.sum(y_true, axis=0)\n- if np.isclose(average_weight.sum(), 0.0):\n- return 0\n-\n- elif average == \"samples\":\n- # swap average_weight <-> score_weight\n- average_weight = score_weight\n- score_weight = None\n- not_average_axis = 0\n-\n- if y_true.ndim == 1:\n- y_true = y_true.reshape((-1, 1))\n-\n- if y_score.ndim == 1:\n- y_score = y_score.reshape((-1, 1))\n-\n- n_classes = y_score.shape[not_average_axis]\n- score = np.zeros((n_classes,))\n- for c in range(n_classes):\n- y_true_c = y_true.take([c], axis=not_average_axis).ravel()\n- y_score_c = y_score.take([c], axis=not_average_axis).ravel()\n- score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight)\n-\n- # Average the results\n- if average is not None:\n- if average_weight is not None:\n- # Scores with 0 weights are forced to be 0, preventing the average\n- # score from being affected by 0-weighted NaN elements.\n- average_weight = np.asarray(average_weight)\n- score[average_weight == 0] = 0\n- return np.average(score, weights=average_weight)\n- else:\n- return score\n \n \n def _average_multiclass_ovo_score(binary_metric, y_true, y_score, average=\"macro\"):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/metrics/_base.py.\nHere is the description for the function:\ndef _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None):\n \"\"\"Average a binary metric for multilabel classification.\n\n Parameters\n ----------\n y_true : array, shape = [n_samples] or [n_samples, n_classes]\n True binary labels in binary label indicators.\n\n y_score : array, shape = [n_samples] or [n_samples, n_classes]\n Target scores, can either be probability estimates of the positive\n class, confidence values, or binary decisions.\n\n average : {None, 'micro', 'macro', 'samples', 'weighted'}, default='macro'\n If ``None``, the scores for each class are returned. Otherwise,\n this determines the type of averaging performed on the data:\n\n ``'micro'``:\n Calculate metrics globally by considering each element of the label\n indicator matrix as a label.\n ``'macro'``:\n Calculate metrics for each label, and find their unweighted\n mean. This does not take label imbalance into account.\n ``'weighted'``:\n Calculate metrics for each label, and find their average, weighted\n by support (the number of true instances for each label).\n ``'samples'``:\n Calculate metrics for each instance, and find their average.\n\n Will be ignored when ``y_true`` is binary.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n binary_metric : callable, returns shape [n_classes]\n The binary metric function to use.\n\n Returns\n -------\n score : float or array of shape [n_classes]\n If not ``None``, average the score, else return the score for each\n classes.\n\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[average_precision_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[average_precision_score]", "sklearn/metrics/tests/test_classification.py::test_average_precision_score_non_binary_class", "sklearn/metrics/tests/test_classification.py::test_average_precision_score_duplicate_values[y_true0-y_score0]", "sklearn/metrics/tests/test_classification.py::test_average_precision_score_duplicate_values[y_true1-y_score1]", "sklearn/metrics/tests/test_classification.py::test_average_precision_score_tied_values[y_true0-y_score0]", "sklearn/metrics/tests/test_classification.py::test_average_precision_score_tied_values[y_true1-y_score1]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric16]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric17]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr-metric0]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric18]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr_weighted-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_average_precision_pos_label", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric16]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric17]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric18]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric16]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric17]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric18]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric16]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric17]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric18]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multilabel_indicator", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params0-new_params0-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params1-new_params1-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params2-new_params2-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params3-new_params3-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric16]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric17]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params4-new_params4-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric18]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[True]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[False]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]", "sklearn/metrics/tests/test_ranking.py::test_roc_curve[True]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]", "sklearn/metrics/tests/test_ranking.py::test_roc_curve[False]", "sklearn/metrics/tests/test_ranking.py::test_roc_curve_toydata", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true0-labels0]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true1-None]", "sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true2-labels2]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true3-None]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true0-labels0]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true1-labels1]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true0-None]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true1-None]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true2-labels2]", "sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true3-labels3]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_perfect_imperfect_chance_multiclass_roc_auc[ovr-macro]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]", "sklearn/metrics/tests/test_ranking.py::test_perfect_imperfect_chance_multiclass_roc_auc[ovr-micro]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]", "sklearn/metrics/tests/test_ranking.py::test_micro_averaged_ovr_roc_auc[42]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]", "sklearn/metrics/tests/test_ranking.py::test_auc_score_non_binary_class", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve[True]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]", "sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve[False]", "sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata[True]", "sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata[False]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_average_precision_constant_values", "sklearn/metrics/tests/test_ranking.py::test_score_scale_invariance", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]", "sklearn/metrics/tests/test_ranking.py::test_partial_roc_auc_score", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_ranking_metric_pos_label_types[classes0-average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_ranking_metric_pos_label_types[classes1-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_ranking_metric_pos_label_types[classes2-average_precision_score]", "sklearn/metrics/tests/test_ranking.py::test_ranking_metric_pos_label_types[classes3-average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]", "sklearn/neighbors/tests/test_lof.py::test_lof_performance[float64]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[micro_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[samples_average_precision_score]", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_average_precision_score]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[average_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_average_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[ovo_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[ovr_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[partial_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[roc_auc_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_average_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_average_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_ovo_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_ovr_roc_auc-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_roc_auc-pandas]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_predictions-PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf0]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_predictions-PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-PrecisionRecallDisplay]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_binary", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-decision_function-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-decision_function-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_estimator-None]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_estimator-chance_level_kw1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_predictions-None]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_predictions-chance_level_kw1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_name[from_estimator-LogisticRegression (AP = {:.2f})]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_name[from_predictions-Classifier (AP = {:.2f})]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf0]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_string_labels", "sklearn/ensemble/tests/test_iforest.py::test_iforest_performance[42]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[decision_function-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_prevalence_pos_label_reusable[from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_prevalence_pos_label_reusable[from_predictions]", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.average_precision_score", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.roc_auc_score", "sklearn/metrics/_plot/precision_recall_curve.py::sklearn.metrics._plot.precision_recall_curve.PrecisionRecallDisplay.from_estimator", "sklearn/metrics/_plot/precision_recall_curve.py::sklearn.metrics._plot.precision_recall_curve.PrecisionRecallDisplay.from_predictions" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-211
1.0
{ "code": "diff --git b/sklearn/ensemble/_iforest.py a/sklearn/ensemble/_iforest.py\nindex f5dda981b..d7d9a06eb 100644\n--- b/sklearn/ensemble/_iforest.py\n+++ a/sklearn/ensemble/_iforest.py\n@@ -657,3 +657,22 @@ def _average_path_length(n_samples_leaf):\n -------\n average_path_length : ndarray of shape (n_samples,)\n \"\"\"\n+\n+ n_samples_leaf = check_array(n_samples_leaf, ensure_2d=False)\n+\n+ n_samples_leaf_shape = n_samples_leaf.shape\n+ n_samples_leaf = n_samples_leaf.reshape((1, -1))\n+ average_path_length = np.zeros(n_samples_leaf.shape)\n+\n+ mask_1 = n_samples_leaf <= 1\n+ mask_2 = n_samples_leaf == 2\n+ not_mask = ~np.logical_or(mask_1, mask_2)\n+\n+ average_path_length[mask_1] = 0.0\n+ average_path_length[mask_2] = 1.0\n+ average_path_length[not_mask] = (\n+ 2.0 * (np.log(n_samples_leaf[not_mask] - 1.0) + np.euler_gamma)\n+ - 2.0 * (n_samples_leaf[not_mask] - 1.0) / n_samples_leaf[not_mask]\n+ )\n+\n+ return average_path_length.reshape(n_samples_leaf_shape)\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_iforest.py b/sklearn/ensemble/_iforest.py\nindex d7d9a06eb..f5dda981b 100644\n--- a/sklearn/ensemble/_iforest.py\n+++ b/sklearn/ensemble/_iforest.py\n@@ -657,22 +657,3 @@ def _average_path_length(n_samples_leaf):\n -------\n average_path_length : ndarray of shape (n_samples,)\n \"\"\"\n-\n- n_samples_leaf = check_array(n_samples_leaf, ensure_2d=False)\n-\n- n_samples_leaf_shape = n_samples_leaf.shape\n- n_samples_leaf = n_samples_leaf.reshape((1, -1))\n- average_path_length = np.zeros(n_samples_leaf.shape)\n-\n- mask_1 = n_samples_leaf <= 1\n- mask_2 = n_samples_leaf == 2\n- not_mask = ~np.logical_or(mask_1, mask_2)\n-\n- average_path_length[mask_1] = 0.0\n- average_path_length[mask_2] = 1.0\n- average_path_length[not_mask] = (\n- 2.0 * (np.log(n_samples_leaf[not_mask] - 1.0) + np.euler_gamma)\n- - 2.0 * (n_samples_leaf[not_mask] - 1.0) / n_samples_leaf[not_mask]\n- )\n-\n- return average_path_length.reshape(n_samples_leaf_shape)\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_iforest.py.\nHere is the description for the function:\ndef _average_path_length(n_samples_leaf):\n \"\"\"\n The average path length in a n_samples iTree, which is equal to\n the average path length of an unsuccessful BST search since the\n latter has the same structure as an isolation tree.\n Parameters\n ----------\n n_samples_leaf : array-like of shape (n_samples,)\n The number of training samples in each test sample leaf, for\n each estimators.\n\n Returns\n -------\n average_path_length : ndarray of shape (n_samples,)\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-predict]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-response_method2]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-predict]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-response_method2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_error", "sklearn/ensemble/tests/test_iforest.py::test_recalculate_max_depth", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_attribute", "sklearn/ensemble/tests/test_iforest.py::test_iforest_parallel_regression[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_performance[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-0.25]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-auto]", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_consistency", "sklearn/ensemble/tests/test_iforest.py::test_iforest_subsampled_features", "sklearn/ensemble/tests/test_iforest.py::test_iforest_average_path_length", "sklearn/ensemble/tests/test_iforest.py::test_score_samples", "sklearn/ensemble/tests/test_iforest.py::test_iforest_warm_start", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-0.25-3]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-auto-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-0.25-3]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-auto-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_uniform_data", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_preserve_feature_names", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-2]", "sklearn/ensemble/_iforest.py::sklearn.ensemble._iforest.IsolationForest", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IsolationForest(n_estimators=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-212
1.0
{ "code": "diff --git b/sklearn/inspection/_plot/decision_boundary.py a/sklearn/inspection/_plot/decision_boundary.py\nindex ae3b6ac61..d8be2ef5d 100644\n--- b/sklearn/inspection/_plot/decision_boundary.py\n+++ a/sklearn/inspection/_plot/decision_boundary.py\n@@ -43,6 +43,29 @@ def _check_boundary_response_method(estimator, response_method, class_of_interes\n prediction_method : list of str or str\n The name or list of names of the response methods to use.\n \"\"\"\n+ has_classes = hasattr(estimator, \"classes_\")\n+ if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]):\n+ msg = \"Multi-label and multi-output multi-class classifiers are not supported\"\n+ raise ValueError(msg)\n+\n+ if has_classes and len(estimator.classes_) > 2:\n+ if response_method not in {\"auto\", \"predict\"} and class_of_interest is None:\n+ msg = (\n+ \"Multiclass classifiers are only supported when `response_method` is \"\n+ \"'predict' or 'auto'. Else you must provide `class_of_interest` to \"\n+ \"plot the decision boundary of a specific class.\"\n+ )\n+ raise ValueError(msg)\n+ prediction_method = \"predict\" if response_method == \"auto\" else response_method\n+ elif response_method == \"auto\":\n+ if is_regressor(estimator):\n+ prediction_method = \"predict\"\n+ else:\n+ prediction_method = [\"decision_function\", \"predict_proba\", \"predict\"]\n+ else:\n+ prediction_method = response_method\n+\n+ return prediction_method\n \n \n class DecisionBoundaryDisplay:\n", "test": null }
null
{ "code": "diff --git a/sklearn/inspection/_plot/decision_boundary.py b/sklearn/inspection/_plot/decision_boundary.py\nindex d8be2ef5d..ae3b6ac61 100644\n--- a/sklearn/inspection/_plot/decision_boundary.py\n+++ b/sklearn/inspection/_plot/decision_boundary.py\n@@ -43,29 +43,6 @@ def _check_boundary_response_method(estimator, response_method, class_of_interes\n prediction_method : list of str or str\n The name or list of names of the response methods to use.\n \"\"\"\n- has_classes = hasattr(estimator, \"classes_\")\n- if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]):\n- msg = \"Multi-label and multi-output multi-class classifiers are not supported\"\n- raise ValueError(msg)\n-\n- if has_classes and len(estimator.classes_) > 2:\n- if response_method not in {\"auto\", \"predict\"} and class_of_interest is None:\n- msg = (\n- \"Multiclass classifiers are only supported when `response_method` is \"\n- \"'predict' or 'auto'. Else you must provide `class_of_interest` to \"\n- \"plot the decision boundary of a specific class.\"\n- )\n- raise ValueError(msg)\n- prediction_method = \"predict\" if response_method == \"auto\" else response_method\n- elif response_method == \"auto\":\n- if is_regressor(estimator):\n- prediction_method = \"predict\"\n- else:\n- prediction_method = [\"decision_function\", \"predict_proba\", \"predict\"]\n- else:\n- prediction_method = response_method\n-\n- return prediction_method\n \n \n class DecisionBoundaryDisplay:\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/inspection/_plot/decision_boundary.py.\nHere is the description for the function:\ndef _check_boundary_response_method(estimator, response_method, class_of_interest):\n \"\"\"Validate the response methods to be used with the fitted estimator.\n\n Parameters\n ----------\n estimator : object\n Fitted estimator to check.\n\n response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}\n Specifies whether to use :term:`predict_proba`,\n :term:`decision_function`, :term:`predict` as the target response.\n If set to 'auto', the response method is tried in the following order:\n :term:`decision_function`, :term:`predict_proba`, :term:`predict`.\n\n class_of_interest : int, float, bool, str or None\n The class considered when plotting the decision. Cannot be None if\n multiclass and `response_method` is 'predict_proba' or 'decision_function'.\n\n .. versionadded:: 1.4\n\n Returns\n -------\n prediction_method : list of str or str\n The name or list of names of the response methods to use.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method_error", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator0-predict-None-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator1-auto-None-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator2-predict-None-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator3-auto-None-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator4-predict_proba-0-predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator5-decision_function-0-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator6-auto-None-expected_prediction_method6]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator7-predict-None-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_check_boundary_response_method[estimator8-response_method8-None-expected_prediction_method8]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multiclass_error[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multiclass_error[decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multiclass[auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multiclass[predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_display_plot_input_error", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contourf-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contourf-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contour-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contour-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[predict_proba-MyClassifier has none of the following attributes: predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[decision_function-MyClassifier has none of the following attributes: decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[auto-MyClassifier has none of the following attributes: decision_function, predict_proba, predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[bad_method-MyClassifier has none of the following attributes: bad_method]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multilabel_classifier_error[auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multilabel_classifier_error[predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multilabel_classifier_error[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multi_output_multi_class_classifier_error[auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multi_output_multi_class_classifier_error[predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multi_output_multi_class_classifier_error[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multioutput_regressor_error", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_regressor_unsupported_response[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_regressor_unsupported_response[decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_regressor_unsupported_response[response_method2]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_dataframe_labels_used", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_string_target", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_dataframe_support[pandas]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_binary[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_binary[decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_multiclass[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_multiclass[decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/inspection/_plot/decision_boundary.py::sklearn.inspection._plot.decision_boundary.DecisionBoundaryDisplay.from_estimator" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-213
1.0
{ "code": "diff --git b/sklearn/inspection/_pd_utils.py a/sklearn/inspection/_pd_utils.py\nindex 11b20585e..a48ba4d9a 100644\n--- b/sklearn/inspection/_pd_utils.py\n+++ a/sklearn/inspection/_pd_utils.py\n@@ -21,6 +21,20 @@ def _check_feature_names(X, feature_names=None):\n or a generic list of feature names (e.g. `[\"x0\", \"x1\", ...]`) for a\n NumPy array.\n \"\"\"\n+ if feature_names is None:\n+ if hasattr(X, \"columns\") and hasattr(X.columns, \"tolist\"):\n+ # get the column names for a pandas dataframe\n+ feature_names = X.columns.tolist()\n+ else:\n+ # define a list of numbered indices for a numpy array\n+ feature_names = [f\"x{i}\" for i in range(X.shape[1])]\n+ elif hasattr(feature_names, \"tolist\"):\n+ # convert numpy array or pandas index to a list\n+ feature_names = feature_names.tolist()\n+ if len(set(feature_names)) != len(feature_names):\n+ raise ValueError(\"feature_names should not contain duplicates.\")\n+\n+ return feature_names\n \n \n def _get_feature_index(fx, feature_names=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/inspection/_pd_utils.py b/sklearn/inspection/_pd_utils.py\nindex a48ba4d9a..11b20585e 100644\n--- a/sklearn/inspection/_pd_utils.py\n+++ b/sklearn/inspection/_pd_utils.py\n@@ -21,20 +21,6 @@ def _check_feature_names(X, feature_names=None):\n or a generic list of feature names (e.g. `[\"x0\", \"x1\", ...]`) for a\n NumPy array.\n \"\"\"\n- if feature_names is None:\n- if hasattr(X, \"columns\") and hasattr(X.columns, \"tolist\"):\n- # get the column names for a pandas dataframe\n- feature_names = X.columns.tolist()\n- else:\n- # define a list of numbered indices for a numpy array\n- feature_names = [f\"x{i}\" for i in range(X.shape[1])]\n- elif hasattr(feature_names, \"tolist\"):\n- # convert numpy array or pandas index to a list\n- feature_names = feature_names.tolist()\n- if len(set(feature_names)) != len(feature_names):\n- raise ValueError(\"feature_names should not contain duplicates.\")\n-\n- return feature_names\n \n \n def _get_feature_index(fx, feature_names=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/inspection/_pd_utils.py.\nHere is the description for the function:\ndef _check_feature_names(X, feature_names=None):\n \"\"\"Check feature names.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data.\n\n feature_names : None or array-like of shape (n_names,), dtype=str\n Feature names to check or `None`.\n\n Returns\n -------\n feature_names : list of str\n Feature names validated. If `feature_names` is `None`, then a list of\n feature names is provided, i.e. the column names of a pandas dataframe\n or a generic list of feature names (e.g. `[\"x0\", \"x1\", ...]`) for a\n NumPy array.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-DecisionTreeRegressor-brute-data6]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_warning_recursion_non_constant_init", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_of_fitted_estimator", "sklearn/inspection/tests/test_partial_dependence.py::test_hist_gbdt_sw_not_supported", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_pipeline", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[mask]", "sklearn/inspection/tests/test_partial_dependence.py::test_kind_average_and_average_of_individual[LinearRegression-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_kind_average_and_average_of_individual[LogisticRegression-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_kind_individual_ignores_sample_weight[LinearRegression-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_kind_individual_ignores_sample_weight[LogisticRegression-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_equivalence_equal_sample_weight[LinearRegression-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_equivalence_equal_sample_weight[LogisticRegression-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_mixed_type_categorical", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[10]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[20]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-False-None-shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-None-shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-None-shape2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-20-shape3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-20-shape4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-0.5-shape5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-0.5-shape6]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-True-None-shape7]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-None-shape8]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-None-shape9]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-20-shape10]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-20-shape11]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-list]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-list]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-list]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_custom_axes", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-50]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-51]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[2-2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[3-1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_same_axes", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_feature_name_reuse", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multioutput[0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multioutput[1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_dataframe", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data0-params0-target must be specified for multi-output]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data1-params1-target must be in \\\\[0, n_tasks\\\\]]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data2-params2-target must be in \\\\[0, n_tasks\\\\]]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data3-params3-Feature 'foobar' not in feature_names]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data4-params4-Feature 'foobar' not in feature_names]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data5-params5-Each entry in features must be either an int, ]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data6-params6-Each entry in features must be either an int, ]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data7-params7-Each entry in features must be either an int, ]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data8-params8-All entries of features must be less than ]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data9-params9-feature_names should not contain duplicates]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data10-params10-When `kind` is provided as a list of strings, it should contain]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data11-params11-When an integer, subsample=-1 should be positive.]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data12-params12-When a floating-point, subsample=1.2 should be in the \\\\(0, 1\\\\) range]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data13-params13-Expected `categorical_features` to be an array-like of boolean,]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data14-params14-Two-way partial dependence plots are not supported for pairs]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data15-params15-It is not possible to display individual effects]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params2-Each entry in features must be either an int,]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_does_not_override_ylabel", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[average-expected_shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[individual-expected_shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[both-expected_shape2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw0-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw1-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw2-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw3-xxx]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw4-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw5-xxx]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features0-dataframe]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features2-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_list", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features0-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features1-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features2-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features3-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features4-kind4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features5-kind5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw0-pd_line_kw0-ice_lines_kw0-expected_colors0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[None-pd_line_kw1-ice_lines_kw1-expected_colors1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw2-None-ice_lines_kw2-expected_colors2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw3-pd_line_kw3-None-expected_colors3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw4-None-None-expected_colors4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw5-pd_line_kw5-ice_lines_kw5-expected_colors5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_wrong_len_kind", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_with_constant_sample_weight", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/inspection/tests/test_pd_utils.py::test_check_feature_names[None-array-expected_feature_names0]", "sklearn/inspection/tests/test_pd_utils.py::test_check_feature_names[None-dataframe-expected_feature_names1]", "sklearn/inspection/tests/test_pd_utils.py::test_check_feature_names[feature_names2-array-expected_feature_names2]", "sklearn/inspection/tests/test_pd_utils.py::test_check_feature_names_error", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay.from_estimator" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-214
1.0
{ "code": "diff --git b/sklearn/model_selection/_validation.py a/sklearn/model_selection/_validation.py\nindex 73753bc6d..f412d0012 100644\n--- b/sklearn/model_selection/_validation.py\n+++ a/sklearn/model_selection/_validation.py\n@@ -1458,6 +1458,13 @@ def _check_is_permutation(indices, n_samples):\n is_partition : bool\n True iff sorted(indices) is np.arange(n)\n \"\"\"\n+ if len(indices) != n_samples:\n+ return False\n+ hit = np.zeros(n_samples, dtype=bool)\n+ hit[indices] = True\n+ if not np.all(hit):\n+ return False\n+ return True\n \n \n @validate_params(\n", "test": null }
null
{ "code": "diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py\nindex f412d0012..73753bc6d 100644\n--- a/sklearn/model_selection/_validation.py\n+++ b/sklearn/model_selection/_validation.py\n@@ -1458,13 +1458,6 @@ def _check_is_permutation(indices, n_samples):\n is_partition : bool\n True iff sorted(indices) is np.arange(n)\n \"\"\"\n- if len(indices) != n_samples:\n- return False\n- hit = np.zeros(n_samples, dtype=bool)\n- hit[indices] = True\n- if not np.all(hit):\n- return False\n- return True\n \n \n @validate_params(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/model_selection/_validation.py.\nHere is the description for the function:\ndef _check_is_permutation(indices, n_samples):\n \"\"\"Check whether indices is a reordering of the array np.arange(n_samples)\n\n Parameters\n ----------\n indices : ndarray\n int array to test\n n_samples : int\n number of expected elements\n\n Returns\n -------\n is_partition : bool\n True iff sorted(indices) is np.arange(n)\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_y_none", "sklearn/model_selection/tests/test_validation.py::test_check_is_permutation", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking", "sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_val_predict-extra_args2]", "sklearn/preprocessing/tests/test_data.py::test_cv_pipeline_precomputed", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_val_predict-extra_args2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-svd]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-svd]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_drop_estimator", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-3]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_matrix]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y2-params2-TypeError-does not support sample weight]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingRegressor]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_proba]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_log_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[regressor-]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/tests/test_multioutput.py::test_multioutputregressor_ducktypes_fitted_estimator", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingRegressor]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_classification-StackingClassifier-LogisticRegression]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_regression-StackingRegressor-LinearRegression]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingRegressor-ConsumingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-regressor]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingRegressor-ConsumingRegressor]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingRegressor]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_val_predict", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingRegressor", "sklearn/tests/test_common.py::test_estimators[RegressorChain(base_estimator=Ridge(),cv=3)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-215
1.0
{ "code": "diff --git b/sklearn/utils/validation.py a/sklearn/utils/validation.py\nindex c00987eb1..401e72cef 100644\n--- b/sklearn/utils/validation.py\n+++ a/sklearn/utils/validation.py\n@@ -2237,6 +2237,27 @@ def _check_method_params(X, params, indices=None):\n method_params_validated : dict\n Validated parameters. We ensure that the values support indexing.\n \"\"\"\n+ from . import _safe_indexing\n+\n+ method_params_validated = {}\n+ for param_key, param_value in params.items():\n+ if (\n+ not _is_arraylike(param_value)\n+ and not sp.issparse(param_value)\n+ or _num_samples(param_value) != _num_samples(X)\n+ ):\n+ # Non-indexable pass-through (for now for backward-compatibility).\n+ # https://github.com/scikit-learn/scikit-learn/issues/15805\n+ method_params_validated[param_key] = param_value\n+ else:\n+ # Any other method_params should support indexing\n+ # (e.g. for cross-validation).\n+ method_params_validated[param_key] = _make_indexable(param_value)\n+ method_params_validated[param_key] = _safe_indexing(\n+ method_params_validated[param_key], indices\n+ )\n+\n+ return method_params_validated\n \n \n def _is_pandas_df_or_series(X):\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py\nindex 401e72cef..c00987eb1 100644\n--- a/sklearn/utils/validation.py\n+++ b/sklearn/utils/validation.py\n@@ -2237,27 +2237,6 @@ def _check_method_params(X, params, indices=None):\n method_params_validated : dict\n Validated parameters. We ensure that the values support indexing.\n \"\"\"\n- from . import _safe_indexing\n-\n- method_params_validated = {}\n- for param_key, param_value in params.items():\n- if (\n- not _is_arraylike(param_value)\n- and not sp.issparse(param_value)\n- or _num_samples(param_value) != _num_samples(X)\n- ):\n- # Non-indexable pass-through (for now for backward-compatibility).\n- # https://github.com/scikit-learn/scikit-learn/issues/15805\n- method_params_validated[param_key] = param_value\n- else:\n- # Any other method_params should support indexing\n- # (e.g. for cross-validation).\n- method_params_validated[param_key] = _make_indexable(param_value)\n- method_params_validated[param_key] = _safe_indexing(\n- method_params_validated[param_key], indices\n- )\n-\n- return method_params_validated\n \n \n def _is_pandas_df_or_series(X):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/validation.py.\nHere is the description for the function:\ndef _check_method_params(X, params, indices=None):\n \"\"\"Check and validate the parameters passed to a specific\n method like `fit`.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Data array.\n\n params : dict\n Dictionary containing the parameters passed to the method.\n\n indices : array-like of shape (n_samples,), default=None\n Indices to be selected if the parameter has the same size as `X`.\n\n Returns\n -------\n method_params_validated : dict\n Validated parameters. We ensure that the values support indexing.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[fit-HalvingGridSearchCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_mock_scorer", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[fit-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params0-predict]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[predict-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_many_jobs", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params1-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[predict-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_pipeline_steps", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params2-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[RandomizedSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params3-decision_function]", "sklearn/model_selection/tests/test_search.py::test_grid_search_no_score", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingRandomSearchCV]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_gridsearchcv", "sklearn/model_selection/tests/test_search.py::test_grid_search_groups", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_classes__property", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params4-predict]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_trivial_cv_results_attr", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params5-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_no_refit", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params6-predict_log_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params7-decision_function]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params8-predict]", "sklearn/model_selection/tests/test_search.py::test_grid_search_one_grid_point", "sklearn/model_selection/tests/test_search.py::test_grid_search_when_param_grid_includes_range", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params9-predict_proba]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[accuracy-multiclass_agg_list0]", "sklearn/model_selection/tests/test_search.py::test_grid_search_bad_param_grid", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingRandomSearchCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[precision-multiclass_agg_list1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[f1-multiclass_agg_list2]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params10-predict_log_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_invalid_scoring_param", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingGridSearchCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[recall-multiclass_agg_list4]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params11-decision_function]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params12-predict]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params13-predict_proba]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingGridSearchCV]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel_error_nonsquare", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_matrix-False]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params14-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_refit", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params15-decision_function]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_matrix-True]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params16-predict]", "sklearn/model_selection/tests/test_search.py::test_refit_callable", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_invalid_type", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params17-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_array-False]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV--1]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV-2]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params18-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV--1]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[GridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_array-True]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params19-decision_function]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RandomizedSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingRandomSearchCV]", "sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params20-predict]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV-2]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas", "sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params21-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_mask", "sklearn/model_selection/tests/test_search.py::test_gridsearch_nd", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params22-predict_log_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_X_as_list", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params23-decision_function]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_y_as_list", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params24-predict]", "sklearn/model_selection/tests/test_search.py::test_pandas_input", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params[coo_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params25-predict_proba]", "sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search", "sklearn/model_selection/tests/test_search.py::test_gridsearch_no_predict", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params26-predict_log_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params[coo_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingRandomSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[RANSACRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params27-decision_function]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params28-predict]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingGridSearchCV]", "sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params29-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_default_iid[GridSearchCV-specialized_params0]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params30-predict_log_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_default_iid[RandomizedSearchCV-specialized_params1]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params31-decision_function]", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results_multimetric", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params32-predict]", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv0]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params33-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv1]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params34-predict_log_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv0]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params35-decision_function]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv1]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params36-predict]", "sklearn/model_selection/tests/test_search.py::test_search_cv_results_rank_tie_breaking", "sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_params", "sklearn/model_selection/tests/test_search.py::test_search_cv_results_none_param", "sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[512-exhaust-128]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params37-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-exhaust-8]", "sklearn/model_selection/tests/test_search.py::test_search_cv_timing", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[CalibratedClassifierCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params38-predict_log_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-8-8]", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-7-7]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params39-decision_function]", "sklearn/model_selection/tests/test_search.py::test_pickle", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-9-9]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params40-predict]", "sklearn/model_selection/tests/test_search.py::test_grid_search_with_multioutput_data", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions0-2]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[GridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions1-10]", "sklearn/model_selection/tests/test_search.py::test_predict_proba_disabled", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RandomizedSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params41-predict_proba]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_array]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params42-predict_log_proba]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params1-Cannot use parameter a as the resource since it is part of-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_allows_nans", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params43-decision_function]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TunedThresholdClassifierCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params1-Cannot use parameter a as the resource since it is part of-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape", "sklearn/model_selection/tests/test_search.py::test_grid_search_classifier_all_fits_fail", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsOneClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params44-predict]", "sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier_raise", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params45-predict_proba]", "sklearn/model_selection/tests/test_search.py::test_stochastic_gradient_loss_param", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params46-predict_log_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params47-decision_function]", "sklearn/model_selection/tests/test_search.py::test_search_train_scores_set_to_false", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_splits_consistency", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params48-predict]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_array]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RANSACRegressor]", "sklearn/model_selection/tests/test_search.py::test_transform_inverse_transform_round_trip", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params49-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas", "sklearn/model_selection/tests/test_search.py::test_custom_run_search", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[BaggingClassifier]", "sklearn/model_selection/tests/test_search.py::test__custom_fit_no_run_search", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[BaggingRegressor]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params50-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_empty_cv_iterator_error", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params51-decision_function]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_y_none", "sklearn/model_selection/tests/test_search.py::test_random_search_bad_cv", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params52-predict]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params[coo_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-False]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params53-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params[coo_array]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-True]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params54-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params55-decision_function]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params56-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params57-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_unsupervised", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix", "sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingRandomSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SequentialFeatureSelector]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params58-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_verbose", "sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params59-decision_function]", "sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingGridSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RFECV]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_on_invalid_key", "sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params60-predict]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_failing_clf", "sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_unsupervised", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params61-predict_proba]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingRandomSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[CalibratedClassifierCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params62-predict_log_proba]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_clf_all_fits_fail", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal", "sklearn/model_selection/tests/test_search.py::test_n_features_in", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[GridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params63-decision_function]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RandomizedSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_remove_duplicate_sample_sizes", "sklearn/ensemble/tests/test_bagging.py::test_regression", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_boolean_indices", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_equivalence_of_precomputed", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[GridSearchCV-param_search0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TunedThresholdClassifierCV]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[RandomizedSearchCV-param_search1]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[GridSearchCV-param_search0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsOneClassifier]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[RandomizedSearchCV-param_search1]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-GridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_params", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-RandomizedSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_params", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_regression[csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve", "sklearn/ensemble/tests/test_bagging.py::test_sparse_regression[csr_array]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_clone_estimator", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RANSACRegressor]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_regression[csc_matrix]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[BaggingClassifier]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[BaggingRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_regression[csc_array]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_cv_splits_consistency", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[GridSearchCV-param_grid]", "sklearn/ensemble/tests/test_bagging.py::test_bootstrap_samples", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[RandomizedSearchCV-param_distributions]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_params", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SequentialFeatureSelector]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[HalvingGridSearchCV-param_grid]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RFECV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/model_selection/tests/test_search.py::test_search_with_2d_array", "sklearn/model_selection/tests/test_search.py::test_search_html_repr", "sklearn/model_selection/tests/test_search.py::test_inverse_transform_Xt_deprecation[GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_inverse_transform_Xt_deprecation[RandomizedSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[LogisticRegressionCV]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[GridSearchCV-param_grid]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[RandomizedSearchCV-param_distributions]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[GridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking", "sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RandomizedSearchCV]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[GridSearchCV-param_grid]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_bagging.py::test_single_estimator", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[RandomizedSearchCV-param_distributions]", "sklearn/utils/tests/test_validation.py::test_check_method_params[None]", "sklearn/utils/tests/test_validation.py::test_check_method_params[indices1]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[HalvingGridSearchCV-param_grid]", "sklearn/model_selection/tests/test_search.py::test_cv_results_dtype_issue_29074", "sklearn/ensemble/tests/test_forest.py::test_gridsearch[ExtraTreesClassifier]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf", "sklearn/ensemble/tests/test_forest.py::test_gridsearch[RandomForestClassifier]", "sklearn/model_selection/tests/test_search.py::test_search_with_estimators_issue_29157", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class", "sklearn/model_selection/tests/test_search.py::test_cv_results_multi_size_array", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeCV1]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV1]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[SequentialFeatureSelector]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[LogisticRegressionCV]", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[GridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_score_memmap", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RandomizedSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[HalvingGridSearchCV]", "sklearn/linear_model/tests/test_sgd.py::test_multi_core_gridsearch_and_early_stopping", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_fit_and_score_failing", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring0]", "sklearn/model_selection/tests/test_validation.py::test_fit_and_score_working", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[0.001]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_some_failing_fits_warning[nan]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[100]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1000000.0]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_some_failing_fits_warning[0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RidgeCV1]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[2]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RidgeClassifierCV1]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[3]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[GraphicalLassoCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_all_failing_fits_error[nan]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[SequentialFeatureSelector]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_all_failing_fits_error[0]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring1]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_cross_validation", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-nan]", "sklearn/ensemble/tests/test_bagging.py::test_gridsearch", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-0]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-raise]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-nan]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-0]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring2]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-raise]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_logistic.py::test_scores_attribute_layout_elasticnet", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_matrix-eigen]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_pipeline", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_array-svd]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_sample_weight_unsupported_but_passed", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_differ_when_sample_weight_is_requested", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape0-csr_array-eigen]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-asarray-svd]", "sklearn/preprocessing/tests/test_data.py::test_cv_pipeline_precomputed", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_consistency", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring3]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_without_enabling_metadata_routing", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]", "sklearn/ensemble/tests/test_bagging.py::test_estimators_samples_deterministic", "sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-three_params_scorer-2-split_prg0-cdt_prg0-\\\\[CV\\\\] END .................................................... total time= 0.\\\\ds]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-asarray-eigen]", "sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[True-scorer1-3-split_prg1-cdt_prg1-\\\\[CV 2/3\\\\] END sc1: \\\\(train=3.421, test=3.421\\\\) sc2: \\\\(train=3.421, test=3.421\\\\) total time= 0.\\\\ds]", "sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-scorer2-10-split_prg2-cdt_prg2-\\\\[CV 2/3; 1/1\\\\] END ....... sc1: \\\\(test=3.421\\\\) sc2: \\\\(test=3.421\\\\) total time= 0.\\\\ds]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_matrix-svd]", "sklearn/ensemble/tests/test_bagging.py::test_max_samples_consistency", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_matrix-eigen]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_regressor_with_missing_inputs", "sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_array-svd]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_partial_fit_regressors", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_array-eigen]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_get_estimators_indices", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_some_failing_fits_warning[42]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-DecisionTreeClassifier-0.85]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_metadata_routing[model0]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_return_indices[42]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_metadata_routing[model1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-asarray-eigen]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-ExtraTreeClassifier-0.53]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_matrix-eigen]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_validate-extra_args0]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_val_score-extra_args1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_array-eigen]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_val_predict-extra_args2]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_overwritten]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[learning_curve-extra_args3]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-asarray-svd]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[permutation_test_score-extra_args4]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-asarray-eigen]", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[validation_curve-extra_args5]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_array-eigen]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_validate-extra_args0]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_val_score-extra_args1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_val_predict-extra_args2]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[learning_curve-extra_args3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[permutation_test_score-extra_args4]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[validation_curve-extra_args5]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-asarray-svd]", "sklearn/model_selection/tests/test_successive_halving.py::test_halving_random_search_list_of_dicts", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-asarray-eigen]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_array-svd]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_naive_bayes.py::test_check_accuracy_on_digits", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_matrix-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-forward]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-backward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_array-svd]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_array-eigen]", "sklearn/tests/test_multioutput.py::test_multi_target_regression", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-forward]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_calibration.py::test_calibration_default_estimator", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-backward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-forward]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_matrix-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-backward]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_drop_estimator", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csc_matrix]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csc_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-forward]", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_array-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-backward]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-3]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-cv1]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[coo_matrix]", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_array-eigen]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[coo_array]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RFECV]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[lil_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[forward]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[lil_array]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[backward]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[dok_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-asarray-svd]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[dok_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-3]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[bsr_matrix]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[bsr_array]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/preprocessing/tests/test_target_encoder.py::test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-asarray-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[forward]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-cv1]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights_api", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[backward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_matrix-svd]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-forward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_matrix-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_curve_scorers", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-backward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-3]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[1.0-10-forward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_array-eigen]", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_sample_weight", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-forward]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-cv1]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-backward]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-3]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-cv1]", "sklearn/neighbors/tests/test_kde.py::test_kde_pipeline_gridsearch", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-3]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator0]", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovo_fit_on_list", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-4]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_mockclassifier", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-5]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_verbose_output", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-6]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_size[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_tags", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_matrix]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]", "sklearn/tests/test_multiclass.py::test_ovo_partial_fit_predict", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/tests/test_multiclass.py::test_ovo_decision_function", "sklearn/tests/test_multiclass.py::test_ovo_gridsearch", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-7]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]", "sklearn/tests/test_multiclass.py::test_ovo_ties", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]", "sklearn/feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-8]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/tests/test_multioutput.py::test_hasattr_multi_output_predict_proba", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_n_jobs[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-9]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_array]", "sklearn/tests/test_multioutput.py::test_multi_output_predict_proba", "sklearn/tests/test_multiclass.py::test_ovo_ties2", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-0]", "sklearn/tests/test_multioutput.py::test_multi_output_classification", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/tests/test_multiclass.py::test_ovo_string_y", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-1]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator_predict_proba", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_matrix]", "sklearn/tests/test_multioutput.py::test_multi_output_classification_sample_weights", "sklearn/tests/test_multioutput.py::test_multi_output_classification_partial_fit_sample_weights", "sklearn/tests/test_multioutput.py::test_multi_output_exceptions", "sklearn/tests/test_multioutput.py::test_multi_output_delegate_predict_proba", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_array]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-decision_function]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-3]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-4]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-decision_function]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-5]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-6]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/tests/test_multiclass.py::test_ecoc_gridsearch", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-True]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-False]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[5]", "sklearn/tests/test_multiclass.py::test_pairwise_indices", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_std_and_mean[42]", "sklearn/tests/test_multiclass.py::test_pairwise_n_features_in", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-1-cv_results_n_features0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-svd]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-1-cv_results_n_features1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[list]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-2-cv_results_n_features2]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsOneClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-2-cv_results_n_features3]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[array]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-3-cv_results_n_features4]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-3-cv_results_n_features5]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_thresholds_array", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-8]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-4-cv_results_n_features6]", "sklearn/tests/test_multiclass.py::test_ovo_consistent_binary_classification", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-4-cv_results_n_features7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-9]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-4-2-cv_results_n_features8]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[True]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[False]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_float", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-1-cv_results_n_features9]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-2-cv_results_n_features10]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_error_constant_predictor", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-2]", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[CCA-RFECV]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-svd]", "sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_proba]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSCanonical-RFECV]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_exploit_incremental_learning_routing", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-eigen]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSRegression-RFECV]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_n_features_to_select_warning[RFECV-min_features_to_select]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-4]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y2-params2-TypeError-does not support sample weight]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_log_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-5]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingRegressor]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-6]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[regressor-]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-7]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-8]", "sklearn/tests/test_multioutput.py::test_multi_output_classes_[estimator1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]", "sklearn/tests/test_multioutput.py::test_multioutput_estimator_with_fit_params[estimator0-dataset0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-9]", "sklearn/tests/test_multioutput.py::test_multioutput_estimator_with_fit_params[estimator1-dataset1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-svd]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputClassifier-LogisticRegression]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingRegressor]", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputRegressor-Ridge]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-eigen]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-1]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_multioutput.py::test_multioutputregressor_ducktypes_fitted_estimator", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-2]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-3]", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-4]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingRegressor]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-5]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_classification-StackingClassifier-LogisticRegression]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-6]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]", "sklearn/ensemble/tests/test_voting.py::test_gridsearch", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-7]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_regression-StackingRegressor-LinearRegression]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-8]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-svd]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_array]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/feature_selection/tests/test_sequential.py::test_nan_support", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_inliers_outliers", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/feature_selection/tests/test_sequential.py::test_pipeline_support", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[2]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[ValidationCurveDisplay-specific_params0-params0-ValueError-Unknown std_display_style:]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_is_model_valid", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_max_trials", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[3]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_n_inliers", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_score", "sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning", "sklearn/linear_model/tests/test_ransac.py::test_ransac_score", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[True]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_predict", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[ValidationCurveDisplay-specific_params0-params1-ValueError-Unknown score_type:]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_no_valid_model", "sklearn/feature_selection/tests/test_sequential.py::test_backward_neg_tol", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-svd]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[LearningCurveDisplay-specific_params1-params0-ValueError-Unknown std_display_style:]", "sklearn/feature_selection/tests/test_sequential.py::test_cv_generator_support", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[LearningCurveDisplay-specific_params1-params1-ValueError-Unknown score_type:]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_warn_exceed_max_skips", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[coo_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[coo_array]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csr_array]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_default_usage", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X1]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csc_matrix]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csc_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-None]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_none_estimator", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_display_default_usage", "sklearn/linear_model/tests/test_ransac.py::test_ransac_min_n_samples", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_multi_dimensional_targets", "sklearn/linear_model/tests/test_ransac.py::test_ransac_residual_loss", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[ValidationCurveDisplay-specific_params0]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_default_residual_threshold", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[LearningCurveDisplay-specific_params1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-accuracy]", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_matrix]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[ValidationCurveDisplay-specific_params0-None-Score]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-regressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-_accuracy_callable]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[CalibratedClassifierCV]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_fit_sample_weight", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[ValidationCurveDisplay-specific_params0-Accuracy-Accuracy]", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_array]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[GridSearchCV]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_final_model_fit_sample_weight", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-None]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[HalvingGridSearchCV]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[HalvingRandomSearchCV]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[MultiOutputClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-accuracy]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[MultiOutputRegressor]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[LearningCurveDisplay-specific_params1-None-Score]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[RandomizedSearchCV]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingRegressor]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[LearningCurveDisplay-specific_params1-Accuracy-Accuracy]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-_accuracy_callable]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_score_type[None]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-None]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_score_type[errorbar]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_display_score_type[None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-accuracy]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingRegressor]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_display_score_type[errorbar]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-_accuracy_callable]", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.roc_auc_score", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[list]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[tuple]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[list]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingRegressor]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[array]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[array]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[ValidationCurveDisplay-specific_params0-linear]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-cv1]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[LearningCurveDisplay-specific_params1-linear]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[ValidationCurveDisplay-specific_params2-log]", "sklearn/linear_model/tests/test_ransac.py::test_perfect_horizontal_line", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[LearningCurveDisplay-specific_params3-log]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_scores", "sklearn/tests/test_calibration.py::test_calibration_with_non_sample_aligned_fit_param", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_cv]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_std_display_style[ValidationCurveDisplay-specific_params0]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_val_predict", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_val_score", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_validate", "sklearn/tests/test_calibration.py::test_float32_predict_proba", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.learning_curve", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.permutation_test_score", "sklearn/calibration.py::sklearn.calibration.CalibratedClassifierCV", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingRegressor-ConsumingRegressor]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_std_display_style[LearningCurveDisplay-specific_params1]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_plot_kwargs[ValidationCurveDisplay-specific_params0]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingRegressor-ConsumingRegressor]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_plot_kwargs[LearningCurveDisplay-specific_params1]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_classifiers]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_xscale_from_param_range_provided_as_a_list[param_range0-linear]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_xscale_from_param_range_provided_as_a_list[param_range1-symlog]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_cv]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_classifiers]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeCV-3]", "sklearn/model_selection/tests/test_plot.py::test_validation_curve_xscale_from_param_range_provided_as_a_list[param_range2-log]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_scores_with_routing[42]", "sklearn/model_selection/tests/test_plot.py::test_subclassing_displays[LearningCurveDisplay-params0]", "sklearn/model_selection/_search.py::sklearn.model_selection._search.GridSearchCV", "sklearn/multioutput.py::sklearn.multioutput.MultiOutputClassifier", "sklearn/multioutput.py::sklearn.multioutput.MultiOutputRegressor", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-3]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/tests/test_calibration.py::test_error_less_class_samples_than_folds", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.validation_curve", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.LearningCurveDisplay", "sklearn/covariance/_graph_lasso.py::sklearn.covariance._graph_lasso.GraphicalLassoCV", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight", "sklearn/multiclass.py::sklearn.multiclass.OneVsOneClassifier", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.LearningCurveDisplay.from_estimator", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.ValidationCurveDisplay", "sklearn/model_selection/tests/test_plot.py::test_subclassing_displays[ValidationCurveDisplay-params1]", "sklearn/model_selection/_search.py::sklearn.model_selection._search.RandomizedSearchCV", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.ValidationCurveDisplay.from_estimator", "sklearn/model_selection/_search_successive_halving.py::sklearn.model_selection._search_successive_halving.HalvingGridSearchCV", "sklearn/feature_selection/_rfe.py::sklearn.feature_selection._rfe.RFECV", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingRegressor", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]", "sklearn/feature_selection/_sequential.py::sklearn.feature_selection._sequential.SequentialFeatureSelector", "sklearn/model_selection/_search_successive_halving.py::sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV", "sklearn/linear_model/_ransac.py::sklearn.linear_model._ransac.RANSACRegressor", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RegressorChain(base_estimator=Ridge(),cv=3)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiOutputClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiOutputRegressor(estimator=Ridge())]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiOutputClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiOutputRegressor(estimator=Ridge())]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-216
1.0
{ "code": "diff --git b/sklearn/metrics/_scorer.py a/sklearn/metrics/_scorer.py\nindex eaa4e4797..f09b4e6d7 100644\n--- b/sklearn/metrics/_scorer.py\n+++ a/sklearn/metrics/_scorer.py\n@@ -546,6 +546,63 @@ def _check_multimetric_scoring(estimator, scoring):\n scorers_dict : dict\n A dict mapping each scorer name to its validated scorer.\n \"\"\"\n+ err_msg_generic = (\n+ f\"scoring is invalid (got {scoring!r}). Refer to the \"\n+ \"scoring glossary for details: \"\n+ \"https://scikit-learn.org/stable/glossary.html#term-scoring\"\n+ )\n+\n+ if isinstance(scoring, (list, tuple, set)):\n+ err_msg = (\n+ \"The list/tuple elements must be unique strings of predefined scorers. \"\n+ )\n+ try:\n+ keys = set(scoring)\n+ except TypeError as e:\n+ raise ValueError(err_msg) from e\n+\n+ if len(keys) != len(scoring):\n+ raise ValueError(\n+ f\"{err_msg} Duplicate elements were found in\"\n+ f\" the given list. {scoring!r}\"\n+ )\n+ elif len(keys) > 0:\n+ if not all(isinstance(k, str) for k in keys):\n+ if any(callable(k) for k in keys):\n+ raise ValueError(\n+ f\"{err_msg} One or more of the elements \"\n+ \"were callables. Use a dict of score \"\n+ \"name mapped to the scorer callable. \"\n+ f\"Got {scoring!r}\"\n+ )\n+ else:\n+ raise ValueError(\n+ f\"{err_msg} Non-string types were found \"\n+ f\"in the given list. Got {scoring!r}\"\n+ )\n+ scorers = {\n+ scorer: check_scoring(estimator, scoring=scorer) for scorer in scoring\n+ }\n+ else:\n+ raise ValueError(f\"{err_msg} Empty list was given. {scoring!r}\")\n+\n+ elif isinstance(scoring, dict):\n+ keys = set(scoring)\n+ if not all(isinstance(k, str) for k in keys):\n+ raise ValueError(\n+ \"Non-string types were found in the keys of \"\n+ f\"the given dict. scoring={scoring!r}\"\n+ )\n+ if len(keys) == 0:\n+ raise ValueError(f\"An empty dict was passed. {scoring!r}\")\n+ scorers = {\n+ key: check_scoring(estimator, scoring=scorer)\n+ for key, scorer in scoring.items()\n+ }\n+ else:\n+ raise ValueError(err_msg_generic)\n+\n+ return scorers\n \n \n def _get_response_method(response_method, needs_threshold, needs_proba):\n", "test": null }
null
{ "code": "diff --git a/sklearn/metrics/_scorer.py b/sklearn/metrics/_scorer.py\nindex f09b4e6d7..eaa4e4797 100644\n--- a/sklearn/metrics/_scorer.py\n+++ b/sklearn/metrics/_scorer.py\n@@ -546,63 +546,6 @@ def _check_multimetric_scoring(estimator, scoring):\n scorers_dict : dict\n A dict mapping each scorer name to its validated scorer.\n \"\"\"\n- err_msg_generic = (\n- f\"scoring is invalid (got {scoring!r}). Refer to the \"\n- \"scoring glossary for details: \"\n- \"https://scikit-learn.org/stable/glossary.html#term-scoring\"\n- )\n-\n- if isinstance(scoring, (list, tuple, set)):\n- err_msg = (\n- \"The list/tuple elements must be unique strings of predefined scorers. \"\n- )\n- try:\n- keys = set(scoring)\n- except TypeError as e:\n- raise ValueError(err_msg) from e\n-\n- if len(keys) != len(scoring):\n- raise ValueError(\n- f\"{err_msg} Duplicate elements were found in\"\n- f\" the given list. {scoring!r}\"\n- )\n- elif len(keys) > 0:\n- if not all(isinstance(k, str) for k in keys):\n- if any(callable(k) for k in keys):\n- raise ValueError(\n- f\"{err_msg} One or more of the elements \"\n- \"were callables. Use a dict of score \"\n- \"name mapped to the scorer callable. \"\n- f\"Got {scoring!r}\"\n- )\n- else:\n- raise ValueError(\n- f\"{err_msg} Non-string types were found \"\n- f\"in the given list. Got {scoring!r}\"\n- )\n- scorers = {\n- scorer: check_scoring(estimator, scoring=scorer) for scorer in scoring\n- }\n- else:\n- raise ValueError(f\"{err_msg} Empty list was given. {scoring!r}\")\n-\n- elif isinstance(scoring, dict):\n- keys = set(scoring)\n- if not all(isinstance(k, str) for k in keys):\n- raise ValueError(\n- \"Non-string types were found in the keys of \"\n- f\"the given dict. scoring={scoring!r}\"\n- )\n- if len(keys) == 0:\n- raise ValueError(f\"An empty dict was passed. {scoring!r}\")\n- scorers = {\n- key: check_scoring(estimator, scoring=scorer)\n- for key, scorer in scoring.items()\n- }\n- else:\n- raise ValueError(err_msg_generic)\n-\n- return scorers\n \n \n def _get_response_method(response_method, needs_threshold, needs_proba):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/metrics/_scorer.py.\nHere is the description for the function:\ndef _check_multimetric_scoring(estimator, scoring):\n \"\"\"Check the scoring parameter in cases when multiple metrics are allowed.\n\n In addition, multimetric scoring leverages a caching mechanism to not call the same\n estimator response method multiple times. Hence, the scorer is modified to only use\n a single response method given a list of response methods and the estimator.\n\n Parameters\n ----------\n estimator : sklearn estimator instance\n The estimator for which the scoring will be applied.\n\n scoring : list, tuple or dict\n Strategy to evaluate the performance of the cross-validated model on\n the test set.\n\n The possibilities are:\n\n - a list or tuple of unique strings;\n - a callable returning a dictionary where they keys are the metric\n names and the values are the metric scores;\n - a dictionary with metric names as keys and callables a values.\n\n See :ref:`multimetric_grid_search` for an example.\n\n Returns\n -------\n scorers_dict : dict\n A dict mapping each scorer name to its validated scorer.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[tuple of callables]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[list of int]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[tuple of one callable]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[empty tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[non-unique str]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[non-string key dict]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[empty dict]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_gridsearchcv", "sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_regressor_threshold", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_exception_handling[True]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_exception_handling[False]", "sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring0]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring1]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring2]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring3]", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scoring_metadata_routing", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_cross_validation", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[True]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[False]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_repr", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_multimetric_raise_exc", "sklearn/linear_model/tests/test_logistic.py::test_scores_attribute_layout_elasticnet", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-DecisionTreeClassifier-0.85]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-ExtraTreeClassifier-0.53]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_invalid_scoring_param", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_matrix-False]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_matrix-True]", "sklearn/model_selection/tests/test_search.py::test_no_refit", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_array-False]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_array-True]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_predict_groups", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_mask", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params[coo_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func", "sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification", "sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results_multimetric", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric", "sklearn/tests/test_naive_bayes.py::test_check_accuracy_on_digits", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-backward]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-backward]", "sklearn/preprocessing/tests/test_target_encoder.py::test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not[42]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[1.0-10-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-forward]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-backward]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-1]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-2]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params[coo_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-3]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params[coo_array]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-6]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsOneClassifier]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-8]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[GridSearchCV-param_grid]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-9]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[RandomizedSearchCV-param_distributions]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-6]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-0]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-1]", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-3]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_tags", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-4]", "sklearn/model_selection/tests/test_validation.py::test_score_memmap", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]", "sklearn/feature_selection/tests/test_sequential.py::test_nan_support", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]", "sklearn/feature_selection/tests/test_sequential.py::test_pipeline_support", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[2]", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[3]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]", "sklearn/feature_selection/tests/test_sequential.py::test_backward_neg_tol", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]", "sklearn/feature_selection/tests/test_sequential.py::test_cv_generator_support", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv", "sklearn/model_selection/tests/test_validation.py::test_fit_param_deprecation[cross_val_score-extra_args1]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[list]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[tuple]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[array]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_scores", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_scores_with_routing[42]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_array]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_val_score", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_validate", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.check_scoring", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer0-multi_scorer0]", "sklearn/covariance/_graph_lasso.py::sklearn.covariance._graph_lasso.GraphicalLassoCV", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer1-multi_scorer1]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/feature_selection/_sequential.py::sklearn.feature_selection._sequential.SequentialFeatureSelector", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/model_selection/tests/test_validation.py::test_passed_unrequested_metadata[cross_val_score-extra_args1]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_validate-extra_args0]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_val_score-extra_args1]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[SequentialFeatureSelector]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SequentialFeatureSelector]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[SequentialFeatureSelector]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[GraphicalLassoCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[SequentialFeatureSelector]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-217
1.0
{ "code": "diff --git b/sklearn/neighbors/_base.py a/sklearn/neighbors/_base.py\nindex 2f8d555a8..e8647d1a1 100644\n--- b/sklearn/neighbors/_base.py\n+++ a/sklearn/neighbors/_base.py\n@@ -166,6 +166,27 @@ def _check_precomputed(X):\n Distance matrix to other samples. X may be a sparse matrix, in which\n case only non-zero elements may be considered neighbors.\n \"\"\"\n+ if not issparse(X):\n+ X = check_array(X, ensure_non_negative=True, input_name=\"X\")\n+ return X\n+ else:\n+ graph = X\n+\n+ if graph.format not in (\"csr\", \"csc\", \"coo\", \"lil\"):\n+ raise TypeError(\n+ \"Sparse matrix in {!r} format is not supported due to \"\n+ \"its handling of explicit zeros\".format(graph.format)\n+ )\n+ copied = graph.format != \"csr\"\n+ graph = check_array(\n+ graph,\n+ accept_sparse=\"csr\",\n+ ensure_non_negative=True,\n+ input_name=\"precomputed distance matrix\",\n+ )\n+ graph = sort_graph_by_row_values(graph, copy=not copied, warn_when_not_sorted=True)\n+\n+ return graph\n \n \n @validate_params(\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_base.py b/sklearn/neighbors/_base.py\nindex e8647d1a1..2f8d555a8 100644\n--- a/sklearn/neighbors/_base.py\n+++ b/sklearn/neighbors/_base.py\n@@ -166,27 +166,6 @@ def _check_precomputed(X):\n Distance matrix to other samples. X may be a sparse matrix, in which\n case only non-zero elements may be considered neighbors.\n \"\"\"\n- if not issparse(X):\n- X = check_array(X, ensure_non_negative=True, input_name=\"X\")\n- return X\n- else:\n- graph = X\n-\n- if graph.format not in (\"csr\", \"csc\", \"coo\", \"lil\"):\n- raise TypeError(\n- \"Sparse matrix in {!r} format is not supported due to \"\n- \"its handling of explicit zeros\".format(graph.format)\n- )\n- copied = graph.format != \"csr\"\n- graph = check_array(\n- graph,\n- accept_sparse=\"csr\",\n- ensure_non_negative=True,\n- input_name=\"precomputed distance matrix\",\n- )\n- graph = sort_graph_by_row_values(graph, copy=not copied, warn_when_not_sorted=True)\n-\n- return graph\n \n \n @validate_params(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_base.py.\nHere is the description for the function:\ndef _check_precomputed(X):\n \"\"\"Check precomputed distance matrix.\n\n If the precomputed distance matrix is sparse, it checks that the non-zero\n entries are sorted by distances. If not, the matrix is copied and sorted.\n\n Parameters\n ----------\n X : {sparse matrix, array-like}, (n_samples, n_samples)\n Distance matrix to other samples. X may be a sparse matrix, in which\n case only non-zero elements may be considered neighbors.\n\n Returns\n -------\n X : {sparse matrix, array-like}, (n_samples, n_samples)\n Distance matrix to other samples. X may be a sparse matrix, in which\n case only non-zero elements may be considered neighbors.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_equivalence_of_precomputed", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_dense", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_knn[csr]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_knn[lil]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_radius[csr]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_radius[lil]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values[csr_matrix-_check_precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values[csr_array-_check_precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_copy[csr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_copy[csr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_warning[csr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_warning[csr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_bad_sparse_format[dok_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_bad_sparse_format[dok_array]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_bad_sparse_format[bsr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_bad_sparse_format[bsr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_bad_sparse_format[dia_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_sort_graph_by_row_values_bad_sparse_format[dia_array]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_invalid[csr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_invalid[csr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_cross_validation", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_returns_array_of_objects[csr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_returns_array_of_objects[csr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_sort_results[brute-precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_regressor_sparse", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float64-csr_matrix-precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float64-csr_array-precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_pipeline_with_nearest_neighbors_transformer", "sklearn/neighbors/tests/test_neighbors.py::test_auto_algorithm[X0-precomputed-None-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_precomputed[float64]", "sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer[float64]", "sklearn/manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately_with_precomputed_distances", "sklearn/manifold/tests/test_isomap.py::test_isomap_fit_precomputed_radius_graph[float64]", "sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components_metric_precomputed[float64]", "sklearn/manifold/tests/test_t_sne.py::test_high_perplexity_precomputed_sparse_distances[csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_high_perplexity_precomputed_sparse_distances[csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[csr_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[csr_array]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[lil_matrix]", "sklearn/manifold/tests/test_t_sne.py::test_sparse_precomputed_distance[lil_array]", "sklearn/manifold/tests/test_t_sne.py::test_init_ndarray_precomputed", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_different_distance_metrics[barnes_hut-cosine-cosine_distances]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_mahalanobis_distance", "sklearn/cluster/tests/test_optics.py::test_precomputed_dists[float64-None]", "sklearn/cluster/tests/test_optics.py::test_precomputed_dists[float64-csr_matrix]", "sklearn/cluster/tests/test_optics.py::test_precomputed_dists[float64-csr_array]", "sklearn/cluster/tests/test_optics.py::test_optics_input_not_modified_precomputed_sparse_nodiag[csr_matrix]", "sklearn/cluster/tests/test_optics.py::test_optics_input_not_modified_precomputed_sparse_nodiag[csr_array]", "sklearn/cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_similarity", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed[False]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed[True]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed_different_eps", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[csr_matrix-precomputed]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[csr_array-precomputed]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[None-precomputed]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified_precomputed_sparse_nodiag[csr_matrix]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified_precomputed_sparse_nodiag[csr_array]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_balltree", "sklearn/cluster/tests/test_dbscan.py::test_weighted_dbscan[42]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_degenerate_input_arrays", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_initial_rows_zero[csr_matrix]", "sklearn/manifold/tests/test_spectral_embedding.py::test_precomputed_nearest_neighbors_filtering", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_initial_rows_zero[csr_array]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_dbscan", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_isomap", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_tsne", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_false", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_true", "sklearn/neighbors/_graph.py::sklearn.neighbors._graph.RadiusNeighborsTransformer", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_kneighbors_regressor", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_pairwise" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-218
1.0
{ "code": "diff --git b/sklearn/utils/validation.py a/sklearn/utils/validation.py\nindex 970f5929c..401e72cef 100644\n--- b/sklearn/utils/validation.py\n+++ a/sklearn/utils/validation.py\n@@ -1966,6 +1966,96 @@ def _check_psd_eigenvalues(lambdas, enable_warnings=False):\n \n \"\"\"\n \n+ lambdas = np.array(lambdas)\n+ is_double_precision = lambdas.dtype == np.float64\n+\n+ # note: the minimum value available is\n+ # - single-precision: np.finfo('float32').eps = 1.2e-07\n+ # - double-precision: np.finfo('float64').eps = 2.2e-16\n+\n+ # the various thresholds used for validation\n+ # we may wish to change the value according to precision.\n+ significant_imag_ratio = 1e-5\n+ significant_neg_ratio = 1e-5 if is_double_precision else 5e-3\n+ significant_neg_value = 1e-10 if is_double_precision else 1e-6\n+ small_pos_ratio = 1e-12 if is_double_precision else 2e-7\n+\n+ # Check that there are no significant imaginary parts\n+ if not np.isreal(lambdas).all():\n+ max_imag_abs = np.abs(np.imag(lambdas)).max()\n+ max_real_abs = np.abs(np.real(lambdas)).max()\n+ if max_imag_abs > significant_imag_ratio * max_real_abs:\n+ raise ValueError(\n+ \"There are significant imaginary parts in eigenvalues (%g \"\n+ \"of the maximum real part). Either the matrix is not PSD, or \"\n+ \"there was an issue while computing the eigendecomposition \"\n+ \"of the matrix.\" % (max_imag_abs / max_real_abs)\n+ )\n+\n+ # warn about imaginary parts being removed\n+ if enable_warnings:\n+ warnings.warn(\n+ \"There are imaginary parts in eigenvalues (%g \"\n+ \"of the maximum real part). Either the matrix is not\"\n+ \" PSD, or there was an issue while computing the \"\n+ \"eigendecomposition of the matrix. Only the real \"\n+ \"parts will be kept.\" % (max_imag_abs / max_real_abs),\n+ PositiveSpectrumWarning,\n+ )\n+\n+ # Remove all imaginary parts (even if zero)\n+ lambdas = np.real(lambdas)\n+\n+ # Check that there are no significant negative eigenvalues\n+ max_eig = lambdas.max()\n+ if max_eig < 0:\n+ raise ValueError(\n+ \"All eigenvalues are negative (maximum is %g). \"\n+ \"Either the matrix is not PSD, or there was an \"\n+ \"issue while computing the eigendecomposition of \"\n+ \"the matrix.\" % max_eig\n+ )\n+\n+ else:\n+ min_eig = lambdas.min()\n+ if (\n+ min_eig < -significant_neg_ratio * max_eig\n+ and min_eig < -significant_neg_value\n+ ):\n+ raise ValueError(\n+ \"There are significant negative eigenvalues (%g\"\n+ \" of the maximum positive). Either the matrix is \"\n+ \"not PSD, or there was an issue while computing \"\n+ \"the eigendecomposition of the matrix.\" % (-min_eig / max_eig)\n+ )\n+ elif min_eig < 0:\n+ # Remove all negative values and warn about it\n+ if enable_warnings:\n+ warnings.warn(\n+ \"There are negative eigenvalues (%g of the \"\n+ \"maximum positive). Either the matrix is not \"\n+ \"PSD, or there was an issue while computing the\"\n+ \" eigendecomposition of the matrix. Negative \"\n+ \"eigenvalues will be replaced with 0.\" % (-min_eig / max_eig),\n+ PositiveSpectrumWarning,\n+ )\n+ lambdas[lambdas < 0] = 0\n+\n+ # Check for conditioning (small positive non-zeros)\n+ too_small_lambdas = (0 < lambdas) & (lambdas < small_pos_ratio * max_eig)\n+ if too_small_lambdas.any():\n+ if enable_warnings:\n+ warnings.warn(\n+ \"Badly conditioned PSD matrix spectrum: the largest \"\n+ \"eigenvalue is more than %g times the smallest. \"\n+ \"Small eigenvalues will be replaced with 0.\"\n+ \"\" % (1 / small_pos_ratio),\n+ PositiveSpectrumWarning,\n+ )\n+ lambdas[too_small_lambdas] = 0\n+\n+ return lambdas\n+\n \n def _check_sample_weight(\n sample_weight, X, dtype=None, copy=False, ensure_non_negative=False\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py\nindex 401e72cef..970f5929c 100644\n--- a/sklearn/utils/validation.py\n+++ b/sklearn/utils/validation.py\n@@ -1966,96 +1966,6 @@ def _check_psd_eigenvalues(lambdas, enable_warnings=False):\n \n \"\"\"\n \n- lambdas = np.array(lambdas)\n- is_double_precision = lambdas.dtype == np.float64\n-\n- # note: the minimum value available is\n- # - single-precision: np.finfo('float32').eps = 1.2e-07\n- # - double-precision: np.finfo('float64').eps = 2.2e-16\n-\n- # the various thresholds used for validation\n- # we may wish to change the value according to precision.\n- significant_imag_ratio = 1e-5\n- significant_neg_ratio = 1e-5 if is_double_precision else 5e-3\n- significant_neg_value = 1e-10 if is_double_precision else 1e-6\n- small_pos_ratio = 1e-12 if is_double_precision else 2e-7\n-\n- # Check that there are no significant imaginary parts\n- if not np.isreal(lambdas).all():\n- max_imag_abs = np.abs(np.imag(lambdas)).max()\n- max_real_abs = np.abs(np.real(lambdas)).max()\n- if max_imag_abs > significant_imag_ratio * max_real_abs:\n- raise ValueError(\n- \"There are significant imaginary parts in eigenvalues (%g \"\n- \"of the maximum real part). Either the matrix is not PSD, or \"\n- \"there was an issue while computing the eigendecomposition \"\n- \"of the matrix.\" % (max_imag_abs / max_real_abs)\n- )\n-\n- # warn about imaginary parts being removed\n- if enable_warnings:\n- warnings.warn(\n- \"There are imaginary parts in eigenvalues (%g \"\n- \"of the maximum real part). Either the matrix is not\"\n- \" PSD, or there was an issue while computing the \"\n- \"eigendecomposition of the matrix. Only the real \"\n- \"parts will be kept.\" % (max_imag_abs / max_real_abs),\n- PositiveSpectrumWarning,\n- )\n-\n- # Remove all imaginary parts (even if zero)\n- lambdas = np.real(lambdas)\n-\n- # Check that there are no significant negative eigenvalues\n- max_eig = lambdas.max()\n- if max_eig < 0:\n- raise ValueError(\n- \"All eigenvalues are negative (maximum is %g). \"\n- \"Either the matrix is not PSD, or there was an \"\n- \"issue while computing the eigendecomposition of \"\n- \"the matrix.\" % max_eig\n- )\n-\n- else:\n- min_eig = lambdas.min()\n- if (\n- min_eig < -significant_neg_ratio * max_eig\n- and min_eig < -significant_neg_value\n- ):\n- raise ValueError(\n- \"There are significant negative eigenvalues (%g\"\n- \" of the maximum positive). Either the matrix is \"\n- \"not PSD, or there was an issue while computing \"\n- \"the eigendecomposition of the matrix.\" % (-min_eig / max_eig)\n- )\n- elif min_eig < 0:\n- # Remove all negative values and warn about it\n- if enable_warnings:\n- warnings.warn(\n- \"There are negative eigenvalues (%g of the \"\n- \"maximum positive). Either the matrix is not \"\n- \"PSD, or there was an issue while computing the\"\n- \" eigendecomposition of the matrix. Negative \"\n- \"eigenvalues will be replaced with 0.\" % (-min_eig / max_eig),\n- PositiveSpectrumWarning,\n- )\n- lambdas[lambdas < 0] = 0\n-\n- # Check for conditioning (small positive non-zeros)\n- too_small_lambdas = (0 < lambdas) & (lambdas < small_pos_ratio * max_eig)\n- if too_small_lambdas.any():\n- if enable_warnings:\n- warnings.warn(\n- \"Badly conditioned PSD matrix spectrum: the largest \"\n- \"eigenvalue is more than %g times the smallest. \"\n- \"Small eigenvalues will be replaced with 0.\"\n- \"\" % (1 / small_pos_ratio),\n- PositiveSpectrumWarning,\n- )\n- lambdas[too_small_lambdas] = 0\n-\n- return lambdas\n-\n \n def _check_sample_weight(\n sample_weight, X, dtype=None, copy=False, ensure_non_negative=False\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/validation.py.\nHere is the description for the function:\ndef _check_psd_eigenvalues(lambdas, enable_warnings=False):\n \"\"\"Check the eigenvalues of a positive semidefinite (PSD) matrix.\n\n Checks the provided array of PSD matrix eigenvalues for numerical or\n conditioning issues and returns a fixed validated version. This method\n should typically be used if the PSD matrix is user-provided (e.g. a\n Gram matrix) or computed using a user-provided dissimilarity metric\n (e.g. kernel function), or if the decomposition process uses approximation\n methods (randomized SVD, etc.).\n\n It checks for three things:\n\n - that there are no significant imaginary parts in eigenvalues (more than\n 1e-5 times the maximum real part). If this check fails, it raises a\n ``ValueError``. Otherwise all non-significant imaginary parts that may\n remain are set to zero. This operation is traced with a\n ``PositiveSpectrumWarning`` when ``enable_warnings=True``.\n\n - that eigenvalues are not all negative. If this check fails, it raises a\n ``ValueError``\n\n - that there are no significant negative eigenvalues with absolute value\n more than 1e-10 (1e-6) and more than 1e-5 (5e-3) times the largest\n positive eigenvalue in double (simple) precision. If this check fails,\n it raises a ``ValueError``. Otherwise all negative eigenvalues that may\n remain are set to zero. This operation is traced with a\n ``PositiveSpectrumWarning`` when ``enable_warnings=True``.\n\n Finally, all the positive eigenvalues that are too small (with a value\n smaller than the maximum eigenvalue multiplied by 1e-12 (2e-7)) are set to\n zero. This operation is traced with a ``PositiveSpectrumWarning`` when\n ``enable_warnings=True``.\n\n Parameters\n ----------\n lambdas : array-like of shape (n_eigenvalues,)\n Array of eigenvalues to check / fix.\n\n enable_warnings : bool, default=False\n When this is set to ``True``, a ``PositiveSpectrumWarning`` will be\n raised when there are imaginary parts, negative eigenvalues, or\n extremely small non-zero eigenvalues. Otherwise no warning will be\n raised. In both cases, imaginary parts, negative eigenvalues, and\n extremely small non-zero eigenvalues will be set to zero.\n\n Returns\n -------\n lambdas_fixed : ndarray of shape (n_eigenvalues,)\n A fixed validated copy of the array of eigenvalues.\n\n Examples\n --------\n >>> from sklearn.utils.validation import _check_psd_eigenvalues\n >>> _check_psd_eigenvalues([1, 2]) # nominal case\n array([1, 2])\n >>> _check_psd_eigenvalues([5, 5j]) # significant imag part\n Traceback (most recent call last):\n ...\n ValueError: There are significant imaginary parts in eigenvalues (1\n of the maximum real part). Either the matrix is not PSD, or there was\n an issue while computing the eigendecomposition of the matrix.\n >>> _check_psd_eigenvalues([5, 5e-5j]) # insignificant imag part\n array([5., 0.])\n >>> _check_psd_eigenvalues([-5, -1]) # all negative\n Traceback (most recent call last):\n ...\n ValueError: All eigenvalues are negative (maximum is -1). Either the\n matrix is not PSD, or there was an issue while computing the\n eigendecomposition of the matrix.\n >>> _check_psd_eigenvalues([5, -1]) # significant negative\n Traceback (most recent call last):\n ...\n ValueError: There are significant negative eigenvalues (0.2 of the\n maximum positive). Either the matrix is not PSD, or there was an issue\n while computing the eigendecomposition of the matrix.\n >>> _check_psd_eigenvalues([5, -5e-5]) # insignificant negative\n array([5., 0.])\n >>> _check_psd_eigenvalues([5, 4e-12]) # bad conditioning (too small)\n array([5., 0.])\n\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/_loss/tests/test_loss.py::test_binomial_vs_alternative_formulation[float32-y_pred0-y_true0]", "sklearn/_loss/tests/test_loss.py::test_binomial_vs_alternative_formulation[float32-y_pred0-y_true1]", "sklearn/_loss/tests/test_loss.py::test_binomial_vs_alternative_formulation[float32-y_pred1-y_true0]", "sklearn/_loss/tests/test_loss.py::test_binomial_vs_alternative_formulation[float32-y_pred1-y_true1]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation[float32-42]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict[float32-42]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_fit_non_convergence[float32]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_equal_mutual_similarities[float32]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_non_convergence[float32]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_non_convergence_regressiontest[float32]", "sklearn/cluster/tests/test_affinity_propagation.py::test_equal_similarities_and_preferences[float32]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float32-csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float32-csr_array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float32-array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_correct_clusters[float32]", "sklearn/cluster/tests/test_birch.py::test_n_samples_leaves_roots[float32-42]", "sklearn/cluster/tests/test_birch.py::test_partial_fit[float32-42]", "sklearn/cluster/tests/test_birch.py::test_birch_predict[float32-42]", "sklearn/cluster/tests/test_birch.py::test_n_clusters[float32-42]", "sklearn/cluster/tests/test_birch.py::test_sparse_X[float32-42-csr_matrix]", "sklearn/cluster/tests/test_birch.py::test_sparse_X[float32-42-csr_array]", "sklearn/cluster/tests/test_birch.py::test_branching_factor[float32-42]", "sklearn/cluster/tests/test_birch.py::test_threshold[float32-42]", "sklearn/cluster/tests/test_birch.py::test_subcluster_dtype[float32]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float32-csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float32-csr_array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float32-None]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-KMeans-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-KMeans-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-KMeans-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-KMeans-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-KMeans-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-KMeans-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-MiniBatchKMeans-None-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-MiniBatchKMeans-None-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-2-MiniBatchKMeans-None-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-KMeans-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-KMeans-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-KMeans-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-KMeans-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-KMeans-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-KMeans-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-MiniBatchKMeans-None-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-MiniBatchKMeans-None-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float32-42-100-MiniBatchKMeans-None-sparse_array]", "sklearn/cluster/tests/test_mean_shift.py::test_estimate_bandwidth_1sample[float32]", "sklearn/cluster/tests/test_mean_shift.py::test_mean_shift[float32-1.2-True-3-0]", "sklearn/cluster/tests/test_mean_shift.py::test_mean_shift[float32-1.2-False-4--1]", "sklearn/cluster/tests/test_mean_shift.py::test_parallel[float32]", "sklearn/cluster/tests/test_mean_shift.py::test_meanshift_predict[float32]", "sklearn/cluster/tests/test_mean_shift.py::test_cluster_intensity_tie[float32]", "sklearn/cluster/tests/test_mean_shift.py::test_bin_seeds[float32]", "sklearn/cluster/tests/test_mean_shift.py::test_mean_shift_zero_bandwidth[float32]", "sklearn/cluster/tests/test_optics.py::test_extract_xi[float32]", "sklearn/cluster/tests/test_optics.py::test_cluster_hierarchy_[float32]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-minkowski-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-None-euclidean-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_matrix-euclidean-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float32-csr_array-euclidean-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_min_samples_edge_case[float32]", "sklearn/cluster/tests/test_optics.py::test_min_cluster_size[float32-2]", "sklearn/cluster/tests/test_optics.py::test_extract_dbscan[float32]", "sklearn/cluster/tests/test_optics.py::test_precomputed_dists[float32-None]", "sklearn/cluster/tests/test_optics.py::test_precomputed_dists[float32-csr_matrix]", "sklearn/cluster/tests/test_optics.py::test_precomputed_dists[float32-csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_dataframe[polars]", "sklearn/compose/tests/test_column_transformer.py::test_dataframe_different_dataframe_libraries", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_column_renaming[polars]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_with_duplicated_columns[polars]", "sklearn/datasets/_california_housing.py::sklearn.datasets._california_housing.fetch_california_housing", "sklearn/datasets/_covtype.py::sklearn.datasets._covtype.fetch_covtype", "sklearn/datasets/_lfw.py::sklearn.datasets._lfw.fetch_lfw_pairs", "sklearn/datasets/_lfw.py::sklearn.datasets._lfw.fetch_lfw_people", "sklearn/datasets/_olivetti_faces.py::sklearn.datasets._olivetti_faces.fetch_olivetti_faces", "sklearn/datasets/_rcv1.py::sklearn.datasets._rcv1.fetch_rcv1", "sklearn/datasets/_species_distributions.py::sklearn.datasets._species_distributions.fetch_species_distributions", "sklearn/datasets/_twenty_newsgroups.py::sklearn.datasets._twenty_newsgroups.fetch_20newsgroups", "sklearn/datasets/_twenty_newsgroups.py::sklearn.datasets._twenty_newsgroups.fetch_20newsgroups_vectorized", "sklearn/datasets/tests/test_20news.py::test_20news", "sklearn/datasets/tests/test_20news.py::test_20news_length_consistency", "sklearn/datasets/tests/test_20news.py::test_20news_vectorized", "sklearn/datasets/tests/test_20news.py::test_20news_normalization", "sklearn/datasets/tests/test_20news.py::test_20news_as_frame", "sklearn/datasets/tests/test_20news.py::test_as_frame_no_pandas", "sklearn/datasets/tests/test_20news.py::test_outdated_pickle", "sklearn/datasets/tests/test_arff_parser.py::test_pandas_arff_parser_strip_no_quotes[_liac_arff_parser]", "sklearn/datasets/tests/test_california_housing.py::test_fetch", "sklearn/datasets/tests/test_california_housing.py::test_fetch_asframe", "sklearn/datasets/tests/test_california_housing.py::test_pandas_dependency_message", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_20newsgroups-fetch_20newsgroups]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_20newsgroups_vectorized-fetch_20newsgroups_vectorized]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_california_housing-fetch_california_housing]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_covtype-fetch_covtype]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_kddcup99-fetch_kddcup99]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_lfw_people-fetch_lfw_people]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_olivetti_faces-fetch_olivetti_faces]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_openml-fetch_openml]", "sklearn/datasets/tests/test_common.py::test_common_check_return_X_y[fetch_rcv1-fetch_rcv1]", "sklearn/datasets/tests/test_common.py::test_common_check_as_frame[fetch_20newsgroups_vectorized-fetch_20newsgroups_vectorized]", "sklearn/datasets/tests/test_common.py::test_common_check_as_frame[fetch_california_housing-fetch_california_housing]", "sklearn/datasets/tests/test_common.py::test_common_check_as_frame[fetch_covtype-fetch_covtype]", "sklearn/datasets/tests/test_common.py::test_common_check_as_frame[fetch_kddcup99-fetch_kddcup99]", "sklearn/datasets/tests/test_common.py::test_common_check_as_frame[fetch_openml-fetch_openml]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[fetch_20newsgroups_vectorized-fetch_20newsgroups_vectorized]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[fetch_california_housing-fetch_california_housing]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[fetch_covtype-fetch_covtype]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[fetch_kddcup99-fetch_kddcup99]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[fetch_openml-fetch_openml]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[load_breast_cancer-load_breast_cancer]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[load_diabetes-load_diabetes]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[load_digits-load_digits]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[load_iris-load_iris]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[load_linnerud-load_linnerud]", "sklearn/datasets/tests/test_common.py::test_common_check_pandas_dependency[load_wine-load_wine]", "sklearn/datasets/tests/test_covtype.py::test_fetch[42]", "sklearn/datasets/tests/test_covtype.py::test_fetch_asframe", "sklearn/datasets/tests/test_covtype.py::test_pandas_dependency_message", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[None-494021-41-True]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[None-494021-41-False]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[SA-100655-41-True]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[SA-100655-41-False]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[SF-73237-4-True]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[SF-73237-4-False]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[http-58725-3-True]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[http-58725-3-False]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[smtp-9571-3-True]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_percent10[smtp-9571-3-False]", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_return_X_y", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_as_frame", "sklearn/datasets/tests/test_kddcup99.py::test_fetch_kddcup99_shuffle", "sklearn/datasets/tests/test_kddcup99.py::test_pandas_dependency_message", "sklearn/datasets/tests/test_kddcup99.py::test_corrupted_file_error_message", "sklearn/datasets/tests/test_olivetti_faces.py::test_olivetti_faces", "sklearn/datasets/tests/test_openml.py::test_fetch_openml_requires_pandas_error[params0]", "sklearn/datasets/tests/test_openml.py::test_fetch_openml_requires_pandas_error[params1]", "sklearn/datasets/tests/test_openml.py::test_fetch_openml_requires_pandas_error[params2]", "sklearn/datasets/tests/test_openml.py::test_fetch_openml_requires_pandas_error[params3]", "sklearn/datasets/tests/test_rcv1.py::test_fetch_rcv1[42]", "sklearn/datasets/tests/test_svmlight_format.py::test_load_large_qid", "sklearn/decomposition/_kernel_pca.py::sklearn.decomposition._kernel_pca.KernelPCA", "sklearn/decomposition/tests/test_fastica.py::test_fastica_attributes_dtypes[float32]", "sklearn/decomposition/tests/test_fastica.py::test_fastica_return_dtypes[float32]", "sklearn/decomposition/tests/test_fastica.py::test_fastica_simple[float32-42-True]", "sklearn/decomposition/tests/test_fastica.py::test_fastica_simple[float32-42-False]", "sklearn/decomposition/tests/test_fastica.py::test_fit_transform[float32-42]", "sklearn/decomposition/tests/test_fastica.py::test_inverse_transform[float32-42-arbitrary-variance-5-expected_mixing_shape0]", "sklearn/decomposition/tests/test_fastica.py::test_inverse_transform[float32-42-arbitrary-variance-10-expected_mixing_shape1]", "sklearn/decomposition/tests/test_fastica.py::test_inverse_transform[float32-42-unit-variance-5-expected_mixing_shape2]", "sklearn/decomposition/tests/test_fastica.py::test_inverse_transform[float32-42-unit-variance-10-expected_mixing_shape3]", "sklearn/decomposition/tests/test_fastica.py::test_inverse_transform[float32-42-False-5-expected_mixing_shape4]", "sklearn/decomposition/tests/test_fastica.py::test_inverse_transform[float32-42-False-10-expected_mixing_shape5]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_consistent_transform", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_deterministic_output", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_sparse[csr_matrix]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_sparse[csr_array]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-auto]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-dense]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-arpack]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-randomized]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-auto]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-dense]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-arpack]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-randomized]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_n_components", "sklearn/decomposition/tests/test_kernel_pca.py::test_remove_zero_eig", "sklearn/decomposition/tests/test_kernel_pca.py::test_leave_zero_eig", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[auto]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[dense]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[arpack]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[randomized]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/decomposition/tests/test_kernel_pca.py::test_nested_circles", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_conditioning", "sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[auto]", "sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[dense]", "sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[arpack]", "sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[randomized]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_solvers_equivalence[4]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_solvers_equivalence[10]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_solvers_equivalence[20]", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_inverse_transform_reconstruction", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_raise_not_fitted_error", "sklearn/decomposition/tests/test_kernel_pca.py::test_32_64_decomposition_shape", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_feature_names_out", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_inverse_correct_gamma", "sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_pandas_output", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dtype_match[float32-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dtype_match[float32-online]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-False-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-False-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-False-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-False-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-False-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-False-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-True-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-True-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-True-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-True-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-True-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-False-True-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-False-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-False-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-False-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-False-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-False-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-False-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-True-tall-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-True-tall-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-True-tall-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-True-wide-arpack]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-True-wide-covariance_eigh]", "sklearn/decomposition/tests/test_pca.py::test_pca_solver_equivalence[float32-42-True-True-wide-randomized]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_input_and_values-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full')-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_input_and_values-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=0.1,svd_solver='full',whiten=True)-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-numpy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-array_api_strict-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-cupy-None-None]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-torch-cpu-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-torch-cpu-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-torch-cuda-float64]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-torch-cuda-float32]", "sklearn/decomposition/tests/test_pca.py::test_pca_mle_array_api_compliance[PCA(n_components='mle',svd_solver='full')-check_array_api_get_precision-torch-mps-float32]", "sklearn/decomposition/tests/test_pca.py::test_array_api_error_and_warnings_on_unsupported_params", "sklearn/decomposition/tests/test_sparse_pca.py::test_mini_batch_fit_transform", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-squared_error-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-squared_error-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-squared_error-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-squared_error-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-squared_error-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-poisson-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-poisson-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-poisson-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-poisson-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-poisson-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-gamma-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-gamma-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-gamma-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-gamma-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-1-gamma-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-squared_error-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-squared_error-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-squared_error-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-squared_error-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-squared_error-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-poisson-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-poisson-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-poisson-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-poisson-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-poisson-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-gamma-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-gamma-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-gamma-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-gamma-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[255-4096-20-gamma-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-squared_error-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-squared_error-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-squared_error-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-squared_error-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-squared_error-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-poisson-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-poisson-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-poisson-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-poisson-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-poisson-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-gamma-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-gamma-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-gamma-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-gamma-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-1-gamma-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-squared_error-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-squared_error-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-squared_error-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-squared_error-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-squared_error-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-poisson-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-poisson-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-poisson-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-poisson-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-poisson-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-gamma-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-gamma-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-gamma-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-gamma-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_regression[1000-8-20-gamma-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-1-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-1-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-1-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-1-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-1-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-20-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-20-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-20-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-20-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[255-4096-20-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-1-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-1-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-1-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-1-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-1-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-20-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-20-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-20-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-20-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_classification[1000-8-20-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-1-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-1-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-1-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-1-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-1-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-20-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-20-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-20-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-20-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[255-4096-20-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-1-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-1-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-1-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-1-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-1-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-20-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-20-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-20-2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-20-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_compare_lightgbm.py::test_same_predictions_multiclass_classification[10000-8-20-4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-polars]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-polars]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_errors[HistGradientBoostingClassifier-polars]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_errors[HistGradientBoostingRegressor-polars]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_different_order_same_model[polars]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importance_regression[42]", "sklearn/feature_extraction/tests/test_image.py::test_connect_regions", "sklearn/feature_extraction/tests/test_image.py::test_connect_regions_with_grid", "sklearn/feature_extraction/tests/test_image.py::test_extract_patches_all", "sklearn/feature_extraction/tests/test_image.py::test_extract_patches_all_color", "sklearn/feature_extraction/tests/test_image.py::test_extract_patches_all_rect", "sklearn/feature_extraction/tests/test_image.py::test_extract_patches_max_patches", "sklearn/feature_extraction/tests/test_image.py::test_extract_patch_same_size_image", "sklearn/feature_extraction/tests/test_image.py::test_extract_patches_less_than_max_patches", "sklearn/feature_extraction/tests/test_image.py::test_reconstruct_patches_perfect", "sklearn/feature_extraction/tests/test_image.py::test_reconstruct_patches_perfect_color", "sklearn/feature_extraction/tests/test_image.py::test_patch_extractor_fit", "sklearn/feature_extraction/tests/test_image.py::test_patch_extractor_max_patches", "sklearn/feature_extraction/tests/test_image.py::test_patch_extractor_max_patches_default", "sklearn/feature_extraction/tests/test_image.py::test_patch_extractor_all_patches", "sklearn/feature_extraction/tests/test_image.py::test_patch_extractor_color", "sklearn/feature_extraction/tests/test_image.py::test_extract_patches_square", "sklearn/feature_extraction/tests/test_image.py::test_patch_extractor_wrong_input", "sklearn/feature_selection/tests/test_mutual_info.py::test_compute_mi_cc[float32]", "sklearn/feature_selection/tests/test_mutual_info.py::test_compute_mi_cd[float32]", "sklearn/feature_selection/tests/test_mutual_info.py::test_compute_mi_cd_unique_label[float32]", "sklearn/feature_selection/tests/test_mutual_info.py::test_mutual_info_classif_discrete[float32]", "sklearn/feature_selection/tests/test_mutual_info.py::test_mutual_info_regression[float32]", "sklearn/feature_selection/tests/test_mutual_info.py::test_mutual_info_classif_mixed[float32]", "sklearn/feature_selection/tests/test_mutual_info.py::test_mutual_info_options[float32-csr_matrix]", "sklearn/feature_selection/tests/test_mutual_info.py::test_mutual_info_options[float32-csr_array]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_dataframe_support[polars]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegression]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-SGDRegressor0]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-ARDRegression]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-Lars]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LarsCV]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LassoLarsCV]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LassoLarsIC]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LogisticRegression]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-MultiTaskElasticNet]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-MultiTaskElasticNetCV]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-MultiTaskLasso]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-MultiTaskLassoCV]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-OrthogonalMatchingPursuit]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-OrthogonalMatchingPursuitCV]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-SGDRegressor0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-multinomial-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-multinomial-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-multinomial-max_iter2]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-multinomial-max_iter3]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-ovr-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-ovr-max_iter2]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-ovr-max_iter3]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-multinomial-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-multinomial-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-multinomial-max_iter2]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-multinomial-max_iter3]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-liblinear-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cholesky-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-liblinear-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cholesky-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-liblinear-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cholesky-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-liblinear-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cholesky-multinomial]", "sklearn/linear_model/tests/test_quantile.py::test_incompatible_solver_for_sparse_input[csc_matrix-interior-point]", "sklearn/linear_model/tests/test_quantile.py::test_incompatible_solver_for_sparse_input[csc_matrix-revised simplex]", "sklearn/linear_model/tests/test_quantile.py::test_incompatible_solver_for_sparse_input[csc_array-interior-point]", "sklearn/linear_model/tests/test_quantile.py::test_incompatible_solver_for_sparse_input[csc_array-revised simplex]", "sklearn/linear_model/tests/test_quantile.py::test_linprog_failure", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-True-sparse_cg]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-True-sag]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[long-42-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[long-42-False-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-True-sparse_cg]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-True-sag]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-False-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-True-sparse_cg]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-True-sag]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-True-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-True-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-True-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-False-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-numpy-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-cupy-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-torch-mps-float32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-numpy-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-array_api_strict-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-cupy-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-torch-cpu-float64]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-torch-cpu-float32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-torch-cuda-float64]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-torch-cuda-float32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-torch-mps-float32]", "sklearn/linear_model/tests/test_ridge.py::test_array_api_error_and_warnings_for_solver_parameter[array_api_strict]", "sklearn/linear_model/tests/test_ridge.py::test_array_api_error_and_warnings_for_solver_parameter[cupy]", "sklearn/linear_model/tests/test_ridge.py::test_array_api_error_and_warnings_for_solver_parameter[torch]", "sklearn/linear_model/tests/test_ridge.py::test_array_api_numpy_namespace_no_warning[array_api_compat.numpy]", "sklearn/linear_model/tests/test_ridge.py::test_array_api_numpy_namespace_no_warning[numpy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-tall-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-tall-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-tall-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-tall-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-wide-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-wide-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-wide-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-wide-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-tall-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-tall-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-wide-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-wide-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-tall-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-tall-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-tall-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-wide-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-wide-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-tall-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-tall-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-tall-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-tall-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-tall-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-wide-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-wide-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-wide-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-wide-csr_array-True]", "sklearn/manifold/_isomap.py::sklearn.manifold._isomap.Isomap", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-auto-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-auto-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-auto-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-auto-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-auto-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-auto-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-FW-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-FW-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-FW-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-FW-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-FW-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-FW-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-D-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-D-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-D-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-D-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-D-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float32-D-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-auto-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-auto-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-auto-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-auto-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-auto-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-auto-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-FW-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-FW-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-FW-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-FW-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-FW-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-FW-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-D-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-D-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-D-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-D-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-D-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[float64-D-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-auto-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-auto-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-auto-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-auto-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-auto-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-auto-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-FW-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-FW-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-FW-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-FW-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-FW-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-FW-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-D-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-D-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-D-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-D-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-D-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float32-D-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-auto-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-auto-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-auto-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-auto-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-auto-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-auto-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-FW-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-FW-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-FW-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-FW-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-FW-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-FW-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-D-auto-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-D-auto-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-D-dense-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-D-dense-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-D-arpack-24-None]", "sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[float64-D-arpack-None-inf]", "sklearn/manifold/tests/test_isomap.py::test_transform[float32-2-None]", "sklearn/manifold/tests/test_isomap.py::test_transform[float32-None-0.5]", "sklearn/manifold/tests/test_isomap.py::test_transform[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_transform[float64-None-0.5]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float32-2-None]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float32-None-10.0]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-None-10.0]", "sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer[float32]", "sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer[float64]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float32-euclidean-2-True]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float32-manhattan-1-False]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float32-minkowski-1-False]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float32-minkowski-2-True]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float32-<lambda>-2-False]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float64-euclidean-2-True]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float64-manhattan-1-False]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float64-minkowski-1-False]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float64-minkowski-2-True]", "sklearn/manifold/tests/test_isomap.py::test_different_metric[float64-<lambda>-2-False]", "sklearn/manifold/tests/test_isomap.py::test_isomap_clone_bug", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-auto-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-auto-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-auto-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-FW-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-FW-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-FW-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-D-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-D-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_matrix-D-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-auto-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-auto-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-auto-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-FW-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-FW-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-FW-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-D-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-D-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float32-42-csr_array-D-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-auto-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-auto-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-auto-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-FW-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-FW-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-FW-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-D-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-D-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_matrix-D-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-auto-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-auto-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-auto-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-FW-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-FW-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-FW-arpack]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-D-auto]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-D-dense]", "sklearn/manifold/tests/test_isomap.py::test_sparse_input[float64-42-csr_array-D-arpack]", "sklearn/manifold/tests/test_isomap.py::test_isomap_fit_precomputed_radius_graph[float32]", "sklearn/manifold/tests/test_isomap.py::test_isomap_fit_precomputed_radius_graph[float64]", "sklearn/manifold/tests/test_isomap.py::test_isomap_fitted_attributes_dtype[float32]", "sklearn/manifold/tests/test_isomap.py::test_isomap_fitted_attributes_dtype[float64]", "sklearn/manifold/tests/test_isomap.py::test_isomap_dtype_equivalence", "sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components", "sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components_metric_precomputed[float32]", "sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components_metric_precomputed[float64]", "sklearn/manifold/tests/test_isomap.py::test_get_feature_names_out", "sklearn/manifold/tests/test_locally_linear.py::test_barycenter_kneighbors_graph[float32]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_simple_grid[float32]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-dense-standard]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-dense-hessian]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-dense-modified]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-dense-ltsa]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-arpack-standard]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-arpack-hessian]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-arpack-modified]", "sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold[float32-arpack-ltsa]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_two_components[float32-amg]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_two_components[float64-amg]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-amg-None]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-amg-csr_matrix]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-amg-csr_array]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-amg-None]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-amg-csr_matrix]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-amg-csr_array]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_amg_solver[coo_matrix-float32]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_amg_solver[coo_matrix-float64]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_amg_solver[coo_array-float32]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_amg_solver[coo_array-float64]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_amg_solver_failure[float32]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_amg_solver_failure[float64]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_preserves_dtype[float32-amg]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_preserves_dtype[float64-amg]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_eigen_tol_auto[csr_matrix-amg]", "sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_eigen_tol_auto[csr_array-amg]", "sklearn/manifold/tests/test_t_sne.py::test_tsne_with_different_distance_metrics[barnes_hut-manhattan-manhattan_distances]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[numpy-None-None]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[array_api_strict-None-None]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[cupy-None-None]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[torch-cpu-float64]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[torch-cpu-float32]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[torch-cuda-float64]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[torch-cuda-float32]", "sklearn/metrics/cluster/tests/test_supervised.py::test_entropy_array_api[torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_binary_classification_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multiclass_classification_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[accuracy_score-check_array_api_multilabel_classification_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_binary_classification_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multiclass_classification_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[zero_one_loss-check_array_api_multilabel_classification_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_tweedie_deviance-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric7-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[metric8-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[r2_score-check_array_api_regression_metric_multioutput-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_similarity-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_error-check_array_api_regression_metric_multioutput-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_squared_error-check_array_api_regression_metric_multioutput-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[d2_tweedie_score-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_cosine_distances-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_poisson_deviance-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[additive_chi2_kernel-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_gamma_deviance-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[max_error-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[mean_absolute_percentage_error-check_array_api_regression_metric_multioutput-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[chi2_kernel-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[paired_euclidean_distances-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[cosine_distances-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[euclidean_distances-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[linear_kernel-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[polynomial_kernel-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[rbf_kernel-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-numpy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-array_api_strict-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-cupy-None-None]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-torch-cpu-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-torch-cpu-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-torch-cuda-float64]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-torch-cuda-float32]", "sklearn/metrics/tests/test_common.py::test_array_api_compliance[sigmoid_kernel-check_array_api_metric_pairwise-torch-mps-float32]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[accuracy_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[adjusted_balanced_accuracy_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[average_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[balanced_accuracy_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[brier_score_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[cohen_kappa_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[coverage_error-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[coverage_error-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[d2_absolute_error_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[d2_pinball_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[d2_tweedie_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[d2_tweedie_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[dcg_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[dcg_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[det_curve-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[explained_variance_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[f0.5_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[f1_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[f2_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[hamming_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[hinge_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[jaccard_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[label_ranking_average_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[label_ranking_average_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[label_ranking_loss-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[label_ranking_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[log_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_f0.5_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_f1_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_f2_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_jaccard_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_recall_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[matthews_corrcoef_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[max_error-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_absolute_error-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_absolute_percentage_error-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_compound_poisson_deviance-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_compound_poisson_deviance-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_gamma_deviance-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_gamma_deviance-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_normal_deviance-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_pinball_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_poisson_deviance-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_poisson_deviance-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[mean_squared_error-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[median_absolute_error-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_average_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_f0.5_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_f1_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_f2_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_jaccard_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_recall_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[ndcg_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[ndcg_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[normalized_confusion_matrix-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[ovo_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[ovr_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[partial_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[precision_recall_curve-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[r2_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[recall_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[roc_auc_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[roc_curve-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_average_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_f0.5_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_f0.5_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_f1_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_f1_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_f2_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_f2_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_jaccard_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_jaccard_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_recall_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_recall_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[samples_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[top_k_accuracy_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_accuracy_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_confusion_matrix-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_log_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_multilabel_confusion_matrix-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_multilabel_confusion_matrix_sample-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_multilabel_confusion_matrix_sample-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_zero_one_loss-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_average_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_f0.5_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_f1_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_f2_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_jaccard_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_ovo_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_ovr_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_precision_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_recall_score-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_roc_auc-polars]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[zero_one_loss-polars]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_dense_data[float32]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_matrix-csc_matrix-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_matrix-csc_matrix-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_matrix-csc_array-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_matrix-csc_array-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_array-csc_matrix-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_array-csc_matrix-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_array-csc_array-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_matrix-bsr_array-csc_array-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_matrix-csc_matrix-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_matrix-csc_matrix-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_matrix-csc_array-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_matrix-csc_array-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_array-csc_matrix-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_array-csc_matrix-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_array-csc_array-coo_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_for_sparse_data[float32-csr_array-bsr_array-csc_array-coo_array]", "sklearn/metrics/tests/test_pairwise.py::test_paired_distances_callable[float32]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_argmin_min[float32-csr_matrix-dok_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_argmin_min[float32-csr_matrix-dok_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_argmin_min[float32-csr_array-dok_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_argmin_min[float32-csr_array-dok_array]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce[float32]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_none[float32]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_invalid[float32-<lambda>-ValueError-length 11\\\\..* input: 10\\\\.]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_invalid[float32-<lambda>-ValueError-length \\\\(10, 11\\\\)\\\\..* input: 10\\\\.]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_invalid[float32-<lambda>-ValueError-length \\\\(9, 10\\\\)\\\\..* input: 10\\\\.]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_invalid[float32-<lambda>-TypeError-returned 7\\\\. Expected sequence\\\\(s\\\\) of length 10\\\\.]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_invalid[float32-<lambda>-TypeError-returned \\\\(7, 8\\\\)\\\\. Expected sequence\\\\(s\\\\) of length 10\\\\.]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_reduce_invalid[float32-<lambda>-TypeError-, 9\\\\)\\\\. Expected sequence\\\\(s\\\\) of length 10\\\\.]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_diagonal[float32-euclidean]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_diagonal[float32-l2]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked_diagonal[float32-sqeuclidean]", "sklearn/metrics/tests/test_pairwise.py::test_parallel_pairwise_distances_diagonal[float32-euclidean]", "sklearn/metrics/tests/test_pairwise.py::test_parallel_pairwise_distances_diagonal[float32-l2]", "sklearn/metrics/tests/test_pairwise.py::test_parallel_pairwise_distances_diagonal[float32-sqeuclidean]", "sklearn/metrics/tests/test_pairwise.py::test_pairwise_distances_chunked[float32]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_with_norms[float32-dense]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_with_norms[float32-csr_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_with_norms[float32-csr_array]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-dense-dense]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-dense-csr_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-dense-csr_array]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-csr_matrix-dense]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-csr_matrix-csr_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-csr_matrix-csr_array]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-csr_array-dense]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-csr_array-csr_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances[float32-csr_array-csr_array]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_sym[float32-dense]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_sym[float32-csr_matrix]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_sym[float32-csr_array]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_extreme_values[1-float64-1e-08-0.99]", "sklearn/metrics/tests/test_pairwise.py::test_euclidean_distances_extreme_values[1000000-float64-1e-08-0.99]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-braycurtis]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-canberra]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-chebyshev]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-correlation]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-hamming]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-mahalanobis]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-minkowski]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-seuclidean]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-sqeuclidean]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-cityblock]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-cosine]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is X-euclidean]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-braycurtis]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-canberra]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-chebyshev]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-correlation]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-hamming]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-mahalanobis]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-minkowski]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-seuclidean]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-sqeuclidean]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-cityblock]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-cosine]", "sklearn/metrics/tests/test_pairwise.py::test_numeric_pairwise_distances_datatypes[float32-Y is not X-euclidean]", "sklearn/metrics/tests/test_pairwise_distances_reduction.py::test_strategies_consistency[float32-42-ArgKmin]", "sklearn/metrics/tests/test_pairwise_distances_reduction.py::test_strategies_consistency[float32-42-RadiusNeighbors]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation._aggregate_score_dicts", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-numpy-None-None]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-array_api_strict-None-None]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-cupy-None-None]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-torch-cpu-float64]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-torch-cpu-float32]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-torch-cuda-float64]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-torch-cuda-float32]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[GridSearchCV-torch-mps-float32]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-numpy-None-None]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-array_api_strict-None-None]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-cupy-None-None]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-torch-cpu-float64]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-torch-cpu-float32]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-torch-cuda-float64]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-torch-cuda-float32]", "sklearn/model_selection/tests/test_search.py::test_array_api_search_cv_classifier[RandomizedSearchCV-torch-mps-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-numpy-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-array_api_strict-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-cupy-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-torch-cpu-float64]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-torch-cpu-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-torch-cuda-float64]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-torch-cuda-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-torch-mps-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-numpy-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-array_api_strict-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-cupy-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-torch-cpu-float64]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-torch-cpu-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-torch-cuda-float64]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-torch-cuda-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-torch-mps-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-numpy-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-array_api_strict-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-cupy-None-None]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-torch-cpu-float64]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-torch-cpu-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-torch-cuda-float64]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-torch-cuda-float32]", "sklearn/model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-torch-mps-float32]", "sklearn/neighbors/tests/test_lof.py::test_lof[float32]", "sklearn/neighbors/tests/test_lof.py::test_lof_performance[float32]", "sklearn/neighbors/tests/test_lof.py::test_lof_values[float32]", "sklearn/neighbors/tests/test_lof.py::test_lof_precomputed[float32]", "sklearn/neighbors/tests/test_lof.py::test_score_samples[float32]", "sklearn/neighbors/tests/test_lof.py::test_novelty_training_scores[float32]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-0.5-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float32-auto-False-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-chebyshev-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-chebyshev-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-chebyshev-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-chebyshev-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-cityblock-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-cityblock-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-cityblock-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-cityblock-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-euclidean-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-euclidean-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-euclidean-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-euclidean-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l1-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l1-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l1-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l1-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l2-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l2-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l2-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-l2-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-manhattan-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-manhattan-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-manhattan-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-manhattan-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-minkowski-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-minkowski-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-minkowski-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-minkowski-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-DM_euclidean-False-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-DM_euclidean-False-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-DM_euclidean-True-100-100-10-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float32-DM_euclidean-True-1000-5-100-1]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsClassifier-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-KNeighborsRegressor-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsClassifier-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float32-RadiusNeighborsRegressor-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsClassifier-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsClassifier-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsClassifier-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsClassifier-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsClassifier-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsClassifier-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsRegressor-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsRegressor-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsRegressor-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsRegressor-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsRegressor-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-RadiusNeighborsRegressor-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_inputs[float32-KNeighborsClassifier]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_inputs[float32-KNeighborsRegressor]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_inputs[float32-NearestNeighbors]", "sklearn/neighbors/tests/test_neighbors.py::test_unsupervised_radius_neighbors[float32]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float32-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier_float_labels[float32]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier_predict_proba[float32]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier[float32-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-0-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32--1-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_when_no_neighbors[float32-None-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_classifier_outlier_labeling[float32-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_sort_results[kd_tree-DM_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_sort_results[ball_tree-DM_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_sort_results[brute-DM_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-braycurtis]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-canberra]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-chebyshev]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-cityblock]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-haversine]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-l1]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-l2]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-mahalanobis]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-manhattan]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-minkowski]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-seuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_metrics[float32-42-DM_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-braycurtis]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-canberra]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-chebyshev]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-cityblock]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-correlation]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-cosine]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-dice]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-hamming]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-haversine]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-jaccard]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-l1]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-l2]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-mahalanobis]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-manhattan]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-minkowski]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-nan_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-rogerstanimoto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-russellrao]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-seuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-sokalmichener]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-sokalsneath]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-sqeuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float32-42-yule]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-braycurtis]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-canberra]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-chebyshev]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-cityblock]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-correlation]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-cosine]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-dice]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-hamming]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-haversine]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-jaccard]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-l1]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-l2]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-mahalanobis]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-manhattan]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-minkowski]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-nan_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-rogerstanimoto]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-russellrao]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-seuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-sokalmichener]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-sokalsneath]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-sqeuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-yule]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_matrix-DM_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-braycurtis]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-canberra]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-chebyshev]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-cityblock]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-correlation]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-cosine]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-dice]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-hamming]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-haversine]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-jaccard]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-l1]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-l2]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-mahalanobis]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-manhattan]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-minkowski]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-nan_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-precomputed]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-rogerstanimoto]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-russellrao]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-seuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-sokalmichener]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-sokalsneath]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-sqeuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-yule]", "sklearn/neighbors/tests/test_neighbors.py::test_valid_brute_metric_for_auto_algorithm[float32-csr_array-DM_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-braycurtis]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-canberra]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-chebyshev]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-cityblock]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-correlation]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-cosine]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-dice]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-hamming]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-haversine]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-jaccard]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-l1]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-l2]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-mahalanobis]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-manhattan]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-minkowski]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-nan_euclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-rogerstanimoto]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-russellrao]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-seuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-sokalmichener]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-sokalsneath]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-sqeuclidean]", "sklearn/neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[float32-42-yule]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_isomap", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-None-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csc_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csc_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csr_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csr_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-None-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csc_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csc_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csr_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csr_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-None-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csc_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csc_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csr_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csr_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-None-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csc_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csc_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csr_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csr_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-None-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csc_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csc_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csr_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csr_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-None-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csc_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csc_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csr_matrix-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csr_array-scaler1]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MaxAbsScaler()-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler()-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[MinMaxScaler(clip=True)-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[KernelCenterer()-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='l1')-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer()-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-numpy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-cupy-None-None]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-torch-cpu-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-torch-cpu-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-torch-cuda-float64]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-torch-cuda-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_array_api_compliance[Normalizer(norm='max')-check_array_api_input_and_values-torch-mps-float32]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-True-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-False-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_array-True-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_array-False-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-True-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-False-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_array-True-True]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_array-False-True]", "sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X1-True-True]", "sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X1-False-True]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names[default-pandas]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names[default-polars]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names[pandas-polars]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names[polars-pandas]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names[polars-polars]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_error_column_inconsistent[one-to-one-polars]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_error_column_inconsistent[<lambda>-polars]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-numpy-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-cupy-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-torch-cpu-float64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-torch-cpu-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-torch-cuda-float64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-torch-cuda-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y0-torch-mps-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-numpy-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-cupy-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-torch-cpu-float64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-torch-cpu-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-torch-cuda-float64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-torch-cuda-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y1-torch-mps-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-numpy-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-array_api_strict-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-cupy-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-torch-cpu-float64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-torch-cpu-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-torch-cuda-float64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-torch-cuda-float32]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_array_api_compliance[y2-torch-mps-float32]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_sparse_output_raise_error_for_old_scipy", "sklearn/semi_supervised/tests/test_label_propagation.py::test_fit_transduction[float32-LabelPropagation-parameters0]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_fit_transduction[float32-LabelPropagation-parameters1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_fit_transduction[float32-LabelPropagation-parameters2]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_fit_transduction[float32-LabelSpreading-parameters3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_fit_transduction[float32-LabelSpreading-parameters4]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_fit_transduction[float32-LabelSpreading-parameters5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float32-LabelPropagation-parameters0]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float32-LabelPropagation-parameters1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float32-LabelPropagation-parameters2]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float32-LabelSpreading-parameters3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float32-LabelSpreading-parameters4]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float32-LabelSpreading-parameters5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float64-LabelPropagation-parameters1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_distribution[float64-LabelSpreading-parameters4]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict[float32-LabelPropagation-parameters0]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict[float32-LabelPropagation-parameters1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict[float32-LabelPropagation-parameters2]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict[float32-LabelSpreading-parameters3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict[float32-LabelSpreading-parameters4]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict[float32-LabelSpreading-parameters5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_proba[float32-LabelPropagation-parameters0]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_proba[float32-LabelPropagation-parameters1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_proba[float32-LabelPropagation-parameters2]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_proba[float32-LabelSpreading-parameters3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_proba[float32-LabelSpreading-parameters4]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_proba[float32-LabelSpreading-parameters5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters0-0.1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters0-0.3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters0-0.5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters0-0.7]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters0-0.9]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters1-0.1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters1-0.3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters1-0.5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters1-0.7]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters1-0.9]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters2-0.1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters2-0.3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters2-0.5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters2-0.7]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelPropagation-parameters2-0.9]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters3-0.1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters3-0.3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters3-0.5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters3-0.7]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters3-0.9]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters4-0.1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters4-0.3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters4-0.5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters4-0.7]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters4-0.9]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters5-0.1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters5-0.3]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters5-0.5]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters5-0.7]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_spreading_closed_form[float32-LabelSpreading-parameters5-0.9]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_label_propagation_closed_form[float32]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_sparse_callable_kernel[float32]", "sklearn/tests/test_base.py::test_dataframe_protocol[pyarrow-12.0.0]", "sklearn/tests/test_base.py::test_dataframe_protocol[polars-0.20.23]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[CCA(max_iter=5,n_components=1)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[Isomap(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[KNeighborsTransformer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[KernelCenterer()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KernelPCA(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KernelPCA()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[MinMaxScaler()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[Normalizer()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[NuSVR()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[NuSVR()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[OneClassSVM()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[OneClassSVM()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[PCA()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[PLSCanonical(max_iter=5,n_components=1)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PLSRegression(max_iter=5,n_components=1)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsTransformer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=numpy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=array_api_strict,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=cupy,dtype_name=None,device=None)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cpu)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=torch,dtype_name=float64,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=cuda)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_array_api_input(array_namespace=torch,dtype_name=float32,device=mps)]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SVR()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SVR()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Isomap()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KernelPCA()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Isomap()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KernelPCA()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(early_stopping=True,max_iter=100,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPRegressor(early_stopping=True,max_iter=100,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[Isomap()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KernelPCA()]", "sklearn/tests/test_common.py::test_check_param_validation[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform[FeatureHasher()]", "sklearn/tests/test_common.py::test_set_output_transform[HashingVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform[Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform[KernelPCA()]", "sklearn/tests/test_common.py::test_set_output_transform[LabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform[LabelEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform[MultiLabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform[PatchExtractor()]", "sklearn/tests/test_common.py::test_set_output_transform[TfidfTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FeatureHasher()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-HashingVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KernelPCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LabelEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-MultiLabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-PatchExtractor()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-TfidfTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FeatureHasher()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-HashingVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KernelPCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LabelEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-MultiLabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-PatchExtractor()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-TfidfTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-Binarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-Birch(n_clusters=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-CCA(max_iter=5,n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-DictVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-DictionaryLearning(max_iter=20,transform_algorithm='lasso_lars')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FeatureAgglomeration()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FeatureHasher()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FunctionTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-GaussianRandomProjection(n_components=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-GenericUnivariateSelect()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-HashingVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-IsotonicRegression()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-KNeighborsTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-KernelCenterer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-KernelPCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-LabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-LabelEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-LocallyLinearEmbedding(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MaxAbsScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MinMaxScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MiniBatchNMF(batch_size=10,fresh_restarts=True,max_iter=20)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MissingIndicator()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-MultiLabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-NMF(max_iter=500)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-Normalizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-Nystroem()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-OrdinalEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PLSCanonical(max_iter=5,n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PLSRegression(max_iter=5,n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PLSSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PatchExtractor()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PolynomialFeatures()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-PowerTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-QuantileTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-RadiusNeighborsTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-RobustScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SelectFdr(alpha=0.5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SelectFpr()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SelectFwe()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SelectKBest(k=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SelectPercentile()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SparsePCA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SparseRandomProjection(n_components=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-StandardScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-TargetEncoder(cv=3)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-TfidfTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-VarianceThreshold()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_polars-FunctionTransformer(feature_names_out='one-to-one')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-Binarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-Birch(n_clusters=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-CCA(max_iter=5,n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-DictVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-DictionaryLearning(max_iter=20,transform_algorithm='lasso_lars')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FeatureAgglomeration()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FeatureHasher()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FunctionTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-GaussianRandomProjection(n_components=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-GenericUnivariateSelect()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-HashingVectorizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-IsotonicRegression()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-KNeighborsTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-KernelCenterer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-KernelPCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-LabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-LabelEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-LocallyLinearEmbedding(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MaxAbsScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MinMaxScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MiniBatchNMF(batch_size=10,fresh_restarts=True,max_iter=20)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MissingIndicator()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-MultiLabelBinarizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-NMF(max_iter=500)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-Normalizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-Nystroem()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-OrdinalEncoder()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PCA()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PLSCanonical(max_iter=5,n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PLSRegression(max_iter=5,n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PLSSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PatchExtractor()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PolynomialFeatures()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-PowerTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-QuantileTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-RBFSampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-RadiusNeighborsTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-RobustScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SelectFdr(alpha=0.5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SelectFpr()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SelectFwe()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SelectKBest(k=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SelectPercentile()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SimpleImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SparsePCA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SparseRandomProjection(n_components=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-SplineTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-StandardScaler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-TargetEncoder(cv=3)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-TfidfTransformer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-VarianceThreshold()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-Pipeline(steps=[('standardscaler',StandardScaler()),('minmaxscaler',MinMaxScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-OneHotEncoder(sparse_output=False)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_set_output_transform_polars-FunctionTransformer(feature_names_out='one-to-one')]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[AdaBoostRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[AgglomerativeClustering()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BaggingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BayesianGaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BernoulliNB()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[CategoricalNB()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ClassifierChain(base_estimator=LogisticRegression(C=1),cv=3)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ComplementNB()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[CountVectorizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DBSCAN()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DecisionTreeRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DictVectorizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DictionaryLearning(max_iter=20,transform_algorithm='lasso_lars')]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DummyClassifier(strategy='stratified')]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DummyClassifier(strategy='most_frequent')]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[DummyRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[EllipticEnvelope()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[EmpiricalCovariance()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ExtraTreeRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ExtraTreesClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ExtraTreesRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FeatureAgglomeration()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FeatureHasher()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FunctionTransformer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GammaRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GaussianNB()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GaussianProcessClassifier()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GaussianProcessRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GaussianRandomProjection(n_components=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GenericUnivariateSelect()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GraphicalLasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GridSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_grid={'alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_grid={'ridge__alpha':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Ridge(),min_resources='smallest',param_grid={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),min_resources='smallest',param_grid={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HashingVectorizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[HuberRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[Isomap()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[IsotonicRegression()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[IterativeImputer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KNeighborsClassifier()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KNeighborsRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KNeighborsTransformer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KernelCenterer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KernelDensity()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KernelPCA()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KernelRidge()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LabelBinarizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LabelEncoder()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LabelPropagation(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LabelSpreading(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LedoitWolf()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LinearSVC(max_iter=20)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LinearSVR(max_iter=20)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LocalOutlierFactor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LocallyLinearEmbedding(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LogisticRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MDS(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MLPRegressor(max_iter=100)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MeanShift(bandwidth=1.0,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MinCovDet()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MiniBatchNMF(batch_size=10,fresh_restarts=True,max_iter=20)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MissingIndicator()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiLabelBinarizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiOutputClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiOutputRegressor(estimator=Ridge())]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultinomialNB()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[NMF(max_iter=500)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[NearestCentroid()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[NearestNeighbors()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[NeighborhoodComponentsAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[NuSVC()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[NuSVR()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[Nystroem()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OAS()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OPTICS()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OneClassSVM()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OneHotEncoder(handle_unknown='ignore')]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OrdinalEncoder()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OrthogonalMatchingPursuit()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[OutputCodeClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[PatchExtractor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[Perceptron(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',Ridge())])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[PoissonRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[PolynomialCountSketch()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[PolynomialFeatures()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[QuadraticDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[QuantileRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RBFSampler()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RadiusNeighborsClassifier()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RadiusNeighborsRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RadiusNeighborsTransformer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomForestClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomForestRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomTreesEmbedding(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomizedSearchCV(cv=2,error_score='raise',estimator=Ridge(),param_distributions={'alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('ridge',Ridge())]),param_distributions={'ridge__alpha':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RegressorChain(base_estimator=Ridge(),cv=3)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RidgeCV()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SGDClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SGDOneClassSVM(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SGDRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SVC()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SVR()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelectFdr(alpha=0.5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelectFpr()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelectFwe()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelectKBest(k=1)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelectPercentile()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SequentialFeatureSelector(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ShrunkCovariance()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SkewedChi2Sampler()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SparsePCA(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SparseRandomProjection(n_components=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SpectralCoclustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SpectralEmbedding(eigen_tol=1e-05)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[SplineTransformer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TSNE(perplexity=2)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TargetEncoder(cv=3)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TfidfTransformer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TfidfVectorizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TruncatedSVD(n_components=1)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[TweedieRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[VarianceThreshold()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_docstring_parameters.py::test_docstring_parameters", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ARDRegression-ARDRegression]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[AdaBoostClassifier-AdaBoostClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[AdaBoostRegressor-AdaBoostRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[AdditiveChi2Sampler-AdditiveChi2Sampler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[AffinityPropagation-AffinityPropagation]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[AgglomerativeClustering-AgglomerativeClustering]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BaggingClassifier-BaggingClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BaggingRegressor-BaggingRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BayesianGaussianMixture-BayesianGaussianMixture]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BayesianRidge-BayesianRidge]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BernoulliNB-BernoulliNB]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BernoulliRBM-BernoulliRBM]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Binarizer-Binarizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Birch-Birch]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[BisectingKMeans-BisectingKMeans]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[CCA-CCA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[CalibratedClassifierCV-CalibratedClassifierCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[CategoricalNB-CategoricalNB]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ClassifierChain-ClassifierChain]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ColumnTransformer-ColumnTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ComplementNB-ComplementNB]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[CountVectorizer-CountVectorizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DBSCAN-DBSCAN]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DecisionTreeClassifier-DecisionTreeClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DictVectorizer-DictVectorizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DictionaryLearning-DictionaryLearning]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DummyClassifier-DummyClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[DummyRegressor-DummyRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ElasticNet-ElasticNet]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ElasticNetCV-ElasticNetCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[EllipticEnvelope-EllipticEnvelope]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[EmpiricalCovariance-EmpiricalCovariance]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ExtraTreeClassifier-ExtraTreeClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ExtraTreesClassifier-ExtraTreesClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ExtraTreesRegressor-ExtraTreesRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FactorAnalysis-FactorAnalysis]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FastICA-FastICA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FeatureAgglomeration-FeatureAgglomeration]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FeatureHasher-FeatureHasher]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FeatureUnion-FeatureUnion]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FixedThresholdClassifier-FixedThresholdClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[FunctionTransformer-FunctionTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GammaRegressor-GammaRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GaussianMixture-GaussianMixture]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GaussianNB-GaussianNB]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GaussianProcessClassifier-GaussianProcessClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GaussianProcessRegressor-GaussianProcessRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GaussianRandomProjection-GaussianRandomProjection]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GenericUnivariateSelect-GenericUnivariateSelect]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GradientBoostingClassifier-GradientBoostingClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GradientBoostingRegressor-GradientBoostingRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GraphicalLasso-GraphicalLasso]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GraphicalLassoCV-GraphicalLassoCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[GridSearchCV-GridSearchCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HDBSCAN-HDBSCAN]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HalvingGridSearchCV-HalvingGridSearchCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HalvingRandomSearchCV-HalvingRandomSearchCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HashingVectorizer-HashingVectorizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HistGradientBoostingClassifier-HistGradientBoostingClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HistGradientBoostingRegressor-HistGradientBoostingRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[HuberRegressor-HuberRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[IncrementalPCA-IncrementalPCA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[IsolationForest-IsolationForest]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Isomap-Isomap]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[IsotonicRegression-IsotonicRegression]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[IterativeImputer-IterativeImputer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KBinsDiscretizer-KBinsDiscretizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KMeans-KMeans]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KNNImputer-KNNImputer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KNeighborsClassifier-KNeighborsClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KNeighborsRegressor-KNeighborsRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KNeighborsTransformer-KNeighborsTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KernelCenterer-KernelCenterer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KernelDensity-KernelDensity]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KernelPCA-KernelPCA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[KernelRidge-KernelRidge]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LabelBinarizer-LabelBinarizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LabelEncoder-LabelEncoder]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LabelPropagation-LabelPropagation]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LabelSpreading-LabelSpreading]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Lars-Lars]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LarsCV-LarsCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Lasso-Lasso]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LassoCV-LassoCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LassoLars-LassoLars]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LassoLarsCV-LassoLarsCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LassoLarsIC-LassoLarsIC]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LatentDirichletAllocation-LatentDirichletAllocation]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LedoitWolf-LedoitWolf]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LinearDiscriminantAnalysis-LinearDiscriminantAnalysis]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LinearRegression-LinearRegression]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LinearSVC-LinearSVC]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LinearSVR-LinearSVR]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LocalOutlierFactor-LocalOutlierFactor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LocallyLinearEmbedding-LocallyLinearEmbedding]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LogisticRegression-LogisticRegression]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[LogisticRegressionCV-LogisticRegressionCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MDS-MDS]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MLPClassifier-MLPClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MLPRegressor-MLPRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MaxAbsScaler-MaxAbsScaler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MeanShift-MeanShift]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MinCovDet-MinCovDet]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MinMaxScaler-MinMaxScaler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MiniBatchDictionaryLearning-MiniBatchDictionaryLearning]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MiniBatchKMeans-MiniBatchKMeans]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MiniBatchNMF-MiniBatchNMF]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MiniBatchSparsePCA-MiniBatchSparsePCA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MissingIndicator-MissingIndicator]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiLabelBinarizer-MultiLabelBinarizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiOutputClassifier-MultiOutputClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiOutputRegressor-MultiOutputRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiTaskElasticNet-MultiTaskElasticNet]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiTaskElasticNetCV-MultiTaskElasticNetCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiTaskLasso-MultiTaskLasso]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultiTaskLassoCV-MultiTaskLassoCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[MultinomialNB-MultinomialNB]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[NMF-NMF]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[NearestCentroid-NearestCentroid]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[NearestNeighbors-NearestNeighbors]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[NeighborhoodComponentsAnalysis-NeighborhoodComponentsAnalysis]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Normalizer-Normalizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[NuSVC-NuSVC]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[NuSVR-NuSVR]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Nystroem-Nystroem]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OAS-OAS]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OPTICS-OPTICS]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OneClassSVM-OneClassSVM]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OneHotEncoder-OneHotEncoder]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OneVsOneClassifier-OneVsOneClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OneVsRestClassifier-OneVsRestClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OrdinalEncoder-OrdinalEncoder]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OrthogonalMatchingPursuit-OrthogonalMatchingPursuit]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OrthogonalMatchingPursuitCV-OrthogonalMatchingPursuitCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[OutputCodeClassifier-OutputCodeClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PCA-PCA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PLSCanonical-PLSCanonical]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PLSRegression-PLSRegression]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PLSSVD-PLSSVD]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PassiveAggressiveClassifier-PassiveAggressiveClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PassiveAggressiveRegressor-PassiveAggressiveRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PatchExtractor-PatchExtractor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Perceptron-Perceptron]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Pipeline-Pipeline]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PoissonRegressor-PoissonRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PolynomialCountSketch-PolynomialCountSketch]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PolynomialFeatures-PolynomialFeatures]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[PowerTransformer-PowerTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[QuadraticDiscriminantAnalysis-QuadraticDiscriminantAnalysis]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[QuantileRegressor-QuantileRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[QuantileTransformer-QuantileTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RANSACRegressor-RANSACRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RBFSampler-RBFSampler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RFE-RFE]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RFECV-RFECV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RadiusNeighborsClassifier-RadiusNeighborsClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RadiusNeighborsRegressor-RadiusNeighborsRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RadiusNeighborsTransformer-RadiusNeighborsTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RandomForestClassifier-RandomForestClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RandomForestRegressor-RandomForestRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RandomTreesEmbedding-RandomTreesEmbedding]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RandomizedSearchCV-RandomizedSearchCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RegressorChain-RegressorChain]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[Ridge-Ridge]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RidgeCV-RidgeCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RidgeClassifier-RidgeClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RidgeClassifierCV-RidgeClassifierCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[RobustScaler-RobustScaler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SGDClassifier-SGDClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SGDOneClassSVM-SGDOneClassSVM]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SGDRegressor-SGDRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SVC-SVC]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SVR-SVR]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelectFdr-SelectFdr]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelectFpr-SelectFpr]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelectFromModel-SelectFromModel]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelectFwe-SelectFwe]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelectKBest-SelectKBest]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelectPercentile-SelectPercentile]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SelfTrainingClassifier-SelfTrainingClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SequentialFeatureSelector-SequentialFeatureSelector]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[ShrunkCovariance-ShrunkCovariance]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SimpleImputer-SimpleImputer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SkewedChi2Sampler-SkewedChi2Sampler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SparseCoder-SparseCoder]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SparsePCA-SparsePCA]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SparseRandomProjection-SparseRandomProjection]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SpectralBiclustering-SpectralBiclustering]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SpectralClustering-SpectralClustering]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SpectralCoclustering-SpectralCoclustering]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SpectralEmbedding-SpectralEmbedding]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[SplineTransformer-SplineTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[StackingClassifier-StackingClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[StackingRegressor-StackingRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[StandardScaler-StandardScaler]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TSNE-TSNE]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TargetEncoder-TargetEncoder]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TfidfTransformer-TfidfTransformer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TfidfVectorizer-TfidfVectorizer]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TheilSenRegressor-TheilSenRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TransformedTargetRegressor-TransformedTargetRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TruncatedSVD-TruncatedSVD]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TunedThresholdClassifierCV-TunedThresholdClassifierCV]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[TweedieRegressor-TweedieRegressor]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[VarianceThreshold-VarianceThreshold]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[VotingClassifier-VotingClassifier]", "sklearn/tests/test_docstring_parameters.py::test_fit_docstring_attributes[VotingRegressor-VotingRegressor]", "sklearn/tests/test_docstring_parameters.py::test_precision_recall_f_score_docstring_consistency", "sklearn/tests/test_docstring_parameters.py::test_stacking_classifier_regressor_docstring_consistency", "sklearn/tests/test_kernel_approximation.py::test_rbf_sampler_fitted_attributes_dtype[float32]", "sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler_fitted_attributes_dtype[float32]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[build-project.optional-dependencies.build]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[install-project.optional-dependencies.install]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[benchmark-project.optional-dependencies.benchmark]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[docs-project.optional-dependencies.docs]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[examples-project.optional-dependencies.examples]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[tests-project.optional-dependencies.tests]", "sklearn/tests/test_min_dependencies_readme.py::test_min_dependencies_pyproject_toml[maintenance-project.optional-dependencies.maintenance]", "sklearn/utils/tests/test_array_api.py::test_get_namespace_ndarray_with_dispatch", "sklearn/utils/tests/test_array_api.py::test_get_namespace_array_api", "sklearn/utils/tests/test_array_api.py::test_asarray_with_order[array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-True-3.5-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-True-expected1-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-True-expected2-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights3-0-True-expected3-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights4-1-True-expected4-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights5-0-True-expected5-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights6-1-True-expected6-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights7-0-True-expected7-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights8-1-True-expected8-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights9-0-True-expected9-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights10-1-True-expected10-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-None-False-21-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-0-False-expected12-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[None-1-False-expected13-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights14-0-False-expected14-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights15-1-False-expected15-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights16-0-False-expected16-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights17-1-False-expected17-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights18-0-False-expected18-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights19-1-False-expected19-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights20-0-False-expected20-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average[weights21-1-False-expected21-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_wrong_dtype[torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[None-weights0-TypeError-Axis must be specified-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights1-error1-weights-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights2-ValueError-weights-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_average_raises_with_invalid_parameters[0-weights3-ZeroDivisionError-Weights sum to zero, can't be normalized-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X0-_nanmin-1-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X0-_nanmin-1-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X0-_nanmin-1-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X1-_nanmin--2-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X1-_nanmin--2-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X1-_nanmin--2-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X2-_nanmin-inf-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X2-_nanmin-inf-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X2-_nanmin-inf-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X3-reduction3-expected3-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X3-reduction3-expected3-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X3-reduction3-expected3-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X4-reduction4-expected4-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X4-reduction4-expected4-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X4-reduction4-expected4-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X5-_nanmax-2-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X5-_nanmax-2-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X5-_nanmax-2-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X6-_nanmax-2-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X6-_nanmax-2-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X6-_nanmax-2-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X7-_nanmax--inf-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X7-_nanmax--inf-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X7-_nanmax--inf-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X8-reduction8-expected8-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X8-reduction8-expected8-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X8-reduction8-expected8-torch]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X9-reduction9-expected9-numpy]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X9-reduction9-expected9-array_api_strict]", "sklearn/utils/tests/test_array_api.py::test_nan_reductions[X9-reduction9-expected9-torch]", "sklearn/utils/tests/test_array_api.py::test_ravel[numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_ravel[array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_ravel[cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_ravel[torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_ravel[torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_ravel[torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_ravel[torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_ravel[torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_convert_to_numpy_gpu[cupy]", "sklearn/utils/tests/test_array_api.py::test_convert_to_numpy_gpu[torch]", "sklearn/utils/tests/test_array_api.py::test_convert_to_numpy_cpu", "sklearn/utils/tests/test_array_api.py::test_convert_estimator_to_ndarray[torch-<lambda>]", "sklearn/utils/tests/test_array_api.py::test_convert_estimator_to_ndarray[array_api_strict-<lambda>]", "sklearn/utils/tests/test_array_api.py::test_convert_estimator_to_ndarray[cupy-<lambda>]", "sklearn/utils/tests/test_array_api.py::test_convert_estimator_to_array_api", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_indexing_dtype[torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_max_precision_float_dtype[torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-6-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-10-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int16-14-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-6-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-10-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int32-14-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-6-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-10-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[int64-14-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-6-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-10-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-True-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_isin[uint8-14-False-False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_get_namespace_and_device", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-0-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-1-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None-None-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--1-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[None--2-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-0-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-1-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int-None-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--1-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[int--2-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-0-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-1-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float-None-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--1-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_matrix-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_count_nonzero[float--2-csr_array-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[True-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-numpy-None-None]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-array_api_strict-None-None]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-cupy-None-None]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-torch-cpu-float64]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-torch-cpu-float32]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-torch-cuda-float64]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-torch-cuda-float32]", "sklearn/utils/tests/test_array_api.py::test_fill_or_add_to_diagonal[False-torch-mps-float32]", "sklearn/utils/tests/test_array_api.py::test_sparse_device[True-csr_matrix]", "sklearn/utils/tests/test_array_api.py::test_sparse_device[True-csr_array]", "sklearn/utils/tests/test_estimator_checks.py::test_check_array_api_input", "sklearn/utils/tests/test_estimator_checks.py::test_minimal_class_implementation_checks", "sklearn/utils/tests/test_indexing.py::test_polars_indexing", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[numpy-None-None]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[array_api_strict-None-None]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[cupy-None-None]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[torch-cpu-float64]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[torch-cpu-float32]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[torch-cuda-float64]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[torch-cuda-float32]", "sklearn/utils/tests/test_indexing.py::test_determine_key_type_array_api[torch-mps-float32]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_0[list-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_0[tuple-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_0[array-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_0[series-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_0[slice-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container[list-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container[tuple-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container[array-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container[series-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container[slice-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices0-list-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices0-tuple-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices0-array-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices0-series-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices0-slice-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices1-list-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices1-tuple-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices1-array-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices1-series-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_container_axis_1[indices1-slice-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-array-polars-True-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-array-polars-True-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-array-polars-False-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-array-polars-False-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-series-polars-True-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-series-polars-True-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-series-polars-False-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[0-expected_array0-series-polars-False-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-array-polars-True-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-array-polars-True-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-array-polars-False-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-array-polars-False-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-series-polars-True-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-series-polars-True-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-series-polars-False-True]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_read_only_axis_1[1-expected_array1-series-polars-False-False]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container_mask[list-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container_mask[tuple-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container_mask[array-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_container_mask[series-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[0-expected_subset0-list-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[0-expected_subset0-tuple-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[0-expected_subset0-array-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[0-expected_subset0-series-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[1-expected_subset1-list-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[1-expected_subset1-tuple-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[1-expected_subset1-array-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_mask[1-expected_subset1-series-polars]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_scalar_axis_0[polars-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_scalar[polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_scalar_axis_1[2-polars-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_2d_scalar_axis_1[col_2-polars-polars_series]", "sklearn/utils/tests/test_indexing.py::test_safe_indexing_1d_array_error[polars_series]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[numpy-None-None]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[array_api_strict-None-None]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[cupy-None-None]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[torch-cpu-float64]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[torch-cpu-float32]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[torch-cuda-float64]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[torch-cuda-float32]", "sklearn/utils/tests/test_multiclass.py::test_is_multilabel_array_api_compliance[torch-mps-float32]", "sklearn/utils/tests/test_set_output.py::test_polars_adapter", "sklearn/utils/tests/test_set_output.py::test_set_output_method[polars]", "sklearn/utils/tests/test_set_output.py::test_set_output_list_input[polars]", "sklearn/utils/tests/test_testing.py::test_check_docstring_parameters", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency_object_type", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency_arg_checks[objects0-kwargs0-The 'exclude_params' argument]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency_arg_checks[objects1-kwargs1-The 'exclude_returns' argument]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency[whitespace]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency[incl_all]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency[2-1 group]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency[1-1-1 group]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency[empty type]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency[skip warn]", "sklearn/utils/tests/test_testing.py::test_assert_docstring_consistency_error_msg", "sklearn/utils/tests/test_testing.py::test_convert_container_categories_polars", "sklearn/utils/tests/test_testing.py::test_convert_container_categories_pyarrow", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[int32-sparse_csr_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[int32-sparse_csc_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[int64-sparse_csr_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[int64-sparse_csc_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[float32-sparse_csr_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[float32-sparse_csc_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[float64-sparse_csr_array]", "sklearn/utils/tests/test_testing.py::test_convert_container_raise_when_sparray_not_available[float64-sparse_csc_array]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-nominal]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-nominal_np_array]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-nominal]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-nominal_np_array]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-insignificant_imag]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-insignificant neg]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-insignificant neg float32]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-insignificant neg float64]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[False-insignificant pos]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]", "sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]", "sklearn/utils/tests/test_validation.py::test_get_feature_names_dataframe_protocol[pyarrow-12.0.0]", "sklearn/utils/tests/test_validation.py::test_get_feature_names_dataframe_protocol[polars-0.18.2]", "sklearn/utils/tests/test_validation.py::test_is_pandas_df_other_libraries[pyarrow]", "sklearn/utils/tests/test_validation.py::test_is_pandas_df_other_libraries[polars]", "sklearn/utils/tests/test_validation.py::test_is_polars_df_other_libraries[pyarrow-12.0.0]", "sklearn/utils/tests/test_validation.py::test_is_polars_df_other_libraries[polars-0.20.30]", "sklearn/utils/tests/test_validation.py::test_check_array_array_api_has_non_finite", "sklearn/utils/tests/test_validation.py::test_num_samples_dataframe_protocol", "sklearn/utils/tests/test_validation.py::test_check_array_on_sparse_inputs_with_array_api_enabled" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-219
1.0
{ "code": "diff --git b/sklearn/utils/validation.py a/sklearn/utils/validation.py\nindex c0274bcb7..401e72cef 100644\n--- b/sklearn/utils/validation.py\n+++ a/sklearn/utils/validation.py\n@@ -2201,6 +2201,20 @@ def _check_response_method(estimator, response_method):\n AttributeError\n If `response_method` is not available in `estimator`.\n \"\"\"\n+ if isinstance(response_method, str):\n+ list_methods = [response_method]\n+ else:\n+ list_methods = response_method\n+\n+ prediction_method = [getattr(estimator, method, None) for method in list_methods]\n+ prediction_method = reduce(lambda x, y: x or y, prediction_method)\n+ if prediction_method is None:\n+ raise AttributeError(\n+ f\"{estimator.__class__.__name__} has none of the following attributes: \"\n+ f\"{', '.join(list_methods)}.\"\n+ )\n+\n+ return prediction_method\n \n \n def _check_method_params(X, params, indices=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py\nindex 401e72cef..c0274bcb7 100644\n--- a/sklearn/utils/validation.py\n+++ b/sklearn/utils/validation.py\n@@ -2201,20 +2201,6 @@ def _check_response_method(estimator, response_method):\n AttributeError\n If `response_method` is not available in `estimator`.\n \"\"\"\n- if isinstance(response_method, str):\n- list_methods = [response_method]\n- else:\n- list_methods = response_method\n-\n- prediction_method = [getattr(estimator, method, None) for method in list_methods]\n- prediction_method = reduce(lambda x, y: x or y, prediction_method)\n- if prediction_method is None:\n- raise AttributeError(\n- f\"{estimator.__class__.__name__} has none of the following attributes: \"\n- f\"{', '.join(list_methods)}.\"\n- )\n-\n- return prediction_method\n \n \n def _check_method_params(X, params, indices=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/validation.py.\nHere is the description for the function:\ndef _check_response_method(estimator, response_method):\n \"\"\"Check if `response_method` is available in estimator and return it.\n\n .. versionadded:: 1.3\n\n Parameters\n ----------\n estimator : estimator instance\n Classifier or regressor to check.\n\n response_method : {\"predict_proba\", \"predict_log_proba\", \"decision_function\",\n \"predict\"} or list of such str\n Specifies the response method to use get prediction from an estimator\n (i.e. :term:`predict_proba`, :term:`predict_log_proba`,\n :term:`decision_function` or :term:`predict`). Possible choices are:\n - if `str`, it corresponds to the name to the method to return;\n - if a list of `str`, it provides the method names in order of\n preference. The method returned corresponds to the first method in\n the list and which is implemented by `estimator`.\n\n Returns\n -------\n prediction_method : callable\n Prediction method of estimator.\n\n Raises\n ------\n AttributeError\n If `response_method` is not available in `estimator`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1-f1_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_weighted-metric1]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_macro-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_micro-metric3]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision-precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_macro-metric6]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_micro-metric7]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall-recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_weighted-metric9]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_macro-metric10]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_micro-metric11]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard-jaccard_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[accuracy-multiclass_agg_list0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[precision-multiclass_agg_list1]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_weighted-metric13]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[f1-multiclass_agg_list2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_macro-metric14]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_micro-metric15]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[recall-multiclass_agg_list4]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[top_k_accuracy-top_k_accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[matthews_corrcoef-matthews_corrcoef]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[accuracy-accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[balanced_accuracy-balanced_accuracy_score]", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_weighted-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_macro-metric3]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_micro-metric4]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_macro-metric6]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_micro-metric7]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_weighted-metric8]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_macro-metric9]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_micro-metric10]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_weighted-metric11]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_macro-metric12]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_micro-metric13]", "sklearn/metrics/tests/test_score_objects.py::test_custom_scorer_pickling", "sklearn/metrics/tests/test_score_objects.py::test_regression_scorers", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/metrics/tests/test_score_objects.py::test_supervised_cluster_scorers", "sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/metrics/tests/test_score_objects.py::test_regression_scorer_sample_weight", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_mutual_info_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_rand_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[completeness_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[d2_absolute_error_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[explained_variance]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[fowlkes_mallows_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[homogeneity_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[matthews_corrcoef]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[mutual_info_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_max_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_percentage_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_gamma_deviance]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_poisson_deviance]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_log_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_median_absolute_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_negative_likelihood_ratio]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_log_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[normalized_mutual_info_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[positive_likelihood_ratio]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[r2]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[rand_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[top_k_accuracy]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[v_measure_score]", "sklearn/metrics/tests/test_score_objects.py::test_deprecated_scorer", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_regressor_threshold", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_exception_handling[True]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_exception_handling[False]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr-metric0]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo-metric1]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr_weighted-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo_weighted-metric3]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring0]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer_label", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr_weighted]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-asarray-svd]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_average_precision_pos_label", "sklearn/utils/tests/test_validation.py::test_check_response_method_unknown_method", "sklearn/utils/tests/test_validation.py::test_check_response_method_not_supported_response_method[decision_function]", "sklearn/metrics/tests/test_score_objects.py::test_brier_score_loss_pos_label", "sklearn/utils/tests/test_validation.py::test_check_response_method_not_supported_response_method[predict_proba]", "sklearn/utils/tests/test_validation.py::test_check_response_method_not_supported_response_method[predict]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[f1_score]", "sklearn/utils/tests/test_validation.py::test_check_response_method_list_str", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[precision_score]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-asarray-eigen]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[jaccard_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[non-thresholded scorer]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_matrix-svd]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[probability scorer]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[thresholded scorer]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_no_op_multiclass_select_proba", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-asarray-eigen]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_matrix-eigen]", "sklearn/metrics/tests/test_score_objects.py::test_metadata_kwarg_conflict", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scoring_metadata_routing", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multilabel_indicator", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_array-svd]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params0-new_params0-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params1-new_params1-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params2-new_params2-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape0-csr_array-eigen]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params3-new_params3-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params4-new_params4-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-asarray-svd]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[False]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_multimetric_raise_exc", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-asarray-eigen]", "sklearn/metrics/tests/test_score_objects.py::test_metadata_routing_multimetric_metadata_routing[True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_matrix-svd]", "sklearn/metrics/tests/test_score_objects.py::test_metadata_routing_multimetric_metadata_routing[False]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/metrics/tests/test_score_objects.py::test_curve_scorer", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-1.0-False-X_shape1-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_differ_when_sample_weight_is_requested", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_without_enabling_metadata_routing", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape0-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape0-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_matrix-eigen]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[ClassifierChain]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-0.1-True-5-1e-07]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_array-svd]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_regression[neg_mean_squared_error-None-True-5-0.1]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-30.0-False-X_shape1-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_matrix-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data1]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_matrix-eigen]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TunedThresholdClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape0-csr_array-eigen]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-asarray-svd]", "sklearn/metrics/tests/test_score_objects.py::test_curve_scorer_pos_label[42]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_matrix-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-True-X_shape1-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-asarray-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_matrix-svd]", "sklearn/model_selection/tests/test_search.py::test_grid_search_no_score", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_array-svd]", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape0-csr_array-eigen]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-asarray-svd]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-asarray-eigen]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_matrix-svd]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate[csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_matrix-eigen]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_array-svd]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-150.0-False-X_shape1-csr_array-eigen]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_array]", "sklearn/model_selection/tests/test_search.py::test_refit_callable", "sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric", "sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results_multimetric", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-svd]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-eigen]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration_default_estimator", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_drop_estimator", "sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier_raise", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_with_sample_weights", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-cv1]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-3]", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_raw_predict_is_called_with_custom_scorer", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-cv1]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_curve_scorers", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multiclass[auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-svd]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_prefit", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-eigen]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multiclass[predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_sample_weight", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_display_plot_input_error", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[list]", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[array]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-predict_proba]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_no_user_warning_with_scoring", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-decision_function]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_matrix]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-predict_proba]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_mockclassifier", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y1-params1-ValueError-does not implement the method predict_proba]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-decision_function]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_verbose_output", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y2-params2-TypeError-does not support sample weight]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[CalibrationDisplay]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-predict]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator0]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-True-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingRegressor]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-True-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-False-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[PrecisionRecallDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-decision_function]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_size[42]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[RocCurveDisplay]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-False-decision_function]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-True-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[CalibrationDisplay]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_linear_svc[predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-True-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[DetCurveDisplay]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-auto]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]", "sklearn/feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features[42]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-False-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[RocCurveDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-False-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[DetCurveDisplay-predict_proba-MyClassifier has none of the following attributes: predict_proba.]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator0]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingRegressor]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[DetCurveDisplay-decision_function-MyClassifier has none of the following attributes: decision_function.]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_n_jobs[42]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator1]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_linear_svc[decision_function]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_sparse_data[csr_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-True-predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-decision_function]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_sparse_data[csr_array]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-True-decision_function]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-False-predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[DetCurveDisplay-auto-MyClassifier has none of the following attributes: predict_proba, decision_function.]", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-False-decision_function]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[DetCurveDisplay-bad_method-MyClassifier has none of the following attributes: bad_method.]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-True-predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingRegressor]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[PrecisionRecallDisplay-predict_proba-MyClassifier has none of the following attributes: predict_proba.]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[PrecisionRecallDisplay-decision_function-MyClassifier has none of the following attributes: decision_function.]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[PrecisionRecallDisplay-auto-MyClassifier has none of the following attributes: predict_proba, decision_function.]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[predict_proba-MyClassifier has none of the following attributes: predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-True-decision_function]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[PrecisionRecallDisplay-bad_method-MyClassifier has none of the following attributes: bad_method.]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[decision_function-MyClassifier has none of the following attributes: decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-False-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[RocCurveDisplay-predict_proba-MyClassifier has none of the following attributes: predict_proba.]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[RocCurveDisplay-decision_function-MyClassifier has none of the following attributes: decision_function.]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-False-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingClassifier-DummyClassifier-predict_proba-final_estimator0-X0-y0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[auto-MyClassifier has none of the following attributes: decision_function, predict_proba, predict]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-svd]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[RocCurveDisplay-auto-MyClassifier has none of the following attributes: predict_proba, decision_function.]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_no_response[RocCurveDisplay-bad_method-MyClassifier has none of the following attributes: bad_method.]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingRegressor-DummyRegressor-predict-final_estimator1-X1-y1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-PrecisionRecallDisplay]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-eigen]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_classification-StackingClassifier-LogisticRegression]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-RocCurveDisplay]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_regression-StackingRegressor-LinearRegression]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_error_bad_response[bad_method-MyClassifier has none of the following attributes: bad_method]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[5]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[GridSearchCV-param_grid]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-predict_log_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_dataframe_labels_used", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf0]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-None-True]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-None-False]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_std_and_mean[42]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_string_target", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-chance_level_kw1-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_dataframe_support[pandas]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-1-cv_results_n_features0]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-chance_level_kw1-False]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_binary[predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf1]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-predict_proba]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf0]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf2]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_binary[decision_function]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-1-cv_results_n_features1]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf1]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-predict_log_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_multiclass[predict_proba]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_multiclass[decision_function]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf2]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[RandomizedSearchCV-param_distributions]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-2-cv_results_n_features2]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-decision_function]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf1]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf2]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-2-cv_results_n_features3]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_estimator-predict_proba]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[RocCurveDisplay]", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-svd]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/tests/test_multioutput.py::test_base_chain_fit_and_predict_with_sparse_data_and_cv[csr_array]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_estimator-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-CalibrationDisplay]", "sklearn/tests/test_multioutput.py::test_base_chain_random_order", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-3-cv_results_n_features4]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-DetCurveDisplay]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-eigen]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-3-cv_results_n_features5]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/tests/test_calibration.py::test_calibration_zero_probability", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-PrecisionRecallDisplay]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-RocCurveDisplay]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_log_proba]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-True]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-4-cv_results_n_features6]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-decision_function]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-False]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-4-cv_results_n_features7]", "sklearn/tests/test_multioutput.py::test_multi_output_classes_[estimator2]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-4-2-cv_results_n_features8]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[list]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-1-cv_results_n_features9]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-predict]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-2-cv_results_n_features10]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[array]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[array]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[tuple]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-decision_function]", "sklearn/tests/test_multioutput.py::test_classifier_chain_verbose", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]", "sklearn/tests/test_multioutput.py::test_multioutputregressor_ducktypes_fitted_estimator", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_thresholds_array", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-response_method2]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[True]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingRegressor]", "sklearn/semi_supervised/tests/test_self_training.py::test_estimator_meta_estimator", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-svd]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[True]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-predict]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-eigen]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[False]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[CCA-RFECV]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X0]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingRegressor]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSCanonical-RFECV]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-response_method2]", "sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning", "sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_pls[PLSRegression-RFECV]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-predict_proba-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_float", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_n_features_to_select_warning[RFECV-min_features_to_select]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_unknown_pos_label[predict_proba]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-accuracy]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_unknown_pos_label[decision_function]", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_error_constant_predictor", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf1-prefit]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-predict_proba-from_estimator]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_unknown_pos_label[predict]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_unknown_pos_label[predict_log_proba]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-_accuracy_callable]", "sklearn/tests/test_calibration.py::test_calibration_inconsistent_prefit_n_features_in", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba[predict_proba]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba[predict_log_proba]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_estimator-None]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_decision_function[True]", "sklearn/tests/test_calibration.py::test_calibration_votingclassifier", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_decision_function[False]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_proba-True]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_estimator-chance_level_kw1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[predict_proba]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_proba-False]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_log_proba-True]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[0-predict_proba-0.7]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingRegressor-ConsumingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[0-decision_function-2.0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[1-predict_proba-0.7]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-accuracy]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[1-decision_function-2.0]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_log_proba-False]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_name[from_estimator-LogisticRegression (AP = {:.2f})]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingRegressor-ConsumingRegressor]", "sklearn/utils/tests/test_response.py::test_get_response_error[estimator1-X1-y1-pos_label=unknown is not a valid label: It should be one of \\\\[0 1\\\\]-params1]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-5]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf0]", "sklearn/utils/tests/test_response.py::test_get_response_predict_proba[True]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-10]", "sklearn/utils/tests/test_response.py::test_get_response_predict_proba[False]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/utils/tests/test_response.py::test_get_response_decision_function[True]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-5]", "sklearn/utils/tests/test_response.py::test_get_response_decision_function[False]", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator0-predict_proba]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-10]", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator1-predict_log_proba]", "sklearn/tests/test_calibration.py::test_plot_calibration_curve_pipeline", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator2-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_with_response_list", "sklearn/utils/tests/test_response.py::test_get_response_values_multilabel_indicator[predict_proba]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_string_labels", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/utils/tests/test_response.py::test_get_response_values_multilabel_indicator[decision_function]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_estimator]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[decision_function-from_estimator]", "sklearn/tests/test_metaestimators.py::test_metaestimator_delegation", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_prevalence_pos_label_reusable[from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_display_ref_line", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-regressor]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_linear_regresssion", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[CalibratedClassifierCV]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[None-1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-accuracy]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/utils/tests/test_response.py::test_get_response_values_multilabel_indicator[predict]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[0-0]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[1-1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-_accuracy_callable]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-predict_proba-from_estimator]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-decision_function-from_estimator]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-False-predict_proba-from_estimator]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingRegressor]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-False-decision_function-from_estimator]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-None]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-predict_proba-from_estimator]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-decision_function-from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[list]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-False-predict_proba-from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[array]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-False-decision_function-from_estimator]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-cv1]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display_default_name[from_estimator-LogisticRegression]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_validate", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-None]", "sklearn/calibration.py::sklearn.calibration.CalibratedClassifierCV", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_sample_weight", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer0-multi_scorer0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-cv1]", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer1-multi_scorer1]", "sklearn/tests/test_calibration.py::test_calibration_with_non_sample_aligned_fit_param", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer2-<lambda>]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-None]", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.check_scoring", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay.from_estimator", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.get_scorer", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/multioutput.py::sklearn.multioutput.ClassifierChain", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-cv1]", "sklearn/multioutput.py::sklearn.multioutput.RegressorChain", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/metrics/_plot/roc_curve.py::sklearn.metrics._plot.roc_curve.RocCurveDisplay.from_estimator", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_loo]", "sklearn/tests/test_calibration.py::test_float32_predict_proba", "sklearn/tests/test_calibration.py::test_error_less_class_samples_than_folds", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/feature_selection/_rfe.py::sklearn.feature_selection._rfe.RFECV", "sklearn/metrics/_plot/det_curve.py::sklearn.metrics._plot.det_curve.DetCurveDisplay.from_estimator", "sklearn/linear_model/_logistic.py::sklearn.linear_model._logistic.LogisticRegressionCV", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.FixedThresholdClassifier", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/metrics/_plot/precision_recall_curve.py::sklearn.metrics._plot.precision_recall_curve.PrecisionRecallDisplay.from_estimator", "sklearn/inspection/_plot/decision_boundary.py::sklearn.inspection._plot.decision_boundary.DecisionBoundaryDisplay.from_estimator", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingRegressor", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_loo]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_results[neg_mean_squared_error]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_results[_mean_squared_error_callable]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[cross_validate-extra_args0]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/model_selection/tests/test_validation.py::test_validation_functions_routing[permutation_test_score-extra_args4]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[CalibratedClassifierCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[ClassifierChain]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TunedThresholdClassifierCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[LogisticRegressionCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[GridSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RandomizedSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[HalvingGridSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[HalvingRandomSearchCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeCV0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RFECV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[LogisticRegressionCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RFECV]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ClassifierChain(base_estimator=LogisticRegression(C=1),cv=3)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ClassifierChain(base_estimator=LogisticRegression(C=1),cv=3)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-220
1.0
{ "code": "diff --git b/sklearn/utils/validation.py a/sklearn/utils/validation.py\nindex 2071327f1..401e72cef 100644\n--- b/sklearn/utils/validation.py\n+++ a/sklearn/utils/validation.py\n@@ -2095,6 +2095,41 @@ def _check_sample_weight(\n sample_weight : ndarray of shape (n_samples,)\n Validated sample weight. It is guaranteed to be \"C\" contiguous.\n \"\"\"\n+ n_samples = _num_samples(X)\n+\n+ if dtype is not None and dtype not in [np.float32, np.float64]:\n+ dtype = np.float64\n+\n+ if sample_weight is None:\n+ sample_weight = np.ones(n_samples, dtype=dtype)\n+ elif isinstance(sample_weight, numbers.Number):\n+ sample_weight = np.full(n_samples, sample_weight, dtype=dtype)\n+ else:\n+ if dtype is None:\n+ dtype = [np.float64, np.float32]\n+ sample_weight = check_array(\n+ sample_weight,\n+ accept_sparse=False,\n+ ensure_2d=False,\n+ dtype=dtype,\n+ order=\"C\",\n+ copy=copy,\n+ input_name=\"sample_weight\",\n+ )\n+ if sample_weight.ndim != 1:\n+ raise ValueError(\"Sample weights must be 1D array or scalar\")\n+\n+ if sample_weight.shape != (n_samples,):\n+ raise ValueError(\n+ \"sample_weight.shape == {}, expected {}!\".format(\n+ sample_weight.shape, (n_samples,)\n+ )\n+ )\n+\n+ if ensure_non_negative:\n+ check_non_negative(sample_weight, \"`sample_weight`\")\n+\n+ return sample_weight\n \n \n def _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py\nindex 401e72cef..2071327f1 100644\n--- a/sklearn/utils/validation.py\n+++ b/sklearn/utils/validation.py\n@@ -2095,41 +2095,6 @@ def _check_sample_weight(\n sample_weight : ndarray of shape (n_samples,)\n Validated sample weight. It is guaranteed to be \"C\" contiguous.\n \"\"\"\n- n_samples = _num_samples(X)\n-\n- if dtype is not None and dtype not in [np.float32, np.float64]:\n- dtype = np.float64\n-\n- if sample_weight is None:\n- sample_weight = np.ones(n_samples, dtype=dtype)\n- elif isinstance(sample_weight, numbers.Number):\n- sample_weight = np.full(n_samples, sample_weight, dtype=dtype)\n- else:\n- if dtype is None:\n- dtype = [np.float64, np.float32]\n- sample_weight = check_array(\n- sample_weight,\n- accept_sparse=False,\n- ensure_2d=False,\n- dtype=dtype,\n- order=\"C\",\n- copy=copy,\n- input_name=\"sample_weight\",\n- )\n- if sample_weight.ndim != 1:\n- raise ValueError(\"Sample weights must be 1D array or scalar\")\n-\n- if sample_weight.shape != (n_samples,):\n- raise ValueError(\n- \"sample_weight.shape == {}, expected {}!\".format(\n- sample_weight.shape, (n_samples,)\n- )\n- )\n-\n- if ensure_non_negative:\n- check_non_negative(sample_weight, \"`sample_weight`\")\n-\n- return sample_weight\n \n \n def _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/validation.py.\nHere is the description for the function:\ndef _check_sample_weight(\n sample_weight, X, dtype=None, copy=False, ensure_non_negative=False\n):\n \"\"\"Validate sample weights.\n\n Note that passing sample_weight=None will output an array of ones.\n Therefore, in some cases, you may want to protect the call with:\n if sample_weight is not None:\n sample_weight = _check_sample_weight(...)\n\n Parameters\n ----------\n sample_weight : {ndarray, Number or None}, shape (n_samples,)\n Input sample weights.\n\n X : {ndarray, list, sparse matrix}\n Input data.\n\n ensure_non_negative : bool, default=False,\n Whether or not the weights are expected to be non-negative.\n\n .. versionadded:: 1.0\n\n dtype : dtype, default=None\n dtype of the validated `sample_weight`.\n If None, and the input `sample_weight` is an array, the dtype of the\n input is preserved; otherwise an array with the default numpy dtype\n is be allocated. If `dtype` is not one of `float32`, `float64`,\n `None`, the output will be of dtype `float64`.\n\n copy : bool, default=False\n If True, a copy of sample_weight will be created.\n\n Returns\n -------\n sample_weight : ndarray of shape (n_samples,)\n Validated sample weight. It is guaranteed to be \"C\" contiguous.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-True-svd]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-True-sparse_cg]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-True-cholesky]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-True-lsqr]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/preprocessing/tests/test_data.py::test_raises_value_error_if_sample_weights_greater_than_1d", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-True-sag]", "sklearn/tree/tests/test_tree.py::test_weighted_classification_toy", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-True-saga]", "sklearn/ensemble/tests/test_forest.py::test_classification_toy[RandomForestClassifier]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw0-X0-sample_weight0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-lloyd-dense]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SGDClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-False-svd]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw1-X1-sample_weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-lloyd-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SparseSGDClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-False-sparse_cg]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[gini-RandomForestClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw2-X2-sample_weight2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-lloyd-sparse_array]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SGDRegressor]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-False-cholesky]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw0-X0-sample_weight0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_lr_liblinear_warning", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-dense]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SparseSGDRegressor]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[log_loss-RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-False-lsqr]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw1-X1-sample_weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SGDClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dtype_object]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-False-sag]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw2-X2-sample_weight2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_regression_criterion[squared_error-RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[long-42-False-saga]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw0-X0-sample_weight0]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-lloyd-dense]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-True-svd]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw1-X1-sample_weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-lloyd-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/ensemble/tests/test_forest.py::test_regression_criterion[absolute_error-RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-True-sparse_cg]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw2-X2-sample_weight2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-lbfgs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-lloyd-sparse_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-dense]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-True-cholesky]", "sklearn/ensemble/tests/test_forest.py::test_regression_criterion[friedman_mse-RandomForestRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf4]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_poisson_vs_mse", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SparseSGDClassifier]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-lbfgs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-True-lsqr]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[lloyd-dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SGDRegressor]", "sklearn/ensemble/tests/test_forest.py::test_regressor_attributes[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-True-sag]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1-f1_score]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-None]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[lloyd-sparse_matrix]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_weighted-metric1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csc_matrix]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_macro-metric2]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csc_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[lloyd-sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SparseSGDRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-True-saga]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_micro-metric3]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csr_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[sag]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-dense]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision-precision_score]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[saga]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_weighted-metric5]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-sparse_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary_probabilities[42]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_macro-metric6]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-sparse_array]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_micro-metric7]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/ensemble/tests/test_forest.py::test_probability[RandomForestClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall-recall_score]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_matrix-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-False-svd]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-gini-float64]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_weighted-metric9]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_matrix-Xw1-X1-weights1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-dense-normal]", "sklearn/linear_model/tests/test_logistic.py::test_consistency_path", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_macro-metric10]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_matrix-Xw3-X3-weights3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-False-sparse_cg]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_matrix-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_dual_random_state", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-gini-float32]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-dense-blobs]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_matrix-Xw5-X5-weights5]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_micro-metric11]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-False-cholesky]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_array-Xw0-X0-weights0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_matrix-normal]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_array-Xw1-X1-weights1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-None-scaler0]", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-log_loss-float64]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SGDRegressor]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csc_matrix-scaler0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_matrix-blobs]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_array-Xw3-X3-weights3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-False-lsqr]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csc_array-scaler0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-log_loss-float32]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_array-normal]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard-jaccard_score]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csr_matrix-scaler0]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SparseSGDRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-False-sag]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_array-blobs]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_array-Xw4-X4-weights4]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_weighted-metric13]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_logistic_regression_string_inputs", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[DecisionTreeClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csc_array-Xw5-X5-weights5]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csr_array-scaler0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-dense-normal]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_macro-metric14]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[DecisionTreeRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_matrix-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-dense-blobs]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[ExtraTreeRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_matrix-Xw1-X1-weights1]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-gini-float64]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_micro-metric15]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-DecisionTreeClassifier]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_matrix-Xw3-X3-weights3]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SparseSGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[top_k_accuracy-top_k_accuracy_score]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression[wide-42-False-saga]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-DecisionTreeRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_matrix-Xw4-X4-weights4]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-gini-float32]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[matthews_corrcoef-matthews_corrcoef]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[CalibratedClassifierCV]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_matrix-Xw5-X5-weights5]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_matrix-normal]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_array-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SGDRegressor]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-ExtraTreeClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_array-Xw1-X1-weights1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_matrix-blobs]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-log_loss-float64]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_array-normal]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_array-Xw3-X3-weights3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-log_loss-float32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[long-42-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_array-blobs]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-None-scaler0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[long-42-True-saga]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csc_matrix-scaler0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-dense-normal]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csc_array-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_array-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SparseSGDRegressor]", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-squared_error-float64]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-dense-blobs]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csr_matrix-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float32-csr_array-Xw5-X5-weights5]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_regression_target]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_matrix-normal]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_matrix-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[long-42-False-sag]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csr_array-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_matrix-Xw1-X1-weights1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_matrix-blobs]", "sklearn/linear_model/tests/test_sgd.py::test_input_format[SGDClassifier]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-DecisionTreeClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_matrix-Xw3-X3-weights3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/metrics/tests/test_score_objects.py::test_custom_scorer_pickling", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-squared_error-float32]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_matrix-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_sgd.py::test_input_format[SparseSGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[long-42-False-saga]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-DecisionTreeRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_matrix-Xw5-X5-weights5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_array-normal]", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-friedman_mse-float64]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_array-Xw0-X0-weights0]", "sklearn/metrics/tests/test_score_objects.py::test_supervised_cluster_scorers", "sklearn/linear_model/tests/test_sgd.py::test_input_format[SGDRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_array-Xw1-X1-weights1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_array-blobs]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-ExtraTreeClassifier]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-friedman_mse-float32]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-dense-normal]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers_multiclass", "sklearn/linear_model/tests/test_sgd.py::test_input_format[SparseSGDRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_regression_scorer_sample_weight", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-absolute_error-float64]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_array-Xw3-X3-weights3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-dense-blobs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-absolute_error-float32]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_array-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_sgd.py::test_clone[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_matrix-normal]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[wide-42-True-sag]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csc_array-Xw5-X5-weights5]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_matrix-blobs]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[wide-42-True-saga]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_matrix-Xw0-X0-weights0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-squared_error-float64]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_array-normal]", "sklearn/linear_model/tests/test_sgd.py::test_clone[SparseSGDClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_matrix-Xw1-X1-weights1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_array-blobs]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_matrix-Xw3-X3-weights3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_convergence[42-lloyd]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_matrix-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_sgd.py::test_clone[SGDRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-None-scaler0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[wide-42-False-sag]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_matrix-Xw5-X5-weights5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_convergence[42-elkan]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csc_matrix-scaler0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_hstacked_X[wide-42-False-saga]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_array-Xw0-X0-weights0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csc_array-scaler0]", "sklearn/linear_model/tests/test_sgd.py::test_clone[SparseSGDRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_array-Xw1-X1-weights1]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-squared_error-float32]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csr_matrix-scaler0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csr_array-scaler0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight1]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_array-Xw3-X3-weights3]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-dense]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-friedman_mse-float64]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[long-42-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-sparse_array]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_array-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[long-42-True-saga]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-lbfgs-single]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis1[float64-csr_array-Xw5-X5-weights5]", "sklearn/tree/tests/test_tree.py::test_unbalanced_iris", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-friedman_mse-float32]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_matrix-Xw0-X0-weights0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/tree/tests/test_tree.py::test_sample_weight", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_matrix-Xw1-X1-weights1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-lbfgs-cv]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/tree/tests/test_tree.py::test_sample_weight_invalid", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[long-42-False-sag]", "sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SparseSGDClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-absolute_error-float64]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_class_weights[DecisionTreeClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[long-42-False-saga]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-sparse_matrix]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_matrix-Xw3-X3-weights3]", "sklearn/tree/tests/test_tree.py::test_class_weights[ExtraTreeClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_matrix-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-liblinear-single]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-sparse_array]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-None-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_matrix-Xw5-X5-weights5]", "sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SGDRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csc_matrix-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_array-Xw0-X0-weights0]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-dense]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csc_array-scaler0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-liblinear-cv]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_array-Xw1-X1-weights1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_n_features_in]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csr_matrix-scaler0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[wide-42-True-sag]", "sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SparseSGDRegressor]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-sparse_matrix]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-absolute_error-float32]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[wide-42-True-saga]", "sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SGDOneClassSVM]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-dense]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-single]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_array-Xw3-X3-weights3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SparseSGDOneClassSVM]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_array-Xw4-X4-weights4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csr_array-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csc_array-Xw5-X5-weights5]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-cv]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-sparse_matrix]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_matrix-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[wide-42-False-sag]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_matrix-Xw1-X1-weights1]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_vstacked_X[wide-42-False-saga]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-dense]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-single]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_matrix-Xw3-X3-weights3]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_matrix-Xw4-X4-weights4]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-sparse_matrix]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_matrix-Xw5-X5-weights5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-cv]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SparseSGDClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_array-Xw0-X0-weights0]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[long-42-True-sag]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_array-Xw1-X1-weights1]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SGDRegressor]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-None-scaler0]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csc_matrix-scaler0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[long-42-True-saga]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SparseSGDRegressor]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csc_array-scaler0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-array-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-sag-single]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_array-Xw3-X3-weights3]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_array-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SGDOneClassSVM]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float32-csr_array-Xw5-X5-weights5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csr-ExtraTreesClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-dense]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_matrix-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-sag-cv]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SparseSGDOneClassSVM]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_matrix-Xw1-X1-weights1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[long-42-False-sag]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[long-42-False-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csr-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-saga-single]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-sparse_array]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_matrix-Xw3-X3-weights3]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csr_matrix-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_matrix-Xw4-X4-weights4]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_matrix-Xw5-X5-weights5]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-dense]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_array-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-saga-cv]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csr_array-scaler0]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-sparse_matrix]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_array-Xw1-X1-weights1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-False-sag]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized[wide-42-False-saga]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_array-Xw3-X3-weights3]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SparseSGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csc-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-lbfgs]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr_weighted]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[random]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SGDRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_array-Xw4-X4-weights4]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csc-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cg]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo_weighted]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[k-means++]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SparseSGDRegressor]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-array-ExtraTreesClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csc_array-Xw5-X5-weights5]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[ndarray]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SGDClassifier]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_matrix-Xw0-X0-weights0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-array-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[long-42-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[callable]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_matrix-Xw1-X1-weights1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[long-42-True-saga]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-k-means++-1]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SparseSGDClassifier]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-sag]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_matrix-Xw3-X3-weights3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-random-default]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_matrix-Xw4-X4-weights4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-None-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_matrix-Xw5-X5-weights5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csc_matrix-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_array-Xw0-X0-weights0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[long-42-False-sag]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csc_array-scaler0]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_array-Xw1-X1-weights1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[long-42-False-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-<lambda>-default]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SGDRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-saga]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csr_matrix-scaler0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-array-like-1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_dtype_object]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_array-Xw3-X3-weights3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csr-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-k-means++-1]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_array-Xw4-X4-weights4]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SparseSGDRegressor]", "sklearn/utils/tests/test_sparsefuncs.py::test_incr_mean_variance_axis_weighted_axis0[float64-csr_array-Xw5-X5-weights5]", "sklearn/linear_model/tests/test_logistic.py::test_sample_and_class_weight_equivalence_liblinear[42]", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csr_array-scaler0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-random-default]", "sklearn/utils/tests/test_validation.py::test_check_sample_weight", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[<lambda>]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-<lambda>-default]", "sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-False-sag]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_hstacked_X[wide-42-False-saga]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-array-like-1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SparseSGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csc-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_fortran_aligned_data[42-KMeans]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_nan_inf]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_array]", "sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SGDRegressor]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-array-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[long-42-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_fortran_aligned_data[42-MiniBatchKMeans]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[long-42-True-saga]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_verbose", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0.01-lloyd]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SparseSGDRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0.01-elkan]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-array-RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[long-42-False-sag]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0-lloyd]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0-elkan]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_decision_function_zero", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[long-42-False-saga]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SparseSGDClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse[csr_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csr-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_warning_init_size", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SGDRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse[csr_array]", "sklearn/cluster/tests/test_k_means.py::test_warning_n_init_precomputed_centers[KMeans]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/cluster/tests/test_k_means.py::test_warning_n_init_precomputed_centers[MiniBatchKMeans]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SparseSGDRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-False-sag]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_sensible_reassign[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_unpenalized_vstacked_X[wide-42-False-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-True-svd]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csc-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_saga_sparse[csr_matrix]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_with_many_reassignments", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_train]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-True-sparse_cg]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_init_size", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_declared_convergence[0.0001-None]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-array-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_saga_sparse[csr_array]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SparseSGDClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_declared_convergence[0-10]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-True-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logreg_l1", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-array-RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SGDRegressor]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_iter_steps", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-0]", "sklearn/linear_model/tests/test_logistic.py::test_logreg_l1_sparse_data[csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-True-lsqr]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_copyx", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csr-ExtraTreesClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-3]", "sklearn/linear_model/tests/test_logistic.py::test_logreg_l1_sparse_data[csr_array]", "sklearn/cluster/tests/test_k_means.py::test_score_max_iter[42-KMeans]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SparseSGDRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-4]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-True-sag]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-0]", "sklearn/cluster/tests/test_k_means.py::test_score_max_iter[42-MiniBatchKMeans]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-2]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-lloyd-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-True-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csr-RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SGDClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l1-42]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-lloyd-sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-False-svd]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l2-42]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csc-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SparseSGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-4]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-lloyd-sparse_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-False-sparse_cg]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csc-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-elkan-dense]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_int]", "sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SGDRegressor]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-elkan-sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-False-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-MiniBatchKMeans-None-dense]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-array-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SparseSGDRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-False-lsqr]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-MiniBatchKMeans-None-sparse_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_tree_vs_forest_and_gbdt[0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-MiniBatchKMeans-None-sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-array-RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_clf[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-False-sag]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_clf[SparseSGDClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter2]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-lloyd-dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-None-False-saga]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-lloyd-sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csr-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter3]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-lloyd-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-True-sparse_cg]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-elkan-dense]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csr-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-elkan-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-True-sag]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter1]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csc-ExtraTreesClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-elkan-sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-False-sparse_cg]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-MiniBatchKMeans-None-dense]", "sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SGDOneClassSVM]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csc-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter2]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-False-cholesky]", "sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SparseSGDOneClassSVM]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-MiniBatchKMeans-None-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset[SGDClassifier-fit_params0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-MiniBatchKMeans-None-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-KMeans-X_csr0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-array-ExtraTreesClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est0]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset[SparseSGDClassifier-fit_params1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-False-lsqr]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter3]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-KMeans-X_csr1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-MiniBatchKMeans-X_csr0]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset[SGDOneClassSVM-fit_params2]", "sklearn/metrics/tests/test_classification.py::test_d2_log_loss_score", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-array-RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-False-sag]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-MiniBatchKMeans-X_csr1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-DecisionTreeClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-ExtraTreeClassifier]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-random-X_csr0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_matrix-False-saga]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_matrix-True]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-DecisionTreeRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-True-sparse_cg]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset[SparseSGDOneClassSVM-fit_params3]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-ExtraTreeRegressor]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_matrix-None]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csr-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-random-X_csr1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-True-sag]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter2]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-DecisionTreeClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-k-means++-X_csr0]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset_binary[SGDClassifier-fit_params0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-k-means++-X_csr1]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-ndarray-X_csr0]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset_binary[SparseSGDClassifier-fit_params1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-ndarray-X_csr1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-False-sparse_cg]", "sklearn/inspection/tests/test_partial_dependence.py::test_multiclass_multioutput[RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-random-X_csr0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter3]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset_binary[SGDOneClassSVM-fit_params2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-False-cholesky]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-ExtraTreeClassifier]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_array-True]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-random-X_csr1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator0-params0-'estimator' must be a fitted regressor or classifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csc-RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_offset_binary[SparseSGDOneClassSVM-fit_params3]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-DecisionTreeRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-False-lsqr]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csc_array-None]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator2-params2-'recursion' method, the response_method must be 'decision_function']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator3-params3-'recursion' method, the response_method must be 'decision_function']", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-ExtraTreeRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-False-sag]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-array-ExtraTreesClassifier]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_matrix-True]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-k-means++-X_csr0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[-1-estimator1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-k-means++-X_csr1]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-DecisionTreeClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[10000-estimator1]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_matrix-None]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-array-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-ndarray-X_csr0]", "sklearn/linear_model/tests/test_sgd.py::test_average_binary_computed_correctly[SGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_string[estimator1]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-ExtraTreeClassifier]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-ndarray-X_csr1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-1.0-csr_array-False-saga]", "sklearn/linear_model/tests/test_sgd.py::test_average_binary_computed_correctly[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int32-dense]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int32-sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-True-svd]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator1]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int32-sparse_array]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_to_intercept[SGDClassifier]", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_array-True]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_warning_recursion_non_constant_init", "sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[csr_array-None]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter3]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csr-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int64-dense]", "sklearn/linear_model/tests/test_sgd.py::test_set_intercept_to_intercept[SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-True-sparse_cg]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_of_fitted_estimator", "sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[True]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int64-sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-True-cholesky]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_at_least_two_labels[SGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_hist_gbdt_sw_not_supported", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int64-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-True-lsqr]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int32-dense]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter1]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csc-RandomForestClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int32-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_at_least_two_labels[SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int32-sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-array-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter2]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int64-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-True-saga]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csc_matrix-True]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass[SGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-array-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter3]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csc_array-True]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass[SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-False-svd]", "sklearn/tree/tests/test_tree.py::test_mae", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-False-sparse_cg]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int64-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_average[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int64-sparse_array]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-False-cholesky]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csr-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_average[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-sparse_array]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_matrix-True]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csr-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[liblinear]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-False-lsqr]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_with_init_coef[SGDClassifier]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_matrix-None]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csc-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-False-sag]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[sag]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_with_init_coef[SparseSGDClassifier]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-None-False-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csc-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-sparse_array]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[saga]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_njobs[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-True-sparse_cg]", "sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[csr_array-None]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-sparse_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_njobs[SparseSGDClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-array-ExtraTreesRegressor]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-dense]", "sklearn/linear_model/tests/test_sgd.py::test_set_coef_multiclass[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/linear_model/tests/test_sgd.py::test_set_coef_multiclass[SparseSGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-array-RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-False-sparse_cg]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-False-False]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-True-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-sparse_csr-ExtraTreesRegressor]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_array-False-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-False-cholesky]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/cluster/tests/test_k_means.py::test_transform[42-KMeans]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-False-sag]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-False-lsqr]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-False-False]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_proba[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_transform[42-MiniBatchKMeans]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-sparse_csr-RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_fit_transform[42-KMeans]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_proba[SparseSGDClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-False-sag]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-False-saga]", "sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_array-False-False]", "sklearn/cluster/tests/test_k_means.py::test_fit_transform[42-MiniBatchKMeans]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[squared_error]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_l1[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_n_init[42]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-True-sag]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/cluster/tests/test_k_means.py::test_k_means_function[42]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_l1[SparseSGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-sparse_csc-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_matrix-False-saga]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[absolute_error]", "sklearn/preprocessing/tests/test_data.py::test_scaler_return_identity[csc_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_class_weights[SGDClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-sparse_csc-RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-True-sparse_cg]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-True-saga]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-KMeans-dense]", "sklearn/preprocessing/tests/test_data.py::test_scaler_return_identity[csc_array]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-KMeans-sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X1-y1-0.55-array-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-False-sag]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-KMeans-sparse_array]", "sklearn/linear_model/tests/test_sgd.py::test_class_weights[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-dense]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-False-sparse_cg]", "sklearn/preprocessing/tests/test_data.py::test_scaler_return_identity[csr_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_equal_class_weight[SGDClassifier]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[friedman_mse]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-False-cholesky]", "sklearn/preprocessing/tests/test_data.py::test_scaler_return_identity[csr_array]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X1-y1-0.55-array-RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-sparse_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-False-saga]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-sparse_array]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/linear_model/tests/test_logistic.py::test_saga_vs_liblinear[csr_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_equal_class_weight[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-int32]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[poisson]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X1-y1-0.55-sparse_csr-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_saga_vs_liblinear[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-False-lsqr]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/linear_model/tests/test_sgd.py::test_weights_multiplied[SGDClassifier]", "sklearn/preprocessing/tests/test_data.py::test_scaler_int[csr_matrix]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-int64]", "sklearn/linear_model/tests/test_sgd.py::test_weights_multiplied[SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-False-sag]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X1-y1-0.55-sparse_csr-RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-float32]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-float64]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-liblinear-ovr]", "sklearn/preprocessing/tests/test_data.py::test_scaler_int[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[long-42-0.01-csr_array-False-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X1-y1-0.55-sparse_csc-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-saga-ovr]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-int32]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-True-svd]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-int64]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-float32]", "sklearn/linear_model/tests/test_sgd.py::test_balanced_weight[SGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X1-y1-0.55-sparse_csc-RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-True-sparse_cg]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-saga-multinomial]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-float64]", "sklearn/linear_model/tests/test_sgd.py::test_balanced_weight[SparseSGDClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X0-y0-0.7-array-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-liblinear-ovr]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-DecisionTreeRegressor-0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-True-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[dense]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-saga-ovr]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/linear_model/tests/test_sgd.py::test_sample_weights[SGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_sample_weights[SparseSGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[sparse_matrix]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_warns_less_centers_than_unique_points[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_weighted_vs_repeated[42]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X0-y0-0.7-array-RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-KMeans-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-True-saga]", "sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SparseSGDClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-saga-multinomial]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X0-y0-0.7-sparse_csr-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-liblinear-ovr]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-KMeans-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X0-y0-0.7-sparse_csr-RandomForestRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-saga-ovr]", "sklearn/tree/tests/test_tree.py::test_sample_weight_non_uniform[make_regression-DecisionTreeRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SGDOneClassSVM]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-False-svd]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-KMeans-sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X0-y0-0.7-sparse_csc-ExtraTreesRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-saga-multinomial]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-MiniBatchKMeans-dense]", "sklearn/tree/tests/test_tree.py::test_sample_weight_non_uniform[make_classification-DecisionTreeClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-False-sparse_cg]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_kind_individual_ignores_sample_weight[LinearRegression-data0]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-MiniBatchKMeans-sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X0-y0-0.7-sparse_csc-RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-MiniBatchKMeans-sparse_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-False-cholesky]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_binary[SGDClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_binary[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-KMeans-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-False-lsqr]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-KMeans-sparse_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-liblinear-ovr]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-KMeans-sparse_array]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-False-sag]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-MiniBatchKMeans-dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_kind_individual_ignores_sample_weight[LogisticRegression-data1]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X1-y1-0.55-array-ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-saga-ovr]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-saga-multinomial]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X1-y1-0.55-array-RandomForestRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-MiniBatchKMeans-sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-None-False-saga]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-MiniBatchKMeans-sparse_array]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start_converge_LR", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass_average[SGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-True-sparse_cg]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X1-y1-0.55-sparse_csr-ExtraTreesRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X1-y1-0.55-sparse_csr-RandomForestRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X1-y1-0.55-sparse_csc-ExtraTreesRegressor]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_iter_attribute", "sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[dense]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator2]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_result_equal_in_diff_n_threads[42-KMeans]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass_average[SparseSGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_fit_then_partial_fit[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_result_equal_in_diff_n_threads[42-MiniBatchKMeans]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_coeffs", "sklearn/linear_model/tests/test_sgd.py::test_fit_then_partial_fit[SparseSGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-True-sag]", "sklearn/cluster/tests/test_k_means.py::test_warning_elkan_1_cluster", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-0.001]", "sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[explained_variance_score-X1-y1-0.55-sparse_csc-RandomForestRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[constant-SGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-False-sparse_cg]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-0.1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-False-cholesky]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-1]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-lloyd-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-False-lsqr]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-lloyd-sparse_array]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[BaggingClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-10]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[constant-SparseSGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-False-sag]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[optimal-SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-elkan-dense]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[BaggingRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_matrix-False-saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[optimal-SparseSGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-True-sparse_cg]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-elkan-sparse_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-100]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-True-sag]", "sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_absolute_error_score]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[invscaling-SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-elkan-sparse_array]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-1000]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[invscaling-SparseSGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[ExtraTreesRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/cluster/tests/test_k_means.py::test_n_init_auto[KMeans-10]", "sklearn/cluster/tests/test_k_means.py::test_n_init_auto[MiniBatchKMeans-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator2]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-1000000.0]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-False-sparse_cg]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_pinball_score]", "sklearn/cluster/tests/test_k_means.py::test_sample_weight_unchanged[KMeans]", "sklearn/metrics/tests/test_ranking.py::test_roc_curve_fpr_tpr_increasing", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-0.001]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-False-cholesky]", "sklearn/cluster/tests/test_k_means.py::test_sample_weight_unchanged[MiniBatchKMeans]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[adaptive-SGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_classifier_error_oob_score_multiclass_multioutput[ExtraTreesClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_equivalence_equal_sample_weight[LinearRegression-data0]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param1-The shape of the initial centers .* does not match the number of clusters-KMeans]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-False-lsqr]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[adaptive-SparseSGDClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[CalibratedClassifierCV]", "sklearn/ensemble/tests/test_forest.py::test_classifier_error_oob_score_multiclass_multioutput[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-False-sag]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-0.1]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]", "sklearn/linear_model/tests/test_sgd.py::test_regression_losses[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param1-The shape of the initial centers .* does not match the number of clusters-MiniBatchKMeans]", "sklearn/ensemble/tests/test_forest.py::test_forest_multioutput_integral_regression_target[ExtraTreesRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-1]", "sklearn/linear_model/tests/test_sgd.py::test_regression_losses[SparseSGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param2-The shape of the initial centers .* does not match the number of clusters-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param2-The shape of the initial centers .* does not match the number of clusters-MiniBatchKMeans]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-1.0-csr_array-False-saga]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param3-The shape of the initial centers .* does not match the number of features of the data-KMeans]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_equivalence_equal_sample_weight[LogisticRegression-data1]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-10]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_multiclass[SGDClassifier]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-True-svd]", "sklearn/ensemble/tests/test_forest.py::test_forest_multioutput_integral_regression_target[RandomForestRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-100]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param3-The shape of the initial centers .* does not match the number of features of the data-MiniBatchKMeans]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[det_curve]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-True-sparse_cg]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param4-The shape of the initial centers .* does not match the number of features of the data-KMeans]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_multiclass[SparseSGDClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-True-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-1000]", "sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[precision_recall_curve]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/ensemble/tests/test_forest.py::test_gridsearch[RandomForestClassifier]", "sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[roc_curve]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_size_error", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param4-The shape of the initial centers .* does not match the number of features of the data-MiniBatchKMeans]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-True-lsqr]", "sklearn/linear_model/tests/test_sgd.py::test_multiple_fit[SGDClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_wrong_params[param0-The length of x_squared_norms .* should be equal to the length of n_samples]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifier-params3]", "sklearn/ensemble/tests/test_forest.py::test_parallel[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-1000000.0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[42-float64-input_data0]", "sklearn/linear_model/tests/test_sgd.py::test_multiple_fit[SparseSGDClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_with_recursion", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[42-float64-input_data1]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[0.001]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-True-sag]", "sklearn/ensemble/tests/test_forest.py::test_parallel[RandomForestRegressor]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[42-float64-input_data2]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_reg[SGDRegressor]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[42-float32-input_data0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-True-saga]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_reg[SparseSGDRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[42-float32-input_data1]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifierCV-params9]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-False-svd]", "sklearn/ensemble/tests/test_forest.py::test_pickle[RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[100]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-False-sparse_cg]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1000000.0]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[42-float32-input_data2]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly[SGDRegressor]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_norms[x_squared_norms0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-False-cholesky]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.001]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifier-params3]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_norms[None]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly[SparseSGDRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_dataorder[42]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit[SGDRegressor]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_with_array_like_or_np_scalar_init[kwargs0]", "sklearn/ensemble/tests/test_forest.py::test_pickle[RandomForestRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-False-lsqr]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_with_array_like_or_np_scalar_init[kwargs1]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit[SparseSGDRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.046415888336127795]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-RandomForestClassifier]", "sklearn/cluster/tests/test_k_means.py::test_feature_names_out[KMeans-fit]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-False-sag]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]", "sklearn/linear_model/tests/test_sgd.py::test_average_sparse[SGDRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_n_features_in]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-2.1544346900318843]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-None-False-saga]", "sklearn/linear_model/tests/test_sgd.py::test_average_sparse[SparseSGDRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-100.0]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]", "sklearn/cluster/tests/test_k_means.py::test_feature_names_out[MiniBatchKMeans-fit]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-True-sparse_cg]", "sklearn/cluster/tests/test_k_means.py::test_feature_names_out[MiniBatchKMeans-partial_fit]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.001]", "sklearn/cluster/tests/test_k_means.py::test_predict_does_not_change_cluster_centers[csr_matrix]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_absolute_error_sample_weight", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-True-sag]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]", "sklearn/cluster/tests/test_k_means.py::test_predict_does_not_change_cluster_centers[csr_array]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_least_squares_fit[SGDRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/cluster/tests/test_k_means.py::test_predict_does_not_change_cluster_centers[None]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-True-True-RandomForestRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_least_squares_fit[SparseSGDRegressor]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.046415888336127795]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[lloyd-dense]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-False-sparse_cg]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_epsilon_insensitive[SGDRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[average_precision_score]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[lloyd-sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_classes_shape[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-False-cholesky]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-True-False-RandomForestRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-2.1544346900318843]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_exponential_n_classes_gt_2", "sklearn/linear_model/tests/test_sgd.py::test_sgd_epsilon_insensitive[SparseSGDRegressor]", "sklearn/svm/tests/test_sparse.py::test_linearsvc[lil_matrix-dok_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-False-lsqr]", "sklearn/svm/tests/test_sparse.py::test_linearsvc[lil_array-dok_array]", "sklearn/svm/tests/test_sparse.py::test_linearsvc_iris[csr_matrix]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[lloyd-sparse_array]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-100.0]", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/linear_model/tests/test_sgd.py::test_sgd_huber_fit[SGDRegressor]", "sklearn/svm/tests/test_sparse.py::test_linearsvc_iris[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-False-sag]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[elkan-dense]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.001]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-log_loss]", "sklearn/svm/tests/test_sparse.py::test_weight[csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_matrix-False-saga]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-exponential]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[elkan-sparse_matrix]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-False-True-RandomForestRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.046415888336127795]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_average_precision_score]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-log_loss]", "sklearn/ensemble/tests/test_forest.py::test_parallel_train", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-exponential]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_huber_fit[SparseSGDRegressor]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-False-False-RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-True-sparse_cg]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-False-0.01-True]", "sklearn/linear_model/tests/test_sgd.py::test_elasticnet_convergence[SGDRegressor]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]", "sklearn/svm/tests/test_sparse.py::test_weight[csr_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-False-0.01-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-True-sag]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-2.1544346900318843]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-True-True-RandomForestRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-True-0.01-True]", "sklearn/linear_model/tests/test_sgd.py::test_elasticnet_convergence[SparseSGDRegressor]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-False-sparse_cg]", "sklearn/tests/test_pipeline.py::test_fit_predict_on_pipeline", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-squared_error]", "sklearn/svm/tests/test_sparse.py::test_sparse_liblinear_intercept_handling", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-True-0.01-False]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-100.0]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit[SGDRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-absolute_error]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-True-False-RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-False-cholesky]", "sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[2]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit[SparseSGDRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_average_precision_score]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-huber]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-squared_error]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-False-True-RandomForestRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-absolute_error]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-False-0.01-True]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[3]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-False-lsqr]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-False-False-RandomForestRegressor]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-huber]", "sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomForestRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-False-0.01-False]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[constant-SGDRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-True-0.01-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-False-sag]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[constant-SparseSGDRegressor]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-True-0.01-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights[wide-42-0.01-csr_array-False-saga]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomForestRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-False-0.01-True]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-True-True-RandomForestRegressor]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[d2_absolute_error_score]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-1.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-l2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-False-0.01-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-0.5]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[optimal-SGDRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/svm/tests/test_svm.py::test_svr", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[d2_pinball_score]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-1.0]", "sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomForestClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[optimal-SparseSGDRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-elasticnet]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-0.5]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-True-False-RandomForestRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_synthetic[42]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[invscaling-SGDRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-True-0.01-True]", "sklearn/svm/tests/test_svm.py::test_linearsvr", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-l2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingRegressor-X0-y0]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-sag-None]", "sklearn/model_selection/tests/test_search.py::test_grid_search_no_score", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[invscaling-SparseSGDRegressor]", "sklearn/svm/tests/test_svm.py::test_linearsvr_fit_sampleweight", "sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomForestRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-True-0.01-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-None-True]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-False-True-RandomForestRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingClassifier-X1-y1]", "sklearn/svm/tests/test_svm.py::test_weight", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-None-False]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-False-False-RandomForestRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_matrix-True]", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[adaptive-SGDRegressor]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[ExtraTreesRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-saga-None]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-elasticnet]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_log[42]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_matrix-False]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomForestRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/ensemble/tests/test_gradient_boosting.py::test_single_class_with_sample_weight", "sklearn/model_selection/tests/test_search.py::test_grid_search_groups", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[adaptive-SparseSGDRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-True-True-RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_dtype_object]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-sag-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_matrix]", "sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomTreesEmbedding]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-l2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_array]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[10]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-True-False-RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_regression[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_consistent_lengths", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[20]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-False-None-shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-None-shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-None-shape2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-20-shape3]", "sklearn/model_selection/tests/test_search.py::test_classes__property", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-False-True-RandomForestRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[constant-SGDOneClassSVM]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[constant-SparseSGDOneClassSVM]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[optimal-SGDOneClassSVM]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_regression", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_zero_sample_weights_classification", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_array-True]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomForestClassifier]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_array-False]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-elasticnet]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_elasticnet_attribute_shapes", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[optimal-SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_logistic.py::test_l1_ratio_non_elasticnet", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-saga-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_features", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-20-shape4]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_array]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0-True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-0.5-shape5]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-0.001]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-sag-None]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-saga-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_serialization", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-False-False-RandomForestRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_multiclass_raises[RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0-False]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomForestRegressor]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-0.5-shape6]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[invscaling-SGDOneClassSVM]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_degenerate_targets", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-0.046415888336127795]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-regression]", "sklearn/tree/tests/test_monotonic_tree.py::test_multiple_output_raises[RandomForestClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-True-None-shape7]", "sklearn/svm/tests/test_svm.py::test_auto_weight", "sklearn/svm/tests/test_svm.py::test_bad_input[lil_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0.5-True]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[invscaling-SparseSGDOneClassSVM]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-binary_classification]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-None-shape8]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-2.1544346900318843]", "sklearn/model_selection/tests/test_search.py::test_refit_callable", "sklearn/svm/tests/test_svm.py::test_bad_input[lil_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-sag-None]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[half-multiclass_classification]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-None-shape9]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-regression]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[adaptive-SGDOneClassSVM]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_quantile_loss[42]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l1-hinge]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-100.0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-20-shape10]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l1-squared_hinge]", "sklearn/tree/tests/test_monotonic_tree.py::test_bad_monotonic_cst_raises[RandomForestClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-20-shape11]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_symbol_labels", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-binary_classification]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-saga-None]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0.5-False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_float_class_labels", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-0.001]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l2-hinge]", "sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[adaptive-SparseSGDOneClassSVM]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_invalid_type", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_sample_weight_effect[all-multiclass_classification]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-1-True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_shape_y", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-sag-None]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_with_sample_weights", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV--1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-None]", "sklearn/linear_model/tests/test_sgd.py::test_clone_oneclass[SGDOneClassSVM]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected1-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_mem_layout", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-1-False]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-0.046415888336127795]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV-2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingClassifier]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-list]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l2-squared_hinge]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-list]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-saga-None]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-RandomForestClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-2.1544346900318843]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-list]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[csc_matrix-True]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV--1]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l1-hinge]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected3-sample_weight3]", "sklearn/linear_model/tests/test_sgd.py::test_clone_oneclass[SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[csc_array-True]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-array]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected4-sample_weight4]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-100.0]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l1-squared_hinge]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV-2]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected5-sample_weight5]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_train]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l2-hinge]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-array]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_oneclass[SGDOneClassSVM]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0.5-True]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected6-sample_weight6]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-array]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-0.001]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingRegressor]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l2-squared_hinge]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected7-sample_weight7]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[elkan-sparse_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-Lasso]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_oneclass[SparseSGDOneClassSVM]", "sklearn/svm/tests/test_svm.py::test_linearsvc", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-RandomForestRegressor]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-0.046415888336127795]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected1-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_improvement_]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-ElasticNet]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-sag-None]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[constant-SGDOneClassSVM]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-LassoCV]", "sklearn/svm/tests/test_svm.py::test_linearsvc_crammer_singer", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_scores_]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-2.1544346900318843]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected3-sample_weight3]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-saga-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-series]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_score_]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-ElasticNetCV]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[constant-SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0.5-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-series]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-Lasso]", "sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-series]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-ElasticNet]", "sklearn/svm/tests/test_svm.py::test_linearsvc_fit_sampleweight", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-sag-None]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-1-True]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected4-sample_weight4]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-100.0]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected5-sample_weight5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-index]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_improvement_]", "sklearn/svm/tests/test_svm.py::test_crammer_singer_binary", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_effect_sample_weight", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-index]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_no_mutating_sample_weight[kmeans]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[optimal-SGDOneClassSVM]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_path_coefs_multinomial", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-1-False]", "sklearn/svm/tests/test_svm.py::test_linearsvc_iris", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_scores_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-index]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_no_mutating_sample_weight[quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[kmeans]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-saga-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_score_]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[optimal-SparseSGDOneClassSVM]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_custom_axes", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-LassoCV]", "sklearn/svm/tests/test_svm.py::test_dense_liblinear_intercept_handling", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-ElasticNetCV]", "sklearn/svm/tests/test_svm.py::test_liblinear_set_coef", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegression]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-sag-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-Lasso]", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0-False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/ensemble/tests/test_gradient_boosting.py::test_verbose_output", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-ElasticNet]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[invscaling-SGDOneClassSVM]", "sklearn/svm/tests/test_svm.py::test_linearsvc_verbose", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0.5-True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_more_verbose_output", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegressionCV]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[invscaling-SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-LassoCV]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/tests/test_naive_bayes.py::test_gnb_sample_weight[42]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomForestClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-50]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-ElasticNetCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-saga-None]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[adaptive-SGDOneClassSVM]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-Lasso]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-51]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0.5-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-ElasticNet]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingClassifier]", "sklearn/svm/tests/test_svm.py::test_linear_svm_convergence_warnings", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[2-2]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-sag-None]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[3-1]", "sklearn/svm/tests/test_svm.py::test_svr_coef_sign", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-1-True]", "sklearn/svm/tests/test_svm.py::test_lsvc_intercept_scaling_zero", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_same_axes", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[adaptive-SparseSGDOneClassSVM]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingClassifier]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-saga-None]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-1-False]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_feature_name_reuse", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_int]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[kmeans]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-LassoCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingRegressor]", "sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[kmeans-expected_bin_edges1]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[CategoricalNB]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0-True]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached_oneclass[SGDOneClassSVM]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params0]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-ElasticNetCV]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[ComplementNB]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegression]", "sklearn/ensemble/tests/test_bagging.py::test_regression", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0-False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingRegressor]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[MultinomialNB]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params1]", "sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached_oneclass[SparseSGDOneClassSVM]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-kmeans]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass", "sklearn/model_selection/tests/test_search.py::test_search_cv_timing", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params2]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegressionCV]", "sklearn/tests/test_naive_bayes.py::test_categoricalnb[42]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly_oneclass[SGDOneClassSVM]", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_class_weights", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingClassifier]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0.5-True]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly_oneclass[SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegression]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0.5-False]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params4]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-Lasso]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingClassifier]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegressionCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-1-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_dataframe", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params5]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-ElasticNet]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingRegressor]", "sklearn/tests/test_calibration.py::test_calibration_default_estimator", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-LassoCV]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params6]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit_oneclass[SGDOneClassSVM]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params0-target not in est.classes_, got 4]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-1-False]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-ElasticNetCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params1-target must be specified for multi-class]", "sklearn/model_selection/tests/test_search.py::test_stochastic_gradient_loss_param", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit_oneclass[SparseSGDOneClassSVM]", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[sag]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0-True]", "sklearn/ensemble/tests/test_bagging.py::test_bootstrap_samples", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-Lasso]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params2-Each entry in features must be either an int,]", "sklearn/model_selection/tests/test_search.py::test_search_train_scores_set_to_false", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-ElasticNet]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]", "sklearn/linear_model/tests/test_sgd.py::test_average_sparse_oneclass[SGDOneClassSVM]", "sklearn/ensemble/tests/test_bagging.py::test_bootstrap_features", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-LassoCV]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_does_not_override_ylabel", "sklearn/tests/test_multioutput.py::test_multi_target_regression", "sklearn/tests/test_multioutput.py::test_multi_target_regression_partial_fit", "sklearn/linear_model/tests/test_sgd.py::test_average_sparse_oneclass[SparseSGDOneClassSVM]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-RandomForestRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_probability", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_drop_estimator", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[saga]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_oneclass", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-ElasticNetCV]", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_splits_consistency", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-3]", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params0]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0.5-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-Lasso]", "sklearn/linear_model/tests/test_sgd.py::test_ocsvm_vs_sgdocsvm", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingRegressor]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-ElasticNet]", "sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_sample_weights_validation", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[average-expected_shape0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0.5-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-LassoCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingClassifier]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-0.0-False]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[individual-expected_shape1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-0.0-True]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights_api", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-1-True]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_classification", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-1.0-False]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-cv1]", "sklearn/linear_model/tests/test_logistic.py::test_scores_attribute_layout_elasticnet", "sklearn/linear_model/tests/test_sgd.py::test_l1_ratio", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weight_partial_fit", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-1-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-Lasso]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-1.0-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-ElasticNet]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_regression", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-3]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-LassoCV]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0-True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_underflow_or_overlow", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[both-expected_shape2]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-ElasticNetCV]", "sklearn/ensemble/tests/test_bagging.py::test_error", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-0.0-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0-False]", "sklearn/linear_model/tests/test_sgd.py::test_numerical_stability_large_gradient", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw0-None]", "sklearn/tests/test_multioutput.py::test_multi_output_classification_partial_fit_parallelism", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-0.0-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-cv1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomForestClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw1-None]", "sklearn/ensemble/tests/test_bagging.py::test_parallel_classification", "sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[class_weight0-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-1.0-False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingClassifier]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-True-None]", "sklearn/linear_model/tests/test_sgd.py::test_large_regularization[l2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw2-None]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-1.0-True]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-0.0-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw3-xxx]", "sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[class_weight0-multinomial]", "sklearn/linear_model/tests/test_sgd.py::test_large_regularization[l1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0.5-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-0.0-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_params", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw4-average]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-True-csr_matrix]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-1.0-False]", "sklearn/preprocessing/tests/test_target_encoder.py::test_fit_transform_not_associated_with_y_if_ordinal_categorical_is_not[42]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_n_features_in]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-1.0-True]", "sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[class_weight0-auto]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-True-csr_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0.5-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw5-xxx]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-False-None]", "sklearn/tests/test_dummy.py::test_classification_sample_weight", "sklearn/linear_model/tests/test_sgd.py::test_large_regularization[elasticnet]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_matrix]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-False-csr_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-1-True]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-True-False]", "sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[balanced-ovr]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomForestRegressor]", "sklearn/tests/test_dummy.py::test_dummy_regressor_sample_weight[42]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-False-csr_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_sample_weight", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-10-100]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_tol_parameter", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-1-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-True-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-individual]", "sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_sample_weights_greater_than_1d[2-3]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-False-False]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-False-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-average]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_multi_thread_multi_class_and_early_stopping", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_proba-estimator2]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-False-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-both]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-False-True]", "sklearn/linear_model/tests/test_sgd.py::test_multi_core_gridsearch_and_early_stopping", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingRegressor]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_log_proba-estimator2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-individual]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-cv1]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-True-False]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-decision_function-estimator2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-10-100]", "sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[balanced-multinomial]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-average]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-True-True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingClassifier]", "sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_sample_weights_greater_than_1d[3-2]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_overwrite_params]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-both]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_features_importance", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-100-10]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-True-False]", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-auto]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-False-False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-True-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-cv1]", "sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[balanced-auto]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-10-100]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-predict]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-True-csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-100-10]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_list", "sklearn/tests/test_multioutput.py::test_hasattr_multi_output_predict_proba", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-True-csr_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-True-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-False-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features0-individual]", "sklearn/ensemble/tests/test_bagging.py::test_parallel_regression", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_multioutput.py::test_multi_output_predict_proba", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-RandomForestClassifier]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-10-100]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-True-False]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_on_invalid_key", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features1-both]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_array]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-decision_function]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-True-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-auto]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-False-False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_not_stuck", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_differ_when_sample_weight_is_requested", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[None-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features2-individual]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-False-None]", "sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights_error", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_dtype_object]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingClassifier]", "sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[None-True]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-False-csr_matrix]", "sklearn/tests/test_multioutput.py::test_multi_output_classification_partial_fit", "sklearn/neighbors/tests/test_kde.py::test_pickling[sample_weight1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features3-both]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_matrix-False]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-False-csr_array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features4-kind4]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_without_enabling_metadata_routing", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingRegressor]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-0-1-None]", "sklearn/tests/test_multioutput.py::test_multi_output_classification", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-True-None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features5-kind5]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-decision_function]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.51-0-1-10]", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw0-pd_line_kw0-ice_lines_kw0-expected_colors0]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-True-csr_matrix]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.49-0-1-1]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[GridSearchCV-param_search0]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[liblinear]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_matrix-True]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-0.01-1-1]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-True-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_array]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-100-2-0]", "sklearn/linear_model/tests/test_sgd.py::test_SGDClassifier_fit_for_all_backends[loky]", "sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[RandomizedSearchCV-param_search1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_classification", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_array-False]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[True]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[sag]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_regression", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_matrix]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator_predict_proba", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_array-True]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[None-pd_line_kw1-ice_lines_kw1-expected_colors1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_reg[42]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.5]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_refit", "sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.9]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_clf[42]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw2-None-ice_lines_kw2-expected_colors2]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[saga]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.05]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]", "sklearn/linear_model/tests/test_sgd.py::test_SGDClassifier_fit_for_all_backends[multiprocessing]", "sklearn/tests/test_multioutput.py::test_multi_output_classification_sample_weights", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[hinge-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw3-pd_line_kw3-None-expected_colors3]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_sample_weight", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw4-None-None-expected_colors4]", "sklearn/linear_model/tests/test_sgd.py::test_SGDClassifier_fit_for_all_backends[threading]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingRegressor]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[hinge-csr_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw5-pd_line_kw5-ice_lines_kw5-expected_colors5]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingClassifier]", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/ensemble/tests/test_weight_boosting.py::test_oneclass_adaboost_proba", "sklearn/linear_model/tests/test_sgd.py::test_sgd_random_state[42-SGDClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_wrong_len_kind", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-True-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[individual]", "sklearn/ensemble/tests/test_bagging.py::test_gridsearch", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[hinge-csr_array]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_random_state[42-SGDRegressor]", "sklearn/tests/test_multioutput.py::test_multi_output_classification_partial_fit_sample_weights", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-True-decision_function]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingRegressor]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[GridSearchCV-param_grid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_array]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_multiclass.py::test_ovo_fit_on_list", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_wo_nestimators_change", "sklearn/linear_model/tests/test_quantile.py::test_asymmetric_error[0.2]", "sklearn/ensemble/tests/test_bagging.py::test_estimator", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME.R]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[squared_hinge-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[squared_error-0.5]", "sklearn/linear_model/tests/test_quantile.py::test_asymmetric_error[0.5]", "sklearn/tests/test_multioutput.py::test_multi_output_exceptions", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[RandomizedSearchCV-param_distributions]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-True-predict_proba]", "sklearn/ensemble/tests/test_weight_boosting.py::test_regression_toy", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[both]", "sklearn/linear_model/tests/test_sgd.py::test_validation_mask_correctly_subsets", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[absolute_error-0.0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_iris", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced", "sklearn/linear_model/tests/test_quantile.py::test_asymmetric_error[0.8]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[huber-0.5]", "sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[linear]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[average]", "sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[square]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[squared_hinge-csr_matrix]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_check_weights", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind3]", "sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[exponential]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[quantile-0.5]", "sklearn/feature_selection/tests/test_from_model.py::test_invalid_input", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-True-decision_function]", "sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.2]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind4]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/tests/test_multioutput.py::test_multi_output_delegate_predict_proba", "sklearn/linear_model/tests/test_sgd.py::test_sgd_error_on_zero_validation_weight", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]", "sklearn/feature_selection/tests/test_from_model.py::test_input_estimator_unchanged", "sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_with_constant_sample_weight", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-True-predict_proba]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/tests/test_isotonic.py::test_permutation_invariance", "sklearn/linear_model/tests/test_sgd.py::test_sgd_verbose[SGDClassifier]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal", "sklearn/mixture/tests/test_gaussian_mixture.py::test_check_means", "sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.8]", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-True-decision_function]", "sklearn/ensemble/tests/test_weight_boosting.py::test_pickle", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[HalvingGridSearchCV-param_grid]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[0]", "sklearn/tests/test_isotonic.py::test_isotonic_regression", "sklearn/linear_model/tests/test_sgd.py::test_sgd_verbose[SGDRegressor]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_check_precisions", "sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_min", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_linear_svc[predict]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csc_matrix]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_methods_sample_order_invariance]", "sklearn/ensemble/tests/test_weight_boosting.py::test_importances", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csc_array]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_max", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-True-predict_proba]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float32-SGDClassifier]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_secondary_", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_correctness[squared_hinge-csr_array]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_linear_svc[decision_function]", "sklearn/tests/test_multiclass.py::test_ovo_decision_function", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-csr_array]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_params", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_clf", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-coo_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-True-decision_function]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_class_weights", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-coo_array]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float32-SparseSGDClassifier]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict_n_init", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[4]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_classifier_sample_weight_error", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict", "sklearn/tests/test_multiclass.py::test_ovo_gridsearch", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csc_matrix]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_with_ties_in_differently_sized_groups", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csc_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_estimator", "sklearn/linear_model/tests/test_passive_aggressive.py::test_equal_class_weight", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csr_matrix]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_reversed", "sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weights_infinite", "sklearn/tests/test_multiclass.py::test_ovo_ties", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float32-SGDRegressor]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-True-False]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_decreasing", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csc_matrix-csc_matrix]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_best_params", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-True-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csc_array-csc_array]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_increasing", "sklearn/tests/test_multiclass.py::test_ovo_ties2", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-csr_array]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_convergence_warning", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-False-False]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csr_matrix-csr_matrix]", "sklearn/tests/test_isotonic.py::test_isotonic_sample_weight_parameter_default_value", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-coo_matrix]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit2d_1feature]", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_integer[None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ds-coo_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[None-False-True]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-True-True-predict_proba]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csr_array-csr_array]", "sklearn/tests/test_isotonic.py::test_isotonic_min_max_boundaries", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csc_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingClassifier]", "sklearn/tests/test_multiclass.py::test_ovo_string_y", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float32-SparseSGDRegressor]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[lil_matrix-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-True-False]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csc_array]", "sklearn/tests/test_isotonic.py::test_isotonic_sample_weight", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_dict_unchanged]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-True-True-decision_function]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_params", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_callable[<lambda>0]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[lil_array-csr_array]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_raise", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-True-True]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-csr_array]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float32-SGDOneClassSVM]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_clip", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_multiple_init", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[coo_matrix-csr_matrix]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_nan", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_callable[<lambda>1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-coo_matrix]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y1-params1-ValueError-does not implement the method predict_proba]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_pickle", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_dont_overwrite_parameters]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-False-True-predict_proba]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float32-SparseSGDOneClassSVM]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_n_parameters", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[True-highs-ipm-coo_array]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_multiclass.py::test_ecoc_fit_predict", "sklearn/feature_selection/tests/test_from_model.py::test_inferred_max_features_callable[<lambda>2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingClassifier]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csc_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-False-False]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-False-True-decision_function]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float64-SGDClassifier]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_bic_1d_1component", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]", "sklearn/tests/test_isotonic.py::test_isotonic_duplicate_min_entry", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csc_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_matrix-False-True]", "sklearn/tests/test_isotonic.py::test_isotonic_zero_weight_loop", "sklearn/ensemble/tests/test_bagging.py::test_bagging_sample_weight_unsupported_but_passed", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float64-SparseSGDClassifier]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method", "sklearn/tests/test_multiclass.py::test_ecoc_gridsearch", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit_idempotent]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[coo_array-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y2-params2-TypeError-does not support sample weight]", "sklearn/tests/test_isotonic.py::test_fast_predict", "sklearn/ensemble/tests/test_bagging.py::test_warm_start", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_aic_bic", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_array_like[<lambda>]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-True-False]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-True-True-predict_proba]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[dok_matrix-csr_matrix]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[int32]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_smaller_n_estimators", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-True-True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[dok_array-csr_array]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_verbose", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[int64]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-True-True-decision_function]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-False-False]", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equal_n_estimators", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-coo_array]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[float32]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[csc_matrix-csc_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingRegressor]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_array]", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[2]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[float64]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int32]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_mse[csr_array-False-True]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float64-SGDRegressor]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[csc_array-csc_array]", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equivalence", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-False-True-predict_proba]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int64]", "sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit_check_is_fitted]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[csr_matrix-csr_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingClassifier]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float32]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float64-SparseSGDRegressor]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[0]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[csr_array-csr_array]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_array_like[2]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[None-False]", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[3]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float64]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-False-True-decision_function]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[lil_matrix-csr_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingRegressor]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csc_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[None-True]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_removed_on_warm_start", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_n_features_in]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[GridSearchCV-param_grid]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[lil_array-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csc_array]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float64-SGDOneClassSVM]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_callable_data[<lambda>0]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_matrix-False]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[coo_matrix-csr_matrix]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[1]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csr_matrix]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/tests/test_isotonic.py::test_isotonic_make_unique_tolerance", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-csr_array]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit2d_predict1d]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_dtype_match[float64-SparseSGDOneClassSVM]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[RandomizedSearchCV-param_distributions]", "sklearn/tests/test_isotonic.py::test_isotonic_non_regression_inf_slope", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[2]", "sklearn/ensemble/tests/test_bagging.py::test_estimators_samples", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]", "sklearn/ensemble/tests/test_voting.py::test_tie_situation", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-coo_matrix]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_callable_data[<lambda>1]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[coo_array-csr_array]", "sklearn/tests/test_isotonic.py::test_isotonic_thresholds[True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y1-params1-TypeError-does not support sample weight]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ds-coo_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[dok_matrix-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_matrix-True]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_numerical_consistency[SGDClassifier]", "sklearn/tests/test_isotonic.py::test_isotonic_thresholds[False]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csc_matrix]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_convergence_detected_with_warm_start", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[GridSearchCV-param_grid]", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_array-False]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression[dok_array-csr_array]", "sklearn/tests/test_isotonic.py::test_input_shape_validation", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y2-params2-TypeError-does not support sample weight]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingRegressor]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csc_array]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_numerical_consistency[SparseSGDClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weight_adaboost_regressor", "sklearn/tests/test_isotonic.py::test_isotonic_2darray_more_than_1_feature", "sklearn/feature_selection/tests/test_from_model.py::test_max_features_callable_data[<lambda>2]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_partial_fit[csr_array-True]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_score", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-svd]", "sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X", "sklearn/tests/test_isotonic.py::test_isotonic_regression_sample_weight_not_overwritten", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_without_early_stopping", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[epsilon_insensitive-None]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostclassifier_without_sample_weight[SAMME]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[RandomizedSearchCV-param_distributions]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-csr_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/tests/test_isotonic.py::test_get_feature_names_out[1d]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_score_samples", "sklearn/ensemble/tests/test_bagging.py::test_set_oob_score_label_encoding", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostclassifier_without_sample_weight[SAMME.R]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[epsilon_insensitive-csr_matrix]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-coo_matrix]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[HalvingGridSearchCV-param_grid]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_early_stopping_stratified", "sklearn/linear_model/tests/test_quantile.py::test_sparse_input[False-highs-ipm-coo_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostregressor_sample_weight", "sklearn/tests/test_isotonic.py::test_get_feature_names_out[2d]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_numerical_consistency[SGDRegressor]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[0.1]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[epsilon_insensitive-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME]", "sklearn/linear_model/tests/test_quantile.py::test_error_interior_point_future", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-binary classification]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_output_predict", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_list]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME.R]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack-csr_array]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_small_max_features", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[squared_epsilon_insensitive-None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/feature_selection/tests/test_from_model.py::test_threshold_and_max_features", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_shape]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_fit_params", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[1.0]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg-csr_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_metadata_routing[model0]", "sklearn/linear_model/tests/test_sgd.py::test_sgd_numerical_consistency[SparseSGDRegressor]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_monotonic_likelihood", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-multiclass classification]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[squared_epsilon_insensitive-csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg-csr_array]", "sklearn/ensemble/tests/test_voting.py::test_predict_proba_on_toy_problem", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-predict]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-regression]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_negative_weight_error[model0-X0-y0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[1000000.0]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_regularisation", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_negative_weight_error[model1-X1-y1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans-coo_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_metadata_routing[model1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_numerically_stable_feature_importance_with_small_weights", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-decision_function]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_early_stopping_n_classes", "sklearn/linear_model/tests/test_sgd.py::test_sgd_numerical_consistency[SGDOneClassSVM]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans-coo_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME]", "sklearn/ensemble/tests/test_voting.py::test_gridsearch", "sklearn/mixture/tests/test_gaussian_mixture.py::test_property", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gbr_degenerate_feature_importances", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME.R]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]", "sklearn/feature_selection/tests/test_from_model.py::test_feature_importances", "sklearn/ensemble/tests/test_bagging.py::test_bagging_without_support_metadata_routing[model0]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering", "sklearn/linear_model/tests/test_passive_aggressive.py::test_regressor_correctness[squared_epsilon_insensitive-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_deprecated_samme_r_algorithm", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_vs_mean_and_median", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-response_method2]", "sklearn/tests/test_multioutput.py::test_multi_output_classes_[estimator0]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[None-0.5-1]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_sample", "sklearn/linear_model/tests/test_sgd.py::test_sgd_numerical_consistency[SparseSGDOneClassSVM]", "sklearn/cluster/tests/test_spectral.py::test_affinities", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/linear_model/tests/test_passive_aggressive.py::test_passive_aggressive_deprecated_average[PassiveAggressiveClassifier]", "sklearn/ensemble/tests/test_voting.py::test_parallel_fit[42]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-predict]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_multioutput.py::test_multi_output_classes_[estimator1]", "sklearn/feature_selection/tests/test_from_model.py::test_sample_weight", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[None-0.5-2]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups", "sklearn/linear_model/tests/test_passive_aggressive.py::test_passive_aggressive_deprecated_average[PassiveAggressiveRegressor]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_init", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator0]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_squared_error_exact_backward_compat", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_exact_backward_compat", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[None-1.0-1]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight[42]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-k-means++]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingGridSearchCV]", "sklearn/linear_model/tests/test_sgd.py::test_passive_aggressive_deprecated_average[SGDClassifier]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-response_method2]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_without_support_metadata_routing[model1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_binomial_error_exact_backward_compat", "sklearn/tests/test_multioutput.py::test_multi_output_classes_[estimator2]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-importance_getter0]", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_cv_estimators_with_sample_weight[MultiTaskElasticNetCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_multinomial_error_exact_backward_compat", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-regressor_.coef_]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingRegressor]", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_set_params[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_with_arpack_amg_solvers", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gb_denominator_zero[42]", "sklearn/feature_selection/tests/test_from_model.py::test_calling_fit_reinitializes", "sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-kmeans]", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf1-prefit]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_cv_estimators_with_sample_weight[MultiTaskLassoCV]", "sklearn/tests/test_calibration.py::test_calibration_inconsistent_prefit_n_features_in", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[None-1.0-2]", "sklearn/tests/test_multioutput.py::test_regressor_chain_w_fit_params", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-array]", "sklearn/feature_selection/tests/test_from_model.py::test_prefit", "sklearn/cluster/tests/test_spectral.py::test_n_components", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/ensemble/tests/test_iforest.py::test_iforest[42]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[ones-0.5-1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-k-means++]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_pandas_series]", "sklearn/cluster/tests/test_spectral.py::test_verbose[kmeans]", "sklearn/feature_selection/tests/test_from_model.py::test_prefit_max_features", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-csr_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_passive_aggressive_deprecated_average[SGDRegressor]", "sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate", "sklearn/cluster/tests/test_spectral.py::test_verbose[discretize]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-kmeans]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-csr_array]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[list]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[ones-0.5-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_matrix]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-SGDRegressor1]", "sklearn/linear_model/tests/test_sgd.py::test_passive_aggressive_deprecated_average[SGDOneClassSVM]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_max_iter_zero", "sklearn/cluster/tests/test_spectral.py::test_verbose[cluster_qr]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-array]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[ones-1.0-1]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/linear_model/tests/test_sag.py::test_classifier_matching", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-svd]", "sklearn/utils/tests/test_estimator_checks.py::test_decision_proba_tie_ranking", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_not_an_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_precisions_init_diag", "sklearn/ensemble/tests/test_voting.py::test_estimator_weights_format[42]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-BayesianRidge]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_array]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[ones-1.0-2]", "sklearn/linear_model/tests/test_sag.py::test_regressor_matching", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_single_component_stable", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-array]", "sklearn/feature_selection/tests/test_from_model.py::test_prefit_get_feature_names_out", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-ElasticNet]", "sklearn/cluster/tests/test_dbscan.py::test_weighted_dbscan[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-auto-ValueError]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-csr_matrix]", "sklearn/linear_model/tests/test_sag.py::test_sag_pobj_matches_logistic_regression[csr_matrix]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-ElasticNetCV]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_list]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-1]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-csr_array]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-Lasso]", "sklearn/ensemble/tests/test_voting.py::test_transform[42]", "sklearn/linear_model/tests/test_sag.py::test_sag_pobj_matches_logistic_regression[csr_array]", "sklearn/feature_selection/tests/test_from_model.py::test_threshold_string", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[tuple]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_matrix]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LassoCV]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_shape]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-random-AttributeError]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_array-eigen]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_array]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LinearRegression]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/tests/test_multioutput.py::test_multioutputregressor_ducktypes_fitted_estimator", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X0-y0-voter0]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-2]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LogisticRegressionCV]", "sklearn/feature_selection/tests/test_from_model.py::test_threshold_without_refitting", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-<lambda>-AttributeError]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_error", "sklearn/linear_model/tests/test_sag.py::test_sag_pobj_matches_ridge_regression[csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-1]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_coclustering[42-csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[k-means++-biggest_inertia]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/linear_model/tests/test_sag.py::test_sag_pobj_matches_ridge_regression[csr_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_not_overwritten]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-2]", "sklearn/feature_selection/tests/test_from_model.py::test_transform_accepts_nan_inf", "sklearn/ensemble/tests/test_iforest.py::test_recalculate_max_depth", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_sample_weights", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[k-means++-largest_cluster]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_array]", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X1-y1-voter1]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_coclustering[42-csr_array]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-PoissonRegressor]", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor_computed_correctly[csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[random-biggest_inertia]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-1]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_biclustering[42-csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_attribute", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-Ridge]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[random-largest_cluster]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/cluster/tests/test_bisect_k_means.py::test_sparse[csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_parallel_regression[42]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_biclustering[42-csr_array]", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor_computed_correctly[csr_array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_sparse[csr_array]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-RidgeCV]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-csr_array]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-2]", "sklearn/cluster/tests/test_bisect_k_means.py::test_n_clusters[4]", "sklearn/ensemble/tests/test_voting.py::test_voting_verbose[estimator0]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit_validate_feature_names[True]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_n_clusters[5]", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor[csr_matrix-0]", "sklearn/utils/tests/test_class_weight.py::test_compute_class_weight_invariance", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-SGDRegressor1]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-1]", "sklearn/cluster/tests/test_bisect_k_means.py::test_one_cluster", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]", "sklearn/cluster/tests/test_bisect_k_means.py::test_fit_predict[csr_matrix]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-TweedieRegressor]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]", "sklearn/feature_selection/tests/test_from_model.py::test_partial_fit_validate_feature_names[False]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_fit_predict[csr_array]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_fit_sample_weight", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor[csr_matrix-1]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/cluster/tests/test_bisect_k_means.py::test_fit_predict[None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_one_label_sample_weights]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float64-csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_final_model_fit_sample_weight", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float64-csr_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_performance[42]", "sklearn/cluster/tests/test_bicluster.py::test_fit_best_piecewise[42]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/tests/test_calibration.py::test_error_less_class_samples_than_folds", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float64-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[voting-classifier]", "sklearn/cluster/tests/test_bicluster.py::test_project_and_cluster[42-csr_matrix]", "sklearn/ensemble/tests/test_voting.py::test_voting_verbose[estimator1]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_array]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.hinge_loss", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-0.25]", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor[csr_matrix-2]", "sklearn/cluster/tests/test_bicluster.py::test_project_and_cluster[42-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-auto]", "sklearn/cluster/tests/test_bicluster.py::test_perfect_checkerboard[42]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-csr_matrix]", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor[csr_array-0]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/cluster/tests/test_bisect_k_means.py::test_float32_float64_equivalence[csr_matrix]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-predict_proba-from_estimator]", "sklearn/cluster/tests/test_bicluster.py::test_n_features_in_[est0]", "sklearn/cluster/tests/test_bisect_k_means.py::test_float32_float64_equivalence[csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-csr_array]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_weights_prior_initialisation", "sklearn/tree/tests/test_export.py::test_graphviz_toy", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-svd]", "sklearn/cluster/tests/test_bisect_k_means.py::test_float32_float64_equivalence[None]", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_consistency", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor[csr_array-1]", "sklearn/cluster/tests/test_bisect_k_means.py::test_no_crash_on_empty_bisections[lloyd]", "sklearn/decomposition/tests/test_kernel_pca.py::test_nested_circles", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-array]", "sklearn/cluster/tests/test_bicluster.py::test_n_features_in_[est1]", "sklearn/cluster/tests/test_bisect_k_means.py::test_no_crash_on_empty_bisections[elkan]", "sklearn/tree/tests/test_export.py::test_friedman_mse_in_graphviz", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-predict_proba-from_predictions]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_subsampled_features", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-decision_function-from_estimator]", "sklearn/linear_model/tests/test_sag.py::test_sag_regressor[csr_array-2]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-regressor]", "sklearn/ensemble/tests/test_iforest.py::test_score_samples", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFE]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-decision_function-from_predictions]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_array-eigen]", "sklearn/cluster/tests/test_bisect_k_means.py::test_one_feature", "sklearn/ensemble/tests/test_iforest.py::test_iforest_warm_start", "sklearn/linear_model/tests/test_sag.py::test_sag_classifier_computed_correctly[csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[voting-regressor]", "sklearn/manifold/tests/test_spectral_embedding.py::test_pipeline_spectral_clustering", "sklearn/linear_model/tests/test_sag.py::test_sag_classifier_computed_correctly[csr_array]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_mean_prior_initialisation", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-predict_proba-from_estimator]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_precisions_prior_initialisation", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_matrix]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-predict_proba-from_predictions]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_weights", "sklearn/linear_model/tests/test_huber.py::test_huber_equals_lr_for_high_epsilon", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.roc_auc_score", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-0.25-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_monotonic_likelihood", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-decision_function-from_estimator]", "sklearn/linear_model/tests/test_huber.py::test_huber_max_iter", "sklearn/tests/test_kernel_ridge.py::test_kernel_ridge_sample_weights", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-decision_function-from_predictions]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-auto-2]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_compare_covar_type", "sklearn/manifold/tests/test_mds.py::test_MDS", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-0.25-3]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_check_covariance_precision", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_array]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_spectral_clustering", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-auto-2]", "sklearn/linear_model/tests/test_huber.py::test_huber_sample_weights[csr_matrix]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_invariant_translation", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVC", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVR", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_accuracy[csr_matrix]", "sklearn/linear_model/tests/test_huber.py::test_huber_sample_weights[csr_array]", "sklearn/linear_model/tests/test_sag.py::test_classifier_results[csr_matrix]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[0-2-1e-07]", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_accuracy[csr_array]", "sklearn/linear_model/tests/test_huber.py::test_huber_sparse[csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_uniform_data", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/linear_model/tests/test_huber.py::test_huber_sparse[csr_array]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[1-2-0.1]", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_accuracy[array]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_sag.py::test_classifier_results[csr_array]", "sklearn/linear_model/tests/test_huber.py::test_huber_scaling_invariant", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifier", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.AdditiveChi2Sampler", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifierCV", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.Nystroem", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_matrix]", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.ridge_regression", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_correctness", "sklearn/linear_model/tests/test_huber.py::test_huber_and_sgd_same_results", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.PolynomialCountSketch", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.RBFSampler", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingRegressor]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.SkewedChi2Sampler", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.KMeans", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.MiniBatchKMeans", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.k_means", "sklearn/linear_model/tests/test_huber.py::test_huber_warm_start", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.kmeans_plusplus", "sklearn/linear_model/tests/test_sag.py::test_binary_classifier_class_weight[csr_matrix]", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_l1_ratio", "sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomForestClassifier]", "sklearn/linear_model/tests/test_huber.py::test_huber_better_r2_score", "sklearn/mixture/tests/test_mixture.py::test_gaussian_mixture_n_iter[estimator0]", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.RandomForestClassifier", "sklearn/linear_model/tests/test_sag.py::test_binary_classifier_class_weight[csr_array]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[3-300-1e-07]", "sklearn/linear_model/tests/test_huber.py::test_huber_bool", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.RandomForestRegressor", "sklearn/metrics/cluster/_unsupervised.py::sklearn.metrics.cluster._unsupervised.calinski_harabasz_score", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/metrics/cluster/_unsupervised.py::sklearn.metrics.cluster._unsupervised.silhouette_samples", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/metrics/cluster/_unsupervised.py::sklearn.metrics.cluster._unsupervised.silhouette_score", "sklearn/model_selection/_search.py::sklearn.model_selection._search.RandomizedSearchCV", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-svd]", "sklearn/linear_model/tests/test_sag.py::test_step_size_alpha_error", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[4-300-0.1]", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeClassifier", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-True]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict_n_init", "sklearn/linear_model/tests/test_sag.py::test_sag_classifier_raises_error[sag]", "sklearn/manifold/tests/test_mds.py::test_normed_stress[0.5]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_array-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]", "sklearn/mixture/tests/test_mixture.py::test_gaussian_mixture_n_iter[estimator1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_array]", "sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomForestRegressor]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-1]", "sklearn/ensemble/tests/test_forest.py::test_class_weights[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_pandas_series]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_predict_predict_proba", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingRegressor]", "sklearn/manifold/tests/test_mds.py::test_normed_stress[1.5]", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeRegressor", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-2]", "sklearn/isotonic.py::sklearn.isotonic.IsotonicRegression", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_shape]", "sklearn/linear_model/tests/test_sag.py::test_sag_classifier_raises_error[saga]", "sklearn/linear_model/_stochastic_gradient.py::sklearn.linear_model._stochastic_gradient.SGDClassifier", "sklearn/linear_model/_stochastic_gradient.py::sklearn.linear_model._stochastic_gradient.SGDOneClassSVM", "sklearn/multiclass.py::sklearn.multiclass.OneVsOneClassifier", "sklearn/manifold/tests/test_mds.py::test_normed_stress[2]", "sklearn/linear_model/_stochastic_gradient.py::sklearn.linear_model._stochastic_gradient.SGDRegressor", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-None]", "sklearn/multiclass.py::sklearn.multiclass.OutputCodeClassifier", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_overwritten]", "sklearn/ensemble/tests/test_forest.py::test_class_weights[RandomForestClassifier]", "sklearn/ensemble/_bagging.py::sklearn.ensemble._bagging.BaggingClassifier", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn/ensemble/tests/test_base.py::test_base", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingRegressor", "sklearn/ensemble/_bagging.py::sklearn.ensemble._bagging.BaggingRegressor", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingRegressor", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/cluster/_bicluster.py::sklearn.cluster._bicluster.SpectralBiclustering", "sklearn/cluster/_bicluster.py::sklearn.cluster._bicluster.SpectralCoclustering", "sklearn/linear_model/_passive_aggressive.py::sklearn.linear_model._passive_aggressive.PassiveAggressiveClassifier", "sklearn/ensemble/tests/test_iforest.py::test_iforest_preserve_feature_names", "sklearn/manifold/tests/test_mds.py::test_normalized_stress_auto[False]", "sklearn/linear_model/_passive_aggressive.py::sklearn.linear_model._passive_aggressive.PassiveAggressiveRegressor", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingRegressor", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/model_selection/_search_successive_halving.py::sklearn.model_selection._search_successive_halving.HalvingGridSearchCV", "sklearn/ensemble/_weight_boosting.py::sklearn.ensemble._weight_boosting.AdaBoostClassifier", "sklearn/ensemble/_weight_boosting.py::sklearn.ensemble._weight_boosting.AdaBoostRegressor", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/cluster/_bisect_k_means.py::sklearn.cluster._bisect_k_means.BisectingKMeans", "sklearn/inspection/_partial_dependence.py::sklearn.inspection._partial_dependence.partial_dependence", "sklearn/model_selection/_search_successive_halving.py::sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV", "sklearn/ensemble/tests/test_forest.py::test_class_weight_balanced_and_bootstrap_multi_output[ExtraTreesClassifier]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-1]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/_huber.py::sklearn.linear_model._huber.HuberRegressor", "sklearn/linear_model/_sag.py::sklearn.linear_model._sag.sag_solver", "sklearn/mixture/_gaussian_mixture.py::sklearn.mixture._gaussian_mixture.GaussianMixture", "sklearn/mixture/_bayesian_mixture.py::sklearn.mixture._bayesian_mixture.BayesianGaussianMixture", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]", "sklearn/ensemble/_iforest.py::sklearn.ensemble._iforest.IsolationForest", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-2]", "sklearn/linear_model/_perceptron.py::sklearn.linear_model._perceptron.Perceptron", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_matrix]", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay.from_estimator", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/linear_model/_quantile.py::sklearn.linear_model._quantile.QuantileRegressor", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence", "sklearn/ensemble/tests/test_forest.py::test_class_weight_balanced_and_bootstrap_multi_output[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_matrix]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_sample_weight", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_array]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/ensemble/tests/test_forest.py::test_class_weight_errors[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-1]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-2]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-svd]", "sklearn/ensemble/tests/test_forest.py::test_class_weight_errors[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-1]", "sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-2]", "sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_data_not_an_array]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_metadata_routing", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_preserve_dtypes]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[ExtraTreesRegressor]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[ExtraTreesRegressor]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-svd]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_array-eigen]", "sklearn/ensemble/tests/test_forest.py::test_decision_path[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/ensemble/tests/test_forest.py::test_decision_path[RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]", "sklearn/ensemble/tests/test_forest.py::test_min_impurity_decrease", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]", "sklearn/ensemble/tests/test_forest.py::test_backend_respected", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-svd]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_array-eigen]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_results_not_stored[ridge1-make_classification]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-None]", "sklearn/ensemble/tests/test_forest.py::test_forest_feature_importances_sum", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-_accuracy_callable]", "sklearn/ensemble/tests/test_forest.py::test_forest_degenerate_feature_importances", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-None]", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_regressors[ExtraTreesRegressor]", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_regressors[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-accuracy]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[BaggingClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-_accuracy_callable]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[BaggingRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-accuracy]", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-_accuracy_callable]", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_little_tree_with_small_max_samples[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-None]", "sklearn/ensemble/tests/test_forest.py::test_little_tree_with_small_max_samples[RandomForestRegressor]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-accuracy]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-accuracy]", "sklearn/ensemble/tests/test_forest.py::test_mse_criterion_object_segfault_smoke_test[RandomForestRegressor]", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_shape]", "sklearn/ensemble/tests/test_forest.py::test_read_only_buffer[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-accuracy]", "sklearn/ensemble/tests/test_forest.py::test_round_samples_to_one_when_samples_too_low[balanced_subsample]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-_accuracy_callable]", "sklearn/ensemble/tests/test_forest.py::test_round_samples_to_one_when_samples_too_low[None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesClassifier-True-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-cv1]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_one_label_sample_weights]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesClassifier-True-1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-cv1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestClassifier-True-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestClassifier-True-1]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_pandas_series]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesRegressor-True-None]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_loo]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_list]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesRegressor-True-1]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_classifiers]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_shape]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestRegressor-True-None]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_loo]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_not_overwritten]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestRegressor-True-1]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_classifiers]", "sklearn/ensemble/tests/test_forest.py::test_missing_values_is_resilient[make_regression-RandomForestRegressor]", "sklearn/ensemble/tests/test_forest.py::test_missing_values_is_resilient[make_classification-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_class_weights", "sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[None]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_pandas_series]", "sklearn/ensemble/tests/test_forest.py::test_missing_value_is_predictive[RandomForestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[accuracy]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[LogisticRegressionCV]", "sklearn/ensemble/tests/test_forest.py::test_missing_value_is_predictive[RandomForestRegressor]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-None]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-3]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight", "sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[coo_matrix-2-3]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[coo_matrix-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[coo_array-2-3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[coo_array-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csc_matrix-2-3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csc_matrix-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csc_array-2-3]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csc_array-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csr_matrix-2-3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csr_matrix-3-2]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeCV0]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csr_array-2-3]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV0]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[csr_array-3-2]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeCV1]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[dok_matrix-2-3]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV1]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[dok_matrix-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[dok_array-2-3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[dok_array-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[lil_matrix-2-3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[lil_matrix-3-2]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[lil_array-2-3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights[lil_array-3-2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_n_iter", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_matrix-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_matrix-True-sparse_cg]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_matrix-True-lbfgs]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_matrix-True-auto]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_array-True-lsqr]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_array-True-sparse_cg]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_array-True-lbfgs]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-csr_array-True-auto]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RidgeClassifierCV1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_sag[42-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_sag[42-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_sag[42-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_sag[42-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_array-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_array-sample_weight1-True]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_array-None-False]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_array-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_array-sample_weight1-True]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_array-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_array-sample_weight1-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-tall-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-tall-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-svd-wide-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-tall-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-tall-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-tall-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-tall-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-tall-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-tall-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-wide-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-wide-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-wide-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-wide-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sparse_cg-wide-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-tall-None-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-tall-None-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-tall-csr_matrix-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-tall-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-wide-None-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-wide-csr_matrix-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-cholesky-wide-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-tall-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-tall-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-tall-csr_matrix-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-tall-csr_matrix-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-tall-csr_array-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-tall-csr_array-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-wide-None-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-wide-csr_matrix-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-wide-csr_matrix-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-wide-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lsqr-wide-csr_array-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-tall-None-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-tall-csr_matrix-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-tall-csr_array-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-wide-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-wide-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-sag-wide-csr_array-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-tall-None-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-saga-wide-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-tall-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-tall-None-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-tall-csr_matrix-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-tall-csr_matrix-True]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-tall-csr_array-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-tall-csr_array-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_class_weight_classifiers]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-wide-None-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-wide-None-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-wide-csr_matrix-False]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-wide-csr_matrix-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-wide-csr_array-False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_consistency[42-lbfgs-wide-csr_array-True]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingRegressor(max_iter=5,min_samples_leaf=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KernelRidge()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LinearSVR(max_iter=20)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_clusterer_compute_labels_predict]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[MultiOutputRegressor(estimator=Ridge())-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[QuantileRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomForestRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomTreesEmbedding(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[Ridge()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeCV()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SGDOneClassSVM(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SGDRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SelectFromModel(estimator=SGDRegressor(random_state=0))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=1,n_components=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=1,n_components=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[SplineTransformer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StandardScaler()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdaBoostRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BaggingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BayesianGaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HuberRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearSVC(max_iter=20)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearSVR(max_iter=20)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Perceptron(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[QuantileRegressor()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomForestClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomForestRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RidgeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SGDClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SGDOneClassSVM(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SGDRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralCoclustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BayesianGaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HuberRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearSVC(max_iter=20)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearSVR(max_iter=20)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Perceptron(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[QuantileRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDOneClassSVM(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralCoclustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingRegressor(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreesClassifier(bootstrap=True,n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreesRegressor(bootstrap=True,n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveRegressor(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Perceptron(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestRegressor(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDRegressor(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform[SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-SelectFromModel(estimator=SGDRegressor(random_state=0))]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RidgeClassifier()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-221
1.0
{ "code": "diff --git b/sklearn/metrics/_classification.py a/sklearn/metrics/_classification.py\nindex ae294f1cc..65bedb99d 100644\n--- b/sklearn/metrics/_classification.py\n+++ a/sklearn/metrics/_classification.py\n@@ -88,6 +88,62 @@ def _check_targets(y_true, y_pred):\n \n y_pred : array or indicator matrix\n \"\"\"\n+ xp, _ = get_namespace(y_true, y_pred)\n+ check_consistent_length(y_true, y_pred)\n+ type_true = type_of_target(y_true, input_name=\"y_true\")\n+ type_pred = type_of_target(y_pred, input_name=\"y_pred\")\n+\n+ y_type = {type_true, type_pred}\n+ if y_type == {\"binary\", \"multiclass\"}:\n+ y_type = {\"multiclass\"}\n+\n+ if len(y_type) > 1:\n+ raise ValueError(\n+ \"Classification metrics can't handle a mix of {0} and {1} targets\".format(\n+ type_true, type_pred\n+ )\n+ )\n+\n+ # We can't have more than one value on y_type => The set is no more needed\n+ y_type = y_type.pop()\n+\n+ # No metrics support \"multiclass-multioutput\" format\n+ if y_type not in [\"binary\", \"multiclass\", \"multilabel-indicator\"]:\n+ raise ValueError(\"{0} is not supported\".format(y_type))\n+\n+ if y_type in [\"binary\", \"multiclass\"]:\n+ xp, _ = get_namespace(y_true, y_pred)\n+ y_true = column_or_1d(y_true)\n+ y_pred = column_or_1d(y_pred)\n+ if y_type == \"binary\":\n+ try:\n+ unique_values = _union1d(y_true, y_pred, xp)\n+ except TypeError as e:\n+ # We expect y_true and y_pred to be of the same data type.\n+ # If `y_true` was provided to the classifier as strings,\n+ # `y_pred` given by the classifier will also be encoded with\n+ # strings. So we raise a meaningful error\n+ raise TypeError(\n+ \"Labels in y_true and y_pred should be of the same type. \"\n+ f\"Got y_true={xp.unique(y_true)} and \"\n+ f\"y_pred={xp.unique(y_pred)}. Make sure that the \"\n+ \"predictions provided by the classifier coincides with \"\n+ \"the true labels.\"\n+ ) from e\n+ if unique_values.shape[0] > 2:\n+ y_type = \"multiclass\"\n+\n+ if y_type.startswith(\"multilabel\"):\n+ if _is_numpy_namespace(xp):\n+ # XXX: do we really want to sparse-encode multilabel indicators when\n+ # they are passed as a dense arrays? This is not possible for array\n+ # API inputs in general hence we only do it for NumPy inputs. But even\n+ # for NumPy the usefulness is questionable.\n+ y_true = csr_matrix(y_true)\n+ y_pred = csr_matrix(y_pred)\n+ y_type = \"multilabel-indicator\"\n+\n+ return y_type, y_true, y_pred\n \n \n @validate_params(\n", "test": null }
null
{ "code": "diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py\nindex 65bedb99d..ae294f1cc 100644\n--- a/sklearn/metrics/_classification.py\n+++ b/sklearn/metrics/_classification.py\n@@ -88,62 +88,6 @@ def _check_targets(y_true, y_pred):\n \n y_pred : array or indicator matrix\n \"\"\"\n- xp, _ = get_namespace(y_true, y_pred)\n- check_consistent_length(y_true, y_pred)\n- type_true = type_of_target(y_true, input_name=\"y_true\")\n- type_pred = type_of_target(y_pred, input_name=\"y_pred\")\n-\n- y_type = {type_true, type_pred}\n- if y_type == {\"binary\", \"multiclass\"}:\n- y_type = {\"multiclass\"}\n-\n- if len(y_type) > 1:\n- raise ValueError(\n- \"Classification metrics can't handle a mix of {0} and {1} targets\".format(\n- type_true, type_pred\n- )\n- )\n-\n- # We can't have more than one value on y_type => The set is no more needed\n- y_type = y_type.pop()\n-\n- # No metrics support \"multiclass-multioutput\" format\n- if y_type not in [\"binary\", \"multiclass\", \"multilabel-indicator\"]:\n- raise ValueError(\"{0} is not supported\".format(y_type))\n-\n- if y_type in [\"binary\", \"multiclass\"]:\n- xp, _ = get_namespace(y_true, y_pred)\n- y_true = column_or_1d(y_true)\n- y_pred = column_or_1d(y_pred)\n- if y_type == \"binary\":\n- try:\n- unique_values = _union1d(y_true, y_pred, xp)\n- except TypeError as e:\n- # We expect y_true and y_pred to be of the same data type.\n- # If `y_true` was provided to the classifier as strings,\n- # `y_pred` given by the classifier will also be encoded with\n- # strings. So we raise a meaningful error\n- raise TypeError(\n- \"Labels in y_true and y_pred should be of the same type. \"\n- f\"Got y_true={xp.unique(y_true)} and \"\n- f\"y_pred={xp.unique(y_pred)}. Make sure that the \"\n- \"predictions provided by the classifier coincides with \"\n- \"the true labels.\"\n- ) from e\n- if unique_values.shape[0] > 2:\n- y_type = \"multiclass\"\n-\n- if y_type.startswith(\"multilabel\"):\n- if _is_numpy_namespace(xp):\n- # XXX: do we really want to sparse-encode multilabel indicators when\n- # they are passed as a dense arrays? This is not possible for array\n- # API inputs in general hence we only do it for NumPy inputs. But even\n- # for NumPy the usefulness is questionable.\n- y_true = csr_matrix(y_true)\n- y_pred = csr_matrix(y_pred)\n- y_type = \"multilabel-indicator\"\n-\n- return y_type, y_true, y_pred\n \n \n @validate_params(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/metrics/_classification.py.\nHere is the description for the function:\ndef _check_targets(y_true, y_pred):\n \"\"\"Check that y_true and y_pred belong to the same classification task.\n\n This converts multiclass or binary types to a common shape, and raises a\n ValueError for a mix of multilabel and multiclass targets, a mix of\n multilabel formats, for the presence of continuous-valued or multioutput\n targets, or for targets of different lengths.\n\n Column vectors are squeezed to 1d, while multilabel formats are returned\n as CSR sparse label indicators.\n\n Parameters\n ----------\n y_true : array-like\n\n y_pred : array-like\n\n Returns\n -------\n type_true : one of {'multilabel-indicator', 'multiclass', 'binary'}\n The type of the true target data, as output by\n ``utils.multiclass.type_of_target``.\n\n y_true : array or indicator matrix\n\n y_pred : array or indicator matrix\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]", "sklearn/metrics/tests/test_classification.py::test_classification_report_dictionary_output", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[gini-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]", "sklearn/metrics/tests/test_classification.py::test_classification_report_output_dict_empty_input", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[gini-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[log_loss-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[warn]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[log_loss-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]", "sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]", "sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[0]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]", "sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[1]", "sklearn/tree/tests/test_tree.py::test_xor", "sklearn/tree/tests/test_tree.py::test_iris", "sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[nan]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1-f1_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_weighted-metric1]", "sklearn/metrics/tests/test_classification.py::test_classification_report_labels_subset_superset[labels0-True]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_macro-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_micro-metric3]", "sklearn/metrics/tests/test_classification.py::test_classification_report_labels_subset_superset[labels1-False]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision-precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_classification.py::test_classification_report_labels_subset_superset[labels2-False]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_macro-metric6]", "sklearn/metrics/tests/test_classification.py::test_multilabel_accuracy_score_subset_accuracy", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_binary", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_micro-metric7]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[accuracy-multiclass_agg_list0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[precision-multiclass_agg_list1]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f_binary_single_class", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[f1-multiclass_agg_list2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall-recall_score]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f_extra_labels", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_weighted-metric9]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[recall-multiclass_agg_list4]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f_ignored_labels", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_macro-metric10]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_logistic_regression_string_inputs", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_micro-metric11]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]", "sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SparseSGDClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_matrix]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard-jaccard_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_array]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_weighted-metric13]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f_unused_pos_label", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_binary", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SGDClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SparseSGDClassifier]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_binary", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_macro-metric14]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multiclass", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_micro-metric15]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multilabel[csr_matrix-csc_matrix]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SGDClassifier]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multilabel[csr_matrix-csc_array]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight0]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[matthews_corrcoef-matthews_corrcoef]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[accuracy-accuracy_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight1]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multilabel[csr_array-csc_matrix]", "sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SparseSGDClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[balanced_accuracy-balanced_accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_weighted-metric2]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight0]", "sklearn/tree/tests/test_tree.py::test_pickle", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_macro-metric3]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multilabel[csr_array-csc_array]", "sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_errors", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_micro-metric4]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[true-f-0.333333333]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight1]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[pred-f-0.333333333]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[all-f-0.1111111111]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-lbfgs-cv]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_macro-metric6]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[None-i-2]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-liblinear-cv]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_micro-metric7]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize_single_class", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_weighted-metric8]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_single_label", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-cv]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_macro-metric9]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios_warnings[params0-samples of only one class were seen during testing]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_micro-metric10]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios_warnings[params1-positive_likelihood_ratio ill-defined and being set to nan]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_weighted-metric11]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-cv]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios_warnings[params2-no samples predicted for the positive class]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_macro-metric12]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-sag-cv]", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios_warnings[params3-negative_likelihood_ratio ill-defined and being set to nan]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_micro-metric13]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]", "sklearn/metrics/tests/test_score_objects.py::test_custom_scorer_pickling", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios_warnings[params4-no samples of the positive class were present in the testing set]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-saga-cv]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios_errors[params0-class_likelihood_ratios only supports binary classification problems, got targets of type: multiclass]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-array-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_likelihood_ratios", "sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/metrics/tests/test_classification.py::test_cohen_kappa", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-array-RandomForestClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]", "sklearn/linear_model/tests/test_sgd.py::test_balanced_weight[SGDClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csr-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_sgd.py::test_balanced_weight[SparseSGDClassifier]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_nan", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[f1_score-y_true0-y_pred0-0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse[csr_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[f1_score-y_true0-y_pred0-1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse[csr_array]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csc-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[f1_score-y_true0-y_pred0-nan]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[f1_score-y_true1-y_pred1-0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-array-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_saga_sparse[csr_matrix]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]", "sklearn/linear_model/tests/test_logistic.py::test_saga_sparse[csr_array]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[f1_score-y_true1-y_pred1-1]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-array-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[f1_score-y_true1-y_pred1-nan]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric1-y_true0-y_pred0-0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric1-y_true0-y_pred0-1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l1-42]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l2-42]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric1-y_true0-y_pred0-nan]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[matthews_corrcoef]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric1-y_true1-y_pred1-0]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csc-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric1-y_true1-y_pred1-1]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric1-y_true1-y_pred1-nan]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-array-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[precision_score-y_true0-y_pred0-0]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_negative_likelihood_ratio]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[precision_score-y_true0-y_pred0-1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[positive_likelihood_ratio]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[precision_score-y_true0-y_pred0-nan]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-array-RandomForestClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[precision_score-y_true1-y_pred1-0]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csr-RandomForestClassifier]", "sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[precision_score-y_true1-y_pred1-1]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[precision_score-y_true1-y_pred1-nan]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[lbfgs]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[recall_score-y_true0-y_pred0-0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[liblinear]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csc-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cg]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[recall_score-y_true0-y_pred0-1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cholesky]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-array-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[recall_score-y_true0-y_pred0-nan]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[sag]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[recall_score-y_true1-y_pred1-0]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[saga]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-array-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[recall_score-y_true1-y_pred1-1]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[recall_score-y_true1-y_pred1-nan]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric4-y_true0-y_pred0-0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric4-y_true0-y_pred0-1]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/tests/test_sgd.py::test_multi_thread_multi_class_and_early_stopping", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric4-y_true0-y_pred0-nan]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]", "sklearn/linear_model/tests/test_sgd.py::test_multi_core_gridsearch_and_early_stopping", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric4-y_true1-y_pred1-0]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[f1_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric4-y_true1-y_pred1-1]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csc-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_no_warning[metric4-y_true1-y_pred1-nan]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-array-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[f1_score-y_true0-y_pred0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-array-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[f1_score-y_true1-y_pred1]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[0.001]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[metric1-y_true0-y_pred0]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[metric1-y_true1-y_pred1]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[precision_score-y_true0-y_pred0]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csc-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[100]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[precision_score-y_true1-y_pred1]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]", "sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1000000.0]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csc-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[recall_score-y_true0-y_pred0]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[recall_score-y_true1-y_pred1]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-array-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[2]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[cohen_kappa_score-y_true0-y_pred0]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]", "sklearn/metrics/tests/test_classification.py::test_zero_division_nan_warning[cohen_kappa_score-y_true1-y_pred1]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[3]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-array-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_against_numpy_corrcoef", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_against_jurman", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-l2]", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef", "sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_multiclass", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-elasticnet]", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_overflow[100]", "sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_overflow[10000]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-l2]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_multiclass", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[True]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[False]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_multimetric_raise_exc", "sklearn/metrics/tests/test_score_objects.py::test_metadata_routing_multimetric_metadata_routing[True]", "sklearn/metrics/tests/test_score_objects.py::test_metadata_routing_multimetric_metadata_routing[False]", "sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[samples]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-elasticnet]", "sklearn/metrics/tests/test_score_objects.py::test_curve_scorer", "sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[micro]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-l2]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csc-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[macro]", "sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[weighted]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-elasticnet]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_pipeline_consistency]", "sklearn/linear_model/tests/test_sgd.py::test_validation_mask_correctly_subsets", "sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[None]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_digits", "sklearn/tree/tests/test_tree.py::test_different_endianness_pickle", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_elasticnet_attribute_shapes", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-array-ExtraTreesClassifier]", "sklearn/tree/tests/test_tree.py::test_different_endianness_joblib_pickle", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_binary_averaged", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-array-RandomForestClassifier]", "sklearn/tree/tests/test_tree.py::test_different_bitness_pickle", "sklearn/metrics/tests/test_classification.py::test_zero_precision_recall", "sklearn/tree/tests/test_tree.py::test_different_bitness_joblib_pickle", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_multiclass_subset_labels", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_error[empty list]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_error[unknown labels]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-balanced_accuracy_score]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_on_zero_length_input[None]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric2]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_on_zero_length_input[binary]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric3]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_on_zero_length_input[multiclass]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_dtype", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-<lambda>]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csc-RandomForestClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[lbfgs-LogisticRegressionCV]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-multilabel_confusion_matrix]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_pandas_nullable[Int64]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_pandas_nullable[Float64]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-array-ExtraTreesClassifier]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegressionCV]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-DecisionTreeClassifier-0.85]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric7]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/metrics/tests/test_classification.py::test_confusion_matrix_pandas_nullable[boolean]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-hamming_loss]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-array-RandomForestClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-ExtraTreeClassifier-0.53]", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric10]", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_balanced", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csr-ExtraTreesClassifier]", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_label_detection", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-jaccard_score]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegressionCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-accuracy]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-precision_score]", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_digits", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegressionCV]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-recall_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-f1_score]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csr-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_string_label", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegressionCV]", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_unicode_label", "sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_long_string_label", "sklearn/metrics/tests/test_classification.py::test_classification_report_labels_target_names_unequal_length", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-accuracy]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csc-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric15]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric16]", "sklearn/linear_model/tests/test_logistic.py::test_scores_attribute_layout_elasticnet", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-matthews_corrcoef]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csc-RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_classification_report_no_labels_target_names_unequal_length", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric18]", "sklearn/metrics/tests/test_classification.py::test_multilabel_classification_report", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-accuracy]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric19]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_differ_when_sample_weight_is_requested", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric20]", "sklearn/metrics/tests/test_classification.py::test_multilabel_zero_one_loss_subset", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_logistic.py::test_lr_cv_scores_without_enabling_metadata_routing", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric21]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric22]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric23]", "sklearn/metrics/tests/test_classification.py::test_multilabel_hamming_loss", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[lbfgs]", "sklearn/metrics/tests/test_classification.py::test_jaccard_score_validation", "sklearn/metrics/tests/test_classification.py::test_multilabel_jaccard_score", "sklearn/metrics/tests/test_classification.py::test_multiclass_jaccard_score", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[liblinear]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[newton-cholesky]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric24]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric25]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric26]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric27]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[sag]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric28]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[saga]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric29]", "sklearn/metrics/tests/test_classification.py::test_average_binary_jaccard_score", "sklearn/metrics/tests/test_classification.py::test_jaccard_score_zero_division_warning", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric30]", "sklearn/metrics/tests/test_classification.py::test_jaccard_score_zero_division_set_value[0-0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric31]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_pipeline_consistency]", "sklearn/metrics/tests/test_classification.py::test_jaccard_score_zero_division_set_value[1-0.5]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric32]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_multilabel_1", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_multilabel_2", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric33]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric34]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[warn-0]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[accuracy]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric35]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[0-0]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[1-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric36]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_pipeline_consistency]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[nan-nan]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric37]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-macro-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric38]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric39]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric40]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-micro-1]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-weighted-1]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric41]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-samples-1]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-cohen_kappa_score]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-macro-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-accuracy_score]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-micro-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-balanced_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric2]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric3]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-weighted-1]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score0-1-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-<lambda>]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-samples-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-multilabel_confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[nan-macro-1]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score1-1-0.5]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[nan-micro-1]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score2-2-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric7]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score3-1-1]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[nan-weighted-1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-hamming_loss]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-zero_one_loss]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score4-1-0.5]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[nan-samples-1]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric10]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-precision_score]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[macro]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-recall_score]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score5-2-1]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[micro]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-f1_score]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-0.1-True-5-1e-07-data1]", "sklearn/ensemble/tests/test_forest.py::test_pickle[ExtraTreesClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_curve_scorer_pos_label[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data0]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[weighted]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[accuracy-None-True-5-0.1-data1]", "sklearn/ensemble/tests/test_forest.py::test_pickle[RandomForestClassifier]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[samples]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric15]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric16]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none[0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-matthews_corrcoef]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric18]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-log_loss]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric19]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-exponential]", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-0.1-True-5-1e-07-data1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric20]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none[1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric21]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TunedThresholdClassifierCV]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric22]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none[nan]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_early_stopping_classification[None-None-True-5-0.1-data1]", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric23]", "sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none_warn", "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/metrics/tests/test_classification.py::test_prf_warnings", "sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric24]", "sklearn/metrics/tests/test_classification.py::test_prf_no_warnings_if_zero_division_set[0]", "sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric25]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric26]", "sklearn/metrics/tests/test_classification.py::test_prf_no_warnings_if_zero_division_set[1]", "sklearn/svm/tests/test_svm.py::test_weight", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric27]", "sklearn/metrics/tests/test_classification.py::test_prf_no_warnings_if_zero_division_set[nan]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-1.0]", "sklearn/metrics/tests/test_classification.py::test_recall_warnings[warn]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric28]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric29]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric30]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-1.0]", "sklearn/metrics/tests/test_classification.py::test_recall_warnings[0]", "sklearn/metrics/tests/test_classification.py::test_recall_warnings[1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric31]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric32]", "sklearn/metrics/tests/test_classification.py::test_recall_warnings[nan]", "sklearn/tests/test_pipeline.py::test_pipeline_memory", "sklearn/svm/tests/test_svm.py::test_auto_weight", "sklearn/svm/tests/test_svm.py::test_crammer_singer_binary", "sklearn/metrics/tests/test_classification.py::test_precision_warnings[warn]", "sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency", "sklearn/model_selection/tests/test_search.py::test_grid_search_no_score", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric33]", "sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-0.5]", "sklearn/metrics/tests/test_classification.py::test_precision_warnings[0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric34]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric35]", "sklearn/metrics/tests/test_classification.py::test_precision_warnings[1]", "sklearn/linear_model/tests/test_logistic.py::test_multi_class_deprecated", "sklearn/svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVC]", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric36]", "sklearn/metrics/tests/test_classification.py::test_precision_warnings[nan]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric37]", "sklearn/metrics/tests/test_classification.py::test_fscore_warnings[warn]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric38]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric39]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric40]", "sklearn/metrics/tests/test_classification.py::test_fscore_warnings[0]", "sklearn/metrics/tests/test_classification.py::test_fscore_warnings[1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_trivial", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric41]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-cohen_kappa_score]", "sklearn/metrics/tests/test_classification.py::test_fscore_warnings[nan]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-balanced_accuracy_score]", "sklearn/metrics/tests/test_classification.py::test_prf_average_binary_data_non_binary", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.1-0.97-0.89-classification]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric2]", "sklearn/metrics/tests/test_classification.py::test__check_targets", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric3]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_score_takes_y]", "sklearn/metrics/tests/test_classification.py::test__check_targets_multiclass_with_both_y_true_and_y_pred_binary", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-<lambda>]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-multilabel_confusion_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_pipeline_consistency]", "sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score_unseen", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.2-0.93-0.81-classification]", "sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel", "sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score[y_true0-y_pred0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric7]", "sklearn/model_selection/tests/test_search.py::test_refit_callable", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-hamming_loss]", "sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score[y_true1-y_pred1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric10]", "sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score[y_true2-y_pred2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-jaccard_score]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_resilience[0.5-0.79-0.52-classification]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-precision_score]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes0-jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-recall_score]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes0-f1_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-f1_score]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_pipeline_consistency]", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric15]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/model_selection/tests/test_validation.py::test_permutation_score[coo_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric16]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes0-metric2]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-matthews_corrcoef]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/semi_supervised/tests/test_label_propagation.py::test_predict_sparse_callable_kernel[float64]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric18]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes0-precision_recall_fscore_support]", "sklearn/tests/test_naive_bayes.py::test_check_accuracy_on_digits", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric19]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes0-precision_score]", "sklearn/model_selection/tests/test_search.py::test_search_default_iid[GridSearchCV-specialized_params0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_infinite_values_missing_values", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric20]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric21]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes0-recall_score]", "sklearn/model_selection/tests/test_search.py::test_search_default_iid[RandomizedSearchCV-specialized_params1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes1-jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric22]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric23]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric24]", "sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes1-f1_score]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-2-None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric25]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes1-metric2]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-None-10.0]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes1-precision_recall_fscore_support]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric26]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes1-precision_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric27]", "sklearn/model_selection/tests/test_search.py::test_search_cv_results_rank_tie_breaking", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric28]", "sklearn/tests/test_base.py::test_score_sample_weight[tree0-dataset0]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes1-recall_score]", "sklearn/tests/test_base.py::test_pickle_version_warning_is_not_raised_with_matching_version", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric29]", "sklearn/model_selection/tests/test_search.py::test_search_cv_timing", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric30]", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric31]", "sklearn/model_selection/tests/test_search.py::test_grid_search_with_multioutput_data", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes2-jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric32]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes2-f1_score]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes2-metric2]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric33]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes2-precision_recall_fscore_support]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric34]", "sklearn/tests/test_dummy.py::test_classifier_score_with_None[y0-y_test0]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes2-precision_score]", "sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier", "sklearn/tests/test_dummy.py::test_classifier_score_with_None[y1-y_test1]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-True-False]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric35]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_curve_scorers", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit_score_takes_y]", "sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier_raise", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes2-recall_score]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-True-True]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric36]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-False-False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_prefit", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[None-False-True]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric37]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_sample_weight", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-True-False]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes3-jaccard_score]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-True-True]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[list]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric38]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes3-f1_score]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-False-False]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_matrix-False-True]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_svc", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-True-False]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_dataset", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_pipeline_consistency]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe[csr_matrix]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes3-metric2]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-True-True]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe[csr_array]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-False-False]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes3-precision_recall_fscore_support]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes3-precision_score]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_classification", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[array]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric39]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_accuracy[csr_array-False-True]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[None-False]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric40]", "sklearn/feature_selection/tests/test_rfe.py::test_RFE_fit_score_params", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric41]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-cohen_kappa_score]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[None-True]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-accuracy_score]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_pos_label_types[classes3-recall_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-balanced_accuracy_score]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_matrix-False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator0]", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric2]", "sklearn/metrics/tests/test_classification.py::test_f1_for_small_binary_inputs_with_zero_division[y_true0-y_pred0-0.0]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_matrix-True]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric3]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-confusion_matrix]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_array-False]", "sklearn/metrics/tests/test_classification.py::test_f1_for_small_binary_inputs_with_zero_division[y_true1-y_pred1-1.0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-<lambda>]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator1]", "sklearn/linear_model/tests/test_passive_aggressive.py::test_classifier_partial_fit[csr_array-True]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-multilabel_confusion_matrix]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv[csr_array]", "sklearn/metrics/tests/test_classification.py::test_f1_for_small_binary_inputs_with_zero_division[y_true2-y_pred2-0.0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_mockclassifier", "sklearn/metrics/tests/test_classification.py::test_f1_for_small_binary_inputs_with_zero_division[y_true3-y_pred3-1.0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-hamming_loss]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_verbose_output", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric10]", "sklearn/ensemble/tests/test_weight_boosting.py::test_iris", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator1]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X0-y0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_size[42]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-jaccard_score]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-precision_score]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsOneClassifier]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X1-y1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-recall_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-f1_score]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsOneClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric15]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_tags", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]", "sklearn/feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features[42]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/neural_network/tests/test_mlp.py::test_multilabel_classification", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric16]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_n_jobs[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_pickle", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-matthews_corrcoef]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric18]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_different_bitness_joblib_pickle", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_predictions-ConfusionMatrixDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_pickle", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric19]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric20]", "sklearn/tests/test_discriminant_analysis.py::test_lda_scaling", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric21]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-ConfusionMatrixDisplay]", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric22]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric23]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[decision_function]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric24]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[5]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring1]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csc_matrix-csc_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric25]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csc_array-csc_array]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric26]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping[MLPClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csr_matrix-csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_std_and_mean[42]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric27]", "sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric28]", "sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-1-cv_results_n_features0]", "sklearn/decomposition/tests/test_kernel_pca.py::test_nested_circles", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_some_failing_fits_warning[42]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csr_array-csr_array]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric29]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[lil_matrix-csr_matrix]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-1-cv_results_n_features1]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[lil_array-csr_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric30]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-2-cv_results_n_features2]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_validation", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[coo_matrix-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric31]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[coo_array-csr_array]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegressionCV]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-True-from_estimator]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[dok_matrix-csr_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric32]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-decision_function]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_proba]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_clf[42]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-True-from_predictions]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_pairwise", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-2-cv_results_n_features3]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[dok_array-csr_array]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-False-from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-False-from_predictions]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric33]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_log_proba]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-3-cv_results_n_features4]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-True-from_estimator]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric34]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring2]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LogisticRegressionCV]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-True-from_predictions]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric35]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-3-cv_results_n_features5]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-False-from_estimator]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-decision_function]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric36]", "sklearn/utils/tests/test_estimator_checks.py::test_check_dataframe_column_names_consistency", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-4-4-cv_results_n_features6]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric37]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-decision_function]", "sklearn/semi_supervised/tests/test_self_training.py::test_sanity_classification", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric38]", "sklearn/utils/tests/test_estimator_checks.py::test_xfail_ignored_in_check_estimator", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-False-from_predictions]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric39]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-true-from_estimator]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric40]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[ValidationCurveDisplay-specific_params0]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-true-from_predictions]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[1-5-4-cv_results_n_features7]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[LearningCurveDisplay-specific_params1]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric41]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-pred-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/model_selection/tests/test_search.py::test_search_html_repr", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-pred-from_predictions]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-all-from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-4-2-cv_results_n_features8]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-all-from_predictions]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-cohen_kappa_score]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-None-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-True]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-accuracy_score]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-None-from_predictions]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-1-cv_results_n_features9]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-balanced_accuracy_score]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-true-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-False]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-true-from_predictions]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric2]", "sklearn/feature_selection/tests/test_rfe.py::test_rfecv_cv_results_n_features[4-5-2-cv_results_n_features10]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-pred-from_estimator]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric3]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[list]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-confusion_matrix]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring3]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_removed_on_warm_start", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-<lambda>]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-pred-from_predictions]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-multilabel_confusion_matrix]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[array]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_consistency", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric7]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-all-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-1]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-all-from_predictions]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.accuracy_score", "sklearn/neural_network/tests/test_mlp.py::test_preserve_feature_names[MLPClassifier]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.balanced_accuracy_score", "sklearn/metrics/_classification.py::sklearn.metrics._classification.class_likelihood_ratios", "sklearn/metrics/_classification.py::sklearn.metrics._classification.classification_report", "sklearn/metrics/_classification.py::sklearn.metrics._classification.cohen_kappa_score", "sklearn/metrics/_classification.py::sklearn.metrics._classification.confusion_matrix", "sklearn/metrics/_classification.py::sklearn.metrics._classification.f1_score", "sklearn/metrics/_classification.py::sklearn.metrics._classification.fbeta_score", "sklearn/metrics/_classification.py::sklearn.metrics._classification.hamming_loss", "sklearn/metrics/_classification.py::sklearn.metrics._classification.jaccard_score", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-None-from_estimator]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-2]", "sklearn/feature_selection/tests/test_rfe.py::test_pipeline_with_nans[RFECV]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-hamming_loss]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.matthews_corrcoef", "sklearn/metrics/_classification.py::sklearn.metrics._classification.multilabel_confusion_matrix", "sklearn/metrics/_classification.py::sklearn.metrics._classification.precision_recall_fscore_support", "sklearn/metrics/_classification.py::sklearn.metrics._classification.precision_score", "sklearn/metrics/_classification.py::sklearn.metrics._classification.recall_score", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_warm_start_early_stopping[None-HistGradientBoostingClassifier-X0-y0]", "sklearn/ensemble/tests/test_bagging.py::test_set_oob_score_label_encoding", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-zero_one_loss]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-None-from_predictions]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-1]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_with_early_stopping[MLPClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric10]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display[from_estimator]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-2]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display[from_predictions]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.zero_one_loss", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-jaccard_score]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-1]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_thresholds_array", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-precision_score]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[clf]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-2]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-recall_score]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-clf]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-1]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-column_transformer-clf]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_n_features_to_select_warning[RFECV-min_features_to_select]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_partial_fit_after_fit[MLPClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-f1_score]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_with_unknown_labels[from_estimator]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[True]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[False]", "sklearn/base.py::sklearn.base.ClassifierMixin", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[none-HistGradientBoostingClassifier-X0-y0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric15]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric16]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_float", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_with_unknown_labels[from_predictions]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-matthews_corrcoef]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_error_constant_predictor", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric18]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric19]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[int-HistGradientBoostingClassifier-X0-y0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric20]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_warm_start.py::test_random_seeds_warm_start[instance-HistGradientBoostingClassifier-X0-y0]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric21]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric22]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric23]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric24]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_text_kw", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[array]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric25]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[dataframe]", "sklearn/neighbors/tests/test_nearest_centroid.py::test_pickle", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric26]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric27]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric28]", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_accuracy[csr_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric29]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.AdditiveChi2Sampler", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.learning_curve", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_accuracy[csr_array]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.Nystroem", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifier", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric30]", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_accuracy[array]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.permutation_test_score", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifierCV", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.validation_curve", "sklearn/linear_model/tests/test_perceptron.py::test_perceptron_l1_ratio", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.check_scoring", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.get_scorer", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric31]", "sklearn/pipeline.py::sklearn.pipeline.Pipeline", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeClassifier", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.PolynomialCountSketch", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.RBFSampler", "sklearn/metrics/_plot/confusion_matrix.py::sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.SkewedChi2Sampler", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric32]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/tests/test_common.py::test_estimators[GaussianNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/covariance/tests/test_elliptic_envelope.py::test_elliptic_envelope[42]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric33]", "sklearn/dummy.py::sklearn.dummy.DummyClassifier", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py::sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_score_takes_y]", "sklearn/manifold/tests/test_locally_linear.py::test_pipeline", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/linear_model/_logistic.py::sklearn.linear_model._logistic.LogisticRegression", "sklearn/linear_model/_logistic.py::sklearn.linear_model._logistic.LogisticRegressionCV", "sklearn/metrics/_plot/confusion_matrix.py::sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay.from_estimator", "sklearn/metrics/_plot/confusion_matrix.py::sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay.from_predictions", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.FixedThresholdClassifier", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric34]", "sklearn/ensemble/_weight_boosting.py::sklearn.ensemble._weight_boosting.AdaBoostClassifier", "sklearn/neural_network/_multilayer_perceptron.py::sklearn.neural_network._multilayer_perceptron.MLPClassifier", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric35]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_pipeline_consistency]", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/linear_model/_perceptron.py::sklearn.linear_model._perceptron.Perceptron", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric36]", "sklearn/inspection/_permutation_importance.py::sklearn.inspection._permutation_importance.permutation_importance", "sklearn/neighbors/_nca.py::sklearn.neighbors._nca.NeighborhoodComponentsAnalysis", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric37]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric38]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric39]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric40]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric41]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-cohen_kappa_score]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-accuracy_score]", "sklearn/feature_selection/_sequential.py::sklearn.feature_selection._sequential.SequentialFeatureSelector", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric2]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric3]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-<lambda>]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric7]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-hamming_loss]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric10]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-precision_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-recall_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-f1_score]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric15]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric16]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-matthews_corrcoef]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric18]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric19]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric20]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric21]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric22]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric23]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric24]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric25]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric26]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric27]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric28]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric29]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric30]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric31]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric32]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric33]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric34]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric35]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric36]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric37]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric38]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric39]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric40]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric41]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric2]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric3]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-<lambda>]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dtype_object]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric7]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-hamming_loss]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric10]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-jaccard_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-precision_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-recall_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-f1_score]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric15]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric16]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-matthews_corrcoef]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric18]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric19]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric20]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric21]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric22]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric23]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric24]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric25]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric26]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric27]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric28]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric29]", "sklearn/ensemble/tests/test_forest.py::test_missing_values_is_resilient[make_classification-RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric30]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric31]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_one_label_sample_weights]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric32]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric33]", "sklearn/ensemble/tests/test_forest.py::test_missing_values_is_resilient[make_classification-ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric34]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric35]", "sklearn/ensemble/tests/test_forest.py::test_missing_value_is_predictive[RandomForestClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric36]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric37]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric38]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric39]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric40]", "sklearn/ensemble/tests/test_forest.py::test_missing_value_is_predictive[ExtraTreesClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric41]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric2]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric3]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[<lambda>]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric7]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[hamming_loss]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric10]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[jaccard_score]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TunedThresholdClassifierCV]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[precision_score]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[recall_score]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[SelfTrainingClassifier]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[f1_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric15]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric16]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[matthews_corrcoef]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[RFE]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric18]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric19]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric20]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric21]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric22]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric23]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric24]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric25]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric26]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_n_features_in]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric27]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric28]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric29]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric30]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric31]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric32]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric33]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric34]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric35]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric36]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric37]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric38]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric39]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric40]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric41]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_overwrite_params]", "sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self]", "sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dtype_object]", "sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_nan_inf]", "sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]", "sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_f_contiguous_array_estimator]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifier_data_not_an_array]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_classes]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_1feature]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dont_overwrite_parameters]", "sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance[coo_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance[coo_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_n_features_in]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[accuracy_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]", "sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_no_averaging_labels", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]", "sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[accuracy_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[balanced_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[adjusted_balanced_accuracy_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_accuracy_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[normalized_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix_sample]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[hamming_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[zero_one_loss]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_zero_one_loss]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[jaccard_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[precision_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[recall_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f1_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f2_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f0.5_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[matthews_corrcoef_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f1_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f2_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_precision_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_recall_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f1_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_precision_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f1_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_precision_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f0.5_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f1_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f2_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_precision_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_recall_score]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_jaccard_score]", "sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[cohen_kappa_score]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-f1_score-False]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-metric3-False]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-jaccard_score-False]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_score-False]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-recall_score-False]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-f1_score-False]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-metric3-False]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-jaccard_score-False]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_score-False]", "sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-recall_score-False]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[accuracy_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[adjusted_balanced_accuracy_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[balanced_accuracy_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[cohen_kappa_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[f0.5_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[f1_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[f2_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[hamming_loss-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[jaccard_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_f0.5_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_f1_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_f2_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_jaccard_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[macro_recall_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[matthews_corrcoef_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_f0.5_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_f1_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_f2_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_jaccard_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_precision_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[micro_recall_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[normalized_confusion_matrix-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[precision_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[recall_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_accuracy_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_confusion_matrix-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_multilabel_confusion_matrix-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_zero_one_loss-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_f0.5_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_f1_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_f2_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_jaccard_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_precision_score-pandas]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[weighted_recall_score-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[zero_one_loss-pandas]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LabelPropagation(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LabelSpreading(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OutputCodeClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PassiveAggressiveClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Perceptron(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[QuadraticDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RadiusNeighborsClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SGDClassifier(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SVC()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BernoulliNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CategoricalNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ClassifierChain(base_estimator=LogisticRegression(C=1),cv=3)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ComplementNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[EllipticEnvelope()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreesClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianProcessClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(max_iter=5,min_samples_leaf=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KNeighborsClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LabelPropagation(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LabelSpreading(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearSVC(max_iter=20)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LogisticRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultinomialNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[NearestCentroid()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[NuSVC()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsOneClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OutputCodeClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Perceptron(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[QuadraticDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RadiusNeighborsClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDClassifier(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SVC()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreesClassifier(bootstrap=True,n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HistGradientBoostingClassifier(early_stopping=True,max_iter=5,min_samples_leaf=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PassiveAggressiveClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Perceptron(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SGDClassifier(early_stopping=True,max_iter=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-RFECV(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }