instance_id
stringlengths
14
33
version
stringclasses
1 value
gold_patches
dict
test_patch
null
pre_patches
dict
pre_scripts
null
repo
stringclasses
11 values
base_commit
stringclasses
11 values
base_commit_timestamp
stringdate
2024-07-22 07:32:48-0400
2024-10-09 00:56:33-0400
hints_text
null
created_at
null
problem_statement
dict
environment_setup_commit
stringclasses
11 values
evaluation
dict
mwaskom__seaborn-0
1.0
{ "code": "diff --git b/seaborn/_core/scales.py a/seaborn/_core/scales.py\nindex 67bb3635..1e7bef8a 100644\n--- b/seaborn/_core/scales.py\n+++ a/seaborn/_core/scales.py\n@@ -629,6 +629,24 @@ class Continuous(ContinuousBase):\n Copy of self with new label configuration.\n \n \"\"\"\n+ # Input checks\n+ if formatter is not None and not isinstance(formatter, Formatter):\n+ raise TypeError(\n+ f\"Label formatter must be an instance of {Formatter!r}, \"\n+ f\"not {type(formatter)!r}\"\n+ )\n+ if like is not None and not (isinstance(like, str) or callable(like)):\n+ msg = f\"`like` must be a string or callable, not {type(like).__name__}.\"\n+ raise TypeError(msg)\n+\n+ new = copy(self)\n+ new._label_params = {\n+ \"formatter\": formatter,\n+ \"like\": like,\n+ \"base\": base,\n+ \"unit\": unit,\n+ }\n+ return new\n \n def _parse_for_log_params(\n self, trans: str | TransFuncs | None\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/scales.py b/seaborn/_core/scales.py\nindex 1e7bef8a..67bb3635 100644\n--- a/seaborn/_core/scales.py\n+++ b/seaborn/_core/scales.py\n@@ -629,24 +629,6 @@ class Continuous(ContinuousBase):\n Copy of self with new label configuration.\n \n \"\"\"\n- # Input checks\n- if formatter is not None and not isinstance(formatter, Formatter):\n- raise TypeError(\n- f\"Label formatter must be an instance of {Formatter!r}, \"\n- f\"not {type(formatter)!r}\"\n- )\n- if like is not None and not (isinstance(like, str) or callable(like)):\n- msg = f\"`like` must be a string or callable, not {type(like).__name__}.\"\n- raise TypeError(msg)\n-\n- new = copy(self)\n- new._label_params = {\n- \"formatter\": formatter,\n- \"like\": like,\n- \"base\": base,\n- \"unit\": unit,\n- }\n- return new\n \n def _parse_for_log_params(\n self, trans: str | TransFuncs | None\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/scales.py.\nHere is the description for the function:\n def label(\n self,\n formatter: Formatter | None = None, *,\n like: str | Callable | None = None,\n base: int | None | Default = default,\n unit: str | None = None,\n ) -> Continuous:\n \"\"\"\n Configure the appearance of tick labels for the scale's axis or legend.\n\n Parameters\n ----------\n formatter : :class:`matplotlib.ticker.Formatter` subclass\n Pre-configured formatter to use; other parameters will be ignored.\n like : str or callable\n Either a format pattern (e.g., `\".2f\"`), a format string with fields named\n `x` and/or `pos` (e.g., `\"${x:.2f}\"`), or a callable with a signature like\n `f(x: float, pos: int) -> str`. In the latter variants, `x` is passed as the\n tick value and `pos` is passed as the tick index.\n base : number\n Use log formatter (with scientific notation) having this value as the base.\n Set to `None` to override the default formatter with a log transform.\n unit : str or (str, str) tuple\n Use SI prefixes with these units (e.g., with `unit=\"g\"`, a tick value\n of 5000 will appear as `5 kg`). When a tuple, the first element gives the\n separator between the number and unit.\n\n Returns\n -------\n scale\n Copy of self with new label configuration.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_without_data", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_name", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_vector", "tests/_core/test_plot.py::TestLayerAddition::test_with_late_data_definition", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_data_definition", "tests/_core/test_plot.py::TestLayerAddition::test_drop_variable", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestLayerAddition::test_orient[x-x]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[y-y]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[v-x]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[h-y]", "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_core/test_plot.py::TestScaling::test_inference_joins", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_faceted_log_scale", "tests/_core/test_plot.py::TestScaling::test_paired_single_log_scale", "tests/_core/test_plot.py::TestScaling::test_paired_with_common_fallback", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transform_is_inverted", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_core/test_plot.py::TestScaling::test_computed_var_ticks", "tests/_core/test_plot.py::TestScaling::test_computed_var_transform", "tests/_core/test_plot.py::TestScaling::test_explicit_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_derived_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_pair_categories", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_linewidth", "tests/_core/test_plot.py::TestScaling::test_pair_single_coordinate_stat_orient", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_tuples", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_plot.py::TestScaling::test_nominal_x_axis_tweaks", "tests/_core/test_plot.py::TestScaling::test_nominal_y_axis_tweaks", "tests/_core/test_plot.py::TestPlotting::test_no_orient_variance", "tests/_core/test_plot.py::TestPlotting::test_single_split_single_layer", "tests/_core/test_plot.py::TestPlotting::test_single_split_multi_layer", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[color]", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[group]", "tests/_core/test_plot.py::TestPlotting::test_two_grouping_variables", "tests/_core/test_plot.py::TestPlotting::test_specified_width", "tests/_core/test_plot.py::TestPlotting::test_facets_no_subgroups", "tests/_core/test_plot.py::TestPlotting::test_facets_one_subgroup", "tests/_core/test_plot.py::TestPlotting::test_layer_specific_facet_disabling", "tests/_core/test_plot.py::TestPlotting::test_paired_variables", "tests/_core/test_plot.py::TestPlotting::test_paired_one_dimension", "tests/_core/test_plot.py::TestPlotting::test_paired_variables_one_subset", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_stat", "tests/_core/test_plot.py::TestPlotting::test_move", "tests/_core/test_plot.py::TestPlotting::test_stat_and_move", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_log_scale", "tests/_core/test_plot.py::TestPlotting::test_multi_move", "tests/_core/test_plot.py::TestPlotting::test_multi_move_with_pairing", "tests/_core/test_plot.py::TestPlotting::test_move_with_range", "tests/_core/test_plot.py::TestPlotting::test_on_axes", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_figure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[False]", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestPlotting::test_labels_axis", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[list]", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[Index]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[x]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[y]", "tests/_core/test_plot.py::TestPairInterface::test_non_cross", "tests/_core/test_plot.py::TestPairInterface::test_list_of_vectors", "tests/_core/test_plot.py::TestPairInterface::test_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_x_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_y_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_computed_coordinate_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_limits", "tests/_core/test_plot.py::TestPairInterface::test_labels", "tests/_core/test_plot.py::TestLabelVisibility::test_single_subplot", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws1-pair_kws1]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row[facet_kws1-pair_kws1]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped_non_cross", "tests/_core/test_plot.py::TestLegend::test_single_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_different_artists", "tests/_core/test_plot.py::TestLegend::test_three_layers", "tests/_core/test_plot.py::TestLegend::test_identity_scale_ignored", "tests/_core/test_plot.py::TestLegend::test_suppression_in_add_method", "tests/_core/test_plot.py::TestLegend::test_anonymous_title", "tests/_core/test_plot.py::TestLegend::test_legendless_mark", "tests/_core/test_plot.py::TestLegend::test_legend_has_no_offset", "tests/_core/test_plot.py::TestLegend::test_layer_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_with_scale_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_title", "tests/_core/test_scales.py::TestContinuous::test_coordinate_defaults", "tests/_core/test_scales.py::TestContinuous::test_coordinate_transform", "tests/_core/test_scales.py::TestContinuous::test_coordinate_transform_with_parameter", "tests/_core/test_scales.py::TestContinuous::test_coordinate_transform_error", "tests/_core/test_scales.py::TestContinuous::test_interval_defaults", "tests/_core/test_scales.py::TestContinuous::test_interval_with_range", "tests/_core/test_scales.py::TestContinuous::test_interval_with_norm", "tests/_core/test_scales.py::TestContinuous::test_interval_with_range_norm_and_transform", "tests/_core/test_scales.py::TestContinuous::test_interval_with_bools", "tests/_core/test_scales.py::TestContinuous::test_color_defaults", "tests/_core/test_scales.py::TestContinuous::test_color_named_values", "tests/_core/test_scales.py::TestContinuous::test_color_tuple_values", "tests/_core/test_scales.py::TestContinuous::test_color_callable_values", "tests/_core/test_scales.py::TestContinuous::test_color_with_norm", "tests/_core/test_scales.py::TestContinuous::test_color_with_transform", "tests/_core/test_scales.py::TestContinuous::test_tick_locator", "tests/_core/test_scales.py::TestContinuous::test_tick_upto", "tests/_core/test_scales.py::TestContinuous::test_tick_every", "tests/_core/test_scales.py::TestContinuous::test_tick_every_between", "tests/_core/test_scales.py::TestContinuous::test_tick_at", "tests/_core/test_scales.py::TestContinuous::test_tick_count", "tests/_core/test_scales.py::TestContinuous::test_tick_count_between", "tests/_core/test_scales.py::TestContinuous::test_tick_minor", "tests/_core/test_scales.py::TestContinuous::test_log_tick_default", "tests/_core/test_scales.py::TestContinuous::test_log_tick_upto", "tests/_core/test_scales.py::TestContinuous::test_log_tick_count", "tests/_core/test_scales.py::TestContinuous::test_log_tick_format_disabled", "tests/_core/test_scales.py::TestContinuous::test_symlog_tick_default", "tests/_core/test_scales.py::TestContinuous::test_label_formatter", "tests/_core/test_scales.py::TestContinuous::test_label_like_pattern", "tests/_core/test_scales.py::TestContinuous::test_label_like_string", "tests/_core/test_scales.py::TestContinuous::test_label_like_function", "tests/_core/test_scales.py::TestContinuous::test_label_base", "tests/_core/test_scales.py::TestContinuous::test_label_unit", "tests/_core/test_scales.py::TestContinuous::test_label_unit_with_sep", "tests/_core/test_scales.py::TestContinuous::test_label_empty_unit", "tests/_core/test_scales.py::TestContinuous::test_label_base_from_transform", "tests/_core/test_scales.py::TestContinuous::test_label_type_checks", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_marks/test_area.py::TestArea::test_single_defaults", "tests/_marks/test_area.py::TestArea::test_set_properties", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_area.py::TestArea::test_unfilled", "tests/_marks/test_area.py::TestBand::test_range", "tests/_marks/test_area.py::TestBand::test_auto_range", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_bar.py::TestBars::test_positions", "tests/_marks/test_bar.py::TestBars::test_positions_horizontal", "tests/_marks/test_bar.py::TestBars::test_width", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_marks/test_bar.py::TestBars::test_mapped_edgewidth", "tests/_marks/test_bar.py::TestBars::test_auto_edgewidth", "tests/_marks/test_bar.py::TestBars::test_unfilled", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_marks/test_line.py::TestPath::test_shared_colors_direct", "tests/_marks/test_line.py::TestPath::test_separate_colors_direct", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_line.py::TestPath::test_color_with_alpha", "tests/_marks/test_line.py::TestPath::test_color_and_alpha", "tests/_marks/test_line.py::TestPath::test_other_props_direct", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_set_properties", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_marks/test_line.py::TestPaths::test_color_with_alpha", "tests/_marks/test_line.py::TestPaths::test_color_and_alpha", "tests/_marks/test_line.py::TestPaths::test_capstyle", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_marks/test_line.py::TestLines::test_single_orient_value", "tests/_marks/test_line.py::TestRange::test_xy_data", "tests/_marks/test_line.py::TestRange::test_auto_range", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_marks/test_line.py::TestRange::test_direct_properties", "tests/_marks/test_line.py::TestDash::test_xy_data", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_marks/test_line.py::TestDash::test_set_properties", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_marks/test_line.py::TestDash::test_width", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-1
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 0d0e710f..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -527,6 +527,52 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.add.rst\n \n \"\"\"\n+ if not isinstance(mark, Mark):\n+ msg = f\"mark must be a Mark instance, not {type(mark)!r}.\"\n+ raise TypeError(msg)\n+\n+ # TODO This API for transforms was a late decision, and previously Plot.add\n+ # accepted 0 or 1 Stat instances and 0, 1, or a list of Move instances.\n+ # It will take some work to refactor the internals so that Stat and Move are\n+ # treated identically, and until then well need to \"unpack\" the transforms\n+ # here and enforce limitations on the order / types.\n+\n+ stat: Optional[Stat]\n+ move: Optional[List[Move]]\n+ error = False\n+ if not transforms:\n+ stat, move = None, None\n+ elif isinstance(transforms[0], Stat):\n+ stat = transforms[0]\n+ move = [m for m in transforms[1:] if isinstance(m, Move)]\n+ error = len(move) != len(transforms) - 1\n+ else:\n+ stat = None\n+ move = [m for m in transforms if isinstance(m, Move)]\n+ error = len(move) != len(transforms)\n+\n+ if error:\n+ msg = \" \".join([\n+ \"Transforms must have at most one Stat type (in the first position),\",\n+ \"and all others must be a Move type. Given transform type(s):\",\n+ \", \".join(str(type(t).__name__) for t in transforms) + \".\"\n+ ])\n+ raise TypeError(msg)\n+\n+ new = self._clone()\n+ new._layers.append({\n+ \"mark\": mark,\n+ \"stat\": stat,\n+ \"move\": move,\n+ # TODO it doesn't work to supply scalars to variables, but it should\n+ \"vars\": variables,\n+ \"source\": data,\n+ \"legend\": legend,\n+ \"label\": label,\n+ \"orient\": {\"v\": \"x\", \"h\": \"y\"}.get(orient, orient), # type: ignore\n+ })\n+\n+ return new\n \n def pair(\n self,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..0d0e710f 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -527,52 +527,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.add.rst\n \n \"\"\"\n- if not isinstance(mark, Mark):\n- msg = f\"mark must be a Mark instance, not {type(mark)!r}.\"\n- raise TypeError(msg)\n-\n- # TODO This API for transforms was a late decision, and previously Plot.add\n- # accepted 0 or 1 Stat instances and 0, 1, or a list of Move instances.\n- # It will take some work to refactor the internals so that Stat and Move are\n- # treated identically, and until then well need to \"unpack\" the transforms\n- # here and enforce limitations on the order / types.\n-\n- stat: Optional[Stat]\n- move: Optional[List[Move]]\n- error = False\n- if not transforms:\n- stat, move = None, None\n- elif isinstance(transforms[0], Stat):\n- stat = transforms[0]\n- move = [m for m in transforms[1:] if isinstance(m, Move)]\n- error = len(move) != len(transforms) - 1\n- else:\n- stat = None\n- move = [m for m in transforms if isinstance(m, Move)]\n- error = len(move) != len(transforms)\n-\n- if error:\n- msg = \" \".join([\n- \"Transforms must have at most one Stat type (in the first position),\",\n- \"and all others must be a Move type. Given transform type(s):\",\n- \", \".join(str(type(t).__name__) for t in transforms) + \".\"\n- ])\n- raise TypeError(msg)\n-\n- new = self._clone()\n- new._layers.append({\n- \"mark\": mark,\n- \"stat\": stat,\n- \"move\": move,\n- # TODO it doesn't work to supply scalars to variables, but it should\n- \"vars\": variables,\n- \"source\": data,\n- \"legend\": legend,\n- \"label\": label,\n- \"orient\": {\"v\": \"x\", \"h\": \"y\"}.get(orient, orient), # type: ignore\n- })\n-\n- return new\n \n def pair(\n self,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def add(\n self,\n mark: Mark,\n *transforms: Stat | Move,\n orient: str | None = None,\n legend: bool = True,\n label: str | None = None,\n data: DataSource = None,\n **variables: VariableSpec,\n ) -> Plot:\n \"\"\"\n Specify a layer of the visualization in terms of mark and data transform(s).\n\n This is the main method for specifying how the data should be visualized.\n It can be called multiple times with different arguments to define\n a plot with multiple layers.\n\n Parameters\n ----------\n mark : :class:`Mark`\n The visual representation of the data to use in this layer.\n transforms : :class:`Stat` or :class:`Move`\n Objects representing transforms to be applied before plotting the data.\n Currently, at most one :class:`Stat` can be used, and it\n must be passed first. This constraint will be relaxed in the future.\n orient : \"x\", \"y\", \"v\", or \"h\"\n The orientation of the mark, which also affects how transforms are computed.\n Typically corresponds to the axis that defines groups for aggregation.\n The \"v\" (vertical) and \"h\" (horizontal) options are synonyms for \"x\" / \"y\",\n but may be more intuitive with some marks. When not provided, an\n orientation will be inferred from characteristics of the data and scales.\n legend : bool\n Option to suppress the mark/mappings for this layer from the legend.\n label : str\n A label to use for the layer in the legend, independent of any mappings.\n data : DataFrame or dict\n Data source to override the global source provided in the constructor.\n variables : data vectors or identifiers\n Additional layer-specific variables, including variables that will be\n passed directly to the transforms without scaling.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.add.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_without_data", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_name", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_vector", "tests/_core/test_plot.py::TestLayerAddition::test_with_late_data_definition", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_data_definition", "tests/_core/test_plot.py::TestLayerAddition::test_drop_variable", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestLayerAddition::test_stat_nondefault", "tests/_core/test_plot.py::TestLayerAddition::test_orient[x-x]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[y-y]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[v-x]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[h-y]", "tests/_core/test_plot.py::TestLayerAddition::test_variable_list", "tests/_core/test_plot.py::TestLayerAddition::test_type_checks", "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_core/test_plot.py::TestScaling::test_inference_from_layer_data", "tests/_core/test_plot.py::TestScaling::test_inference_joins", "tests/_core/test_plot.py::TestScaling::test_inferred_categorical_converter", "tests/_core/test_plot.py::TestScaling::test_explicit_categorical_converter", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transform_is_inverted", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_categorical", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_datetime", "tests/_core/test_plot.py::TestScaling::test_computed_var_ticks", "tests/_core/test_plot.py::TestScaling::test_computed_var_transform", "tests/_core/test_plot.py::TestScaling::test_explicit_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_derived_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_facet_categories", "tests/_core/test_plot.py::TestScaling::test_facet_categories_unshared", "tests/_core/test_plot.py::TestScaling::test_facet_categories_single_dim_shared", "tests/_core/test_plot.py::TestScaling::test_pair_categories", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_linewidth", "tests/_core/test_plot.py::TestScaling::test_pair_single_coordinate_stat_orient", "tests/_core/test_plot.py::TestScaling::test_inferred_nominal_passed_to_stat", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_tuples", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_plot.py::TestPlotting::test_empty", "tests/_core/test_plot.py::TestPlotting::test_no_orient_variance", "tests/_core/test_plot.py::TestPlotting::test_single_split_single_layer", "tests/_core/test_plot.py::TestPlotting::test_single_split_multi_layer", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[color]", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[group]", "tests/_core/test_plot.py::TestPlotting::test_two_grouping_variables", "tests/_core/test_plot.py::TestPlotting::test_specified_width", "tests/_core/test_plot.py::TestPlotting::test_facets_no_subgroups", "tests/_core/test_plot.py::TestPlotting::test_facets_one_subgroup", "tests/_core/test_plot.py::TestPlotting::test_layer_specific_facet_disabling", "tests/_core/test_plot.py::TestPlotting::test_paired_variables", "tests/_core/test_plot.py::TestPlotting::test_paired_one_dimension", "tests/_core/test_plot.py::TestPlotting::test_paired_variables_one_subset", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_stat", "tests/_core/test_plot.py::TestPlotting::test_move", "tests/_core/test_plot.py::TestPlotting::test_stat_and_move", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_log_scale", "tests/_core/test_plot.py::TestPlotting::test_multi_move", "tests/_core/test_plot.py::TestPlotting::test_multi_move_with_pairing", "tests/_core/test_plot.py::TestPlotting::test_move_with_range", "tests/_core/test_plot.py::TestPlotting::test_methods_clone", "tests/_core/test_plot.py::TestPlotting::test_on_axes", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_figure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[False]", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_from_layer", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_are_first_name", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/_core/test_plot.py::TestExceptions::test_scale_setup", "tests/_core/test_plot.py::TestExceptions::test_coordinate_scaling", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_computed_coordinate_orient_inference", "tests/_core/test_plot.py::TestLegend::test_single_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_different_artists", "tests/_core/test_plot.py::TestLegend::test_three_layers", "tests/_core/test_plot.py::TestLegend::test_identity_scale_ignored", "tests/_core/test_plot.py::TestLegend::test_suppression_in_add_method", "tests/_core/test_plot.py::TestLegend::test_anonymous_title", "tests/_core/test_plot.py::TestLegend::test_legendless_mark", "tests/_core/test_plot.py::TestLegend::test_legend_has_no_offset", "tests/_core/test_plot.py::TestLegend::test_layer_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_with_scale_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_title", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_marks/test_area.py::TestArea::test_single_defaults", "tests/_marks/test_area.py::TestArea::test_set_properties", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_area.py::TestArea::test_unfilled", "tests/_marks/test_area.py::TestBand::test_range", "tests/_marks/test_area.py::TestBand::test_auto_range", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_bar.py::TestBars::test_positions", "tests/_marks/test_bar.py::TestBars::test_positions_horizontal", "tests/_marks/test_bar.py::TestBars::test_width", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_marks/test_bar.py::TestBars::test_mapped_edgewidth", "tests/_marks/test_bar.py::TestBars::test_auto_edgewidth", "tests/_marks/test_bar.py::TestBars::test_unfilled", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_marks/test_line.py::TestPath::test_shared_colors_direct", "tests/_marks/test_line.py::TestPath::test_separate_colors_direct", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_line.py::TestPath::test_color_with_alpha", "tests/_marks/test_line.py::TestPath::test_color_and_alpha", "tests/_marks/test_line.py::TestPath::test_other_props_direct", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_set_properties", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_marks/test_line.py::TestPaths::test_color_with_alpha", "tests/_marks/test_line.py::TestPaths::test_color_and_alpha", "tests/_marks/test_line.py::TestPaths::test_capstyle", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_marks/test_line.py::TestLines::test_single_orient_value", "tests/_marks/test_line.py::TestRange::test_xy_data", "tests/_marks/test_line.py::TestRange::test_auto_range", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_marks/test_line.py::TestRange::test_direct_properties", "tests/_marks/test_line.py::TestDash::test_xy_data", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_marks/test_line.py::TestDash::test_set_properties", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_marks/test_line.py::TestDash::test_width", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-2
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 653dd79c..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -663,6 +663,40 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.facet.rst\n \n \"\"\"\n+ variables: dict[str, VariableSpec] = {}\n+ if col is not None:\n+ variables[\"col\"] = col\n+ if row is not None:\n+ variables[\"row\"] = row\n+\n+ structure = {}\n+ if isinstance(order, dict):\n+ for dim in [\"col\", \"row\"]:\n+ dim_order = order.get(dim)\n+ if dim_order is not None:\n+ structure[dim] = list(dim_order)\n+ elif order is not None:\n+ if col is not None and row is not None:\n+ err = \" \".join([\n+ \"When faceting on both col= and row=, passing `order` as a list\"\n+ \"is ambiguous. Use a dict with 'col' and/or 'row' keys instead.\"\n+ ])\n+ raise RuntimeError(err)\n+ elif col is not None:\n+ structure[\"col\"] = list(order)\n+ elif row is not None:\n+ structure[\"row\"] = list(order)\n+\n+ spec: FacetSpec = {\n+ \"variables\": variables,\n+ \"structure\": structure,\n+ \"wrap\": wrap,\n+ }\n+\n+ new = self._clone()\n+ new._facet_spec.update(spec)\n+\n+ return new\n \n # TODO def twin()?\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..653dd79c 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -663,40 +663,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.facet.rst\n \n \"\"\"\n- variables: dict[str, VariableSpec] = {}\n- if col is not None:\n- variables[\"col\"] = col\n- if row is not None:\n- variables[\"row\"] = row\n-\n- structure = {}\n- if isinstance(order, dict):\n- for dim in [\"col\", \"row\"]:\n- dim_order = order.get(dim)\n- if dim_order is not None:\n- structure[dim] = list(dim_order)\n- elif order is not None:\n- if col is not None and row is not None:\n- err = \" \".join([\n- \"When faceting on both col= and row=, passing `order` as a list\"\n- \"is ambiguous. Use a dict with 'col' and/or 'row' keys instead.\"\n- ])\n- raise RuntimeError(err)\n- elif col is not None:\n- structure[\"col\"] = list(order)\n- elif row is not None:\n- structure[\"row\"] = list(order)\n-\n- spec: FacetSpec = {\n- \"variables\": variables,\n- \"structure\": structure,\n- \"wrap\": wrap,\n- }\n-\n- new = self._clone()\n- new._facet_spec.update(spec)\n-\n- return new\n \n # TODO def twin()?\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def facet(\n self,\n col: VariableSpec = None,\n row: VariableSpec = None,\n order: OrderSpec | dict[str, OrderSpec] = None,\n wrap: int | None = None,\n ) -> Plot:\n \"\"\"\n Produce subplots with conditional subsets of the data.\n\n Parameters\n ----------\n col, row : data vectors or identifiers\n Variables used to define subsets along the columns and/or rows of the grid.\n Can be references to the global data source passed in the constructor.\n order : list of strings, or dict with dimensional keys\n Define the order of the faceting variables.\n wrap : int\n When using only `col` or `row`, wrap subplots across a two-dimensional\n grid with this many subplots on the faceting dimension.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.facet.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_faceted_log_scale", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_facet_categories", "tests/_core/test_plot.py::TestScaling::test_facet_categories_unshared", "tests/_core/test_plot.py::TestScaling::test_facet_categories_single_dim_shared", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_plot.py::TestPlotting::test_facets_no_subgroups", "tests/_core/test_plot.py::TestPlotting::test_facets_one_subgroup", "tests/_core/test_plot.py::TestPlotting::test_layer_specific_facet_disabling", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_methods_clone", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_axes_with_subplots_error", "tests/_core/test_plot.py::TestPlotting::test_labels_facets", "tests/_core/test_plot.py::TestPlotting::test_title_facet_function", "tests/_core/test_plot.py::TestFacetInterface::test_1d[row]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_as_vector[row]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_1d[col]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_as_vector[col]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-subset]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-subset]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[subset]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-expand]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-expand]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[expand]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_2d", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[tight]", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[constrained]", "tests/_core/test_plot.py::TestFacetInterface::test_axis_sharing", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestFacetInterface::test_col_wrapping", "tests/_core/test_plot.py::TestFacetInterface::test_row_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_two_variables_single_order_error", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row_wrapped", "tests/_core/test_plot.py::TestLabelVisibility::test_2d", "tests/_core/test_plot.py::TestLabelVisibility::test_2d_unshared", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-3
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 72f8eca6..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -461,6 +461,25 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.on.rst\n \n \"\"\"\n+ accepted_types: tuple # Allow tuple of various length\n+ accepted_types = (\n+ mpl.axes.Axes, mpl.figure.SubFigure, mpl.figure.Figure\n+ )\n+ accepted_types_str = (\n+ f\"{mpl.axes.Axes}, {mpl.figure.SubFigure}, or {mpl.figure.Figure}\"\n+ )\n+\n+ if not isinstance(target, accepted_types):\n+ err = (\n+ f\"The `Plot.on` target must be an instance of {accepted_types_str}. \"\n+ f\"You passed an instance of {target.__class__} instead.\"\n+ )\n+ raise TypeError(err)\n+\n+ new = self._clone()\n+ new._target = target\n+\n+ return new\n \n def add(\n self,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..72f8eca6 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -461,25 +461,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.on.rst\n \n \"\"\"\n- accepted_types: tuple # Allow tuple of various length\n- accepted_types = (\n- mpl.axes.Axes, mpl.figure.SubFigure, mpl.figure.Figure\n- )\n- accepted_types_str = (\n- f\"{mpl.axes.Axes}, {mpl.figure.SubFigure}, or {mpl.figure.Figure}\"\n- )\n-\n- if not isinstance(target, accepted_types):\n- err = (\n- f\"The `Plot.on` target must be an instance of {accepted_types_str}. \"\n- f\"You passed an instance of {target.__class__} instead.\"\n- )\n- raise TypeError(err)\n-\n- new = self._clone()\n- new._target = target\n-\n- return new\n \n def add(\n self,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def on(self, target: Axes | SubFigure | Figure) -> Plot:\n \"\"\"\n Provide existing Matplotlib figure or axes for drawing the plot.\n\n When using this method, you will also need to explicitly call a method that\n triggers compilation, such as :meth:`Plot.show` or :meth:`Plot.save`. If you\n want to postprocess using matplotlib, you'd need to call :meth:`Plot.plot`\n first to compile the plot without rendering it.\n\n Parameters\n ----------\n target : Axes, SubFigure, or Figure\n Matplotlib object to use. Passing :class:`matplotlib.axes.Axes` will add\n artists without otherwise modifying the figure. Otherwise, subplots will be\n created within the space of the given :class:`matplotlib.figure.Figure` or\n :class:`matplotlib.figure.SubFigure`.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.on.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_plot.py::TestPlotting::test_on_axes", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_figure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_type_check", "tests/_core/test_plot.py::TestPlotting::test_on_axes_with_subplots_error", "tests/_core/test_plot.py::TestPlotting::test_on_layout_algo_default", "tests/_core/test_plot.py::TestPlotting::test_on_layout_algo_spec", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-4
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex c41c5ea7..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -601,6 +601,41 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.pair.rst\n \n \"\"\"\n+ # TODO Add transpose= arg, which would then draw pair(y=[...]) across rows\n+ # This may also be possible by setting `wrap=1`, but is that too unobvious?\n+ # TODO PairGrid features not currently implemented: diagonals, corner\n+\n+ pair_spec: PairSpec = {}\n+\n+ axes = {\"x\": [] if x is None else x, \"y\": [] if y is None else y}\n+ for axis, arg in axes.items():\n+ if isinstance(arg, (str, int)):\n+ err = f\"You must pass a sequence of variable keys to `{axis}`\"\n+ raise TypeError(err)\n+\n+ pair_spec[\"variables\"] = {}\n+ pair_spec[\"structure\"] = {}\n+\n+ for axis in \"xy\":\n+ keys = []\n+ for i, col in enumerate(axes[axis]):\n+ key = f\"{axis}{i}\"\n+ keys.append(key)\n+ pair_spec[\"variables\"][key] = col\n+\n+ if keys:\n+ pair_spec[\"structure\"][axis] = keys\n+\n+ if not cross and len(axes[\"x\"]) != len(axes[\"y\"]):\n+ err = \"Lengths of the `x` and `y` lists must match with cross=False\"\n+ raise ValueError(err)\n+\n+ pair_spec[\"cross\"] = cross\n+ pair_spec[\"wrap\"] = wrap\n+\n+ new = self._clone()\n+ new._pair_spec.update(pair_spec)\n+ return new\n \n def facet(\n self,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..c41c5ea7 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -601,41 +601,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.pair.rst\n \n \"\"\"\n- # TODO Add transpose= arg, which would then draw pair(y=[...]) across rows\n- # This may also be possible by setting `wrap=1`, but is that too unobvious?\n- # TODO PairGrid features not currently implemented: diagonals, corner\n-\n- pair_spec: PairSpec = {}\n-\n- axes = {\"x\": [] if x is None else x, \"y\": [] if y is None else y}\n- for axis, arg in axes.items():\n- if isinstance(arg, (str, int)):\n- err = f\"You must pass a sequence of variable keys to `{axis}`\"\n- raise TypeError(err)\n-\n- pair_spec[\"variables\"] = {}\n- pair_spec[\"structure\"] = {}\n-\n- for axis in \"xy\":\n- keys = []\n- for i, col in enumerate(axes[axis]):\n- key = f\"{axis}{i}\"\n- keys.append(key)\n- pair_spec[\"variables\"][key] = col\n-\n- if keys:\n- pair_spec[\"structure\"][axis] = keys\n-\n- if not cross and len(axes[\"x\"]) != len(axes[\"y\"]):\n- err = \"Lengths of the `x` and `y` lists must match with cross=False\"\n- raise ValueError(err)\n-\n- pair_spec[\"cross\"] = cross\n- pair_spec[\"wrap\"] = wrap\n-\n- new = self._clone()\n- new._pair_spec.update(pair_spec)\n- return new\n \n def facet(\n self,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def pair(\n self,\n x: VariableSpecList = None,\n y: VariableSpecList = None,\n wrap: int | None = None,\n cross: bool = True,\n ) -> Plot:\n \"\"\"\n Produce subplots by pairing multiple `x` and/or `y` variables.\n\n Parameters\n ----------\n x, y : sequence(s) of data vectors or identifiers\n Variables that will define the grid of subplots.\n wrap : int\n When using only `x` or `y`, \"wrap\" subplots across a two-dimensional grid\n with this many columns (when using `x`) or rows (when using `y`).\n cross : bool\n When False, zip the `x` and `y` lists such that the first subplot gets the\n first pair, the second gets the second pair, etc. Otherwise, create a\n two-dimensional grid from the cartesian product of the lists.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.pair.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestLayerAddition::test_variable_list", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_paired_single_log_scale", "tests/_core/test_plot.py::TestScaling::test_paired_with_common_fallback", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_pair_categories", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestScaling::test_pair_single_coordinate_stat_orient", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_plot.py::TestPlotting::test_paired_variables", "tests/_core/test_plot.py::TestPlotting::test_paired_one_dimension", "tests/_core/test_plot.py::TestPlotting::test_paired_variables_one_subset", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_multi_move_with_pairing", "tests/_core/test_plot.py::TestPlotting::test_on_axes_with_subplots_error", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[list]", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[Index]", "tests/_core/test_plot.py::TestPairInterface::test_single_variable_key_raises", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[x]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[y]", "tests/_core/test_plot.py::TestPairInterface::test_non_cross", "tests/_core/test_plot.py::TestPairInterface::test_list_of_vectors", "tests/_core/test_plot.py::TestPairInterface::test_with_no_variables", "tests/_core/test_plot.py::TestPairInterface::test_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_x_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_y_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_cross_mismatched_lengths", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_limits", "tests/_core/test_plot.py::TestPairInterface::test_labels", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped_non_cross", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-5
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex 1678bd1b..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1046,6 +1046,123 @@ class VectorPlotter:\n arguments for the x and y axes.\n \n \"\"\"\n+ from .axisgrid import FacetGrid\n+ if isinstance(obj, FacetGrid):\n+ self.ax = None\n+ self.facets = obj\n+ ax_list = obj.axes.flatten()\n+ if obj.col_names is not None:\n+ self.var_levels[\"col\"] = obj.col_names\n+ if obj.row_names is not None:\n+ self.var_levels[\"row\"] = obj.row_names\n+ else:\n+ self.ax = obj\n+ self.facets = None\n+ ax_list = [obj]\n+\n+ # Identify which \"axis\" variables we have defined\n+ axis_variables = set(\"xy\").intersection(self.variables)\n+\n+ # -- Verify the types of our x and y variables here.\n+ # This doesn't really make complete sense being here here, but it's a fine\n+ # place for it, given the current system.\n+ # (Note that for some plots, there might be more complicated restrictions)\n+ # e.g. the categorical plots have their own check that as specific to the\n+ # non-categorical axis.\n+ if allowed_types is None:\n+ allowed_types = [\"numeric\", \"datetime\", \"categorical\"]\n+ elif isinstance(allowed_types, str):\n+ allowed_types = [allowed_types]\n+\n+ for var in axis_variables:\n+ var_type = self.var_types[var]\n+ if var_type not in allowed_types:\n+ err = (\n+ f\"The {var} variable is {var_type}, but one of \"\n+ f\"{allowed_types} is required\"\n+ )\n+ raise TypeError(err)\n+\n+ # -- Get axis objects for each row in plot_data for type conversions and scaling\n+\n+ facet_dim = {\"x\": \"col\", \"y\": \"row\"}\n+\n+ self.converters = {}\n+ for var in axis_variables:\n+ other_var = {\"x\": \"y\", \"y\": \"x\"}[var]\n+\n+ converter = pd.Series(index=self.plot_data.index, name=var, dtype=object)\n+ share_state = getattr(self.facets, f\"_share{var}\", True)\n+\n+ # Simplest cases are that we have a single axes, all axes are shared,\n+ # or sharing is only on the orthogonal facet dimension. In these cases,\n+ # all datapoints get converted the same way, so use the first axis\n+ if share_state is True or share_state == facet_dim[other_var]:\n+ converter.loc[:] = getattr(ax_list[0], f\"{var}axis\")\n+\n+ else:\n+\n+ # Next simplest case is when no axes are shared, and we can\n+ # use the axis objects within each facet\n+ if share_state is False:\n+ for axes_vars, axes_data in self.iter_data():\n+ ax = self._get_axes(axes_vars)\n+ converter.loc[axes_data.index] = getattr(ax, f\"{var}axis\")\n+\n+ # In the more complicated case, the axes are shared within each\n+ # \"file\" of the facetgrid. In that case, we need to subset the data\n+ # for that file and assign it the first axis in the slice of the grid\n+ else:\n+\n+ names = getattr(self.facets, f\"{share_state}_names\")\n+ for i, level in enumerate(names):\n+ idx = (i, 0) if share_state == \"row\" else (0, i)\n+ axis = getattr(self.facets.axes[idx], f\"{var}axis\")\n+ converter.loc[self.plot_data[share_state] == level] = axis\n+\n+ # Store the converter vector, which we use elsewhere (e.g comp_data)\n+ self.converters[var] = converter\n+\n+ # Now actually update the matplotlib objects to do the conversion we want\n+ grouped = self.plot_data[var].groupby(self.converters[var], sort=False)\n+ for converter, seed_data in grouped:\n+ if self.var_types[var] == \"categorical\":\n+ if self._var_ordered[var]:\n+ order = self.var_levels[var]\n+ else:\n+ order = None\n+ seed_data = categorical_order(seed_data, order)\n+ converter.update_units(seed_data)\n+\n+ # -- Set numerical axis scales\n+\n+ # First unpack the log_scale argument\n+ if log_scale is None:\n+ scalex = scaley = False\n+ else:\n+ # Allow single value or x, y tuple\n+ try:\n+ scalex, scaley = log_scale\n+ except TypeError:\n+ scalex = log_scale if self.var_types.get(\"x\") == \"numeric\" else False\n+ scaley = log_scale if self.var_types.get(\"y\") == \"numeric\" else False\n+\n+ # Now use it\n+ for axis, scale in zip(\"xy\", (scalex, scaley)):\n+ if scale:\n+ for ax in ax_list:\n+ set_scale = getattr(ax, f\"set_{axis}scale\")\n+ if scale is True:\n+ set_scale(\"log\", nonpositive=\"mask\")\n+ else:\n+ set_scale(\"log\", base=scale, nonpositive=\"mask\")\n+\n+ # For categorical y, we want the \"first\" level to be at the top of the axis\n+ if self.var_types.get(\"y\", None) == \"categorical\":\n+ for ax in ax_list:\n+ ax.yaxis.set_inverted(True)\n+\n+ # TODO -- Add axes labels\n \n def _get_scale_transforms(self, axis):\n \"\"\"Return a function implementing the scale transform (or its inverse).\"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..1678bd1b 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1046,123 +1046,6 @@ class VectorPlotter:\n arguments for the x and y axes.\n \n \"\"\"\n- from .axisgrid import FacetGrid\n- if isinstance(obj, FacetGrid):\n- self.ax = None\n- self.facets = obj\n- ax_list = obj.axes.flatten()\n- if obj.col_names is not None:\n- self.var_levels[\"col\"] = obj.col_names\n- if obj.row_names is not None:\n- self.var_levels[\"row\"] = obj.row_names\n- else:\n- self.ax = obj\n- self.facets = None\n- ax_list = [obj]\n-\n- # Identify which \"axis\" variables we have defined\n- axis_variables = set(\"xy\").intersection(self.variables)\n-\n- # -- Verify the types of our x and y variables here.\n- # This doesn't really make complete sense being here here, but it's a fine\n- # place for it, given the current system.\n- # (Note that for some plots, there might be more complicated restrictions)\n- # e.g. the categorical plots have their own check that as specific to the\n- # non-categorical axis.\n- if allowed_types is None:\n- allowed_types = [\"numeric\", \"datetime\", \"categorical\"]\n- elif isinstance(allowed_types, str):\n- allowed_types = [allowed_types]\n-\n- for var in axis_variables:\n- var_type = self.var_types[var]\n- if var_type not in allowed_types:\n- err = (\n- f\"The {var} variable is {var_type}, but one of \"\n- f\"{allowed_types} is required\"\n- )\n- raise TypeError(err)\n-\n- # -- Get axis objects for each row in plot_data for type conversions and scaling\n-\n- facet_dim = {\"x\": \"col\", \"y\": \"row\"}\n-\n- self.converters = {}\n- for var in axis_variables:\n- other_var = {\"x\": \"y\", \"y\": \"x\"}[var]\n-\n- converter = pd.Series(index=self.plot_data.index, name=var, dtype=object)\n- share_state = getattr(self.facets, f\"_share{var}\", True)\n-\n- # Simplest cases are that we have a single axes, all axes are shared,\n- # or sharing is only on the orthogonal facet dimension. In these cases,\n- # all datapoints get converted the same way, so use the first axis\n- if share_state is True or share_state == facet_dim[other_var]:\n- converter.loc[:] = getattr(ax_list[0], f\"{var}axis\")\n-\n- else:\n-\n- # Next simplest case is when no axes are shared, and we can\n- # use the axis objects within each facet\n- if share_state is False:\n- for axes_vars, axes_data in self.iter_data():\n- ax = self._get_axes(axes_vars)\n- converter.loc[axes_data.index] = getattr(ax, f\"{var}axis\")\n-\n- # In the more complicated case, the axes are shared within each\n- # \"file\" of the facetgrid. In that case, we need to subset the data\n- # for that file and assign it the first axis in the slice of the grid\n- else:\n-\n- names = getattr(self.facets, f\"{share_state}_names\")\n- for i, level in enumerate(names):\n- idx = (i, 0) if share_state == \"row\" else (0, i)\n- axis = getattr(self.facets.axes[idx], f\"{var}axis\")\n- converter.loc[self.plot_data[share_state] == level] = axis\n-\n- # Store the converter vector, which we use elsewhere (e.g comp_data)\n- self.converters[var] = converter\n-\n- # Now actually update the matplotlib objects to do the conversion we want\n- grouped = self.plot_data[var].groupby(self.converters[var], sort=False)\n- for converter, seed_data in grouped:\n- if self.var_types[var] == \"categorical\":\n- if self._var_ordered[var]:\n- order = self.var_levels[var]\n- else:\n- order = None\n- seed_data = categorical_order(seed_data, order)\n- converter.update_units(seed_data)\n-\n- # -- Set numerical axis scales\n-\n- # First unpack the log_scale argument\n- if log_scale is None:\n- scalex = scaley = False\n- else:\n- # Allow single value or x, y tuple\n- try:\n- scalex, scaley = log_scale\n- except TypeError:\n- scalex = log_scale if self.var_types.get(\"x\") == \"numeric\" else False\n- scaley = log_scale if self.var_types.get(\"y\") == \"numeric\" else False\n-\n- # Now use it\n- for axis, scale in zip(\"xy\", (scalex, scaley)):\n- if scale:\n- for ax in ax_list:\n- set_scale = getattr(ax, f\"set_{axis}scale\")\n- if scale is True:\n- set_scale(\"log\", nonpositive=\"mask\")\n- else:\n- set_scale(\"log\", base=scale, nonpositive=\"mask\")\n-\n- # For categorical y, we want the \"first\" level to be at the top of the axis\n- if self.var_types.get(\"y\", None) == \"categorical\":\n- for ax in ax_list:\n- ax.yaxis.set_inverted(True)\n-\n- # TODO -- Add axes labels\n \n def _get_scale_transforms(self, axis):\n \"\"\"Return a function implementing the scale transform (or its inverse).\"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\n def _attach(\n self,\n obj,\n allowed_types=None,\n log_scale=None,\n ):\n \"\"\"Associate the plotter with an Axes manager and initialize its units.\n\n Parameters\n ----------\n obj : :class:`matplotlib.axes.Axes` or :class:'FacetGrid`\n Structural object that we will eventually plot onto.\n allowed_types : str or list of str\n If provided, raise when either the x or y variable does not have\n one of the declared seaborn types.\n log_scale : bool, number, or pair of bools or numbers\n If not False, set the axes to use log scaling, with the given\n base or defaulting to 10. If a tuple, interpreted as separate\n arguments for the x and y axes.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_axisgrid.py::TestPairGrid::test_corner", "tests/test_axisgrid.py::TestPairGrid::test_map_mixed_funcsig", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_axisgrid.py::TestPairGrid::test_corner_despine", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_axisgrid.py::TestJointGrid::test_refline", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables0]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables1]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables2]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables3]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables4]", "tests/test_base.py::TestVectorPlotter::test_attach_disallowed", "tests/test_base.py::TestVectorPlotter::test_attach_log_scale", "tests/test_base.py::TestVectorPlotter::test_attach_converters", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_log", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_base.py::TestVectorPlotter::test_get_axes_single", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_base.py::TestVectorPlotter::test_comp_data", "tests/test_base.py::TestVectorPlotter::test_comp_data_log", "tests/test_base.py::TestVectorPlotter::test_comp_data_category_order", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture0]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture1]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture2]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture3]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture4]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture5]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture6]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture7]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture8]", "tests/test_base.py::TestVectorPlotter::test_comp_data_duplicate_index", "tests/test_base.py::TestVectorPlotter::test_comp_data_nullable_dtype", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs20]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs21]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs22]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs23]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs24]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs25]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs26]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs27]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_categorical.py::TestStripPlot::test_two_calls", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestStripPlot::test_color", "tests/test_categorical.py::TestStripPlot::test_supplied_color_array", "tests/test_categorical.py::TestStripPlot::test_unfilled_marker", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_categorical.py::TestStripPlot::test_flat[h]", "tests/test_categorical.py::TestStripPlot::test_flat[v]", "tests/test_categorical.py::TestStripPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[s]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestStripPlot::test_order[str-None]", "tests/test_categorical.py::TestStripPlot::test_order[str-order1]", "tests/test_categorical.py::TestStripPlot::test_order[str-order2]", "tests/test_categorical.py::TestStripPlot::test_order[str-order3]", "tests/test_categorical.py::TestStripPlot::test_order[int-None]", "tests/test_categorical.py::TestStripPlot::test_order[int-order5]", "tests/test_categorical.py::TestStripPlot::test_order[int-order6]", "tests/test_categorical.py::TestStripPlot::test_order[int-order7]", "tests/test_categorical.py::TestStripPlot::test_order[int-order8]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_categorical.py::TestStripPlot::test_attributes", "tests/test_categorical.py::TestStripPlot::test_three_points", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestStripPlot::test_log_scale", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestStripPlot::test_jitter_unfixed", "tests/test_categorical.py::TestStripPlot::test_jitter[v-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-0.1]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-0.1]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_categorical.py::TestSwarmPlot::test_two_calls", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestSwarmPlot::test_color", "tests/test_categorical.py::TestSwarmPlot::test_supplied_color_array", "tests/test_categorical.py::TestSwarmPlot::test_unfilled_marker", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_categorical.py::TestSwarmPlot::test_flat[h]", "tests/test_categorical.py::TestSwarmPlot::test_flat[v]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[s]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order1]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order2]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order3]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order5]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order6]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order7]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order8]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_attributes", "tests/test_categorical.py::TestSwarmPlot::test_three_points", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_color", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_fill", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_datetime_native_scale_axis", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_native_scale", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_err_kws[False]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_two_calls", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_labels_flat", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[x]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[y]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[h]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[v]", "tests/test_categorical.py::TestPointPlot::test_xy_vertical", "tests/test_categorical.py::TestPointPlot::test_xy_horizontal", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_value", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_xy_native_scale", "tests/test_categorical.py::TestPointPlot::test_estimate[mean]", "tests/test_categorical.py::TestPointPlot::test_estimate[<lambda>]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_errorbars", "tests/test_categorical.py::TestPointPlot::test_marker_linestyle", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_single", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_err_kws", "tests/test_categorical.py::TestPointPlot::test_err_kws_inherited", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestPointPlot::test_join_deprecation", "tests/test_categorical.py::TestPointPlot::test_scale_deprecation", "tests/test_categorical.py::TestPointPlot::test_layered_plot_clipping", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning", "tests/test_distributions.py::TestDistPlot::test_hist_bins", "tests/test_distributions.py::TestDistPlot::test_elements", "tests/test_distributions.py::TestDistPlot::test_distplot_with_nans", "tests/test_distributions.py::TestRugPlot::test_color", "tests/test_distributions.py::TestRugPlot::test_long_data[x]", "tests/test_distributions.py::TestRugPlot::test_long_data[y]", "tests/test_distributions.py::TestRugPlot::test_bivariate_data", "tests/test_distributions.py::TestRugPlot::test_wide_vs_long_data", "tests/test_distributions.py::TestRugPlot::test_flat_vector", "tests/test_distributions.py::TestRugPlot::test_datetime_data", "tests/test_distributions.py::TestRugPlot::test_empty_data", "tests/test_distributions.py::TestRugPlot::test_a_deprecation", "tests/test_distributions.py::TestRugPlot::test_axis_deprecation[x]", "tests/test_distributions.py::TestRugPlot::test_axis_deprecation[y]", "tests/test_distributions.py::TestRugPlot::test_vertical_deprecation", "tests/test_distributions.py::TestRugPlot::test_rug_data", "tests/test_distributions.py::TestRugPlot::test_rug_colors", "tests/test_distributions.py::TestRugPlot::test_expand_margins", "tests/test_distributions.py::TestRugPlot::test_multiple_rugs", "tests/test_distributions.py::TestRugPlot::test_matplotlib_kwargs", "tests/test_distributions.py::TestRugPlot::test_axis_labels", "tests/test_distributions.py::TestRugPlot::test_log_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[x]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[y]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_flat_vector", "tests/test_distributions.py::TestKDEPlotUnivariate::test_empty_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_singular_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_variable_assignment", "tests/test_distributions.py::TestKDEPlotUnivariate::test_vertical_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_kernel_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_shade_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color_cycle_interaction", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_datetime_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_multiple_argument_check", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cut", "tests/test_distributions.py::TestKDEPlotUnivariate::test_clip", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_is_density", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative_requires_scipy", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_method", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_adjust", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_implicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_normalization", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weights", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_kws", "tests/test_distributions.py::TestKDEPlotUnivariate::test_input_checking", "tests/test_distributions.py::TestKDEPlotUnivariate::test_axis_labels", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_long_vectors", "tests/test_distributions.py::TestKDEPlotBivariate::test_singular_data", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotBivariate::test_log_scale", "tests/test_distributions.py::TestKDEPlotBivariate::test_bandwidth", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_colorbar", "tests/test_distributions.py::TestKDEPlotBivariate::test_levels_and_thresh", "tests/test_distributions.py::TestKDEPlotBivariate::test_input_checking", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[bars-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[bars-False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[step-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[step-False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[poly-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[poly-False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_long_vectors[x]", "tests/test_distributions.py::TestHistPlotUnivariate::test_long_vectors[y]", "tests/test_distributions.py::TestHistPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestHistPlotUnivariate::test_flat_vector", "tests/test_distributions.py::TestHistPlotUnivariate::test_empty_data", "tests/test_distributions.py::TestHistPlotUnivariate::test_variable_assignment", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_stack", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_dodge", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_as_numpy_dodged", "tests/test_distributions.py::TestHistPlotUnivariate::test_multiple_input_check", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_input_check", "tests/test_distributions.py::TestHistPlotUnivariate::test_count_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_common_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_unique_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_percent_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_common_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_unique_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_range_with_inf", "tests/test_distributions.py::TestHistPlotUnivariate::test_weights_with_missing", "tests/test_distributions.py::TestHistPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete_categorical_default", "tests/test_distributions.py::TestHistPlotUnivariate::test_categorical_yaxis_inversion", "tests/test_distributions.py::TestHistPlotUnivariate::test_datetime_scale", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[count]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[density]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_default_cut", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_yaxis", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_line_kws", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_singular_data", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_default", "tests/test_distributions.py::TestHistPlotUnivariate::test_bars_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_poly_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_poly_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill_xy", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_no_fill_xy", "tests/test_distributions.py::TestHistPlotUnivariate::test_weighted_histogram", "tests/test_distributions.py::TestHistPlotUnivariate::test_weights_with_auto_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_shrink", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_implicit", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_dodge", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_kde", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_bar_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_line_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_label", "tests/test_distributions.py::TestHistPlotUnivariate::test_default_color_scout_cleanup", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_log_scale", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_thresh", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_sticky_edges", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_common_norm", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_unique_norm", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[probability]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[proportion]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[percent]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_colors", "tests/test_distributions.py::TestHistPlotBivariate::test_color_limits", "tests/test_distributions.py::TestHistPlotBivariate::test_hue_color_limits", "tests/test_distributions.py::TestHistPlotBivariate::test_colorbar", "tests/test_distributions.py::TestECDFPlotUnivariate::test_color", "tests/test_distributions.py::TestECDFPlotUnivariate::test_long_vectors[x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_long_vectors[y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_hue", "tests/test_distributions.py::TestECDFPlotUnivariate::test_line_kwargs", "tests/test_distributions.py::TestECDFPlotUnivariate::test_drawstyle[x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_drawstyle[y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits_complementary[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits_complementary[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_count[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_count[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_weights", "tests/test_distributions.py::TestECDFPlotUnivariate::test_bivariate_error", "tests/test_distributions.py::TestECDFPlotUnivariate::test_log_scale", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_distributions.py::TestDisPlot::test_empty", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_color", "tests/test_relational.py::TestLinePlotter::test_legend_no_semantics", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[size]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[style]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[size]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[style]", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[size]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[size]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[size]", "tests/test_relational.py::TestLinePlotter::test_weights", "tests/test_relational.py::TestLinePlotter::test_non_aggregated_data", "tests/test_relational.py::TestLinePlotter::test_orient", "tests/test_relational.py::TestLinePlotter::test_log_scale", "tests/test_relational.py::TestLinePlotter::test_matplotlib_kwargs", "tests/test_relational.py::TestLinePlotter::test_nonmapped_dashes", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_relational.py::TestLinePlotter::test_ci_deprecation", "tests/test_relational.py::TestScatterPlotter::test_color", "tests/test_relational.py::TestScatterPlotter::test_legend_no_semantics", "tests/test_relational.py::TestScatterPlotter::test_legend_hue", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_relational.py::TestScatterPlotter::test_legend_data_hue_size_same", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_list", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_dict", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_full", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_brief", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_size_full", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_size_brief", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_style", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestScatterPlotter::test_legend_value_error", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_relational.py::TestScatterPlotter::test_literal_attribute_vectors", "tests/test_relational.py::TestScatterPlotter::test_supplied_color_array", "tests/test_relational.py::TestScatterPlotter::test_hue_order", "tests/test_relational.py::TestScatterPlotter::test_linewidths", "tests/test_relational.py::TestScatterPlotter::test_size_norm_extrapolation", "tests/test_relational.py::TestScatterPlotter::test_datetime_scale", "tests/test_relational.py::TestScatterPlotter::test_unfilled_marker_edgecolor_warning", "tests/test_relational.py::TestScatterPlotter::test_short_form_kwargs", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels", "tests/test_utils.py::test_move_legend_with_labels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-6
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex 3db7c747..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -879,6 +879,91 @@ class VectorPlotter:\n Subset of ``plot_data`` for this combination of semantic values.\n \n \"\"\"\n+ # TODO should this default to using all (non x/y?) semantics?\n+ # or define grouping vars somewhere?\n+ if grouping_vars is None:\n+ grouping_vars = []\n+ elif isinstance(grouping_vars, str):\n+ grouping_vars = [grouping_vars]\n+ elif isinstance(grouping_vars, tuple):\n+ grouping_vars = list(grouping_vars)\n+\n+ # Always insert faceting variables\n+ if by_facet:\n+ facet_vars = {\"col\", \"row\"}\n+ grouping_vars.extend(\n+ facet_vars & set(self.variables) - set(grouping_vars)\n+ )\n+\n+ # Reduce to the semantics used in this plot\n+ grouping_vars = [var for var in grouping_vars if var in self.variables]\n+\n+ if from_comp_data:\n+ data = self.comp_data\n+ else:\n+ data = self.plot_data\n+\n+ if dropna:\n+ data = data.dropna()\n+\n+ levels = self.var_levels.copy()\n+ if from_comp_data:\n+ for axis in {\"x\", \"y\"} & set(grouping_vars):\n+ converter = self.converters[axis].iloc[0]\n+ if self.var_types[axis] == \"categorical\":\n+ if self._var_ordered[axis]:\n+ # If the axis is ordered, then the axes in a possible\n+ # facet grid are by definition \"shared\", or there is a\n+ # single axis with a unique cat -> idx mapping.\n+ # So we can just take the first converter object.\n+ levels[axis] = converter.convert_units(levels[axis])\n+ else:\n+ # Otherwise, the mappings may not be unique, but we can\n+ # use the unique set of index values in comp_data.\n+ levels[axis] = np.sort(data[axis].unique())\n+ else:\n+ transform = converter.get_transform().transform\n+ levels[axis] = transform(converter.convert_units(levels[axis]))\n+\n+ if grouping_vars:\n+\n+ grouped_data = data.groupby(\n+ grouping_vars, sort=False, as_index=False, observed=False,\n+ )\n+\n+ grouping_keys = []\n+ for var in grouping_vars:\n+ key = levels.get(var)\n+ grouping_keys.append([] if key is None else key)\n+\n+ iter_keys = itertools.product(*grouping_keys)\n+ if reverse:\n+ iter_keys = reversed(list(iter_keys))\n+\n+ for key in iter_keys:\n+\n+ pd_key = (\n+ key[0] if len(key) == 1 and _version_predates(pd, \"2.2.0\") else key\n+ )\n+ try:\n+ data_subset = grouped_data.get_group(pd_key)\n+ except KeyError:\n+ # XXX we are adding this to allow backwards compatibility\n+ # with the empty artists that old categorical plots would\n+ # add (before 0.12), which we may decide to break, in which\n+ # case this option could be removed\n+ data_subset = data.loc[[]]\n+\n+ if data_subset.empty and not allow_empty:\n+ continue\n+\n+ sub_vars = dict(zip(grouping_vars, key))\n+\n+ yield sub_vars, data_subset.copy()\n+\n+ else:\n+\n+ yield {}, data.copy()\n \n @property\n def comp_data(self):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..3db7c747 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -879,91 +879,6 @@ class VectorPlotter:\n Subset of ``plot_data`` for this combination of semantic values.\n \n \"\"\"\n- # TODO should this default to using all (non x/y?) semantics?\n- # or define grouping vars somewhere?\n- if grouping_vars is None:\n- grouping_vars = []\n- elif isinstance(grouping_vars, str):\n- grouping_vars = [grouping_vars]\n- elif isinstance(grouping_vars, tuple):\n- grouping_vars = list(grouping_vars)\n-\n- # Always insert faceting variables\n- if by_facet:\n- facet_vars = {\"col\", \"row\"}\n- grouping_vars.extend(\n- facet_vars & set(self.variables) - set(grouping_vars)\n- )\n-\n- # Reduce to the semantics used in this plot\n- grouping_vars = [var for var in grouping_vars if var in self.variables]\n-\n- if from_comp_data:\n- data = self.comp_data\n- else:\n- data = self.plot_data\n-\n- if dropna:\n- data = data.dropna()\n-\n- levels = self.var_levels.copy()\n- if from_comp_data:\n- for axis in {\"x\", \"y\"} & set(grouping_vars):\n- converter = self.converters[axis].iloc[0]\n- if self.var_types[axis] == \"categorical\":\n- if self._var_ordered[axis]:\n- # If the axis is ordered, then the axes in a possible\n- # facet grid are by definition \"shared\", or there is a\n- # single axis with a unique cat -> idx mapping.\n- # So we can just take the first converter object.\n- levels[axis] = converter.convert_units(levels[axis])\n- else:\n- # Otherwise, the mappings may not be unique, but we can\n- # use the unique set of index values in comp_data.\n- levels[axis] = np.sort(data[axis].unique())\n- else:\n- transform = converter.get_transform().transform\n- levels[axis] = transform(converter.convert_units(levels[axis]))\n-\n- if grouping_vars:\n-\n- grouped_data = data.groupby(\n- grouping_vars, sort=False, as_index=False, observed=False,\n- )\n-\n- grouping_keys = []\n- for var in grouping_vars:\n- key = levels.get(var)\n- grouping_keys.append([] if key is None else key)\n-\n- iter_keys = itertools.product(*grouping_keys)\n- if reverse:\n- iter_keys = reversed(list(iter_keys))\n-\n- for key in iter_keys:\n-\n- pd_key = (\n- key[0] if len(key) == 1 and _version_predates(pd, \"2.2.0\") else key\n- )\n- try:\n- data_subset = grouped_data.get_group(pd_key)\n- except KeyError:\n- # XXX we are adding this to allow backwards compatibility\n- # with the empty artists that old categorical plots would\n- # add (before 0.12), which we may decide to break, in which\n- # case this option could be removed\n- data_subset = data.loc[[]]\n-\n- if data_subset.empty and not allow_empty:\n- continue\n-\n- sub_vars = dict(zip(grouping_vars, key))\n-\n- yield sub_vars, data_subset.copy()\n-\n- else:\n-\n- yield {}, data.copy()\n \n @property\n def comp_data(self):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\n def iter_data(\n self, grouping_vars=None, *,\n reverse=False, from_comp_data=False,\n by_facet=True, allow_empty=False, dropna=True,\n ):\n \"\"\"Generator for getting subsets of data defined by semantic variables.\n\n Also injects \"col\" and \"row\" into grouping semantics.\n\n Parameters\n ----------\n grouping_vars : string or list of strings\n Semantic variables that define the subsets of data.\n reverse : bool\n If True, reverse the order of iteration.\n from_comp_data : bool\n If True, use self.comp_data rather than self.plot_data\n by_facet : bool\n If True, add faceting variables to the set of grouping variables.\n allow_empty : bool\n If True, yield an empty dataframe when no observations exist for\n combinations of grouping variables.\n dropna : bool\n If True, remove rows with missing data.\n\n Yields\n ------\n sub_vars : dict\n Keys are semantic names, values are the level of that semantic.\n sub_data : :class:`pandas.DataFrame`\n Subset of ``plot_data`` for this combination of semantic values.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_axisgrid.py::TestPairGrid::test_corner_despine", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_axisgrid.py::TestJointGrid::test_refline", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_base.py::TestVectorPlotter::test_iter_data_values", "tests/test_base.py::TestVectorPlotter::test_iter_data_reverse", "tests/test_base.py::TestVectorPlotter::test_iter_data_dropna", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs20]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs21]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs22]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs23]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs24]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs25]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs26]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs27]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_categorical.py::TestStripPlot::test_two_calls", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestStripPlot::test_color", "tests/test_categorical.py::TestStripPlot::test_supplied_color_array", "tests/test_categorical.py::TestStripPlot::test_unfilled_marker", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_categorical.py::TestStripPlot::test_flat[h]", "tests/test_categorical.py::TestStripPlot::test_flat[v]", "tests/test_categorical.py::TestStripPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[s]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestStripPlot::test_order[str-None]", "tests/test_categorical.py::TestStripPlot::test_order[str-order1]", "tests/test_categorical.py::TestStripPlot::test_order[str-order2]", "tests/test_categorical.py::TestStripPlot::test_order[str-order3]", "tests/test_categorical.py::TestStripPlot::test_order[int-None]", "tests/test_categorical.py::TestStripPlot::test_order[int-order5]", "tests/test_categorical.py::TestStripPlot::test_order[int-order6]", "tests/test_categorical.py::TestStripPlot::test_order[int-order7]", "tests/test_categorical.py::TestStripPlot::test_order[int-order8]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_categorical.py::TestStripPlot::test_attributes", "tests/test_categorical.py::TestStripPlot::test_three_points", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestStripPlot::test_log_scale", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestStripPlot::test_jitter_unfixed", "tests/test_categorical.py::TestStripPlot::test_jitter[v-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-0.1]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-0.1]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_categorical.py::TestSwarmPlot::test_two_calls", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestSwarmPlot::test_color", "tests/test_categorical.py::TestSwarmPlot::test_supplied_color_array", "tests/test_categorical.py::TestSwarmPlot::test_unfilled_marker", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_categorical.py::TestSwarmPlot::test_flat[h]", "tests/test_categorical.py::TestSwarmPlot::test_flat[v]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[s]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order1]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order2]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order3]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order5]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order6]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order7]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order8]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_attributes", "tests/test_categorical.py::TestSwarmPlot::test_three_points", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_color", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_fill", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_datetime_native_scale_axis", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_native_scale", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_err_kws[False]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_two_calls", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_labels_flat", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[x]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[y]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[h]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[v]", "tests/test_categorical.py::TestPointPlot::test_xy_vertical", "tests/test_categorical.py::TestPointPlot::test_xy_horizontal", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_value", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_xy_native_scale", "tests/test_categorical.py::TestPointPlot::test_estimate[mean]", "tests/test_categorical.py::TestPointPlot::test_estimate[<lambda>]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_errorbars", "tests/test_categorical.py::TestPointPlot::test_marker_linestyle", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_single", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_err_kws", "tests/test_categorical.py::TestPointPlot::test_err_kws_inherited", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestPointPlot::test_join_deprecation", "tests/test_categorical.py::TestPointPlot::test_scale_deprecation", "tests/test_categorical.py::TestPointPlot::test_layered_plot_clipping", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning", "tests/test_distributions.py::TestDistPlot::test_hist_bins", "tests/test_distributions.py::TestDistPlot::test_elements", "tests/test_distributions.py::TestDistPlot::test_distplot_with_nans", "tests/test_distributions.py::TestRugPlot::test_color", "tests/test_distributions.py::TestRugPlot::test_long_data[x]", "tests/test_distributions.py::TestRugPlot::test_long_data[y]", "tests/test_distributions.py::TestRugPlot::test_bivariate_data", "tests/test_distributions.py::TestRugPlot::test_wide_vs_long_data", "tests/test_distributions.py::TestRugPlot::test_flat_vector", "tests/test_distributions.py::TestRugPlot::test_datetime_data", "tests/test_distributions.py::TestRugPlot::test_a_deprecation", "tests/test_distributions.py::TestRugPlot::test_axis_deprecation[x]", "tests/test_distributions.py::TestRugPlot::test_axis_deprecation[y]", "tests/test_distributions.py::TestRugPlot::test_vertical_deprecation", "tests/test_distributions.py::TestRugPlot::test_rug_data", "tests/test_distributions.py::TestRugPlot::test_rug_colors", "tests/test_distributions.py::TestRugPlot::test_expand_margins", "tests/test_distributions.py::TestRugPlot::test_multiple_rugs", "tests/test_distributions.py::TestRugPlot::test_matplotlib_kwargs", "tests/test_distributions.py::TestRugPlot::test_axis_labels", "tests/test_distributions.py::TestRugPlot::test_log_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[x]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[y]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_flat_vector", "tests/test_distributions.py::TestKDEPlotUnivariate::test_singular_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_variable_assignment", "tests/test_distributions.py::TestKDEPlotUnivariate::test_vertical_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_kernel_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_shade_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color_cycle_interaction", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_datetime_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cut", "tests/test_distributions.py::TestKDEPlotUnivariate::test_clip", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_is_density", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_method", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_adjust", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_implicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_normalization", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weights", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_kws", "tests/test_distributions.py::TestKDEPlotUnivariate::test_axis_labels", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_long_vectors", "tests/test_distributions.py::TestKDEPlotBivariate::test_singular_data", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotBivariate::test_log_scale", "tests/test_distributions.py::TestKDEPlotBivariate::test_bandwidth", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_colorbar", "tests/test_distributions.py::TestKDEPlotBivariate::test_levels_and_thresh", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[bars-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[bars-False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[step-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[step-False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[poly-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[poly-False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_long_vectors[x]", "tests/test_distributions.py::TestHistPlotUnivariate::test_long_vectors[y]", "tests/test_distributions.py::TestHistPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestHistPlotUnivariate::test_flat_vector", "tests/test_distributions.py::TestHistPlotUnivariate::test_variable_assignment", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_stack", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_dodge", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_as_numpy_dodged", "tests/test_distributions.py::TestHistPlotUnivariate::test_count_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_common_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_unique_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_percent_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_common_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_unique_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_range_with_inf", "tests/test_distributions.py::TestHistPlotUnivariate::test_weights_with_missing", "tests/test_distributions.py::TestHistPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete_categorical_default", "tests/test_distributions.py::TestHistPlotUnivariate::test_categorical_yaxis_inversion", "tests/test_distributions.py::TestHistPlotUnivariate::test_datetime_scale", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[count]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[density]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_default_cut", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_yaxis", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_line_kws", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_singular_data", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_default", "tests/test_distributions.py::TestHistPlotUnivariate::test_bars_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_poly_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_poly_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill_xy", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_no_fill_xy", "tests/test_distributions.py::TestHistPlotUnivariate::test_weighted_histogram", "tests/test_distributions.py::TestHistPlotUnivariate::test_weights_with_auto_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_shrink", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_implicit", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_dodge", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_kde", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_bar_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_line_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_label", "tests/test_distributions.py::TestHistPlotUnivariate::test_default_color_scout_cleanup", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_log_scale", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_thresh", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_sticky_edges", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_common_norm", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_unique_norm", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[probability]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[proportion]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[percent]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_colors", "tests/test_distributions.py::TestHistPlotBivariate::test_color_limits", "tests/test_distributions.py::TestHistPlotBivariate::test_hue_color_limits", "tests/test_distributions.py::TestHistPlotBivariate::test_colorbar", "tests/test_distributions.py::TestECDFPlotUnivariate::test_color", "tests/test_distributions.py::TestECDFPlotUnivariate::test_long_vectors[x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_long_vectors[y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_hue", "tests/test_distributions.py::TestECDFPlotUnivariate::test_line_kwargs", "tests/test_distributions.py::TestECDFPlotUnivariate::test_drawstyle[x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_drawstyle[y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits_complementary[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits_complementary[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_count[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_count[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_weights", "tests/test_distributions.py::TestECDFPlotUnivariate::test_log_scale", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_relational.py::TestLinePlotter::test_color", "tests/test_relational.py::TestLinePlotter::test_legend_no_semantics", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[size]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[style]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[size]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[style]", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[size]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[size]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[size]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_relational.py::TestLinePlotter::test_weights", "tests/test_relational.py::TestLinePlotter::test_non_aggregated_data", "tests/test_relational.py::TestLinePlotter::test_orient", "tests/test_relational.py::TestLinePlotter::test_log_scale", "tests/test_relational.py::TestLinePlotter::test_axis_labels", "tests/test_relational.py::TestLinePlotter::test_matplotlib_kwargs", "tests/test_relational.py::TestLinePlotter::test_nonmapped_dashes", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_relational.py::TestLinePlotter::test_ci_deprecation", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-7
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex d039c441..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1373,6 +1373,80 @@ class VectorPlotter:\n self\n \n \"\"\"\n+ # This method both modifies the internal representation of the data\n+ # (converting it to string) and sets some attributes on self. It might be\n+ # a good idea to have a separate object attached to self that contains the\n+ # information in those attributes (i.e. whether to enforce variable order\n+ # across facets, the order to use) similar to the SemanticMapping objects\n+ # we have for semantic variables. That object could also hold the converter\n+ # objects that get used, if we can decouple those from an existing axis\n+ # (cf. https://github.com/matplotlib/matplotlib/issues/19229).\n+ # There are some interactions with faceting information that would need\n+ # to be thought through, since the converts to use depend on facets.\n+ # If we go that route, these methods could become \"borrowed\" methods similar\n+ # to what happens with the alternate semantic mapper constructors, although\n+ # that approach is kind of fussy and confusing.\n+\n+ # TODO this method could also set the grid state? Since we like to have no\n+ # grid on the categorical axis by default. Again, a case where we'll need to\n+ # store information until we use it, so best to have a way to collect the\n+ # attributes that this method sets.\n+\n+ # TODO if we are going to set visual properties of the axes with these methods,\n+ # then we could do the steps currently in CategoricalPlotter._adjust_cat_axis\n+\n+ # TODO another, and distinct idea, is to expose a cut= param here\n+\n+ _check_argument(\"axis\", [\"x\", \"y\"], axis)\n+\n+ # Categorical plots can be \"univariate\" in which case they get an anonymous\n+ # category label on the opposite axis.\n+ if axis not in self.variables:\n+ self.variables[axis] = None\n+ self.var_types[axis] = \"categorical\"\n+ self.plot_data[axis] = \"\"\n+\n+ # If the \"categorical\" variable has a numeric type, sort the rows so that\n+ # the default result from categorical_order has those values sorted after\n+ # they have been coerced to strings. The reason for this is so that later\n+ # we can get facet-wise orders that are correct.\n+ # XXX Should this also sort datetimes?\n+ # It feels more consistent, but technically will be a default change\n+ # If so, should also change categorical_order to behave that way\n+ if self.var_types[axis] == \"numeric\":\n+ self.plot_data = self.plot_data.sort_values(axis, kind=\"mergesort\")\n+\n+ # Now get a reference to the categorical data vector and remove na values\n+ cat_data = self.plot_data[axis].dropna()\n+\n+ # Get the initial categorical order, which we do before string\n+ # conversion to respect the original types of the order list.\n+ # Track whether the order is given explicitly so that we can know\n+ # whether or not to use the order constructed here downstream\n+ self._var_ordered[axis] = order is not None or cat_data.dtype.name == \"category\"\n+ order = pd.Index(categorical_order(cat_data, order), name=axis)\n+\n+ # Then convert data to strings. This is because in matplotlib,\n+ # \"categorical\" data really mean \"string\" data, so doing this artists\n+ # will be drawn on the categorical axis with a fixed scale.\n+ # TODO implement formatter here; check that it returns strings?\n+ if formatter is not None:\n+ cat_data = cat_data.map(formatter)\n+ order = order.map(formatter)\n+ else:\n+ cat_data = cat_data.astype(str)\n+ order = order.astype(str)\n+\n+ # Update the levels list with the type-converted order variable\n+ self.var_levels[axis] = order\n+\n+ # Now ensure that seaborn will use categorical rules internally\n+ self.var_types[axis] = \"categorical\"\n+\n+ # Put the string-typed categorical vector back into the plot_data structure\n+ self.plot_data[axis] = cat_data\n+\n+ return self\n \n \n class VariableType(UserString):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..d039c441 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1373,80 +1373,6 @@ class VectorPlotter:\n self\n \n \"\"\"\n- # This method both modifies the internal representation of the data\n- # (converting it to string) and sets some attributes on self. It might be\n- # a good idea to have a separate object attached to self that contains the\n- # information in those attributes (i.e. whether to enforce variable order\n- # across facets, the order to use) similar to the SemanticMapping objects\n- # we have for semantic variables. That object could also hold the converter\n- # objects that get used, if we can decouple those from an existing axis\n- # (cf. https://github.com/matplotlib/matplotlib/issues/19229).\n- # There are some interactions with faceting information that would need\n- # to be thought through, since the converts to use depend on facets.\n- # If we go that route, these methods could become \"borrowed\" methods similar\n- # to what happens with the alternate semantic mapper constructors, although\n- # that approach is kind of fussy and confusing.\n-\n- # TODO this method could also set the grid state? Since we like to have no\n- # grid on the categorical axis by default. Again, a case where we'll need to\n- # store information until we use it, so best to have a way to collect the\n- # attributes that this method sets.\n-\n- # TODO if we are going to set visual properties of the axes with these methods,\n- # then we could do the steps currently in CategoricalPlotter._adjust_cat_axis\n-\n- # TODO another, and distinct idea, is to expose a cut= param here\n-\n- _check_argument(\"axis\", [\"x\", \"y\"], axis)\n-\n- # Categorical plots can be \"univariate\" in which case they get an anonymous\n- # category label on the opposite axis.\n- if axis not in self.variables:\n- self.variables[axis] = None\n- self.var_types[axis] = \"categorical\"\n- self.plot_data[axis] = \"\"\n-\n- # If the \"categorical\" variable has a numeric type, sort the rows so that\n- # the default result from categorical_order has those values sorted after\n- # they have been coerced to strings. The reason for this is so that later\n- # we can get facet-wise orders that are correct.\n- # XXX Should this also sort datetimes?\n- # It feels more consistent, but technically will be a default change\n- # If so, should also change categorical_order to behave that way\n- if self.var_types[axis] == \"numeric\":\n- self.plot_data = self.plot_data.sort_values(axis, kind=\"mergesort\")\n-\n- # Now get a reference to the categorical data vector and remove na values\n- cat_data = self.plot_data[axis].dropna()\n-\n- # Get the initial categorical order, which we do before string\n- # conversion to respect the original types of the order list.\n- # Track whether the order is given explicitly so that we can know\n- # whether or not to use the order constructed here downstream\n- self._var_ordered[axis] = order is not None or cat_data.dtype.name == \"category\"\n- order = pd.Index(categorical_order(cat_data, order), name=axis)\n-\n- # Then convert data to strings. This is because in matplotlib,\n- # \"categorical\" data really mean \"string\" data, so doing this artists\n- # will be drawn on the categorical axis with a fixed scale.\n- # TODO implement formatter here; check that it returns strings?\n- if formatter is not None:\n- cat_data = cat_data.map(formatter)\n- order = order.map(formatter)\n- else:\n- cat_data = cat_data.astype(str)\n- order = order.astype(str)\n-\n- # Update the levels list with the type-converted order variable\n- self.var_levels[axis] = order\n-\n- # Now ensure that seaborn will use categorical rules internally\n- self.var_types[axis] = \"categorical\"\n-\n- # Put the string-typed categorical vector back into the plot_data structure\n- self.plot_data[axis] = cat_data\n-\n- return self\n \n \n class VariableType(UserString):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\n def scale_categorical(self, axis, order=None, formatter=None):\n \"\"\"\n Enforce categorical (fixed-scale) rules for the data on given axis.\n\n Parameters\n ----------\n axis : \"x\" or \"y\"\n Axis of the plot to operate on.\n order : list\n Order that unique values should appear in.\n formatter : callable\n Function mapping values to a string representation.\n\n Returns\n -------\n self\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_base.py::TestVectorPlotter::test_scale_categorical", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs20]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs21]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs22]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs23]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs24]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs25]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs26]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs27]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_categorical.py::TestStripPlot::test_two_calls", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestStripPlot::test_color", "tests/test_categorical.py::TestStripPlot::test_supplied_color_array", "tests/test_categorical.py::TestStripPlot::test_unfilled_marker", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_categorical.py::TestStripPlot::test_flat[h]", "tests/test_categorical.py::TestStripPlot::test_flat[v]", "tests/test_categorical.py::TestStripPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestStripPlot::test_order[str-None]", "tests/test_categorical.py::TestStripPlot::test_order[str-order1]", "tests/test_categorical.py::TestStripPlot::test_order[str-order2]", "tests/test_categorical.py::TestStripPlot::test_order[str-order3]", "tests/test_categorical.py::TestStripPlot::test_order[int-None]", "tests/test_categorical.py::TestStripPlot::test_order[int-order5]", "tests/test_categorical.py::TestStripPlot::test_order[int-order6]", "tests/test_categorical.py::TestStripPlot::test_order[int-order7]", "tests/test_categorical.py::TestStripPlot::test_order[int-order8]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_categorical.py::TestStripPlot::test_attributes", "tests/test_categorical.py::TestStripPlot::test_three_points", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestStripPlot::test_log_scale", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-0.1]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-0.1]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_categorical.py::TestSwarmPlot::test_two_calls", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestSwarmPlot::test_color", "tests/test_categorical.py::TestSwarmPlot::test_supplied_color_array", "tests/test_categorical.py::TestSwarmPlot::test_unfilled_marker", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_categorical.py::TestSwarmPlot::test_flat[h]", "tests/test_categorical.py::TestSwarmPlot::test_flat[v]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order1]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order2]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order3]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order5]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order6]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order7]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order8]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_attributes", "tests/test_categorical.py::TestSwarmPlot::test_three_points", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_color", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_fill", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_err_kws[False]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_two_calls", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_labels_flat", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[x]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[y]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[h]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[v]", "tests/test_categorical.py::TestPointPlot::test_xy_vertical", "tests/test_categorical.py::TestPointPlot::test_xy_horizontal", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_value", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_estimate[mean]", "tests/test_categorical.py::TestPointPlot::test_estimate[<lambda>]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_errorbars", "tests/test_categorical.py::TestPointPlot::test_marker_linestyle", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_single", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_err_kws", "tests/test_categorical.py::TestPointPlot::test_err_kws_inherited", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestPointPlot::test_join_deprecation", "tests/test_categorical.py::TestPointPlot::test_scale_deprecation", "tests/test_categorical.py::TestPointPlot::test_layered_plot_clipping", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-8
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex 7f383673..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1760,3 +1760,18 @@ def categorical_order(vector, order=None):\n Ordered list of category levels not including null values.\n \n \"\"\"\n+ if order is None:\n+ if hasattr(vector, \"categories\"):\n+ order = vector.categories\n+ else:\n+ try:\n+ order = vector.cat.categories\n+ except (TypeError, AttributeError):\n+\n+ order = pd.Series(vector).unique()\n+\n+ if variable_type(vector) == \"numeric\":\n+ order = np.sort(order)\n+\n+ order = filter(pd.notnull, order)\n+ return list(order)\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..7f383673 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1760,18 +1760,3 @@ def categorical_order(vector, order=None):\n Ordered list of category levels not including null values.\n \n \"\"\"\n- if order is None:\n- if hasattr(vector, \"categories\"):\n- order = vector.categories\n- else:\n- try:\n- order = vector.cat.categories\n- except (TypeError, AttributeError):\n-\n- order = pd.Series(vector).unique()\n-\n- if variable_type(vector) == \"numeric\":\n- order = np.sort(order)\n-\n- order = filter(pd.notnull, order)\n- return list(order)\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\ndef categorical_order(vector, order=None):\n \"\"\"Return a list of unique data values.\n\n Determine an ordered list of levels in ``values``.\n\n Parameters\n ----------\n vector : list, array, Categorical, or Series\n Vector of \"categorical\" values\n order : list-like, optional\n Desired order of category levels to override the order determined\n from the ``values`` object.\n\n Returns\n -------\n order : list\n Ordered list of category levels not including null values.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_base.py::TestHueMapping::test_plotter_default_init", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_base.py::TestHueMapping::test_plotter_customization", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/test_base.py::TestHueMapping::test_hue_map_numeric", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_base.py::TestHueMapping::test_saturation", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_utils.py::test_move_legend_with_labels", "tests/test_distributions.py::TestRugPlot::test_wide_vs_long_data", "tests/test_base.py::TestSizeMapping::test_plotter_default_init", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_base.py::TestSizeMapping::test_plotter_customization", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_base.py::TestSizeMapping::test_map_size_categorical", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_base.py::TestSizeMapping::test_array_palette_deprecation", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_base.py::TestStyleMapping::test_plotter_default_init", "tests/test_distributions.py::TestRugPlot::test_rug_colors", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_base.py::TestStyleMapping::test_plotter_customization", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_base.py::TestStyleMapping::test_map_style", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_base.py::TestVectorPlotter::test_iter_data_values", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_base.py::TestVectorPlotter::test_iter_data_reverse", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_base.py::TestVectorPlotter::test_iter_data_dropna", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_base.py::TestVectorPlotter::test_attach_log_scale", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_base.py::TestVectorPlotter::test_attach_converters", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_column_missing_categories", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_base.py::TestVectorPlotter::test_get_axes_single", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_base.py::TestVectorPlotter::test_comp_data", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs20]", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_base.py::TestVectorPlotter::test_comp_data_category_order", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs21]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture2]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs22]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture5]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture7]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs23]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture8]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_multiple_argument_check", "tests/test_base.py::TestVectorPlotter::test_var_order", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs24]", "tests/test_base.py::TestVectorPlotter::test_scale_categorical", "tests/test_base.py::TestCoreFunc::test_categorical_order", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs25]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs26]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs27]", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[style]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[style]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[size]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_redundant_hue_backcompat", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_categorical.py::TestStripPlot::test_two_calls", "tests/test_relational.py::TestLinePlotter::test_weights", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_categorical.py::TestStripPlot::test_color", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_categorical.py::TestStripPlot::test_supplied_color_array", "tests/test_axisgrid.py::TestPairGrid::test_map", "tests/test_categorical.py::TestStripPlot::test_unfilled_marker", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_distributions.py::TestHistPlotUnivariate::test_wide_vs_long_data", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-bars]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-step]", "tests/test_categorical.py::TestStripPlot::test_flat[h]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-bars]", "tests/test_categorical.py::TestStripPlot::test_flat[v]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_rectangular", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_categorical.py::TestStripPlot::test_positions[variables0-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-step]", "tests/test_categorical.py::TestStripPlot::test_positions[variables1-None]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-poly]", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-bars]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-step]", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-poly]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-bars]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-step]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_categorical.py::TestStripPlot::test_positions[variables6-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-poly]", "tests/test_categorical.py::TestStripPlot::test_positions[variables7-h]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_stack", "tests/test_categorical.py::TestStripPlot::test_positions[variables8-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill", "tests/test_categorical.py::TestStripPlot::test_positions[variables9-h]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_dodge", "tests/test_categorical.py::TestStripPlot::test_positions[variables10-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_as_numpy_dodged", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_matplotlib", "tests/test_categorical.py::TestStripPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables12-None]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_common_norm", "tests/test_categorical.py::TestStripPlot::test_positions[variables13-None]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_unique_norm", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestStripPlot::test_positions[variables14-None]", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[probability]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_categorical.py::TestStripPlot::test_positions[variables15-None]", "tests/test_axisgrid.py::TestPairGrid::test_hue_kws", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[proportion]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_axisgrid.py::TestPairGrid::test_hue_order", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[probability]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_axisgrid.py::TestPairGrid::test_hue_order_missing_level", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[proportion]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/test_distributions.py::TestHistPlotUnivariate::test_common_bins", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_unique_bins", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[s]", "tests/test_axisgrid.py::TestPairGrid::test_nondefault_index", "tests/test_relational.py::TestScatterPlotter::test_legend_hue", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[d]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete_categorical_default", "tests/test_categorical.py::TestStripPlot::test_order[str-None]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_distributions.py::TestHistPlotUnivariate::test_categorical_yaxis_inversion", "tests/test_relational.py::TestScatterPlotter::test_legend_data_hue_size_same", "tests/test_categorical.py::TestStripPlot::test_order[str-order1]", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_list", "tests/test_categorical.py::TestStripPlot::test_order[str-order2]", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_dict", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_categorical.py::TestStripPlot::test_order[str-order3]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_categorical.py::TestStripPlot::test_order[int-None]", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_style", "tests/test_categorical.py::TestStripPlot::test_order[int-order5]", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_categorical.py::TestStripPlot::test_order[int-order6]", "tests/test_relational.py::TestScatterPlotter::test_legend_value_error", "tests/test_categorical.py::TestStripPlot::test_order[int-order7]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_relational.py::TestScatterPlotter::test_plot", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_categorical.py::TestStripPlot::test_order[int-order8]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_default", "tests/test_relational.py::TestScatterPlotter::test_hue_order", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_dodge", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-None]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[True]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-None]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[False]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-None]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_categorical.py::TestStripPlot::test_single[y-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue_unique_bins", "tests/test_categorical.py::TestStripPlot::test_attributes", "tests/test_categorical.py::TestStripPlot::test_three_points", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_common_norm", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_unique_norm", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_colors", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_distributions.py::TestHistPlotBivariate::test_hue_color_limits", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_categorical.py::TestStripPlot::test_log_scale", "tests/test_distributions.py::TestECDFPlotUnivariate::test_hue", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_jitter_unfixed", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-0.1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-0.1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_categorical.py::TestSwarmPlot::test_two_calls", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_categorical.py::TestSwarmPlot::test_color", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_categorical.py::TestSwarmPlot::test_supplied_color_array", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_unfilled_marker", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_flat[h]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_flat[v]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables0-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables1-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables7-h]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables9-h]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables10-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables12-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables13-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables14-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables15-None]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[a]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[s]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-None]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order1]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order2]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order3]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_categorical.py::TestSwarmPlot::test_order[int-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order5]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order6]", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order7]", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order8]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_attributes", "tests/test_categorical.py::TestSwarmPlot::test_three_points", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_color", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_fill", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_datetime_native_scale_axis", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_native_scale", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_err_kws[False]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_two_calls", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_labels_flat", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[x]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[y]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[h]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[v]", "tests/test_categorical.py::TestPointPlot::test_xy_vertical", "tests/test_categorical.py::TestPointPlot::test_xy_horizontal", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_value", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_xy_native_scale", "tests/test_categorical.py::TestPointPlot::test_estimate[mean]", "tests/test_categorical.py::TestPointPlot::test_estimate[<lambda>]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_errorbars", "tests/test_categorical.py::TestPointPlot::test_marker_linestyle", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_single", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_err_kws", "tests/test_categorical.py::TestPointPlot::test_err_kws_inherited", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestPointPlot::test_join_deprecation", "tests/test_categorical.py::TestPointPlot::test_scale_deprecation", "tests/test_categorical.py::TestPointPlot::test_layered_plot_clipping", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-9
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex ca7cf36c..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1590,6 +1590,59 @@ def infer_orient(x=None, y=None, orient=None, require_numeric=True):\n \n \"\"\"\n \n+ x_type = None if x is None else variable_type(x)\n+ y_type = None if y is None else variable_type(y)\n+\n+ nonnumeric_dv_error = \"{} orientation requires numeric `{}` variable.\"\n+ single_var_warning = \"{} orientation ignored with only `{}` specified.\"\n+\n+ if x is None:\n+ if str(orient).startswith(\"h\"):\n+ warnings.warn(single_var_warning.format(\"Horizontal\", \"y\"))\n+ if require_numeric and y_type != \"numeric\":\n+ raise TypeError(nonnumeric_dv_error.format(\"Vertical\", \"y\"))\n+ return \"x\"\n+\n+ elif y is None:\n+ if str(orient).startswith(\"v\"):\n+ warnings.warn(single_var_warning.format(\"Vertical\", \"x\"))\n+ if require_numeric and x_type != \"numeric\":\n+ raise TypeError(nonnumeric_dv_error.format(\"Horizontal\", \"x\"))\n+ return \"y\"\n+\n+ elif str(orient).startswith(\"v\") or orient == \"x\":\n+ if require_numeric and y_type != \"numeric\":\n+ raise TypeError(nonnumeric_dv_error.format(\"Vertical\", \"y\"))\n+ return \"x\"\n+\n+ elif str(orient).startswith(\"h\") or orient == \"y\":\n+ if require_numeric and x_type != \"numeric\":\n+ raise TypeError(nonnumeric_dv_error.format(\"Horizontal\", \"x\"))\n+ return \"y\"\n+\n+ elif orient is not None:\n+ err = (\n+ \"`orient` must start with 'v' or 'h' or be None, \"\n+ f\"but `{repr(orient)}` was passed.\"\n+ )\n+ raise ValueError(err)\n+\n+ elif x_type != \"categorical\" and y_type == \"categorical\":\n+ return \"y\"\n+\n+ elif x_type != \"numeric\" and y_type == \"numeric\":\n+ return \"x\"\n+\n+ elif x_type == \"numeric\" and y_type != \"numeric\":\n+ return \"y\"\n+\n+ elif require_numeric and \"numeric\" not in (x_type, y_type):\n+ err = \"Neither the `x` nor `y` variable appears to be numeric.\"\n+ raise TypeError(err)\n+\n+ else:\n+ return \"x\"\n+\n \n def unique_dashes(n):\n \"\"\"Build an arbitrarily long list of unique dash styles for lines.\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..ca7cf36c 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1590,59 +1590,6 @@ def infer_orient(x=None, y=None, orient=None, require_numeric=True):\n \n \"\"\"\n \n- x_type = None if x is None else variable_type(x)\n- y_type = None if y is None else variable_type(y)\n-\n- nonnumeric_dv_error = \"{} orientation requires numeric `{}` variable.\"\n- single_var_warning = \"{} orientation ignored with only `{}` specified.\"\n-\n- if x is None:\n- if str(orient).startswith(\"h\"):\n- warnings.warn(single_var_warning.format(\"Horizontal\", \"y\"))\n- if require_numeric and y_type != \"numeric\":\n- raise TypeError(nonnumeric_dv_error.format(\"Vertical\", \"y\"))\n- return \"x\"\n-\n- elif y is None:\n- if str(orient).startswith(\"v\"):\n- warnings.warn(single_var_warning.format(\"Vertical\", \"x\"))\n- if require_numeric and x_type != \"numeric\":\n- raise TypeError(nonnumeric_dv_error.format(\"Horizontal\", \"x\"))\n- return \"y\"\n-\n- elif str(orient).startswith(\"v\") or orient == \"x\":\n- if require_numeric and y_type != \"numeric\":\n- raise TypeError(nonnumeric_dv_error.format(\"Vertical\", \"y\"))\n- return \"x\"\n-\n- elif str(orient).startswith(\"h\") or orient == \"y\":\n- if require_numeric and x_type != \"numeric\":\n- raise TypeError(nonnumeric_dv_error.format(\"Horizontal\", \"x\"))\n- return \"y\"\n-\n- elif orient is not None:\n- err = (\n- \"`orient` must start with 'v' or 'h' or be None, \"\n- f\"but `{repr(orient)}` was passed.\"\n- )\n- raise ValueError(err)\n-\n- elif x_type != \"categorical\" and y_type == \"categorical\":\n- return \"y\"\n-\n- elif x_type != \"numeric\" and y_type == \"numeric\":\n- return \"x\"\n-\n- elif x_type == \"numeric\" and y_type != \"numeric\":\n- return \"y\"\n-\n- elif require_numeric and \"numeric\" not in (x_type, y_type):\n- err = \"Neither the `x` nor `y` variable appears to be numeric.\"\n- raise TypeError(err)\n-\n- else:\n- return \"x\"\n-\n \n def unique_dashes(n):\n \"\"\"Build an arbitrarily long list of unique dash styles for lines.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\ndef infer_orient(x=None, y=None, orient=None, require_numeric=True):\n \"\"\"Determine how the plot should be oriented based on the data.\n\n For historical reasons, the convention is to call a plot \"horizontally\"\n or \"vertically\" oriented based on the axis representing its dependent\n variable. Practically, this is used when determining the axis for\n numerical aggregation.\n\n Parameters\n ----------\n x, y : Vector data or None\n Positional data vectors for the plot.\n orient : string or None\n Specified orientation. If not None, can be \"x\" or \"y\", or otherwise\n must start with \"v\" or \"h\".\n require_numeric : bool\n If set, raise when the implied dependent variable is not numeric.\n\n Returns\n -------\n orient : \"x\" or \"y\"\n\n Raises\n ------\n ValueError: When `orient` is an unknown string.\n TypeError: When dependent variable is not numeric, with `require_numeric`\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs20]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs21]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs22]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs23]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs24]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs25]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs26]", "tests/test_base.py::TestCoreFunc::test_infer_orient", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs27]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[barplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[boxplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[boxenplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[pointplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[stripplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[swarmplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[violinplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_redundant_hue_backcompat", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_categorical.py::TestStripPlot::test_two_calls", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestStripPlot::test_color", "tests/test_categorical.py::TestStripPlot::test_supplied_color_array", "tests/test_categorical.py::TestStripPlot::test_unfilled_marker", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_categorical.py::TestStripPlot::test_flat[h]", "tests/test_categorical.py::TestStripPlot::test_flat[v]", "tests/test_categorical.py::TestStripPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestStripPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[s]", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestStripPlot::test_order[str-None]", "tests/test_categorical.py::TestStripPlot::test_order[str-order1]", "tests/test_categorical.py::TestStripPlot::test_order[str-order2]", "tests/test_categorical.py::TestStripPlot::test_order[str-order3]", "tests/test_categorical.py::TestStripPlot::test_order[int-None]", "tests/test_categorical.py::TestStripPlot::test_order[int-order5]", "tests/test_categorical.py::TestStripPlot::test_order[int-order6]", "tests/test_categorical.py::TestStripPlot::test_order[int-order7]", "tests/test_categorical.py::TestStripPlot::test_order[int-order8]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-None]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_categorical.py::TestStripPlot::test_attributes", "tests/test_categorical.py::TestStripPlot::test_three_points", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestStripPlot::test_log_scale", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestStripPlot::test_empty_palette", "tests/test_categorical.py::TestStripPlot::test_jitter_unfixed", "tests/test_categorical.py::TestStripPlot::test_jitter[v-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[v-0.1]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-True]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-0.1]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_categorical.py::TestSwarmPlot::test_two_calls", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestSwarmPlot::test_color", "tests/test_categorical.py::TestSwarmPlot::test_supplied_color_array", "tests/test_categorical.py::TestSwarmPlot::test_unfilled_marker", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_categorical.py::TestSwarmPlot::test_flat[h]", "tests/test_categorical.py::TestSwarmPlot::test_flat[v]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables0-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables1-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables6-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables7-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables8-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables9-h]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables10-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables11-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables12-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables13-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables14-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables15-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[a]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[s]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[d]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order1]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order2]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order3]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-None]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order5]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order6]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order7]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order8]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-None]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_attributes", "tests/test_categorical.py::TestSwarmPlot::test_three_points", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_empty_palette", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_color", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_fill", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_datetime_native_scale_axis", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_native_scale", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_err_kws[False]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_two_calls", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_labels_flat", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[x]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[y]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[h]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[v]", "tests/test_categorical.py::TestPointPlot::test_xy_vertical", "tests/test_categorical.py::TestPointPlot::test_xy_horizontal", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_value", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_xy_native_scale", "tests/test_categorical.py::TestPointPlot::test_estimate[mean]", "tests/test_categorical.py::TestPointPlot::test_estimate[<lambda>]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_errorbars", "tests/test_categorical.py::TestPointPlot::test_marker_linestyle", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_single", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_err_kws", "tests/test_categorical.py::TestPointPlot::test_err_kws_inherited", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestPointPlot::test_join_deprecation", "tests/test_categorical.py::TestPointPlot::test_scale_deprecation", "tests/test_categorical.py::TestPointPlot::test_layered_plot_clipping", "tests/test_categorical.py::TestCountPlot::test_empty", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-10
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex 2a11863c..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1661,6 +1661,38 @@ def unique_dashes(n):\n dashes.\n \n \"\"\"\n+ # Start with dash specs that are well distinguishable\n+ dashes = [\n+ \"\",\n+ (4, 1.5),\n+ (1, 1),\n+ (3, 1.25, 1.5, 1.25),\n+ (5, 1, 1, 1),\n+ ]\n+\n+ # Now programmatically build as many as we need\n+ p = 3\n+ while len(dashes) < n:\n+\n+ # Take combinations of long and short dashes\n+ a = itertools.combinations_with_replacement([3, 1.25], p)\n+ b = itertools.combinations_with_replacement([4, 1], p)\n+\n+ # Interleave the combinations, reversing one of the streams\n+ segment_list = itertools.chain(*zip(\n+ list(a)[1:-1][::-1],\n+ list(b)[1:-1]\n+ ))\n+\n+ # Now insert the gaps\n+ for segments in segment_list:\n+ gap = min(segments)\n+ spec = tuple(itertools.chain(*((seg, gap) for seg in segments)))\n+ dashes.append(spec)\n+\n+ p += 1\n+\n+ return dashes[:n]\n \n \n def unique_markers(n):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..2a11863c 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1661,38 +1661,6 @@ def unique_dashes(n):\n dashes.\n \n \"\"\"\n- # Start with dash specs that are well distinguishable\n- dashes = [\n- \"\",\n- (4, 1.5),\n- (1, 1),\n- (3, 1.25, 1.5, 1.25),\n- (5, 1, 1, 1),\n- ]\n-\n- # Now programmatically build as many as we need\n- p = 3\n- while len(dashes) < n:\n-\n- # Take combinations of long and short dashes\n- a = itertools.combinations_with_replacement([3, 1.25], p)\n- b = itertools.combinations_with_replacement([4, 1], p)\n-\n- # Interleave the combinations, reversing one of the streams\n- segment_list = itertools.chain(*zip(\n- list(a)[1:-1][::-1],\n- list(b)[1:-1]\n- ))\n-\n- # Now insert the gaps\n- for segments in segment_list:\n- gap = min(segments)\n- spec = tuple(itertools.chain(*((seg, gap) for seg in segments)))\n- dashes.append(spec)\n-\n- p += 1\n-\n- return dashes[:n]\n \n \n def unique_markers(n):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\ndef unique_dashes(n):\n \"\"\"Build an arbitrarily long list of unique dash styles for lines.\n\n Parameters\n ----------\n n : int\n Number of unique dash specs to generate.\n\n Returns\n -------\n dashes : list of strings or tuples\n Valid arguments for the ``dashes`` parameter on\n :class:`matplotlib.lines.Line2D`. The first spec is a solid\n line (``\"\"``), the remainder are sequences of long and short\n dashes.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_base.py::TestStyleMapping::test_plotter_default_init", "tests/test_base.py::TestStyleMapping::test_plotter_customization", "tests/test_base.py::TestStyleMapping::test_map_style", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_base.py::TestVectorPlotter::test_var_order", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_base.py::TestCoreFunc::test_unique_dashes", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[style]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[style]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_style", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestScatterPlotter::test_plot", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers" ], "PASS_TO_PASS": null }
mwaskom__seaborn-11
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex 4b716d34..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1710,6 +1710,35 @@ def unique_markers(n):\n All markers will be filled.\n \n \"\"\"\n+ # Start with marker specs that are well distinguishable\n+ markers = [\n+ \"o\",\n+ \"X\",\n+ (4, 0, 45),\n+ \"P\",\n+ (4, 0, 0),\n+ (4, 1, 0),\n+ \"^\",\n+ (4, 1, 45),\n+ \"v\",\n+ ]\n+\n+ # Now generate more from regular polygons of increasing order\n+ s = 5\n+ while len(markers) < n:\n+ a = 360 / (s + 1) / 2\n+ markers.extend([\n+ (s + 1, 1, a),\n+ (s + 1, 0, a),\n+ (s, 1, 0),\n+ (s, 0, 0),\n+ ])\n+ s += 1\n+\n+ # Convert to MarkerStyle object, using only exactly what we need\n+ # markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]]\n+\n+ return markers[:n]\n \n \n def categorical_order(vector, order=None):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..4b716d34 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1710,35 +1710,6 @@ def unique_markers(n):\n All markers will be filled.\n \n \"\"\"\n- # Start with marker specs that are well distinguishable\n- markers = [\n- \"o\",\n- \"X\",\n- (4, 0, 45),\n- \"P\",\n- (4, 0, 0),\n- (4, 1, 0),\n- \"^\",\n- (4, 1, 45),\n- \"v\",\n- ]\n-\n- # Now generate more from regular polygons of increasing order\n- s = 5\n- while len(markers) < n:\n- a = 360 / (s + 1) / 2\n- markers.extend([\n- (s + 1, 1, a),\n- (s + 1, 0, a),\n- (s, 1, 0),\n- (s, 0, 0),\n- ])\n- s += 1\n-\n- # Convert to MarkerStyle object, using only exactly what we need\n- # markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]]\n-\n- return markers[:n]\n \n \n def categorical_order(vector, order=None):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\ndef unique_markers(n):\n \"\"\"Build an arbitrarily long list of unique marker styles for points.\n\n Parameters\n ----------\n n : int\n Number of unique marker specs to generate.\n\n Returns\n -------\n markers : list of string or tuples\n Values for defining :class:`matplotlib.markers.MarkerStyle` objects.\n All markers will be filled.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_base.py::TestStyleMapping::test_plotter_default_init", "tests/test_base.py::TestStyleMapping::test_plotter_customization", "tests/test_base.py::TestStyleMapping::test_map_style", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_base.py::TestVectorPlotter::test_var_order", "tests/test_base.py::TestCoreFunc::test_unique_markers", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[style]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[style]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_style", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestScatterPlotter::test_plot", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers" ], "PASS_TO_PASS": null }
mwaskom__seaborn-12
1.0
{ "code": "diff --git b/seaborn/_base.py a/seaborn/_base.py\nindex ae7332c2..0b435231 100644\n--- b/seaborn/_base.py\n+++ a/seaborn/_base.py\n@@ -1492,6 +1492,73 @@ def variable_type(vector, boolean_type=\"numeric\"):\n var_type : 'numeric', 'categorical', or 'datetime'\n Name identifying the type of data in the vector.\n \"\"\"\n+ vector = pd.Series(vector)\n+\n+ # If a categorical dtype is set, infer categorical\n+ if isinstance(vector.dtype, pd.CategoricalDtype):\n+ return VariableType(\"categorical\")\n+\n+ # Special-case all-na data, which is always \"numeric\"\n+ if pd.isna(vector).all():\n+ return VariableType(\"numeric\")\n+\n+ # At this point, drop nans to simplify further type inference\n+ vector = vector.dropna()\n+\n+ # Special-case binary/boolean data, allow caller to determine\n+ # This triggers a numpy warning when vector has strings/objects\n+ # https://github.com/numpy/numpy/issues/6784\n+ # Because we reduce with .all(), we are agnostic about whether the\n+ # comparison returns a scalar or vector, so we will ignore the warning.\n+ # It triggers a separate DeprecationWarning when the vector has datetimes:\n+ # https://github.com/numpy/numpy/issues/13548\n+ # This is considered a bug by numpy and will likely go away.\n+ with warnings.catch_warnings():\n+ warnings.simplefilter(\n+ action='ignore', category=(FutureWarning, DeprecationWarning)\n+ )\n+ try:\n+ if np.isin(vector, [0, 1]).all():\n+ return VariableType(boolean_type)\n+ except TypeError:\n+ # .isin comparison is not guaranteed to be possible under NumPy\n+ # casting rules, depending on the (unknown) dtype of 'vector'\n+ pass\n+\n+ # Defer to positive pandas tests\n+ if pd.api.types.is_numeric_dtype(vector):\n+ return VariableType(\"numeric\")\n+\n+ if pd.api.types.is_datetime64_dtype(vector):\n+ return VariableType(\"datetime\")\n+\n+ # --- If we get to here, we need to check the entries\n+\n+ # Check for a collection where everything is a number\n+\n+ def all_numeric(x):\n+ for x_i in x:\n+ if not isinstance(x_i, Number):\n+ return False\n+ return True\n+\n+ if all_numeric(vector):\n+ return VariableType(\"numeric\")\n+\n+ # Check for a collection where everything is a datetime\n+\n+ def all_datetime(x):\n+ for x_i in x:\n+ if not isinstance(x_i, (datetime, np.datetime64)):\n+ return False\n+ return True\n+\n+ if all_datetime(vector):\n+ return VariableType(\"datetime\")\n+\n+ # Otherwise, our final fallback is to consider things categorical\n+\n+ return VariableType(\"categorical\")\n \n \n def infer_orient(x=None, y=None, orient=None, require_numeric=True):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_base.py b/seaborn/_base.py\nindex 0b435231..ae7332c2 100644\n--- a/seaborn/_base.py\n+++ b/seaborn/_base.py\n@@ -1492,73 +1492,6 @@ def variable_type(vector, boolean_type=\"numeric\"):\n var_type : 'numeric', 'categorical', or 'datetime'\n Name identifying the type of data in the vector.\n \"\"\"\n- vector = pd.Series(vector)\n-\n- # If a categorical dtype is set, infer categorical\n- if isinstance(vector.dtype, pd.CategoricalDtype):\n- return VariableType(\"categorical\")\n-\n- # Special-case all-na data, which is always \"numeric\"\n- if pd.isna(vector).all():\n- return VariableType(\"numeric\")\n-\n- # At this point, drop nans to simplify further type inference\n- vector = vector.dropna()\n-\n- # Special-case binary/boolean data, allow caller to determine\n- # This triggers a numpy warning when vector has strings/objects\n- # https://github.com/numpy/numpy/issues/6784\n- # Because we reduce with .all(), we are agnostic about whether the\n- # comparison returns a scalar or vector, so we will ignore the warning.\n- # It triggers a separate DeprecationWarning when the vector has datetimes:\n- # https://github.com/numpy/numpy/issues/13548\n- # This is considered a bug by numpy and will likely go away.\n- with warnings.catch_warnings():\n- warnings.simplefilter(\n- action='ignore', category=(FutureWarning, DeprecationWarning)\n- )\n- try:\n- if np.isin(vector, [0, 1]).all():\n- return VariableType(boolean_type)\n- except TypeError:\n- # .isin comparison is not guaranteed to be possible under NumPy\n- # casting rules, depending on the (unknown) dtype of 'vector'\n- pass\n-\n- # Defer to positive pandas tests\n- if pd.api.types.is_numeric_dtype(vector):\n- return VariableType(\"numeric\")\n-\n- if pd.api.types.is_datetime64_dtype(vector):\n- return VariableType(\"datetime\")\n-\n- # --- If we get to here, we need to check the entries\n-\n- # Check for a collection where everything is a number\n-\n- def all_numeric(x):\n- for x_i in x:\n- if not isinstance(x_i, Number):\n- return False\n- return True\n-\n- if all_numeric(vector):\n- return VariableType(\"numeric\")\n-\n- # Check for a collection where everything is a datetime\n-\n- def all_datetime(x):\n- for x_i in x:\n- if not isinstance(x_i, (datetime, np.datetime64)):\n- return False\n- return True\n-\n- if all_datetime(vector):\n- return VariableType(\"datetime\")\n-\n- # Otherwise, our final fallback is to consider things categorical\n-\n- return VariableType(\"categorical\")\n \n \n def infer_orient(x=None, y=None, orient=None, require_numeric=True):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_base.py.\nHere is the description for the function:\ndef variable_type(vector, boolean_type=\"numeric\"):\n \"\"\"\n Determine whether a vector contains numeric, categorical, or datetime data.\n\n This function differs from the pandas typing API in two ways:\n\n - Python sequences or object-typed PyData objects are considered numeric if\n all of their entries are numeric.\n - String or mixed-type data are considered categorical even if not\n explicitly represented as a :class:`pandas.api.types.CategoricalDtype`.\n\n Parameters\n ----------\n vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence\n Input data to test.\n boolean_type : 'numeric' or 'categorical'\n Type to use for vectors containing only 0s and 1s (and NAs).\n\n Returns\n -------\n var_type : 'numeric', 'categorical', or 'datetime'\n Name identifying the type of data in the vector.\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_distributions.py::TestDistPlot::test_hist_bins", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_base.py::TestHueMapping::test_plotter_default_init", "tests/test_relational.py::TestRelationalPlotter::test_wide_df_variables", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_base.py::TestHueMapping::test_plotter_customization", "tests/test_relational.py::TestRelationalPlotter::test_wide_df_with_nonnumeric_variables", "tests/test_distributions.py::TestDistPlot::test_elements", "tests/test_base.py::TestHueMapping::test_hue_map_null", "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/test_relational.py::TestRelationalPlotter::test_wide_array_variables", "tests/test_relational.py::TestRelationalPlotter::test_flat_array_variables", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_base.py::TestHueMapping::test_hue_map_numeric", "tests/test_base.py::TestHueMapping::test_hue_map_without_hue_dataa", "tests/test_distributions.py::TestDistPlot::test_distplot_with_nans", "tests/test_distributions.py::TestRugPlot::test_color", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_relational.py::TestRelationalPlotter::test_flat_list_variables", "tests/test_relational.py::TestRelationalPlotter::test_flat_series_variables", "tests/test_base.py::TestHueMapping::test_saturation", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_relational.py::TestRelationalPlotter::test_wide_list_of_series_variables", "tests/test_utils.py::test_move_legend_with_labels", "tests/test_distributions.py::TestRugPlot::test_long_data[x]", "tests/test_base.py::TestSizeMapping::test_plotter_default_init", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_relational.py::TestRelationalPlotter::test_wide_list_of_arrays_variables", "tests/test_base.py::TestSizeMapping::test_plotter_customization", "tests/test_relational.py::TestRelationalPlotter::test_wide_list_of_list_variables", "tests/test_base.py::TestSizeMapping::test_size_map_null", "tests/test_distributions.py::TestRugPlot::test_long_data[y]", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_base.py::TestSizeMapping::test_map_size_numeric", "tests/test_relational.py::TestRelationalPlotter::test_wide_dict_of_series_variables", "tests/test_distributions.py::TestRugPlot::test_bivariate_data", "tests/test_base.py::TestSizeMapping::test_map_size_categorical", "tests/test_relational.py::TestRelationalPlotter::test_wide_dict_of_arrays_variables", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_base.py::TestSizeMapping::test_array_palette_deprecation", "tests/test_relational.py::TestRelationalPlotter::test_wide_dict_of_lists_variables", "tests/test_distributions.py::TestRugPlot::test_wide_vs_long_data", "tests/test_base.py::TestStyleMapping::test_plotter_default_init", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_base.py::TestStyleMapping::test_plotter_customization", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_distributions.py::TestRugPlot::test_flat_vector", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_base.py::TestStyleMapping::test_style_map_null", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_distributions.py::TestRugPlot::test_datetime_data", "tests/test_base.py::TestStyleMapping::test_map_style", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_base.py::TestVectorPlotter::test_flat_variables[series]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_base.py::TestVectorPlotter::test_flat_variables[array]", "tests/test_distributions.py::TestRugPlot::test_a_deprecation", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_base.py::TestVectorPlotter::test_flat_variables[list]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables0]", "tests/test_distributions.py::TestRugPlot::test_axis_deprecation[x]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables1]", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_distributions.py::TestRugPlot::test_axis_deprecation[y]", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables3]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables4]", "tests/test_distributions.py::TestRugPlot::test_vertical_deprecation", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables5]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_distributions.py::TestRugPlot::test_rug_data", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables6]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables7]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_distributions.py::TestRugPlot::test_rug_colors", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables8]", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables9]", "tests/test_distributions.py::TestRugPlot::test_expand_margins", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables10]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_base.py::TestVectorPlotter::test_long_df[long_variables11]", "tests/test_distributions.py::TestRugPlot::test_multiple_rugs", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables0]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables1]", "tests/test_distributions.py::TestRugPlot::test_matplotlib_kwargs", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables2]", "tests/test_distributions.py::TestRugPlot::test_axis_labels", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables3]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables4]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_distributions.py::TestRugPlot::test_log_scale", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables5]", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[True]", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables7]", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables8]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[False]", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables9]", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables10]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_base.py::TestVectorPlotter::test_long_df_with_index[long_variables11]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[x]", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables0]", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables1]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[y]", "tests/test_relational.py::TestLinePlotter::test_color", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables3]", "tests/test_relational.py::TestLinePlotter::test_legend_no_semantics", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables5]", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_distributions.py::TestKDEPlotUnivariate::test_flat_vector", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs20]", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables7]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_singular_data", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables8]", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables9]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs21]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_variable_assignment", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables10]", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_base.py::TestVectorPlotter::test_long_df_with_multiindex[long_variables11]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables0]", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_distributions.py::TestKDEPlotUnivariate::test_vertical_deprecation", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs22]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables1]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables2]", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_deprecation", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables3]", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[stripplot-kwargs23]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables4]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_kernel_deprecation", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables5]", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[hue]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs24]", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[size]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables7]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_shade_deprecation", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables8]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables9]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[style]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs25]", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables10]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[hue]", "tests/test_base.py::TestVectorPlotter::test_long_dict[long_variables11]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables0-series]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[size]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs26]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables0-numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[style]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables0-list]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables1-series]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[swarmplot-kwargs27]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables1-numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[hue]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables1-list]", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[size]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables2-series]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[hue]", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables2-numpy]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables2-list]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[size]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables3-series]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables3-numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables3-list]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[size]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables4-series]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables4-numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables4-list]", "tests/test_relational.py::TestLinePlotter::test_weights", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables5-series]", "tests/test_relational.py::TestLinePlotter::test_non_aggregated_data", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables5-numpy]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables5-list]", "tests/test_relational.py::TestLinePlotter::test_orient", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables6-series]", "tests/test_relational.py::TestLinePlotter::test_log_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color_cycle_interaction", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables6-numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables6-list]", "tests/test_relational.py::TestLinePlotter::test_axis_labels", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables7-series]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[True]", "tests/test_relational.py::TestLinePlotter::test_matplotlib_kwargs", "tests/test_categorical.py::TestCategoricalPlotterNew::test_redundant_hue_backcompat", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables7-numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[False]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables7-list]", "tests/test_relational.py::TestLinePlotter::test_nonmapped_dashes", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables8-series]", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables8-numpy]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_datetime_scale", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables8-list]", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables9-series]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_multiple_argument_check", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables9-numpy]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables9-list]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cut", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables10-series]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables10-numpy]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_clip", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables10-list]", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_is_density", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables11-series]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables11-numpy]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative_requires_scipy", "tests/test_base.py::TestVectorPlotter::test_long_vectors[long_variables11-list]", "tests/test_categorical.py::TestStripPlot::test_two_calls", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_base.py::TestVectorPlotter::test_units", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_base.py::TestVectorPlotter::test_long_numeric_name[3]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_base.py::TestVectorPlotter::test_long_numeric_name[4.5]", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_base.py::TestVectorPlotter::test_long_hierarchical_index", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_base.py::TestVectorPlotter::test_long_scalar_and_data", "tests/test_categorical.py::TestStripPlot::test_color", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_base.py::TestVectorPlotter::test_wide_categorical_columns", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_method", "tests/test_axisgrid.py::TestPairGrid::test_self_data", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_axisgrid.py::TestPairGrid::test_ignore_datelike_data", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_adjust", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_categorical.py::TestStripPlot::test_supplied_color_array", "tests/test_axisgrid.py::TestPairGrid::test_self_figure", "tests/test_base.py::TestVectorPlotter::test_iter_data_values", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_base.py::TestVectorPlotter::test_iter_data_reverse", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_implicit", "tests/test_axisgrid.py::TestPairGrid::test_self_axes", "tests/test_categorical.py::TestStripPlot::test_unfilled_marker", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_axisgrid.py::TestPairGrid::test_default_axes", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_explicit", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_base.py::TestVectorPlotter::test_iter_data_dropna", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars0]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_base.py::TestVectorPlotter::test_axis_labels", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars1]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables0]", "tests/test_relational.py::TestLinePlotter::test_ci_deprecation", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables1]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_normalization", "tests/test_relational.py::TestScatterPlotter::test_color", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars0-y_vars0]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables2]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weights", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars1-z]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables3]", "tests/test_relational.py::TestScatterPlotter::test_legend_no_semantics", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars2-y_vars2]", "tests/test_base.py::TestVectorPlotter::test_attach_basics[variables4]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_base.py::TestVectorPlotter::test_attach_disallowed", "tests/test_axisgrid.py::TestPairGrid::test_corner", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_base.py::TestVectorPlotter::test_attach_log_scale", "tests/test_axisgrid.py::TestPairGrid::test_size", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_base.py::TestVectorPlotter::test_attach_converters", "tests/test_axisgrid.py::TestPairGrid::test_empty_grid", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_kws", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_relational.py::TestScatterPlotter::test_legend_data_hue_size_same", "tests/test_axisgrid.py::TestPairGrid::test_map", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_list", "tests/test_distributions.py::TestKDEPlotUnivariate::test_input_checking", "tests/test_axisgrid.py::TestPairGrid::test_map_nonsquare", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_dict", "tests/test_axisgrid.py::TestPairGrid::test_map_lower", "tests/test_distributions.py::TestKDEPlotUnivariate::test_axis_labels", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_full", "tests/test_axisgrid.py::TestPairGrid::test_map_upper", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_brief", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_axisgrid.py::TestPairGrid::test_map_mixed_funcsig", "tests/test_base.py::TestVectorPlotter::test_scale_transform_log", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_size_full", "tests/test_axisgrid.py::TestPairGrid::test_map_diag", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_distributions.py::TestKDEPlotBivariate::test_long_vectors", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_size_brief", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_rectangular", "tests/test_distributions.py::TestKDEPlotBivariate::test_singular_data", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_categorical.py::TestStripPlot::test_flat[h]", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_style", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_and_offdiag", "tests/test_categorical.py::TestStripPlot::test_flat[v]", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_relational.py::TestScatterPlotter::test_legend_value_error", "tests/test_base.py::TestVectorPlotter::test_get_axes_single", "tests/test_categorical.py::TestStripPlot::test_positions[variables0-None]", "tests/test_relational.py::TestScatterPlotter::test_plot", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_matplotlib", "tests/test_distributions.py::TestKDEPlotBivariate::test_log_scale", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_relational.py::TestScatterPlotter::test_axis_labels", "tests/test_categorical.py::TestStripPlot::test_positions[variables1-None]", "tests/test_distributions.py::TestKDEPlotBivariate::test_bandwidth", "tests/test_axisgrid.py::TestPairGrid::test_hue_kws", "tests/test_base.py::TestVectorPlotter::test_comp_data", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_axisgrid.py::TestPairGrid::test_hue_order", "tests/test_base.py::TestVectorPlotter::test_comp_data_log", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_base.py::TestVectorPlotter::test_comp_data_category_order", "tests/test_relational.py::TestScatterPlotter::test_literal_attribute_vectors", "tests/test_axisgrid.py::TestPairGrid::test_hue_order_missing_level", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture0]", "tests/test_relational.py::TestScatterPlotter::test_supplied_color_array", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture1]", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture2]", "tests/test_axisgrid.py::TestPairGrid::test_nondefault_index", "tests/test_relational.py::TestScatterPlotter::test_hue_order", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture3]", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_colors", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture4]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture5]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_cmap", "tests/test_relational.py::TestScatterPlotter::test_linewidths", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture6]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture7]", "tests/test_relational.py::TestScatterPlotter::test_size_norm_extrapolation", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_base.py::TestVectorPlotter::test_comp_data_missing[comp_data_missing_fixture8]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_relational.py::TestScatterPlotter::test_datetime_scale", "tests/test_base.py::TestVectorPlotter::test_comp_data_duplicate_index", "tests/test_distributions.py::TestKDEPlotBivariate::test_colorbar", "tests/test_categorical.py::TestStripPlot::test_positions[variables6-None]", "tests/test_base.py::TestVectorPlotter::test_comp_data_nullable_dtype", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_relational.py::TestScatterPlotter::test_unfilled_marker_edgecolor_warning", "tests/test_base.py::TestVectorPlotter::test_var_order", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_distributions.py::TestKDEPlotBivariate::test_levels_and_thresh", "tests/test_relational.py::TestScatterPlotter::test_short_form_kwargs", "tests/test_base.py::TestVectorPlotter::test_scale_native", "tests/test_categorical.py::TestStripPlot::test_positions[variables7-h]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_base.py::TestVectorPlotter::test_scale_numeric", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_distributions.py::TestKDEPlotBivariate::test_input_checking", "tests/test_base.py::TestVectorPlotter::test_scale_datetime", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_base.py::TestVectorPlotter::test_scale_categorical", "tests/test_categorical.py::TestStripPlot::test_positions[variables8-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[bars-True]", "tests/test_base.py::TestCoreFunc::test_variable_type", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_base.py::TestCoreFunc::test_infer_orient", "tests/test_base.py::TestCoreFunc::test_categorical_order", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_categorical.py::TestStripPlot::test_positions[variables9-h]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[bars-False]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_categorical.py::TestStripPlot::test_positions[variables10-None]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[step-True]", "tests/test_axisgrid.py::TestPairGrid::test_corner_despine", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_axisgrid.py::TestPairGrid::test_corner_set", "tests/test_categorical.py::TestStripPlot::test_positions[variables11-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[step-False]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_categorical.py::TestStripPlot::test_positions[variables12-None]", "tests/test_axisgrid.py::TestPairGrid::test_tick_params", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[poly-True]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange", "tests/test_distributions.py::TestHistPlotUnivariate::test_color[poly-False]", "tests/test_categorical.py::TestStripPlot::test_positions[variables13-None]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_lists", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_distributions.py::TestHistPlotUnivariate::test_long_vectors[x]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_arrays", "tests/test_categorical.py::TestStripPlot::test_positions[variables14-None]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_series", "tests/test_distributions.py::TestHistPlotUnivariate::test_long_vectors[y]", "tests/test_categorical.py::TestStripPlot::test_positions[variables15-None]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_dataframe", "tests/test_distributions.py::TestHistPlotUnivariate::test_wide_vs_long_data", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_axis_labels", "tests/test_distributions.py::TestHistPlotUnivariate::test_flat_vector", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_axisgrid.py::TestJointGrid::test_dropna", "tests/test_distributions.py::TestHistPlotUnivariate::test_variable_assignment", "tests/test_axisgrid.py::TestJointGrid::test_axlims", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-step]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[a]", "tests/test_axisgrid.py::TestJointGrid::test_bivariate_plot", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-poly]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[s]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-bars]", "tests/test_categorical.py::TestStripPlot::test_positions_unfixed[d]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-step]", "tests/test_categorical.py::TestStripPlot::test_order[str-None]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_matplotlib", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-poly]", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_categorical.py::TestStripPlot::test_order[str-order1]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-bars]", "tests/test_axisgrid.py::TestJointGrid::test_space", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-step]", "tests/test_categorical.py::TestStripPlot::test_order[str-order2]", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-poly]", "tests/test_categorical.py::TestStripPlot::test_order[str-order3]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-bars]", "tests/test_categorical.py::TestStripPlot::test_order[int-None]", "tests/test_axisgrid.py::TestJointGrid::test_refline", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-step]", "tests/test_categorical.py::TestStripPlot::test_order[int-order5]", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_stack", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_categorical.py::TestStripPlot::test_order[int-order6]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_categorical.py::TestStripPlot::test_order[int-order7]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_dodge", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_categorical.py::TestStripPlot::test_order[int-order8]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_as_numpy_dodged", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_multiple_input_check", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_input_check", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_distributions.py::TestHistPlotUnivariate::test_count_stat", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_common_norm", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_unique_norm", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_categorical.py::TestStripPlot::test_single[x-b-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat[probability]", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat[proportion]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[probability]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-None]", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[proportion]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[probability]", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[proportion]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_percent_stat", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_common_bins", "tests/test_categorical.py::TestStripPlot::test_single[y-b-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_unique_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_range_with_inf", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_weights_with_missing", "tests/test_categorical.py::TestStripPlot::test_single[y-y-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_weight_norm", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete", "tests/test_distributions.py::TestHistPlotUnivariate::test_discrete_categorical_default", "tests/test_categorical.py::TestStripPlot::test_single[y-t-None]", "tests/test_distributions.py::TestHistPlotUnivariate::test_categorical_yaxis_inversion", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_datetime_scale", "tests/test_categorical.py::TestStripPlot::test_attributes", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[count]", "tests/test_categorical.py::TestStripPlot::test_three_points", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[density]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[probability]", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_default_cut", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_yaxis", "tests/test_categorical.py::TestStripPlot::test_log_scale", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_line_kws", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_singular_data", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_default", "tests/test_distributions.py::TestHistPlotUnivariate::test_bars_no_fill", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestHistPlotUnivariate::test_poly_fill", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestHistPlotUnivariate::test_poly_no_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_no_fill", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill_xy", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_no_fill_xy", "tests/test_distributions.py::TestHistPlotUnivariate::test_weighted_histogram", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestHistPlotUnivariate::test_weights_with_auto_bins", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestHistPlotUnivariate::test_shrink", "tests/test_categorical.py::TestStripPlot::test_jitter_unfixed", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_implicit", "tests/test_categorical.py::TestStripPlot::test_jitter[v-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_dodge", "tests/test_categorical.py::TestStripPlot::test_jitter[v-0.1]", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_kde", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[True]", "tests/test_categorical.py::TestStripPlot::test_jitter[h-True]", "tests/test_distributions.py::TestHistPlotUnivariate::test_auto_linewidth[False]", "tests/test_distributions.py::TestHistPlotUnivariate::test_bar_kwargs", "tests/test_categorical.py::TestStripPlot::test_jitter[h-0.1]", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_fill_kwargs", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_distributions.py::TestHistPlotUnivariate::test_step_line_kwargs", "tests/test_distributions.py::TestHistPlotUnivariate::test_label", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_distributions.py::TestHistPlotUnivariate::test_default_color_scout_cleanup", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue_unique_bins", "tests/test_categorical.py::TestSwarmPlot::test_two_calls", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_thresh", "tests/test_categorical.py::TestSwarmPlot::test_color", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_sticky_edges", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_common_norm", "tests/test_categorical.py::TestSwarmPlot::test_supplied_color_array", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_unique_norm", "tests/test_categorical.py::TestSwarmPlot::test_unfilled_marker", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[probability]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[proportion]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_normalization[percent]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_colors", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_distributions.py::TestHistPlotBivariate::test_color_limits", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_distributions.py::TestHistPlotBivariate::test_hue_color_limits", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_distributions.py::TestHistPlotBivariate::test_colorbar", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_color", "tests/test_distributions.py::TestECDFPlotUnivariate::test_long_vectors[x]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_long_vectors[y]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_hue", "tests/test_categorical.py::TestSwarmPlot::test_flat[h]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_line_kwargs", "tests/test_categorical.py::TestSwarmPlot::test_flat[v]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_drawstyle[x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_drawstyle[y]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables0-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits[x-y]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables1-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits[y-x]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits_complementary[x-y]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_limits_complementary[y-x]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_count[x-y]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_proportion_count[y-x]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_weights", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_bivariate_error", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables6-None]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables7-h]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables8-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables9-h]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables10-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables11-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables12-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables13-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables14-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables15-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[s]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_unfixed[d]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_order[str-order3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_order[int-order8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-None]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-None]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-None]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-None]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-None]", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_categorical.py::TestSwarmPlot::test_attributes", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestSwarmPlot::test_three_points", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_log_scale", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_color", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_fill", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_datetime_native_scale_axis", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_native_scale", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_err_kws[False]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_two_calls", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_labels_flat", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[x]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[y]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[h]", "tests/test_categorical.py::TestPointPlot::test_vector_orient[v]", "tests/test_categorical.py::TestPointPlot::test_xy_vertical", "tests/test_categorical.py::TestPointPlot::test_xy_horizontal", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestPointPlot::test_xy_with_na_value", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_xy_native_scale", "tests/test_categorical.py::TestPointPlot::test_estimate[mean]", "tests/test_categorical.py::TestPointPlot::test_estimate[<lambda>]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_errorbars", "tests/test_categorical.py::TestPointPlot::test_marker_linestyle", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_single", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_err_kws", "tests/test_categorical.py::TestPointPlot::test_err_kws_inherited", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestPointPlot::test_join_deprecation", "tests/test_categorical.py::TestPointPlot::test_scale_deprecation", "tests/test_categorical.py::TestPointPlot::test_layered_plot_clipping", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-13
1.0
{ "code": "diff --git b/seaborn/_statistics.py a/seaborn/_statistics.py\nindex 4376a7fc..40346b02 100644\n--- b/seaborn/_statistics.py\n+++ a/seaborn/_statistics.py\n@@ -602,6 +602,19 @@ class LetterValues:\n https://vita.had.co.nz/papers/letter-value-plot.pdf\n \n \"\"\"\n+ k_options = [\"tukey\", \"proportion\", \"trustworthy\", \"full\"]\n+ if isinstance(k_depth, str):\n+ _check_argument(\"k_depth\", k_options, k_depth)\n+ elif not isinstance(k_depth, int):\n+ err = (\n+ \"The `k_depth` parameter must be either an integer or string \"\n+ f\"(one of {k_options}), not {k_depth!r}.\"\n+ )\n+ raise TypeError(err)\n+\n+ self.k_depth = k_depth\n+ self.outlier_prop = outlier_prop\n+ self.trust_alpha = trust_alpha\n \n def _compute_k(self, n):\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/_statistics.py b/seaborn/_statistics.py\nindex 40346b02..4376a7fc 100644\n--- a/seaborn/_statistics.py\n+++ b/seaborn/_statistics.py\n@@ -602,19 +602,6 @@ class LetterValues:\n https://vita.had.co.nz/papers/letter-value-plot.pdf\n \n \"\"\"\n- k_options = [\"tukey\", \"proportion\", \"trustworthy\", \"full\"]\n- if isinstance(k_depth, str):\n- _check_argument(\"k_depth\", k_options, k_depth)\n- elif not isinstance(k_depth, int):\n- err = (\n- \"The `k_depth` parameter must be either an integer or string \"\n- f\"(one of {k_options}), not {k_depth!r}.\"\n- )\n- raise TypeError(err)\n-\n- self.k_depth = k_depth\n- self.outlier_prop = outlier_prop\n- self.trust_alpha = trust_alpha\n \n def _compute_k(self, n):\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_statistics.py.\nHere is the description for the function:\n def __init__(self, k_depth, outlier_prop, trust_alpha):\n \"\"\"\n Compute percentiles of a distribution using various tail stopping rules.\n\n Parameters\n ----------\n k_depth: \"tukey\", \"proportion\", \"trustworthy\", or \"full\"\n Stopping rule for choosing tail percentiled to show:\n\n - tukey: Show a similar number of outliers as in a conventional boxplot.\n - proportion: Show approximately `outlier_prop` outliers.\n - trust_alpha: Use `trust_alpha` level for most extreme tail percentile.\n\n outlier_prop: float\n Parameter for `k_depth=\"proportion\"` setting the expected outlier rate.\n trust_alpha: float\n Parameter for `k_depth=\"trustworthy\"` setting the confidence threshold.\n\n Notes\n -----\n Based on the proposal in this paper:\n https://vita.had.co.nz/papers/letter-value-plot.pdf\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_statistics.py::TestLetterValues::test_levels", "tests/test_statistics.py::TestLetterValues::test_values", "tests/test_statistics.py::TestLetterValues::test_fliers", "tests/test_statistics.py::TestLetterValues::test_median", "tests/test_statistics.py::TestLetterValues::test_k_depth_int", "tests/test_statistics.py::TestLetterValues::test_trust_alpha", "tests/test_statistics.py::TestLetterValues::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-14
1.0
{ "code": "diff --git b/seaborn/_statistics.py a/seaborn/_statistics.py\nindex e5e9c7bf..40346b02 100644\n--- b/seaborn/_statistics.py\n+++ a/seaborn/_statistics.py\n@@ -538,6 +538,22 @@ class WeightedAggregator:\n Additional keywords are passed to bootstrap when error_method is \"ci\".\n \n \"\"\"\n+ if estimator != \"mean\":\n+ # Note that, while other weighted estimators may make sense (e.g. median),\n+ # I'm not aware of an implementation in our dependencies. We can add one\n+ # in seaborn later, if there is sufficient interest. For now, limit to mean.\n+ raise ValueError(f\"Weighted estimator must be 'mean', not {estimator!r}.\")\n+ self.estimator = estimator\n+\n+ method, level = _validate_errorbar_arg(errorbar)\n+ if method is not None and method != \"ci\":\n+ # As with the estimator, weighted 'sd' or 'pi' error bars may make sense.\n+ # But we'll keep things simple for now and limit to (bootstrap) CI.\n+ raise ValueError(f\"Error bar method must be 'ci', not {method!r}.\")\n+ self.error_method = method\n+ self.error_level = level\n+\n+ self.boot_kws = boot_kws\n \n def __call__(self, data, var):\n \"\"\"Aggregate over `var` column of `data` with estimate and error interval.\"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_statistics.py b/seaborn/_statistics.py\nindex 40346b02..e5e9c7bf 100644\n--- a/seaborn/_statistics.py\n+++ b/seaborn/_statistics.py\n@@ -538,22 +538,6 @@ class WeightedAggregator:\n Additional keywords are passed to bootstrap when error_method is \"ci\".\n \n \"\"\"\n- if estimator != \"mean\":\n- # Note that, while other weighted estimators may make sense (e.g. median),\n- # I'm not aware of an implementation in our dependencies. We can add one\n- # in seaborn later, if there is sufficient interest. For now, limit to mean.\n- raise ValueError(f\"Weighted estimator must be 'mean', not {estimator!r}.\")\n- self.estimator = estimator\n-\n- method, level = _validate_errorbar_arg(errorbar)\n- if method is not None and method != \"ci\":\n- # As with the estimator, weighted 'sd' or 'pi' error bars may make sense.\n- # But we'll keep things simple for now and limit to (bootstrap) CI.\n- raise ValueError(f\"Error bar method must be 'ci', not {method!r}.\")\n- self.error_method = method\n- self.error_level = level\n-\n- self.boot_kws = boot_kws\n \n def __call__(self, data, var):\n \"\"\"Aggregate over `var` column of `data` with estimate and error interval.\"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_statistics.py.\nHere is the description for the function:\n def __init__(self, estimator, errorbar=None, **boot_kws):\n \"\"\"\n Data aggregator that produces a weighted estimate and error bar interval.\n\n Parameters\n ----------\n estimator : string\n Function (or method name) that maps a vector to a scalar. Currently\n supports only \"mean\".\n errorbar : string or (string, number) tuple\n Name of errorbar method or a tuple with a method name and a level parameter.\n Currently the only supported method is \"ci\".\n boot_kws\n Additional keywords are passed to bootstrap when error_method is \"ci\".\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_stats/test_aggregation.py::TestEst::test_weighted_mean", "tests/test_statistics.py::TestWeightedAggregator::test_weighted_mean", "tests/test_statistics.py::TestWeightedAggregator::test_weighted_ci", "tests/test_statistics.py::TestWeightedAggregator::test_limited_estimator", "tests/test_statistics.py::TestWeightedAggregator::test_limited_ci", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_relational.py::TestLinePlotter::test_weights", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate" ], "PASS_TO_PASS": null }
mwaskom__seaborn-15
1.0
{ "code": "diff --git b/seaborn/algorithms.py a/seaborn/algorithms.py\nindex 2ff5473a..2e34b9dd 100644\n--- b/seaborn/algorithms.py\n+++ a/seaborn/algorithms.py\n@@ -32,6 +32,73 @@ def bootstrap(*args, **kwargs):\n array of bootstrapped statistic values\n \n \"\"\"\n+ # Ensure list of arrays are same length\n+ if len(np.unique(list(map(len, args)))) > 1:\n+ raise ValueError(\"All input arrays must have the same length\")\n+ n = len(args[0])\n+\n+ # Default keyword arguments\n+ n_boot = kwargs.get(\"n_boot\", 10000)\n+ func = kwargs.get(\"func\", \"mean\")\n+ axis = kwargs.get(\"axis\", None)\n+ units = kwargs.get(\"units\", None)\n+ random_seed = kwargs.get(\"random_seed\", None)\n+ if random_seed is not None:\n+ msg = \"`random_seed` has been renamed to `seed` and will be removed\"\n+ warnings.warn(msg)\n+ seed = kwargs.get(\"seed\", random_seed)\n+ if axis is None:\n+ func_kwargs = dict()\n+ else:\n+ func_kwargs = dict(axis=axis)\n+\n+ # Initialize the resampler\n+ if isinstance(seed, np.random.RandomState):\n+ rng = seed\n+ else:\n+ rng = np.random.default_rng(seed)\n+\n+ # Coerce to arrays\n+ args = list(map(np.asarray, args))\n+ if units is not None:\n+ units = np.asarray(units)\n+\n+ if isinstance(func, str):\n+\n+ # Allow named numpy functions\n+ f = getattr(np, func)\n+\n+ # Try to use nan-aware version of function if necessary\n+ missing_data = np.isnan(np.sum(np.column_stack(args)))\n+\n+ if missing_data and not func.startswith(\"nan\"):\n+ nanf = getattr(np, f\"nan{func}\", None)\n+ if nanf is None:\n+ msg = f\"Data contain nans but no nan-aware version of `{func}` found\"\n+ warnings.warn(msg, UserWarning)\n+ else:\n+ f = nanf\n+\n+ else:\n+ f = func\n+\n+ # Handle numpy changes\n+ try:\n+ integers = rng.integers\n+ except AttributeError:\n+ integers = rng.randint\n+\n+ # Do the bootstrap\n+ if units is not None:\n+ return _structured_bootstrap(args, n_boot, units, f,\n+ func_kwargs, integers)\n+\n+ boot_dist = []\n+ for i in range(int(n_boot)):\n+ resampler = integers(0, n, n, dtype=np.intp) # intp is indexing dtype\n+ sample = [a.take(resampler, axis=0) for a in args]\n+ boot_dist.append(f(*sample, **func_kwargs))\n+ return np.array(boot_dist)\n \n \n def _structured_bootstrap(args, n_boot, units, func, func_kwargs, integers):\n", "test": null }
null
{ "code": "diff --git a/seaborn/algorithms.py b/seaborn/algorithms.py\nindex 2e34b9dd..2ff5473a 100644\n--- a/seaborn/algorithms.py\n+++ b/seaborn/algorithms.py\n@@ -32,73 +32,6 @@ def bootstrap(*args, **kwargs):\n array of bootstrapped statistic values\n \n \"\"\"\n- # Ensure list of arrays are same length\n- if len(np.unique(list(map(len, args)))) > 1:\n- raise ValueError(\"All input arrays must have the same length\")\n- n = len(args[0])\n-\n- # Default keyword arguments\n- n_boot = kwargs.get(\"n_boot\", 10000)\n- func = kwargs.get(\"func\", \"mean\")\n- axis = kwargs.get(\"axis\", None)\n- units = kwargs.get(\"units\", None)\n- random_seed = kwargs.get(\"random_seed\", None)\n- if random_seed is not None:\n- msg = \"`random_seed` has been renamed to `seed` and will be removed\"\n- warnings.warn(msg)\n- seed = kwargs.get(\"seed\", random_seed)\n- if axis is None:\n- func_kwargs = dict()\n- else:\n- func_kwargs = dict(axis=axis)\n-\n- # Initialize the resampler\n- if isinstance(seed, np.random.RandomState):\n- rng = seed\n- else:\n- rng = np.random.default_rng(seed)\n-\n- # Coerce to arrays\n- args = list(map(np.asarray, args))\n- if units is not None:\n- units = np.asarray(units)\n-\n- if isinstance(func, str):\n-\n- # Allow named numpy functions\n- f = getattr(np, func)\n-\n- # Try to use nan-aware version of function if necessary\n- missing_data = np.isnan(np.sum(np.column_stack(args)))\n-\n- if missing_data and not func.startswith(\"nan\"):\n- nanf = getattr(np, f\"nan{func}\", None)\n- if nanf is None:\n- msg = f\"Data contain nans but no nan-aware version of `{func}` found\"\n- warnings.warn(msg, UserWarning)\n- else:\n- f = nanf\n-\n- else:\n- f = func\n-\n- # Handle numpy changes\n- try:\n- integers = rng.integers\n- except AttributeError:\n- integers = rng.randint\n-\n- # Do the bootstrap\n- if units is not None:\n- return _structured_bootstrap(args, n_boot, units, f,\n- func_kwargs, integers)\n-\n- boot_dist = []\n- for i in range(int(n_boot)):\n- resampler = integers(0, n, n, dtype=np.intp) # intp is indexing dtype\n- sample = [a.take(resampler, axis=0) for a in args]\n- boot_dist.append(f(*sample, **func_kwargs))\n- return np.array(boot_dist)\n \n \n def _structured_bootstrap(args, n_boot, units, func, func_kwargs, integers):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/algorithms.py.\nHere is the description for the function:\ndef bootstrap(*args, **kwargs):\n \"\"\"Resample one or more arrays with replacement and store aggregate values.\n\n Positional arguments are a sequence of arrays to bootstrap along the first\n axis and pass to a summary function.\n\n Keyword arguments:\n n_boot : int, default=10000\n Number of iterations\n axis : int, default=None\n Will pass axis to ``func`` as a keyword argument.\n units : array, default=None\n Array of sampling unit IDs. When used the bootstrap resamples units\n and then observations within units instead of individual\n datapoints.\n func : string or callable, default=\"mean\"\n Function to call on the args that are passed in. If string, uses as\n name of function in the numpy namespace. If nans are present in the\n data, will try to use nan-aware version of named function.\n seed : Generator | SeedSequence | RandomState | int | None\n Seed for the random number generator; useful if you want\n reproducible resamples.\n\n Returns\n -------\n boot_dist: array\n array of bootstrapped statistic values\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_algorithms.py::test_bootstrap", "tests/test_algorithms.py::test_bootstrap_length", "tests/test_algorithms.py::test_bootstrap_range", "tests/test_algorithms.py::test_bootstrap_multiarg", "tests/test_algorithms.py::test_bootstrap_axis", "tests/test_algorithms.py::test_bootstrap_seed", "tests/test_algorithms.py::test_bootstrap_ols", "tests/_stats/test_aggregation.py::TestEst::test_weighted_mean", "tests/test_regression.py::TestRegressionPlotter::test_regress_logx", "tests/test_algorithms.py::test_bootstrap_units", "tests/_stats/test_aggregation.py::TestEst::test_seed", "tests/test_regression.py::TestRegressionPlotter::test_regress_bootstrap_seed", "tests/test_algorithms.py::test_bootstrap_arglength", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_algorithms.py::test_bootstrap_string_func", "tests/test_algorithms.py::test_bootstrap_reproducibility", "tests/test_algorithms.py::test_nanaware_func_auto", "tests/test_algorithms.py::test_nanaware_func_warning", "tests/test_regression.py::TestRegressionPlotter::test_estimate_data", "tests/test_regression.py::TestRegressionPlotter::test_estimate_cis", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_regression.py::TestRegressionPlotter::test_estimate_units", "tests/test_regression.py::TestRegressionPlotter::test_regression_limits", "tests/test_regression.py::TestRegressionPlots::test_regplot_basic", "tests/test_regression.py::TestRegressionPlots::test_regplot_selective", "tests/test_regression.py::TestRegressionPlots::test_regplot_scatter_kws_alpha", "tests/test_regression.py::TestRegressionPlots::test_regplot_binned", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_statistics.py::TestEstimateAggregator::test_ci_errorbars", "tests/test_statistics.py::TestWeightedAggregator::test_weighted_ci", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs16]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs17]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs18]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[pointplot-kwargs19]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_regression.py::TestRegressionPlots::test_three_point_colors", "tests/test_regression.py::TestRegressionPlots::test_regplot_xlim", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_relational.py::TestLinePlotter::test_color", "tests/test_relational.py::TestLinePlotter::test_legend_no_semantics", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[size]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_relational.py::TestLinePlotter::test_weights", "tests/test_relational.py::TestLinePlotter::test_matplotlib_kwargs", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_style", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_relational.py::TestLinePlotter::test_ci_deprecation", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_color", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_color", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_log_scale[x]", "tests/test_categorical.py::TestPointPlot::test_log_scale[y]", "tests/test_categorical.py::TestPointPlot::test_single_var[x]", "tests/test_categorical.py::TestPointPlot::test_single_var[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_weighted_estimate", "tests/test_categorical.py::TestPointPlot::test_estimate_log_transform", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_share_xy" ], "PASS_TO_PASS": null }
mwaskom__seaborn-16
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 35ce8622..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -653,6 +653,32 @@ class FacetGrid(Grid):\n is None.\n \n \"\"\"\n+ data = self.data\n+\n+ # Construct masks for the row variable\n+ if self.row_names:\n+ row_masks = [data[self._row_var] == n for n in self.row_names]\n+ else:\n+ row_masks = [np.repeat(True, len(self.data))]\n+\n+ # Construct masks for the column variable\n+ if self.col_names:\n+ col_masks = [data[self._col_var] == n for n in self.col_names]\n+ else:\n+ col_masks = [np.repeat(True, len(self.data))]\n+\n+ # Construct masks for the hue variable\n+ if self.hue_names:\n+ hue_masks = [data[self._hue_var] == n for n in self.hue_names]\n+ else:\n+ hue_masks = [np.repeat(True, len(self.data))]\n+\n+ # Here is the main generator loop\n+ for (i, row), (j, col), (k, hue) in product(enumerate(row_masks),\n+ enumerate(col_masks),\n+ enumerate(hue_masks)):\n+ data_ijk = data[row & col & hue & self._not_na]\n+ yield (i, j, k), data_ijk\n \n def map(self, func, *args, **kwargs):\n \"\"\"Apply a plotting function to each facet's subset of the data.\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..35ce8622 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -653,32 +653,6 @@ class FacetGrid(Grid):\n is None.\n \n \"\"\"\n- data = self.data\n-\n- # Construct masks for the row variable\n- if self.row_names:\n- row_masks = [data[self._row_var] == n for n in self.row_names]\n- else:\n- row_masks = [np.repeat(True, len(self.data))]\n-\n- # Construct masks for the column variable\n- if self.col_names:\n- col_masks = [data[self._col_var] == n for n in self.col_names]\n- else:\n- col_masks = [np.repeat(True, len(self.data))]\n-\n- # Construct masks for the hue variable\n- if self.hue_names:\n- hue_masks = [data[self._hue_var] == n for n in self.hue_names]\n- else:\n- hue_masks = [np.repeat(True, len(self.data))]\n-\n- # Here is the main generator loop\n- for (i, row), (j, col), (k, hue) in product(enumerate(row_masks),\n- enumerate(col_masks),\n- enumerate(hue_masks)):\n- data_ijk = data[row & col & hue & self._not_na]\n- yield (i, j, k), data_ijk\n \n def map(self, func, *args, **kwargs):\n \"\"\"Apply a plotting function to each facet's subset of the data.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def facet_data(self):\n \"\"\"Generator for name indices and data subsets for each facet.\n\n Yields\n ------\n (i, j, k), data_ijk : tuple of ints, DataFrame\n The ints provide an index into the {row, col, hue}_names attribute,\n and the dataframe contains a subset of the full data corresponding\n to each facet. The generator yields subsets that correspond with\n the self.axes.flat iterator, or self.axes[i, j] when `col_wrap`\n is None.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-17
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 2b6b77f7..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -703,6 +703,64 @@ class FacetGrid(Grid):\n Returns self.\n \n \"\"\"\n+ # If color was a keyword argument, grab it here\n+ kw_color = kwargs.pop(\"color\", None)\n+\n+ # How we use the function depends on where it comes from\n+ func_module = str(getattr(func, \"__module__\", \"\"))\n+\n+ # Check for categorical plots without order information\n+ if func_module == \"seaborn.categorical\":\n+ if \"order\" not in kwargs:\n+ warning = (\"Using the {} function without specifying \"\n+ \"`order` is likely to produce an incorrect \"\n+ \"plot.\".format(func.__name__))\n+ warnings.warn(warning)\n+ if len(args) == 3 and \"hue_order\" not in kwargs:\n+ warning = (\"Using the {} function without specifying \"\n+ \"`hue_order` is likely to produce an incorrect \"\n+ \"plot.\".format(func.__name__))\n+ warnings.warn(warning)\n+\n+ # Iterate over the data subsets\n+ for (row_i, col_j, hue_k), data_ijk in self.facet_data():\n+\n+ # If this subset is null, move on\n+ if not data_ijk.values.size:\n+ continue\n+\n+ # Get the current axis\n+ modify_state = not func_module.startswith(\"seaborn\")\n+ ax = self.facet_axis(row_i, col_j, modify_state)\n+\n+ # Decide what color to plot with\n+ kwargs[\"color\"] = self._facet_color(hue_k, kw_color)\n+\n+ # Insert the other hue aesthetics if appropriate\n+ for kw, val_list in self.hue_kws.items():\n+ kwargs[kw] = val_list[hue_k]\n+\n+ # Insert a label in the keyword arguments for the legend\n+ if self._hue_var is not None:\n+ kwargs[\"label\"] = utils.to_utf8(self.hue_names[hue_k])\n+\n+ # Get the actual data we are going to plot with\n+ plot_data = data_ijk[list(args)]\n+ if self._dropna:\n+ plot_data = plot_data.dropna()\n+ plot_args = [v for k, v in plot_data.items()]\n+\n+ # Some matplotlib functions don't handle pandas objects correctly\n+ if func_module.startswith(\"matplotlib\"):\n+ plot_args = [v.values for v in plot_args]\n+\n+ # Draw the plot\n+ self._facet_plot(func, ax, plot_args, kwargs)\n+\n+ # Finalize the annotations and layout\n+ self._finalize_grid(args[:2])\n+\n+ return self\n \n def map_dataframe(self, func, *args, **kwargs):\n \"\"\"Like ``.map`` but passes args as strings and inserts data in kwargs.\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..2b6b77f7 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -703,64 +703,6 @@ class FacetGrid(Grid):\n Returns self.\n \n \"\"\"\n- # If color was a keyword argument, grab it here\n- kw_color = kwargs.pop(\"color\", None)\n-\n- # How we use the function depends on where it comes from\n- func_module = str(getattr(func, \"__module__\", \"\"))\n-\n- # Check for categorical plots without order information\n- if func_module == \"seaborn.categorical\":\n- if \"order\" not in kwargs:\n- warning = (\"Using the {} function without specifying \"\n- \"`order` is likely to produce an incorrect \"\n- \"plot.\".format(func.__name__))\n- warnings.warn(warning)\n- if len(args) == 3 and \"hue_order\" not in kwargs:\n- warning = (\"Using the {} function without specifying \"\n- \"`hue_order` is likely to produce an incorrect \"\n- \"plot.\".format(func.__name__))\n- warnings.warn(warning)\n-\n- # Iterate over the data subsets\n- for (row_i, col_j, hue_k), data_ijk in self.facet_data():\n-\n- # If this subset is null, move on\n- if not data_ijk.values.size:\n- continue\n-\n- # Get the current axis\n- modify_state = not func_module.startswith(\"seaborn\")\n- ax = self.facet_axis(row_i, col_j, modify_state)\n-\n- # Decide what color to plot with\n- kwargs[\"color\"] = self._facet_color(hue_k, kw_color)\n-\n- # Insert the other hue aesthetics if appropriate\n- for kw, val_list in self.hue_kws.items():\n- kwargs[kw] = val_list[hue_k]\n-\n- # Insert a label in the keyword arguments for the legend\n- if self._hue_var is not None:\n- kwargs[\"label\"] = utils.to_utf8(self.hue_names[hue_k])\n-\n- # Get the actual data we are going to plot with\n- plot_data = data_ijk[list(args)]\n- if self._dropna:\n- plot_data = plot_data.dropna()\n- plot_args = [v for k, v in plot_data.items()]\n-\n- # Some matplotlib functions don't handle pandas objects correctly\n- if func_module.startswith(\"matplotlib\"):\n- plot_args = [v.values for v in plot_args]\n-\n- # Draw the plot\n- self._facet_plot(func, ax, plot_args, kwargs)\n-\n- # Finalize the annotations and layout\n- self._finalize_grid(args[:2])\n-\n- return self\n \n def map_dataframe(self, func, *args, **kwargs):\n \"\"\"Like ``.map`` but passes args as strings and inserts data in kwargs.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def map(self, func, *args, **kwargs):\n \"\"\"Apply a plotting function to each facet's subset of the data.\n\n Parameters\n ----------\n func : callable\n A plotting function that takes data and keyword arguments. It\n must plot to the currently active matplotlib Axes and take a\n `color` keyword argument. If faceting on the `hue` dimension,\n it must also take a `label` keyword argument.\n args : strings\n Column names in self.data that identify variables with data to\n plot. The data for each variable is passed to `func` in the\n order the variables are specified in the call.\n kwargs : keyword arguments\n All keyword arguments are passed to the plotting function.\n\n Returns\n -------\n self : object\n Returns self.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_utils.py::test_move_legend_grid_object", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange" ], "PASS_TO_PASS": null }
mwaskom__seaborn-18
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex b1312123..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -791,6 +791,48 @@ class FacetGrid(Grid):\n \n \"\"\"\n \n+ # If color was a keyword argument, grab it here\n+ kw_color = kwargs.pop(\"color\", None)\n+\n+ # Iterate over the data subsets\n+ for (row_i, col_j, hue_k), data_ijk in self.facet_data():\n+\n+ # If this subset is null, move on\n+ if not data_ijk.values.size:\n+ continue\n+\n+ # Get the current axis\n+ modify_state = not str(func.__module__).startswith(\"seaborn\")\n+ ax = self.facet_axis(row_i, col_j, modify_state)\n+\n+ # Decide what color to plot with\n+ kwargs[\"color\"] = self._facet_color(hue_k, kw_color)\n+\n+ # Insert the other hue aesthetics if appropriate\n+ for kw, val_list in self.hue_kws.items():\n+ kwargs[kw] = val_list[hue_k]\n+\n+ # Insert a label in the keyword arguments for the legend\n+ if self._hue_var is not None:\n+ kwargs[\"label\"] = self.hue_names[hue_k]\n+\n+ # Stick the facet dataframe into the kwargs\n+ if self._dropna:\n+ data_ijk = data_ijk.dropna()\n+ kwargs[\"data\"] = data_ijk\n+\n+ # Draw the plot\n+ self._facet_plot(func, ax, args, kwargs)\n+\n+ # For axis labels, prefer to use positional args for backcompat\n+ # but also extract the x/y kwargs and use if no corresponding arg\n+ axis_labels = [kwargs.get(\"x\", None), kwargs.get(\"y\", None)]\n+ for i, val in enumerate(args[:2]):\n+ axis_labels[i] = val\n+ self._finalize_grid(axis_labels)\n+\n+ return self\n+\n def _facet_color(self, hue_index, kw_color):\n \n color = self._colors[hue_index]\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..b1312123 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -791,48 +791,6 @@ class FacetGrid(Grid):\n \n \"\"\"\n \n- # If color was a keyword argument, grab it here\n- kw_color = kwargs.pop(\"color\", None)\n-\n- # Iterate over the data subsets\n- for (row_i, col_j, hue_k), data_ijk in self.facet_data():\n-\n- # If this subset is null, move on\n- if not data_ijk.values.size:\n- continue\n-\n- # Get the current axis\n- modify_state = not str(func.__module__).startswith(\"seaborn\")\n- ax = self.facet_axis(row_i, col_j, modify_state)\n-\n- # Decide what color to plot with\n- kwargs[\"color\"] = self._facet_color(hue_k, kw_color)\n-\n- # Insert the other hue aesthetics if appropriate\n- for kw, val_list in self.hue_kws.items():\n- kwargs[kw] = val_list[hue_k]\n-\n- # Insert a label in the keyword arguments for the legend\n- if self._hue_var is not None:\n- kwargs[\"label\"] = self.hue_names[hue_k]\n-\n- # Stick the facet dataframe into the kwargs\n- if self._dropna:\n- data_ijk = data_ijk.dropna()\n- kwargs[\"data\"] = data_ijk\n-\n- # Draw the plot\n- self._facet_plot(func, ax, args, kwargs)\n-\n- # For axis labels, prefer to use positional args for backcompat\n- # but also extract the x/y kwargs and use if no corresponding arg\n- axis_labels = [kwargs.get(\"x\", None), kwargs.get(\"y\", None)]\n- for i, val in enumerate(args[:2]):\n- axis_labels[i] = val\n- self._finalize_grid(axis_labels)\n-\n- return self\n-\n def _facet_color(self, hue_index, kw_color):\n \n color = self._colors[hue_index]\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def map_dataframe(self, func, *args, **kwargs):\n \"\"\"Like ``.map`` but passes args as strings and inserts data in kwargs.\n\n This method is suitable for plotting with functions that accept a\n long-form DataFrame as a `data` keyword argument and access the\n data in that DataFrame using string variable names.\n\n Parameters\n ----------\n func : callable\n A plotting function that takes data and keyword arguments. Unlike\n the `map` method, a function used here must \"understand\" Pandas\n objects. It also must plot to the currently active matplotlib Axes\n and take a `color` keyword argument. If faceting on the `hue`\n dimension, it must also take a `label` keyword argument.\n args : strings\n Column names in self.data that identify variables with data to\n plot. The data for each variable is passed to `func` in the\n order the variables are specified in the call.\n kwargs : keyword arguments\n All keyword arguments are passed to the plotting function.\n\n Returns\n -------\n self : object\n Returns self.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-19
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 296907d1..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1055,6 +1055,16 @@ class FacetGrid(Grid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n+ line_kws['color'] = color\n+ line_kws['linestyle'] = linestyle\n+\n+ if x is not None:\n+ self.map(plt.axvline, x=x, **line_kws)\n+\n+ if y is not None:\n+ self.map(plt.axhline, y=y, **line_kws)\n+\n+ return self\n \n # ------ Properties that are part of the public API and documented by Sphinx\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..296907d1 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1055,16 +1055,6 @@ class FacetGrid(Grid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n- line_kws['color'] = color\n- line_kws['linestyle'] = linestyle\n-\n- if x is not None:\n- self.map(plt.axvline, x=x, **line_kws)\n-\n- if y is not None:\n- self.map(plt.axhline, y=y, **line_kws)\n-\n- return self\n \n # ------ Properties that are part of the public API and documented by Sphinx\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def refline(self, *, x=None, y=None, color='.5', linestyle='--', **line_kws):\n \"\"\"Add a reference line(s) to each facet.\n\n Parameters\n ----------\n x, y : numeric\n Value(s) to draw the line(s) at.\n color : :mod:`matplotlib color <matplotlib.colors>`\n Specifies the color of the reference line(s). Pass ``color=None`` to\n use ``hue`` mapping.\n linestyle : str\n Specifies the style of the reference line(s).\n line_kws : key, value mappings\n Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`\n when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``\n is not None.\n\n Returns\n -------\n :class:`FacetGrid` instance\n Returns ``self`` for easy method chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestFacetGrid::test_refline" ], "PASS_TO_PASS": null }
mwaskom__seaborn-20
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 1ff7828f..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -963,6 +963,74 @@ class FacetGrid(Grid):\n Returns self.\n \n \"\"\"\n+ args = dict(row_var=self._row_var, col_var=self._col_var)\n+ kwargs[\"size\"] = kwargs.pop(\"size\", mpl.rcParams[\"axes.labelsize\"])\n+\n+ # Establish default templates\n+ if row_template is None:\n+ row_template = \"{row_var} = {row_name}\"\n+ if col_template is None:\n+ col_template = \"{col_var} = {col_name}\"\n+ if template is None:\n+ if self._row_var is None:\n+ template = col_template\n+ elif self._col_var is None:\n+ template = row_template\n+ else:\n+ template = \" | \".join([row_template, col_template])\n+\n+ row_template = utils.to_utf8(row_template)\n+ col_template = utils.to_utf8(col_template)\n+ template = utils.to_utf8(template)\n+\n+ if self._margin_titles:\n+\n+ # Remove any existing title texts\n+ for text in self._margin_titles_texts:\n+ text.remove()\n+ self._margin_titles_texts = []\n+\n+ if self.row_names is not None:\n+ # Draw the row titles on the right edge of the grid\n+ for i, row_name in enumerate(self.row_names):\n+ ax = self.axes[i, -1]\n+ args.update(dict(row_name=row_name))\n+ title = row_template.format(**args)\n+ text = ax.annotate(\n+ title, xy=(1.02, .5), xycoords=\"axes fraction\",\n+ rotation=270, ha=\"left\", va=\"center\",\n+ **kwargs\n+ )\n+ self._margin_titles_texts.append(text)\n+\n+ if self.col_names is not None:\n+ # Draw the column titles as normal titles\n+ for j, col_name in enumerate(self.col_names):\n+ args.update(dict(col_name=col_name))\n+ title = col_template.format(**args)\n+ self.axes[0, j].set_title(title, **kwargs)\n+\n+ return self\n+\n+ # Otherwise title each facet with all the necessary information\n+ if (self._row_var is not None) and (self._col_var is not None):\n+ for i, row_name in enumerate(self.row_names):\n+ for j, col_name in enumerate(self.col_names):\n+ args.update(dict(row_name=row_name, col_name=col_name))\n+ title = template.format(**args)\n+ self.axes[i, j].set_title(title, **kwargs)\n+ elif self.row_names is not None and len(self.row_names):\n+ for i, row_name in enumerate(self.row_names):\n+ args.update(dict(row_name=row_name))\n+ title = template.format(**args)\n+ self.axes[i, 0].set_title(title, **kwargs)\n+ elif self.col_names is not None and len(self.col_names):\n+ for i, col_name in enumerate(self.col_names):\n+ args.update(dict(col_name=col_name))\n+ title = template.format(**args)\n+ # Index the flat array so col_wrap works\n+ self.axes.flat[i].set_title(title, **kwargs)\n+ return self\n \n def refline(self, *, x=None, y=None, color='.5', linestyle='--', **line_kws):\n \"\"\"Add a reference line(s) to each facet.\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..1ff7828f 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -963,74 +963,6 @@ class FacetGrid(Grid):\n Returns self.\n \n \"\"\"\n- args = dict(row_var=self._row_var, col_var=self._col_var)\n- kwargs[\"size\"] = kwargs.pop(\"size\", mpl.rcParams[\"axes.labelsize\"])\n-\n- # Establish default templates\n- if row_template is None:\n- row_template = \"{row_var} = {row_name}\"\n- if col_template is None:\n- col_template = \"{col_var} = {col_name}\"\n- if template is None:\n- if self._row_var is None:\n- template = col_template\n- elif self._col_var is None:\n- template = row_template\n- else:\n- template = \" | \".join([row_template, col_template])\n-\n- row_template = utils.to_utf8(row_template)\n- col_template = utils.to_utf8(col_template)\n- template = utils.to_utf8(template)\n-\n- if self._margin_titles:\n-\n- # Remove any existing title texts\n- for text in self._margin_titles_texts:\n- text.remove()\n- self._margin_titles_texts = []\n-\n- if self.row_names is not None:\n- # Draw the row titles on the right edge of the grid\n- for i, row_name in enumerate(self.row_names):\n- ax = self.axes[i, -1]\n- args.update(dict(row_name=row_name))\n- title = row_template.format(**args)\n- text = ax.annotate(\n- title, xy=(1.02, .5), xycoords=\"axes fraction\",\n- rotation=270, ha=\"left\", va=\"center\",\n- **kwargs\n- )\n- self._margin_titles_texts.append(text)\n-\n- if self.col_names is not None:\n- # Draw the column titles as normal titles\n- for j, col_name in enumerate(self.col_names):\n- args.update(dict(col_name=col_name))\n- title = col_template.format(**args)\n- self.axes[0, j].set_title(title, **kwargs)\n-\n- return self\n-\n- # Otherwise title each facet with all the necessary information\n- if (self._row_var is not None) and (self._col_var is not None):\n- for i, row_name in enumerate(self.row_names):\n- for j, col_name in enumerate(self.col_names):\n- args.update(dict(row_name=row_name, col_name=col_name))\n- title = template.format(**args)\n- self.axes[i, j].set_title(title, **kwargs)\n- elif self.row_names is not None and len(self.row_names):\n- for i, row_name in enumerate(self.row_names):\n- args.update(dict(row_name=row_name))\n- title = template.format(**args)\n- self.axes[i, 0].set_title(title, **kwargs)\n- elif self.col_names is not None and len(self.col_names):\n- for i, col_name in enumerate(self.col_names):\n- args.update(dict(col_name=col_name))\n- title = template.format(**args)\n- # Index the flat array so col_wrap works\n- self.axes.flat[i].set_title(title, **kwargs)\n- return self\n \n def refline(self, *, x=None, y=None, color='.5', linestyle='--', **line_kws):\n \"\"\"Add a reference line(s) to each facet.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def set_titles(self, template=None, row_template=None, col_template=None, **kwargs):\n \"\"\"Draw titles either above each facet or on the grid margins.\n\n Parameters\n ----------\n template : string\n Template for all titles with the formatting keys {col_var} and\n {col_name} (if using a `col` faceting variable) and/or {row_var}\n and {row_name} (if using a `row` faceting variable).\n row_template:\n Template for the row variable when titles are drawn on the grid\n margins. Must have {row_var} and {row_name} formatting keys.\n col_template:\n Template for the column variable when titles are drawn on the grid\n margins. Must have {col_var} and {col_name} formatting keys.\n\n Returns\n -------\n self: object\n Returns self.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_axisgrid.py::TestFacetGrid::test_self_data", "tests/test_axisgrid.py::TestFacetGrid::test_self_figure", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_subplot_kws", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_column_missing_categories", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_axisgrid.py::TestFacetGrid::test_apply", "tests/test_axisgrid.py::TestFacetGrid::test_pipe", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_distributions.py::TestDisPlot::test_empty", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-21
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex b8333041..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -151,6 +151,81 @@ class Grid(_BaseGrid):\n Returns self for easy chaining.\n \n \"\"\"\n+ # Find the data for the legend\n+ if legend_data is None:\n+ legend_data = self._legend_data\n+ if label_order is None:\n+ if self.hue_names is None:\n+ label_order = list(legend_data.keys())\n+ else:\n+ label_order = list(map(utils.to_utf8, self.hue_names))\n+\n+ blank_handle = mpl.patches.Patch(alpha=0, linewidth=0)\n+ handles = [legend_data.get(lab, blank_handle) for lab in label_order]\n+ title = self._hue_var if title is None else title\n+ title_size = mpl.rcParams[\"legend.title_fontsize\"]\n+\n+ # Unpack nested labels from a hierarchical legend\n+ labels = []\n+ for entry in label_order:\n+ if isinstance(entry, tuple):\n+ _, label = entry\n+ else:\n+ label = entry\n+ labels.append(label)\n+\n+ # Set default legend kwargs\n+ kwargs.setdefault(\"scatterpoints\", 1)\n+\n+ if self._legend_out:\n+\n+ kwargs.setdefault(\"frameon\", False)\n+ kwargs.setdefault(\"loc\", \"center right\")\n+\n+ # Draw a full-figure legend outside the grid\n+ figlegend = self._figure.legend(handles, labels, **kwargs)\n+\n+ self._legend = figlegend\n+ figlegend.set_title(title, prop={\"size\": title_size})\n+\n+ if adjust_subtitles:\n+ adjust_legend_subtitles(figlegend)\n+\n+ # Draw the plot to set the bounding boxes correctly\n+ _draw_figure(self._figure)\n+\n+ # Calculate and set the new width of the figure so the legend fits\n+ legend_width = figlegend.get_window_extent().width / self._figure.dpi\n+ fig_width, fig_height = self._figure.get_size_inches()\n+ self._figure.set_size_inches(fig_width + legend_width, fig_height)\n+\n+ # Draw the plot again to get the new transformations\n+ _draw_figure(self._figure)\n+\n+ # Now calculate how much space we need on the right side\n+ legend_width = figlegend.get_window_extent().width / self._figure.dpi\n+ space_needed = legend_width / (fig_width + legend_width)\n+ margin = .04 if self._margin_titles else .01\n+ self._space_needed = margin + space_needed\n+ right = 1 - self._space_needed\n+\n+ # Place the subplot axes to give space for the legend\n+ self._figure.subplots_adjust(right=right)\n+ self._tight_layout_rect[2] = right\n+\n+ else:\n+ # Draw a legend in the first axis\n+ ax = self.axes.flat[0]\n+ kwargs.setdefault(\"loc\", \"best\")\n+\n+ leg = ax.legend(handles, labels, **kwargs)\n+ leg.set_title(title, prop={\"size\": title_size})\n+ self._legend = leg\n+\n+ if adjust_subtitles:\n+ adjust_legend_subtitles(leg)\n+\n+ return self\n \n def _update_legend_data(self, ax):\n \"\"\"Extract the legend data from an axes object and save it.\"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..b8333041 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -151,81 +151,6 @@ class Grid(_BaseGrid):\n Returns self for easy chaining.\n \n \"\"\"\n- # Find the data for the legend\n- if legend_data is None:\n- legend_data = self._legend_data\n- if label_order is None:\n- if self.hue_names is None:\n- label_order = list(legend_data.keys())\n- else:\n- label_order = list(map(utils.to_utf8, self.hue_names))\n-\n- blank_handle = mpl.patches.Patch(alpha=0, linewidth=0)\n- handles = [legend_data.get(lab, blank_handle) for lab in label_order]\n- title = self._hue_var if title is None else title\n- title_size = mpl.rcParams[\"legend.title_fontsize\"]\n-\n- # Unpack nested labels from a hierarchical legend\n- labels = []\n- for entry in label_order:\n- if isinstance(entry, tuple):\n- _, label = entry\n- else:\n- label = entry\n- labels.append(label)\n-\n- # Set default legend kwargs\n- kwargs.setdefault(\"scatterpoints\", 1)\n-\n- if self._legend_out:\n-\n- kwargs.setdefault(\"frameon\", False)\n- kwargs.setdefault(\"loc\", \"center right\")\n-\n- # Draw a full-figure legend outside the grid\n- figlegend = self._figure.legend(handles, labels, **kwargs)\n-\n- self._legend = figlegend\n- figlegend.set_title(title, prop={\"size\": title_size})\n-\n- if adjust_subtitles:\n- adjust_legend_subtitles(figlegend)\n-\n- # Draw the plot to set the bounding boxes correctly\n- _draw_figure(self._figure)\n-\n- # Calculate and set the new width of the figure so the legend fits\n- legend_width = figlegend.get_window_extent().width / self._figure.dpi\n- fig_width, fig_height = self._figure.get_size_inches()\n- self._figure.set_size_inches(fig_width + legend_width, fig_height)\n-\n- # Draw the plot again to get the new transformations\n- _draw_figure(self._figure)\n-\n- # Now calculate how much space we need on the right side\n- legend_width = figlegend.get_window_extent().width / self._figure.dpi\n- space_needed = legend_width / (fig_width + legend_width)\n- margin = .04 if self._margin_titles else .01\n- self._space_needed = margin + space_needed\n- right = 1 - self._space_needed\n-\n- # Place the subplot axes to give space for the legend\n- self._figure.subplots_adjust(right=right)\n- self._tight_layout_rect[2] = right\n-\n- else:\n- # Draw a legend in the first axis\n- ax = self.axes.flat[0]\n- kwargs.setdefault(\"loc\", \"best\")\n-\n- leg = ax.legend(handles, labels, **kwargs)\n- leg.set_title(title, prop={\"size\": title_size})\n- self._legend = leg\n-\n- if adjust_subtitles:\n- adjust_legend_subtitles(leg)\n-\n- return self\n \n def _update_legend_data(self, ax):\n \"\"\"Extract the legend data from an axes object and save it.\"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def add_legend(self, legend_data=None, title=None, label_order=None,\n adjust_subtitles=False, **kwargs):\n \"\"\"Draw a legend, maybe placing it outside axes and resizing the figure.\n\n Parameters\n ----------\n legend_data : dict\n Dictionary mapping label names (or two-element tuples where the\n second element is a label name) to matplotlib artist handles. The\n default reads from ``self._legend_data``.\n title : string\n Title for the legend. The default reads from ``self._hue_var``.\n label_order : list of labels\n The order that the legend entries should appear in. The default\n reads from ``self.hue_names``.\n adjust_subtitles : bool\n If True, modify entries with invisible artists to left-align\n the labels and set the font size to that of a title.\n kwargs : key, value pairings\n Other keyword arguments are passed to the underlying legend methods\n on the Figure or Axes object.\n\n Returns\n -------\n self : Grid instance\n Returns self for easy chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-22
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 7c01ad95..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -301,6 +301,9 @@ class Grid(_BaseGrid):\n Returns self for easy chaining.\n \n \"\"\"\n+ for ax in self.figure.axes:\n+ ax.tick_params(axis=axis, **kwargs)\n+ return self\n \n \n _facet_docs = dict(\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..7c01ad95 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -301,9 +301,6 @@ class Grid(_BaseGrid):\n Returns self for easy chaining.\n \n \"\"\"\n- for ax in self.figure.axes:\n- ax.tick_params(axis=axis, **kwargs)\n- return self\n \n \n _facet_docs = dict(\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def tick_params(self, axis='both', **kwargs):\n \"\"\"Modify the ticks, tick labels, and gridlines.\n\n Parameters\n ----------\n axis : {'x', 'y', 'both'}\n The axis on which to apply the formatting.\n kwargs : keyword arguments\n Additional keyword arguments to pass to\n :meth:`matplotlib.axes.Axes.tick_params`.\n\n Returns\n -------\n self : Grid instance\n Returns self for easy chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_axisgrid.py::TestPairGrid::test_tick_params" ], "PASS_TO_PASS": null }
mwaskom__seaborn-23
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 847b0f7b..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1795,6 +1795,9 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n+ self.plot_marginals(marginal_func, **kwargs)\n+ self.plot_joint(joint_func, **kwargs)\n+ return self\n \n def plot_joint(self, func, **kwargs):\n \"\"\"Draw a bivariate plot on the joint axes of the grid.\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..847b0f7b 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1795,9 +1795,6 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n- self.plot_marginals(marginal_func, **kwargs)\n- self.plot_joint(joint_func, **kwargs)\n- return self\n \n def plot_joint(self, func, **kwargs):\n \"\"\"Draw a bivariate plot on the joint axes of the grid.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def plot(self, joint_func, marginal_func, **kwargs):\n \"\"\"Draw the plot by passing functions for joint and marginal axes.\n\n This method passes the ``kwargs`` dictionary to both functions. If you\n need more control, call :meth:`JointGrid.plot_joint` and\n :meth:`JointGrid.plot_marginals` directly with specific parameters.\n\n Parameters\n ----------\n joint_func, marginal_func : callables\n Functions to draw the bivariate and univariate plots. See methods\n referenced above for information about the required characteristics\n of these functions.\n kwargs\n Additional keyword arguments are passed to both functions.\n\n Returns\n -------\n :class:`JointGrid` instance\n Returns ``self`` for easy method chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_axisgrid.py::TestJointGrid::test_refline" ], "PASS_TO_PASS": null }
mwaskom__seaborn-24
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex e373efe2..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1819,6 +1819,21 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n+ kwargs = kwargs.copy()\n+ if str(func.__module__).startswith(\"seaborn\"):\n+ kwargs[\"ax\"] = self.ax_joint\n+ else:\n+ plt.sca(self.ax_joint)\n+ if self.hue is not None:\n+ kwargs[\"hue\"] = self.hue\n+ self._inject_kwargs(func, kwargs, self._hue_params)\n+\n+ if str(func.__module__).startswith(\"seaborn\"):\n+ func(x=self.x, y=self.y, **kwargs)\n+ else:\n+ func(self.x, self.y, **kwargs)\n+\n+ return self\n \n def plot_marginals(self, func, **kwargs):\n \"\"\"Draw univariate plots on each marginal axes.\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..e373efe2 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1819,21 +1819,6 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n- kwargs = kwargs.copy()\n- if str(func.__module__).startswith(\"seaborn\"):\n- kwargs[\"ax\"] = self.ax_joint\n- else:\n- plt.sca(self.ax_joint)\n- if self.hue is not None:\n- kwargs[\"hue\"] = self.hue\n- self._inject_kwargs(func, kwargs, self._hue_params)\n-\n- if str(func.__module__).startswith(\"seaborn\"):\n- func(x=self.x, y=self.y, **kwargs)\n- else:\n- func(self.x, self.y, **kwargs)\n-\n- return self\n \n def plot_marginals(self, func, **kwargs):\n \"\"\"Draw univariate plots on each marginal axes.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def plot_joint(self, func, **kwargs):\n \"\"\"Draw a bivariate plot on the joint axes of the grid.\n\n Parameters\n ----------\n func : plotting callable\n If a seaborn function, it should accept ``x`` and ``y``. Otherwise,\n it must accept ``x`` and ``y`` vectors of data as the first two\n positional arguments, and it must plot on the \"current\" axes.\n If ``hue`` was defined in the class constructor, the function must\n accept ``hue`` as a parameter.\n kwargs\n Keyword argument are passed to the plotting function.\n\n Returns\n -------\n :class:`JointGrid` instance\n Returns ``self`` for easy method chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestJointGrid::test_bivariate_plot", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_axisgrid.py::TestJointGrid::test_refline", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-25
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 5ad61e91..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1856,6 +1856,45 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n+ seaborn_func = (\n+ str(func.__module__).startswith(\"seaborn\")\n+ # deprecated distplot has a legacy API, special case it\n+ and not func.__name__ == \"distplot\"\n+ )\n+ func_params = signature(func).parameters\n+ kwargs = kwargs.copy()\n+ if self.hue is not None:\n+ kwargs[\"hue\"] = self.hue\n+ self._inject_kwargs(func, kwargs, self._hue_params)\n+\n+ if \"legend\" in func_params:\n+ kwargs.setdefault(\"legend\", False)\n+\n+ if \"orientation\" in func_params:\n+ # e.g. plt.hist\n+ orient_kw_x = {\"orientation\": \"vertical\"}\n+ orient_kw_y = {\"orientation\": \"horizontal\"}\n+ elif \"vertical\" in func_params:\n+ # e.g. sns.distplot (also how did this get backwards?)\n+ orient_kw_x = {\"vertical\": False}\n+ orient_kw_y = {\"vertical\": True}\n+\n+ if seaborn_func:\n+ func(x=self.x, ax=self.ax_marg_x, **kwargs)\n+ else:\n+ plt.sca(self.ax_marg_x)\n+ func(self.x, **orient_kw_x, **kwargs)\n+\n+ if seaborn_func:\n+ func(y=self.y, ax=self.ax_marg_y, **kwargs)\n+ else:\n+ plt.sca(self.ax_marg_y)\n+ func(self.y, **orient_kw_y, **kwargs)\n+\n+ self.ax_marg_x.yaxis.get_label().set_visible(False)\n+ self.ax_marg_y.xaxis.get_label().set_visible(False)\n+\n+ return self\n \n def refline(\n self, *, x=None, y=None, joint=True, marginal=True,\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..5ad61e91 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1856,45 +1856,6 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n- seaborn_func = (\n- str(func.__module__).startswith(\"seaborn\")\n- # deprecated distplot has a legacy API, special case it\n- and not func.__name__ == \"distplot\"\n- )\n- func_params = signature(func).parameters\n- kwargs = kwargs.copy()\n- if self.hue is not None:\n- kwargs[\"hue\"] = self.hue\n- self._inject_kwargs(func, kwargs, self._hue_params)\n-\n- if \"legend\" in func_params:\n- kwargs.setdefault(\"legend\", False)\n-\n- if \"orientation\" in func_params:\n- # e.g. plt.hist\n- orient_kw_x = {\"orientation\": \"vertical\"}\n- orient_kw_y = {\"orientation\": \"horizontal\"}\n- elif \"vertical\" in func_params:\n- # e.g. sns.distplot (also how did this get backwards?)\n- orient_kw_x = {\"vertical\": False}\n- orient_kw_y = {\"vertical\": True}\n-\n- if seaborn_func:\n- func(x=self.x, ax=self.ax_marg_x, **kwargs)\n- else:\n- plt.sca(self.ax_marg_x)\n- func(self.x, **orient_kw_x, **kwargs)\n-\n- if seaborn_func:\n- func(y=self.y, ax=self.ax_marg_y, **kwargs)\n- else:\n- plt.sca(self.ax_marg_y)\n- func(self.y, **orient_kw_y, **kwargs)\n-\n- self.ax_marg_x.yaxis.get_label().set_visible(False)\n- self.ax_marg_y.xaxis.get_label().set_visible(False)\n-\n- return self\n \n def refline(\n self, *, x=None, y=None, joint=True, marginal=True,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def plot_marginals(self, func, **kwargs):\n \"\"\"Draw univariate plots on each marginal axes.\n\n Parameters\n ----------\n func : plotting callable\n If a seaborn function, it should accept ``x`` and ``y`` and plot\n when only one of them is defined. Otherwise, it must accept a vector\n of data as the first positional argument and determine its orientation\n using the ``vertical`` parameter, and it must plot on the \"current\" axes.\n If ``hue`` was defined in the class constructor, it must accept ``hue``\n as a parameter.\n kwargs\n Keyword argument are passed to the plotting function.\n\n Returns\n -------\n :class:`JointGrid` instance\n Returns ``self`` for easy method chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_matplotlib", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_axisgrid.py::TestJointGrid::test_refline", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-26
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 31e8b7f9..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1923,6 +1923,22 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n+ line_kws['color'] = color\n+ line_kws['linestyle'] = linestyle\n+\n+ if x is not None:\n+ if joint:\n+ self.ax_joint.axvline(x, **line_kws)\n+ if marginal:\n+ self.ax_marg_x.axvline(x, **line_kws)\n+\n+ if y is not None:\n+ if joint:\n+ self.ax_joint.axhline(y, **line_kws)\n+ if marginal:\n+ self.ax_marg_y.axhline(y, **line_kws)\n+\n+ return self\n \n def set_axis_labels(self, xlabel=\"\", ylabel=\"\", **kwargs):\n \"\"\"Set axis labels on the bivariate axes.\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..31e8b7f9 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1923,22 +1923,6 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n- line_kws['color'] = color\n- line_kws['linestyle'] = linestyle\n-\n- if x is not None:\n- if joint:\n- self.ax_joint.axvline(x, **line_kws)\n- if marginal:\n- self.ax_marg_x.axvline(x, **line_kws)\n-\n- if y is not None:\n- if joint:\n- self.ax_joint.axhline(y, **line_kws)\n- if marginal:\n- self.ax_marg_y.axhline(y, **line_kws)\n-\n- return self\n \n def set_axis_labels(self, xlabel=\"\", ylabel=\"\", **kwargs):\n \"\"\"Set axis labels on the bivariate axes.\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def refline(\n self, *, x=None, y=None, joint=True, marginal=True,\n color='.5', linestyle='--', **line_kws\n ):\n \"\"\"Add a reference line(s) to joint and/or marginal axes.\n\n Parameters\n ----------\n x, y : numeric\n Value(s) to draw the line(s) at.\n joint, marginal : bools\n Whether to add the reference line(s) to the joint/marginal axes.\n color : :mod:`matplotlib color <matplotlib.colors>`\n Specifies the color of the reference line(s).\n linestyle : str\n Specifies the style of the reference line(s).\n line_kws : key, value mappings\n Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`\n when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``\n is not None.\n\n Returns\n -------\n :class:`JointGrid` instance\n Returns ``self`` for easy method chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestJointGrid::test_refline" ], "PASS_TO_PASS": null }
mwaskom__seaborn-27
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex 22b78dc1..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1959,6 +1959,9 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n+ self.ax_joint.set_xlabel(xlabel, **kwargs)\n+ self.ax_joint.set_ylabel(ylabel, **kwargs)\n+ return self\n \n \n JointGrid.__init__.__doc__ = \"\"\"\\\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..22b78dc1 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1959,9 +1959,6 @@ class JointGrid(_BaseGrid):\n Returns ``self`` for easy method chaining.\n \n \"\"\"\n- self.ax_joint.set_xlabel(xlabel, **kwargs)\n- self.ax_joint.set_ylabel(ylabel, **kwargs)\n- return self\n \n \n JointGrid.__init__.__doc__ = \"\"\"\\\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def set_axis_labels(self, xlabel=\"\", ylabel=\"\", **kwargs):\n \"\"\"Set axis labels on the bivariate axes.\n\n Parameters\n ----------\n xlabel, ylabel : strings\n Label names for the x and y variables.\n kwargs : key, value mappings\n Other keyword arguments are passed to the following functions:\n\n - :meth:`matplotlib.axes.Axes.set_xlabel`\n - :meth:`matplotlib.axes.Axes.set_ylabel`\n\n Returns\n -------\n :class:`JointGrid` instance\n Returns ``self`` for easy method chaining.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_axis_labels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-28
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex afd71e95..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -1244,6 +1244,125 @@ class PairGrid(Grid):\n \n \"\"\"\n \n+ super().__init__()\n+ data = handle_data_source(data)\n+\n+ # Sort out the variables that define the grid\n+ numeric_cols = self._find_numeric_cols(data)\n+ if hue in numeric_cols:\n+ numeric_cols.remove(hue)\n+ if vars is not None:\n+ x_vars = list(vars)\n+ y_vars = list(vars)\n+ if x_vars is None:\n+ x_vars = numeric_cols\n+ if y_vars is None:\n+ y_vars = numeric_cols\n+\n+ if np.isscalar(x_vars):\n+ x_vars = [x_vars]\n+ if np.isscalar(y_vars):\n+ y_vars = [y_vars]\n+\n+ self.x_vars = x_vars = list(x_vars)\n+ self.y_vars = y_vars = list(y_vars)\n+ self.square_grid = self.x_vars == self.y_vars\n+\n+ if not x_vars:\n+ raise ValueError(\"No variables found for grid columns.\")\n+ if not y_vars:\n+ raise ValueError(\"No variables found for grid rows.\")\n+\n+ # Create the figure and the array of subplots\n+ figsize = len(x_vars) * height * aspect, len(y_vars) * height\n+\n+ with _disable_autolayout():\n+ fig = plt.figure(figsize=figsize)\n+\n+ axes = fig.subplots(len(y_vars), len(x_vars),\n+ sharex=\"col\", sharey=\"row\",\n+ squeeze=False)\n+\n+ # Possibly remove upper axes to make a corner grid\n+ # Note: setting up the axes is usually the most time-intensive part\n+ # of using the PairGrid. We are foregoing the speed improvement that\n+ # we would get by just not setting up the hidden axes so that we can\n+ # avoid implementing fig.subplots ourselves. But worth thinking about.\n+ self._corner = corner\n+ if corner:\n+ hide_indices = np.triu_indices_from(axes, 1)\n+ for i, j in zip(*hide_indices):\n+ axes[i, j].remove()\n+ axes[i, j] = None\n+\n+ self._figure = fig\n+ self.axes = axes\n+ self.data = data\n+\n+ # Save what we are going to do with the diagonal\n+ self.diag_sharey = diag_sharey\n+ self.diag_vars = None\n+ self.diag_axes = None\n+\n+ self._dropna = dropna\n+\n+ # Label the axes\n+ self._add_axis_labels()\n+\n+ # Sort out the hue variable\n+ self._hue_var = hue\n+ if hue is None:\n+ self.hue_names = hue_order = [\"_nolegend_\"]\n+ self.hue_vals = pd.Series([\"_nolegend_\"] * len(data),\n+ index=data.index)\n+ else:\n+ # We need hue_order and hue_names because the former is used to control\n+ # the order of drawing and the latter is used to control the order of\n+ # the legend. hue_names can become string-typed while hue_order must\n+ # retain the type of the input data. This is messy but results from\n+ # the fact that PairGrid can implement the hue-mapping logic itself\n+ # (and was originally written exclusively that way) but now can delegate\n+ # to the axes-level functions, while always handling legend creation.\n+ # See GH2307\n+ hue_names = hue_order = categorical_order(data[hue], hue_order)\n+ if dropna:\n+ # Filter NA from the list of unique hue names\n+ hue_names = list(filter(pd.notnull, hue_names))\n+ self.hue_names = hue_names\n+ self.hue_vals = data[hue]\n+\n+ # Additional dict of kwarg -> list of values for mapping the hue var\n+ self.hue_kws = hue_kws if hue_kws is not None else {}\n+\n+ self._orig_palette = palette\n+ self._hue_order = hue_order\n+ self.palette = self._get_palette(data, hue, hue_order, palette)\n+ self._legend_data = {}\n+\n+ # Make the plot look nice\n+ for ax in axes[:-1, :].flat:\n+ if ax is None:\n+ continue\n+ for label in ax.get_xticklabels():\n+ label.set_visible(False)\n+ ax.xaxis.offsetText.set_visible(False)\n+ ax.xaxis.label.set_visible(False)\n+\n+ for ax in axes[:, 1:].flat:\n+ if ax is None:\n+ continue\n+ for label in ax.get_yticklabels():\n+ label.set_visible(False)\n+ ax.yaxis.offsetText.set_visible(False)\n+ ax.yaxis.label.set_visible(False)\n+\n+ self._tight_layout_rect = [.01, .01, .99, .99]\n+ self._tight_layout_pad = layout_pad\n+ self._despine = despine\n+ if despine:\n+ utils.despine(fig=fig)\n+ self.tight_layout(pad=layout_pad)\n+\n def map(self, func, **kwargs):\n \"\"\"Plot with the same function in every subplot.\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..afd71e95 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -1244,125 +1244,6 @@ class PairGrid(Grid):\n \n \"\"\"\n \n- super().__init__()\n- data = handle_data_source(data)\n-\n- # Sort out the variables that define the grid\n- numeric_cols = self._find_numeric_cols(data)\n- if hue in numeric_cols:\n- numeric_cols.remove(hue)\n- if vars is not None:\n- x_vars = list(vars)\n- y_vars = list(vars)\n- if x_vars is None:\n- x_vars = numeric_cols\n- if y_vars is None:\n- y_vars = numeric_cols\n-\n- if np.isscalar(x_vars):\n- x_vars = [x_vars]\n- if np.isscalar(y_vars):\n- y_vars = [y_vars]\n-\n- self.x_vars = x_vars = list(x_vars)\n- self.y_vars = y_vars = list(y_vars)\n- self.square_grid = self.x_vars == self.y_vars\n-\n- if not x_vars:\n- raise ValueError(\"No variables found for grid columns.\")\n- if not y_vars:\n- raise ValueError(\"No variables found for grid rows.\")\n-\n- # Create the figure and the array of subplots\n- figsize = len(x_vars) * height * aspect, len(y_vars) * height\n-\n- with _disable_autolayout():\n- fig = plt.figure(figsize=figsize)\n-\n- axes = fig.subplots(len(y_vars), len(x_vars),\n- sharex=\"col\", sharey=\"row\",\n- squeeze=False)\n-\n- # Possibly remove upper axes to make a corner grid\n- # Note: setting up the axes is usually the most time-intensive part\n- # of using the PairGrid. We are foregoing the speed improvement that\n- # we would get by just not setting up the hidden axes so that we can\n- # avoid implementing fig.subplots ourselves. But worth thinking about.\n- self._corner = corner\n- if corner:\n- hide_indices = np.triu_indices_from(axes, 1)\n- for i, j in zip(*hide_indices):\n- axes[i, j].remove()\n- axes[i, j] = None\n-\n- self._figure = fig\n- self.axes = axes\n- self.data = data\n-\n- # Save what we are going to do with the diagonal\n- self.diag_sharey = diag_sharey\n- self.diag_vars = None\n- self.diag_axes = None\n-\n- self._dropna = dropna\n-\n- # Label the axes\n- self._add_axis_labels()\n-\n- # Sort out the hue variable\n- self._hue_var = hue\n- if hue is None:\n- self.hue_names = hue_order = [\"_nolegend_\"]\n- self.hue_vals = pd.Series([\"_nolegend_\"] * len(data),\n- index=data.index)\n- else:\n- # We need hue_order and hue_names because the former is used to control\n- # the order of drawing and the latter is used to control the order of\n- # the legend. hue_names can become string-typed while hue_order must\n- # retain the type of the input data. This is messy but results from\n- # the fact that PairGrid can implement the hue-mapping logic itself\n- # (and was originally written exclusively that way) but now can delegate\n- # to the axes-level functions, while always handling legend creation.\n- # See GH2307\n- hue_names = hue_order = categorical_order(data[hue], hue_order)\n- if dropna:\n- # Filter NA from the list of unique hue names\n- hue_names = list(filter(pd.notnull, hue_names))\n- self.hue_names = hue_names\n- self.hue_vals = data[hue]\n-\n- # Additional dict of kwarg -> list of values for mapping the hue var\n- self.hue_kws = hue_kws if hue_kws is not None else {}\n-\n- self._orig_palette = palette\n- self._hue_order = hue_order\n- self.palette = self._get_palette(data, hue, hue_order, palette)\n- self._legend_data = {}\n-\n- # Make the plot look nice\n- for ax in axes[:-1, :].flat:\n- if ax is None:\n- continue\n- for label in ax.get_xticklabels():\n- label.set_visible(False)\n- ax.xaxis.offsetText.set_visible(False)\n- ax.xaxis.label.set_visible(False)\n-\n- for ax in axes[:, 1:].flat:\n- if ax is None:\n- continue\n- for label in ax.get_yticklabels():\n- label.set_visible(False)\n- ax.yaxis.offsetText.set_visible(False)\n- ax.yaxis.label.set_visible(False)\n-\n- self._tight_layout_rect = [.01, .01, .99, .99]\n- self._tight_layout_pad = layout_pad\n- self._despine = despine\n- if despine:\n- utils.despine(fig=fig)\n- self.tight_layout(pad=layout_pad)\n-\n def map(self, func, **kwargs):\n \"\"\"Plot with the same function in every subplot.\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\n def __init__(\n self, data, *, hue=None, vars=None, x_vars=None, y_vars=None,\n hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True,\n height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False,\n ):\n \"\"\"Initialize the plot figure and PairGrid object.\n\n Parameters\n ----------\n data : DataFrame\n Tidy (long-form) dataframe where each column is a variable and\n each row is an observation.\n hue : string (variable name)\n Variable in ``data`` to map plot aspects to different colors. This\n variable will be excluded from the default x and y variables.\n vars : list of variable names\n Variables within ``data`` to use, otherwise use every column with\n a numeric datatype.\n {x, y}_vars : lists of variable names\n Variables within ``data`` to use separately for the rows and\n columns of the figure; i.e. to make a non-square plot.\n hue_order : list of strings\n Order for the levels of the hue variable in the palette\n palette : dict or seaborn color palette\n Set of colors for mapping the ``hue`` variable. If a dict, keys\n should be values in the ``hue`` variable.\n hue_kws : dictionary of param -> list of values mapping\n Other keyword arguments to insert into the plotting call to let\n other plot attributes vary across levels of the hue variable (e.g.\n the markers in a scatterplot).\n corner : bool\n If True, don't add axes to the upper (off-diagonal) triangle of the\n grid, making this a \"corner\" plot.\n height : scalar\n Height (in inches) of each facet.\n aspect : scalar\n Aspect * height gives the width (in inches) of each facet.\n layout_pad : scalar\n Padding between axes; passed to ``fig.tight_layout``.\n despine : boolean\n Remove the top and right spines from the plots.\n dropna : boolean\n Drop missing values from the data before plotting.\n\n See Also\n --------\n pairplot : Easily drawing common uses of :class:`PairGrid`.\n FacetGrid : Subplot grid for plotting conditional relationships.\n\n Examples\n --------\n\n .. include:: ../docstrings/PairGrid.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestPairGrid::test_self_data", "tests/test_axisgrid.py::TestPairGrid::test_ignore_datelike_data", "tests/test_axisgrid.py::TestPairGrid::test_self_figure", "tests/test_axisgrid.py::TestPairGrid::test_self_axes", "tests/test_axisgrid.py::TestPairGrid::test_default_axes", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars1]", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars0-y_vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars1-z]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars2-y_vars2]", "tests/test_axisgrid.py::TestPairGrid::test_corner", "tests/test_axisgrid.py::TestPairGrid::test_size", "tests/test_axisgrid.py::TestPairGrid::test_empty_grid", "tests/test_axisgrid.py::TestPairGrid::test_map", "tests/test_axisgrid.py::TestPairGrid::test_map_nonsquare", "tests/test_axisgrid.py::TestPairGrid::test_map_lower", "tests/test_axisgrid.py::TestPairGrid::test_map_upper", "tests/test_axisgrid.py::TestPairGrid::test_map_mixed_funcsig", "tests/test_axisgrid.py::TestPairGrid::test_map_diag", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_rectangular", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_and_offdiag", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_matplotlib", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_hue_kws", "tests/test_axisgrid.py::TestPairGrid::test_hue_order", "tests/test_axisgrid.py::TestPairGrid::test_hue_order_missing_level", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/test_axisgrid.py::TestPairGrid::test_nondefault_index", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_axisgrid.py::TestPairGrid::test_corner_despine", "tests/test_axisgrid.py::TestPairGrid::test_corner_set", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_axisgrid.py::TestPairGrid::test_tick_params", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange" ], "PASS_TO_PASS": null }
mwaskom__seaborn-29
1.0
{ "code": "diff --git b/seaborn/axisgrid.py a/seaborn/axisgrid.py\nindex ea0be412..17d333bc 100644\n--- b/seaborn/axisgrid.py\n+++ a/seaborn/axisgrid.py\n@@ -2089,6 +2089,96 @@ def pairplot(\n .. include:: ../docstrings/pairplot.rst\n \n \"\"\"\n+ # Avoid circular import\n+ from .distributions import histplot, kdeplot\n+\n+ # Handle deprecations\n+ if size is not None:\n+ height = size\n+ msg = (\"The `size` parameter has been renamed to `height`; \"\n+ \"please update your code.\")\n+ warnings.warn(msg, UserWarning)\n+\n+ if not isinstance(data, pd.DataFrame):\n+ raise TypeError(\n+ f\"'data' must be pandas DataFrame object, not: {type(data)}\")\n+\n+ plot_kws = {} if plot_kws is None else plot_kws.copy()\n+ diag_kws = {} if diag_kws is None else diag_kws.copy()\n+ grid_kws = {} if grid_kws is None else grid_kws.copy()\n+\n+ # Resolve \"auto\" diag kind\n+ if diag_kind == \"auto\":\n+ if hue is None:\n+ diag_kind = \"kde\" if kind == \"kde\" else \"hist\"\n+ else:\n+ diag_kind = \"hist\" if kind == \"hist\" else \"kde\"\n+\n+ # Set up the PairGrid\n+ grid_kws.setdefault(\"diag_sharey\", diag_kind == \"hist\")\n+ grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue,\n+ hue_order=hue_order, palette=palette, corner=corner,\n+ height=height, aspect=aspect, dropna=dropna, **grid_kws)\n+\n+ # Add the markers here as PairGrid has figured out how many levels of the\n+ # hue variable are needed and we don't want to duplicate that process\n+ if markers is not None:\n+ if kind == \"reg\":\n+ # Needed until regplot supports style\n+ if grid.hue_names is None:\n+ n_markers = 1\n+ else:\n+ n_markers = len(grid.hue_names)\n+ if not isinstance(markers, list):\n+ markers = [markers] * n_markers\n+ if len(markers) != n_markers:\n+ raise ValueError(\"markers must be a singleton or a list of \"\n+ \"markers for each level of the hue variable\")\n+ grid.hue_kws = {\"marker\": markers}\n+ elif kind == \"scatter\":\n+ if isinstance(markers, str):\n+ plot_kws[\"marker\"] = markers\n+ elif hue is not None:\n+ plot_kws[\"style\"] = data[hue]\n+ plot_kws[\"markers\"] = markers\n+\n+ # Draw the marginal plots on the diagonal\n+ diag_kws = diag_kws.copy()\n+ diag_kws.setdefault(\"legend\", False)\n+ if diag_kind == \"hist\":\n+ grid.map_diag(histplot, **diag_kws)\n+ elif diag_kind == \"kde\":\n+ diag_kws.setdefault(\"fill\", True)\n+ diag_kws.setdefault(\"warn_singular\", False)\n+ grid.map_diag(kdeplot, **diag_kws)\n+\n+ # Maybe plot on the off-diagonals\n+ if diag_kind is not None:\n+ plotter = grid.map_offdiag\n+ else:\n+ plotter = grid.map\n+\n+ if kind == \"scatter\":\n+ from .relational import scatterplot # Avoid circular import\n+ plotter(scatterplot, **plot_kws)\n+ elif kind == \"reg\":\n+ from .regression import regplot # Avoid circular import\n+ plotter(regplot, **plot_kws)\n+ elif kind == \"kde\":\n+ from .distributions import kdeplot # Avoid circular import\n+ plot_kws.setdefault(\"warn_singular\", False)\n+ plotter(kdeplot, **plot_kws)\n+ elif kind == \"hist\":\n+ from .distributions import histplot # Avoid circular import\n+ plotter(histplot, **plot_kws)\n+\n+ # Add a legend\n+ if hue is not None:\n+ grid.add_legend()\n+\n+ grid.tight_layout()\n+\n+ return grid\n \n \n def jointplot(\n", "test": null }
null
{ "code": "diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py\nindex 17d333bc..ea0be412 100644\n--- a/seaborn/axisgrid.py\n+++ b/seaborn/axisgrid.py\n@@ -2089,96 +2089,6 @@ def pairplot(\n .. include:: ../docstrings/pairplot.rst\n \n \"\"\"\n- # Avoid circular import\n- from .distributions import histplot, kdeplot\n-\n- # Handle deprecations\n- if size is not None:\n- height = size\n- msg = (\"The `size` parameter has been renamed to `height`; \"\n- \"please update your code.\")\n- warnings.warn(msg, UserWarning)\n-\n- if not isinstance(data, pd.DataFrame):\n- raise TypeError(\n- f\"'data' must be pandas DataFrame object, not: {type(data)}\")\n-\n- plot_kws = {} if plot_kws is None else plot_kws.copy()\n- diag_kws = {} if diag_kws is None else diag_kws.copy()\n- grid_kws = {} if grid_kws is None else grid_kws.copy()\n-\n- # Resolve \"auto\" diag kind\n- if diag_kind == \"auto\":\n- if hue is None:\n- diag_kind = \"kde\" if kind == \"kde\" else \"hist\"\n- else:\n- diag_kind = \"hist\" if kind == \"hist\" else \"kde\"\n-\n- # Set up the PairGrid\n- grid_kws.setdefault(\"diag_sharey\", diag_kind == \"hist\")\n- grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue,\n- hue_order=hue_order, palette=palette, corner=corner,\n- height=height, aspect=aspect, dropna=dropna, **grid_kws)\n-\n- # Add the markers here as PairGrid has figured out how many levels of the\n- # hue variable are needed and we don't want to duplicate that process\n- if markers is not None:\n- if kind == \"reg\":\n- # Needed until regplot supports style\n- if grid.hue_names is None:\n- n_markers = 1\n- else:\n- n_markers = len(grid.hue_names)\n- if not isinstance(markers, list):\n- markers = [markers] * n_markers\n- if len(markers) != n_markers:\n- raise ValueError(\"markers must be a singleton or a list of \"\n- \"markers for each level of the hue variable\")\n- grid.hue_kws = {\"marker\": markers}\n- elif kind == \"scatter\":\n- if isinstance(markers, str):\n- plot_kws[\"marker\"] = markers\n- elif hue is not None:\n- plot_kws[\"style\"] = data[hue]\n- plot_kws[\"markers\"] = markers\n-\n- # Draw the marginal plots on the diagonal\n- diag_kws = diag_kws.copy()\n- diag_kws.setdefault(\"legend\", False)\n- if diag_kind == \"hist\":\n- grid.map_diag(histplot, **diag_kws)\n- elif diag_kind == \"kde\":\n- diag_kws.setdefault(\"fill\", True)\n- diag_kws.setdefault(\"warn_singular\", False)\n- grid.map_diag(kdeplot, **diag_kws)\n-\n- # Maybe plot on the off-diagonals\n- if diag_kind is not None:\n- plotter = grid.map_offdiag\n- else:\n- plotter = grid.map\n-\n- if kind == \"scatter\":\n- from .relational import scatterplot # Avoid circular import\n- plotter(scatterplot, **plot_kws)\n- elif kind == \"reg\":\n- from .regression import regplot # Avoid circular import\n- plotter(regplot, **plot_kws)\n- elif kind == \"kde\":\n- from .distributions import kdeplot # Avoid circular import\n- plot_kws.setdefault(\"warn_singular\", False)\n- plotter(kdeplot, **plot_kws)\n- elif kind == \"hist\":\n- from .distributions import histplot # Avoid circular import\n- plotter(histplot, **plot_kws)\n-\n- # Add a legend\n- if hue is not None:\n- grid.add_legend()\n-\n- grid.tight_layout()\n-\n- return grid\n \n \n def jointplot(\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/axisgrid.py.\nHere is the description for the function:\ndef pairplot(\n data, *,\n hue=None, hue_order=None, palette=None,\n vars=None, x_vars=None, y_vars=None,\n kind=\"scatter\", diag_kind=\"auto\", markers=None,\n height=2.5, aspect=1, corner=False, dropna=False,\n plot_kws=None, diag_kws=None, grid_kws=None, size=None,\n):\n \"\"\"Plot pairwise relationships in a dataset.\n\n By default, this function will create a grid of Axes such that each numeric\n variable in ``data`` will by shared across the y-axes across a single row and\n the x-axes across a single column. The diagonal plots are treated\n differently: a univariate distribution plot is drawn to show the marginal\n distribution of the data in each column.\n\n It is also possible to show a subset of variables or plot different\n variables on the rows and columns.\n\n This is a high-level interface for :class:`PairGrid` that is intended to\n make it easy to draw a few common styles. You should use :class:`PairGrid`\n directly if you need more flexibility.\n\n Parameters\n ----------\n data : `pandas.DataFrame`\n Tidy (long-form) dataframe where each column is a variable and\n each row is an observation.\n hue : name of variable in ``data``\n Variable in ``data`` to map plot aspects to different colors.\n hue_order : list of strings\n Order for the levels of the hue variable in the palette\n palette : dict or seaborn color palette\n Set of colors for mapping the ``hue`` variable. If a dict, keys\n should be values in the ``hue`` variable.\n vars : list of variable names\n Variables within ``data`` to use, otherwise use every column with\n a numeric datatype.\n {x, y}_vars : lists of variable names\n Variables within ``data`` to use separately for the rows and\n columns of the figure; i.e. to make a non-square plot.\n kind : {'scatter', 'kde', 'hist', 'reg'}\n Kind of plot to make.\n diag_kind : {'auto', 'hist', 'kde', None}\n Kind of plot for the diagonal subplots. If 'auto', choose based on\n whether or not ``hue`` is used.\n markers : single matplotlib marker code or list\n Either the marker to use for all scatterplot points or a list of markers\n with a length the same as the number of levels in the hue variable so that\n differently colored points will also have different scatterplot\n markers.\n height : scalar\n Height (in inches) of each facet.\n aspect : scalar\n Aspect * height gives the width (in inches) of each facet.\n corner : bool\n If True, don't add axes to the upper (off-diagonal) triangle of the\n grid, making this a \"corner\" plot.\n dropna : boolean\n Drop missing values from the data before plotting.\n {plot, diag, grid}_kws : dicts\n Dictionaries of keyword arguments. ``plot_kws`` are passed to the\n bivariate plotting function, ``diag_kws`` are passed to the univariate\n plotting function, and ``grid_kws`` are passed to the :class:`PairGrid`\n constructor.\n\n Returns\n -------\n grid : :class:`PairGrid`\n Returns the underlying :class:`PairGrid` instance for further tweaking.\n\n See Also\n --------\n PairGrid : Subplot grid for more flexible plotting of pairwise relationships.\n JointGrid : Grid for plotting joint and marginal distributions of two variables.\n\n Examples\n --------\n\n .. include:: ../docstrings/pairplot.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_axisgrid.py::TestPairGrid::test_legend" ], "PASS_TO_PASS": null }
mwaskom__seaborn-30
1.0
{ "code": "diff --git b/seaborn/_marks/base.py a/seaborn/_marks/base.py\nindex 528bfea2..ac8fdf4a 100644\n--- b/seaborn/_marks/base.py\n+++ a/seaborn/_marks/base.py\n@@ -149,6 +149,53 @@ class Mark:\n of values with matching length).\n \n \"\"\"\n+ feature = self._mappable_props[name]\n+ prop = PROPERTIES.get(name, Property(name))\n+ directly_specified = not isinstance(feature, Mappable)\n+ return_multiple = isinstance(data, pd.DataFrame)\n+ return_array = return_multiple and not name.endswith(\"style\")\n+\n+ # Special case width because it needs to be resolved and added to the dataframe\n+ # during layer prep (so the Move operations use it properly).\n+ # TODO how does width *scaling* work, e.g. for violin width by count?\n+ if name == \"width\":\n+ directly_specified = directly_specified and name not in data\n+\n+ if directly_specified:\n+ feature = prop.standardize(feature)\n+ if return_multiple:\n+ feature = [feature] * len(data)\n+ if return_array:\n+ feature = np.array(feature)\n+ return feature\n+\n+ if name in data:\n+ if scales is None or name not in scales:\n+ # TODO Might this obviate the identity scale? Just don't add a scale?\n+ feature = data[name]\n+ else:\n+ scale = scales[name]\n+ value = data[name]\n+ try:\n+ feature = scale(value)\n+ except Exception as err:\n+ raise PlotSpecError._during(\"Scaling operation\", name) from err\n+\n+ if return_array:\n+ feature = np.asarray(feature)\n+ return feature\n+\n+ if feature.depend is not None:\n+ # TODO add source_func or similar to transform the source value?\n+ # e.g. set linewidth as a proportion of pointsize?\n+ return self._resolve(data, feature.depend, scales)\n+\n+ default = prop.standardize(feature.default)\n+ if return_multiple:\n+ default = [default] * len(data)\n+ if return_array:\n+ default = np.array(default)\n+ return default\n \n def _infer_orient(self, scales: dict) -> str: # TODO type scales\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/_marks/base.py b/seaborn/_marks/base.py\nindex ac8fdf4a..528bfea2 100644\n--- a/seaborn/_marks/base.py\n+++ b/seaborn/_marks/base.py\n@@ -149,53 +149,6 @@ class Mark:\n of values with matching length).\n \n \"\"\"\n- feature = self._mappable_props[name]\n- prop = PROPERTIES.get(name, Property(name))\n- directly_specified = not isinstance(feature, Mappable)\n- return_multiple = isinstance(data, pd.DataFrame)\n- return_array = return_multiple and not name.endswith(\"style\")\n-\n- # Special case width because it needs to be resolved and added to the dataframe\n- # during layer prep (so the Move operations use it properly).\n- # TODO how does width *scaling* work, e.g. for violin width by count?\n- if name == \"width\":\n- directly_specified = directly_specified and name not in data\n-\n- if directly_specified:\n- feature = prop.standardize(feature)\n- if return_multiple:\n- feature = [feature] * len(data)\n- if return_array:\n- feature = np.array(feature)\n- return feature\n-\n- if name in data:\n- if scales is None or name not in scales:\n- # TODO Might this obviate the identity scale? Just don't add a scale?\n- feature = data[name]\n- else:\n- scale = scales[name]\n- value = data[name]\n- try:\n- feature = scale(value)\n- except Exception as err:\n- raise PlotSpecError._during(\"Scaling operation\", name) from err\n-\n- if return_array:\n- feature = np.asarray(feature)\n- return feature\n-\n- if feature.depend is not None:\n- # TODO add source_func or similar to transform the source value?\n- # e.g. set linewidth as a proportion of pointsize?\n- return self._resolve(data, feature.depend, scales)\n-\n- default = prop.standardize(feature.default)\n- if return_multiple:\n- default = [default] * len(data)\n- if return_array:\n- default = np.array(default)\n- return default\n \n def _infer_orient(self, scales: dict) -> str: # TODO type scales\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_marks/base.py.\nHere is the description for the function:\n def _resolve(\n self,\n data: DataFrame | dict[str, Any],\n name: str,\n scales: dict[str, Scale] | None = None,\n ) -> Any:\n \"\"\"Obtain default, specified, or mapped value for a named feature.\n\n Parameters\n ----------\n data : DataFrame or dict with scalar values\n Container with data values for features that will be semantically mapped.\n name : string\n Identity of the feature / semantic.\n scales: dict\n Mapping from variable to corresponding scale object.\n\n Returns\n -------\n value or array of values\n Outer return type depends on whether `data` is a dict (implying that\n we want a single value) or DataFrame (implying that we want an array\n of values with matching length).\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_base.py::TestMappable::test_value", "tests/_marks/test_area.py::TestArea::test_single_defaults", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_marks/test_base.py::TestMappable::test_default", "tests/_marks/test_base.py::TestMappable::test_rcparam", "tests/_marks/test_base.py::TestMappable::test_depends", "tests/_marks/test_base.py::TestMappable::test_mapped", "tests/_marks/test_base.py::TestMappable::test_color", "tests/_marks/test_base.py::TestMappable::test_color_mapped_alpha", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_marks/test_base.py::TestMappable::test_color_scaled_as_strings", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPath::test_shared_colors_direct", "tests/_marks/test_base.py::TestMappable::test_fillcolor", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_marks/test_area.py::TestArea::test_set_properties", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/_marks/test_line.py::TestPath::test_separate_colors_direct", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_area.py::TestArea::test_unfilled", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_marks/test_area.py::TestBand::test_range", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_area.py::TestBand::test_auto_range", "tests/_marks/test_line.py::TestPath::test_color_with_alpha", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_line.py::TestPath::test_color_and_alpha", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_bar.py::TestBars::test_positions", "tests/_marks/test_line.py::TestPath::test_other_props_direct", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_marks/test_bar.py::TestBars::test_positions_horizontal", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_marks/test_bar.py::TestBars::test_width", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_marks/test_bar.py::TestBars::test_mapped_edgewidth", "tests/_marks/test_bar.py::TestBars::test_auto_edgewidth", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_set_properties", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_marks/test_bar.py::TestBars::test_unfilled", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPaths::test_color_with_alpha", "tests/_marks/test_line.py::TestPaths::test_color_and_alpha", "tests/_marks/test_line.py::TestPaths::test_capstyle", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_marks/test_line.py::TestLines::test_single_orient_value", "tests/_marks/test_line.py::TestRange::test_xy_data", "tests/_marks/test_line.py::TestRange::test_auto_range", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_marks/test_line.py::TestRange::test_direct_properties", "tests/_marks/test_line.py::TestDash::test_xy_data", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_marks/test_line.py::TestDash::test_set_properties", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_marks/test_line.py::TestDash::test_width", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling" ], "PASS_TO_PASS": null }
mwaskom__seaborn-31
1.0
{ "code": "diff --git b/seaborn/_marks/base.py a/seaborn/_marks/base.py\nindex b8ee4146..ac8fdf4a 100644\n--- b/seaborn/_marks/base.py\n+++ a/seaborn/_marks/base.py\n@@ -265,6 +265,34 @@ def resolve_color(\n Support \"color\", \"fillcolor\", etc.\n \n \"\"\"\n+ color = mark._resolve(data, f\"{prefix}color\", scales)\n+\n+ if f\"{prefix}alpha\" in mark._mappable_props:\n+ alpha = mark._resolve(data, f\"{prefix}alpha\", scales)\n+ else:\n+ alpha = mark._resolve(data, \"alpha\", scales)\n+\n+ def visible(x, axis=None):\n+ \"\"\"Detect \"invisible\" colors to set alpha appropriately.\"\"\"\n+ # TODO First clause only needed to handle non-rgba arrays,\n+ # which we are trying to handle upstream\n+ return np.array(x).dtype.kind != \"f\" or np.isfinite(x).all(axis)\n+\n+ # Second check here catches vectors of strings with identity scale\n+ # It could probably be handled better upstream. This is a tricky problem\n+ if np.ndim(color) < 2 and all(isinstance(x, float) for x in color):\n+ if len(color) == 4:\n+ return mpl.colors.to_rgba(color)\n+ alpha = alpha if visible(color) else np.nan\n+ return mpl.colors.to_rgba(color, alpha)\n+ else:\n+ if np.ndim(color) == 2 and color.shape[1] == 4:\n+ return mpl.colors.to_rgba_array(color)\n+ alpha = np.where(visible(color, axis=1), alpha, np.nan)\n+ return mpl.colors.to_rgba_array(color, alpha)\n+\n+ # TODO should we be implementing fill here too?\n+ # (i.e. set fillalpha to 0 when fill=False)\n \n \n def document_properties(mark):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_marks/base.py b/seaborn/_marks/base.py\nindex ac8fdf4a..b8ee4146 100644\n--- a/seaborn/_marks/base.py\n+++ b/seaborn/_marks/base.py\n@@ -265,34 +265,6 @@ def resolve_color(\n Support \"color\", \"fillcolor\", etc.\n \n \"\"\"\n- color = mark._resolve(data, f\"{prefix}color\", scales)\n-\n- if f\"{prefix}alpha\" in mark._mappable_props:\n- alpha = mark._resolve(data, f\"{prefix}alpha\", scales)\n- else:\n- alpha = mark._resolve(data, \"alpha\", scales)\n-\n- def visible(x, axis=None):\n- \"\"\"Detect \"invisible\" colors to set alpha appropriately.\"\"\"\n- # TODO First clause only needed to handle non-rgba arrays,\n- # which we are trying to handle upstream\n- return np.array(x).dtype.kind != \"f\" or np.isfinite(x).all(axis)\n-\n- # Second check here catches vectors of strings with identity scale\n- # It could probably be handled better upstream. This is a tricky problem\n- if np.ndim(color) < 2 and all(isinstance(x, float) for x in color):\n- if len(color) == 4:\n- return mpl.colors.to_rgba(color)\n- alpha = alpha if visible(color) else np.nan\n- return mpl.colors.to_rgba(color, alpha)\n- else:\n- if np.ndim(color) == 2 and color.shape[1] == 4:\n- return mpl.colors.to_rgba_array(color)\n- alpha = np.where(visible(color, axis=1), alpha, np.nan)\n- return mpl.colors.to_rgba_array(color, alpha)\n-\n- # TODO should we be implementing fill here too?\n- # (i.e. set fillalpha to 0 when fill=False)\n \n \n def document_properties(mark):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_marks/base.py.\nHere is the description for the function:\ndef resolve_color(\n mark: Mark,\n data: DataFrame | dict,\n prefix: str = \"\",\n scales: dict[str, Scale] | None = None,\n) -> RGBATuple | ndarray:\n \"\"\"\n Obtain a default, specified, or mapped value for a color feature.\n\n This method exists separately to support the relationship between a\n color and its corresponding alpha. We want to respect alpha values that\n are passed in specified (or mapped) color values but also make use of a\n separate `alpha` variable, which can be mapped. This approach may also\n be extended to support mapping of specific color channels (i.e.\n luminance, chroma) in the future.\n\n Parameters\n ----------\n mark :\n Mark with the color property.\n data :\n Container with data values for features that will be semantically mapped.\n prefix :\n Support \"color\", \"fillcolor\", etc.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_area.py::TestArea::test_single_defaults", "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_marks/test_base.py::TestMappable::test_color", "tests/_marks/test_base.py::TestMappable::test_color_mapped_alpha", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPath::test_shared_colors_direct", "tests/_marks/test_area.py::TestArea::test_set_properties", "tests/_marks/test_base.py::TestMappable::test_color_scaled_as_strings", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_marks/test_base.py::TestMappable::test_fillcolor", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_line.py::TestPath::test_separate_colors_direct", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical", "tests/_marks/test_area.py::TestArea::test_unfilled", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal", "tests/_marks/test_area.py::TestBand::test_range", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_area.py::TestBand::test_auto_range", "tests/_marks/test_line.py::TestPath::test_color_with_alpha", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_line.py::TestPath::test_color_and_alpha", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_line.py::TestPath::test_other_props_direct", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_bar.py::TestBars::test_positions", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_marks/test_bar.py::TestBars::test_positions_horizontal", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_marks/test_bar.py::TestBars::test_width", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_line.py::TestPaths::test_set_properties", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_marks/test_bar.py::TestBars::test_mapped_edgewidth", "tests/_marks/test_line.py::TestPaths::test_color_with_alpha", "tests/_marks/test_bar.py::TestBars::test_auto_edgewidth", "tests/_marks/test_line.py::TestPaths::test_color_and_alpha", "tests/_marks/test_bar.py::TestBars::test_unfilled", "tests/_marks/test_line.py::TestPaths::test_capstyle", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_marks/test_line.py::TestLines::test_single_orient_value", "tests/_marks/test_line.py::TestRange::test_xy_data", "tests/_marks/test_line.py::TestRange::test_auto_range", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_marks/test_line.py::TestRange::test_direct_properties", "tests/_marks/test_line.py::TestDash::test_xy_data", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_marks/test_line.py::TestDash::test_set_properties", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_marks/test_line.py::TestDash::test_width", "tests/_marks/test_line.py::TestDash::test_dodge" ], "PASS_TO_PASS": null }
mwaskom__seaborn-32
1.0
{ "code": "diff --git b/seaborn/_core/rules.py a/seaborn/_core/rules.py\nindex 30ddcbb4..de6c651d 100644\n--- b/seaborn/_core/rules.py\n+++ a/seaborn/_core/rules.py\n@@ -160,3 +160,14 @@ def categorical_order(vector: Series, order: list | None = None) -> list:\n Ordered list of category levels not including null values.\n \n \"\"\"\n+ if order is not None:\n+ return order\n+\n+ if vector.dtype.name == \"category\":\n+ order = list(vector.cat.categories)\n+ else:\n+ order = list(filter(pd.notnull, vector.unique()))\n+ if variable_type(pd.Series(order)) == \"numeric\":\n+ order.sort()\n+\n+ return order\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/rules.py b/seaborn/_core/rules.py\nindex de6c651d..30ddcbb4 100644\n--- a/seaborn/_core/rules.py\n+++ b/seaborn/_core/rules.py\n@@ -160,14 +160,3 @@ def categorical_order(vector: Series, order: list | None = None) -> list:\n Ordered list of category levels not including null values.\n \n \"\"\"\n- if order is not None:\n- return order\n-\n- if vector.dtype.name == \"category\":\n- order = list(vector.cat.categories)\n- else:\n- order = list(filter(pd.notnull, vector.unique()))\n- if variable_type(pd.Series(order)) == \"numeric\":\n- order.sort()\n-\n- return order\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/rules.py.\nHere is the description for the function:\ndef categorical_order(vector: Series, order: list | None = None) -> list:\n \"\"\"\n Return a list of unique data values using seaborn's ordering rules.\n\n Parameters\n ----------\n vector : Series\n Vector of \"categorical\" values\n order : list\n Desired order of category levels to override the order determined\n from the `data` object.\n\n Returns\n -------\n order : list\n Ordered list of category levels not including null values.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_groupby.py::test_agg_one_grouper", "tests/_core/test_groupby.py::test_agg_two_groupers", "tests/_core/test_groupby.py::test_apply_one_grouper", "tests/_core/test_groupby.py::test_apply_mutate_columns", "tests/_core/test_groupby.py::test_apply_replace_columns", "tests/_core/test_moves.py::TestDodge::test_default", "tests/_core/test_moves.py::TestDodge::test_fill", "tests/_core/test_moves.py::TestDodge::test_drop", "tests/_core/test_moves.py::TestDodge::test_gap", "tests/_core/test_moves.py::TestDodge::test_widths_default", "tests/_core/test_moves.py::TestDodge::test_widths_fill", "tests/_core/test_moves.py::TestDodge::test_widths_drop", "tests/_core/test_moves.py::TestDodge::test_faceted_default", "tests/_core/test_moves.py::TestDodge::test_faceted_fill", "tests/_core/test_moves.py::TestDodge::test_faceted_drop", "tests/_core/test_moves.py::TestDodge::test_orient", "tests/_core/test_moves.py::TestDodge::test_single_semantic[grp2]", "tests/_core/test_moves.py::TestDodge::test_single_semantic[grp3]", "tests/_core/test_moves.py::TestDodge::test_two_semantics", "tests/_core/test_moves.py::TestStack::test_basic", "tests/_core/test_moves.py::TestStack::test_faceted", "tests/_core/test_moves.py::TestStack::test_misssing_data", "tests/_core/test_moves.py::TestStack::test_baseline_homogeneity_check", "tests/_core/test_moves.py::TestNorm::test_default_groups[x]", "tests/_core/test_moves.py::TestNorm::test_default_groups[y]", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_core/test_plot.py::TestScaling::test_inference_from_layer_data", "tests/_core/test_plot.py::TestScaling::test_inference_joins", "tests/_core/test_plot.py::TestScaling::test_inferred_categorical_converter", "tests/_core/test_plot.py::TestScaling::test_explicit_categorical_converter", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_faceted_log_scale", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_categorical", "tests/_core/test_plot.py::TestScaling::test_facet_categories", "tests/_core/test_plot.py::TestScaling::test_facet_categories_unshared", "tests/_core/test_plot.py::TestScaling::test_facet_categories_single_dim_shared", "tests/_core/test_plot.py::TestScaling::test_pair_categories", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestScaling::test_inferred_nominal_passed_to_stat", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_tuples", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_plot.py::TestScaling::test_nominal_x_axis_tweaks", "tests/_core/test_plot.py::TestScaling::test_nominal_y_axis_tweaks", "tests/_core/test_plot.py::TestPlotting::test_single_split_multi_layer", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[color]", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[group]", "tests/_core/test_plot.py::TestPlotting::test_two_grouping_variables", "tests/_core/test_plot.py::TestPlotting::test_facets_no_subgroups", "tests/_core/test_plot.py::TestPlotting::test_facets_one_subgroup", "tests/_core/test_plot.py::TestPlotting::test_layer_specific_facet_disabling", "tests/_core/test_plot.py::TestPlotting::test_paired_variables_one_subset", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_stat", "tests/_core/test_plot.py::TestPlotting::test_stat_and_move", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_with_range", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_axes_with_subplots_error", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_from_constructor", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_from_layer", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_are_first_name", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/_core/test_plot.py::TestPlotting::test_labels_facets", "tests/_core/test_plot.py::TestPlotting::test_title_facet_function", "tests/_core/test_plot.py::TestExceptions::test_scale_setup", "tests/_core/test_plot.py::TestFacetInterface::test_1d[row]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_as_vector[row]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_1d[col]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_as_vector[col]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-subset]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-subset]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[subset]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-expand]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-expand]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[expand]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_2d", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[tight]", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[constrained]", "tests/_core/test_plot.py::TestFacetInterface::test_axis_sharing", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestFacetInterface::test_col_wrapping", "tests/_core/test_plot.py::TestFacetInterface::test_row_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestLabelVisibility::test_single_subplot", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row_wrapped", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped_non_cross", "tests/_core/test_plot.py::TestLabelVisibility::test_2d", "tests/_core/test_plot.py::TestLabelVisibility::test_2d_unshared", "tests/_core/test_plot.py::TestLegend::test_single_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_different_artists", "tests/_core/test_plot.py::TestLegend::test_three_layers", "tests/_core/test_plot.py::TestLegend::test_identity_scale_ignored", "tests/_core/test_plot.py::TestLegend::test_suppression_in_add_method", "tests/_core/test_plot.py::TestLegend::test_anonymous_title", "tests/_core/test_plot.py::TestLegend::test_legendless_mark", "tests/_core/test_plot.py::TestLegend::test_legend_has_no_offset", "tests/_core/test_plot.py::TestLegend::test_layer_legend_with_scale_legend", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette_large", "tests/_core/test_properties.py::TestColor::test_nominal_named_palette", "tests/_core/test_properties.py::TestColor::test_nominal_list_palette", "tests/_core/test_properties.py::TestColor::test_nominal_dict_palette", "tests/_core/test_properties.py::TestColor::test_nominal_dict_with_missing_keys", "tests/_core/test_properties.py::TestColor::test_nominal_list_too_short", "tests/_core/test_properties.py::TestColor::test_nominal_list_too_long", "tests/_core/test_properties.py::TestColor::test_bad_scale_values_nominal", "tests/_core/test_properties.py::TestMarker::test_inference_dict[cat]", "tests/_core/test_properties.py::TestMarker::test_inference_dict[num]", "tests/_core/test_properties.py::TestMarker::test_inference_dict[bool]", "tests/_core/test_properties.py::TestMarker::test_dict_missing", "tests/_core/test_properties.py::TestMarker::test_mapping_default[cat]", "tests/_core/test_properties.py::TestMarker::test_mapping_default[num]", "tests/_core/test_properties.py::TestMarker::test_mapping_from_list[cat]", "tests/_core/test_properties.py::TestMarker::test_mapping_from_list[num]", "tests/_core/test_properties.py::TestMarker::test_mapping_from_dict[cat]", "tests/_core/test_properties.py::TestMarker::test_mapping_from_dict[num]", "tests/_core/test_properties.py::TestMarker::test_mapping_with_null_value", "tests/_core/test_properties.py::TestMarker::test_unique_default_large_n", "tests/_core/test_properties.py::TestMarker::test_bad_scale_values", "tests/_core/test_properties.py::TestLineStyle::test_inference_dict[cat]", "tests/_core/test_properties.py::TestLineStyle::test_inference_dict[num]", "tests/_core/test_properties.py::TestLineStyle::test_inference_dict[bool]", "tests/_core/test_properties.py::TestLineStyle::test_dict_missing", "tests/_core/test_properties.py::TestLineStyle::test_mapping_default[cat]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_default[num]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_list[cat]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_list[num]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_dict[cat]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_dict[num]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_with_null_value", "tests/_core/test_properties.py::TestLineStyle::test_unique_default_large_n", "tests/_core/test_properties.py::TestLineStyle::test_bad_scale_values", "tests/_core/test_properties.py::TestFill::test_mapping_categorical_data", "tests/_core/test_properties.py::TestFill::test_mapping_numeric_data", "tests/_core/test_properties.py::TestFill::test_mapping_list", "tests/_core/test_properties.py::TestFill::test_mapping_truthy_list", "tests/_core/test_properties.py::TestFill::test_mapping_dict", "tests/_core/test_properties.py::TestFill::test_cycle_warning", "tests/_core/test_properties.py::TestFill::test_values_error", "tests/_core/test_properties.py::TestAlpha::test_mapped_interval_categorical", "tests/_core/test_properties.py::TestAlpha::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestLineWidth::test_mapped_interval_categorical", "tests/_core/test_properties.py::TestLineWidth::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestEdgeWidth::test_mapped_interval_categorical", "tests/_core/test_properties.py::TestEdgeWidth::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestPointSize::test_mapped_interval_categorical", "tests/_core/test_properties.py::TestPointSize::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestPointSize::test_areal_scaling_categorical", "tests/_core/test_rules.py::test_categorical_order", "tests/_core/test_scales.py::TestNominal::test_coordinate_defaults", "tests/_core/test_scales.py::TestNominal::test_coordinate_with_order", "tests/_core/test_scales.py::TestNominal::test_coordinate_with_subset_order", "tests/_core/test_scales.py::TestNominal::test_coordinate_axis", "tests/_core/test_scales.py::TestNominal::test_coordinate_axis_with_order", "tests/_core/test_scales.py::TestNominal::test_coordinate_axis_with_subset_order", "tests/_core/test_scales.py::TestNominal::test_coordinate_axis_with_category_dtype", "tests/_core/test_scales.py::TestNominal::test_coordinate_numeric_data", "tests/_core/test_scales.py::TestNominal::test_coordinate_numeric_data_with_order", "tests/_core/test_scales.py::TestNominal::test_color_defaults", "tests/_core/test_scales.py::TestNominal::test_color_named_palette", "tests/_core/test_scales.py::TestNominal::test_color_list_palette", "tests/_core/test_scales.py::TestNominal::test_color_dict_palette", "tests/_core/test_scales.py::TestNominal::test_color_numeric_data", "tests/_core/test_scales.py::TestNominal::test_color_numeric_with_order_subset", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_core/test_scales.py::TestNominal::test_color_alpha_in_palette", "tests/_core/test_scales.py::TestNominal::test_color_unknown_palette", "tests/_core/test_scales.py::TestNominal::test_object_defaults", "tests/_core/test_scales.py::TestNominal::test_object_list", "tests/_core/test_scales.py::TestNominal::test_object_dict", "tests/_core/test_scales.py::TestNominal::test_object_order", "tests/_core/test_scales.py::TestNominal::test_object_order_subset", "tests/_core/test_scales.py::TestNominal::test_objects_that_are_weird", "tests/_core/test_scales.py::TestNominal::test_alpha_default", "tests/_core/test_scales.py::TestNominal::test_fill", "tests/_core/test_scales.py::TestNominal::test_fill_dict", "tests/_core/test_scales.py::TestNominal::test_fill_nunique_warning", "tests/_core/test_scales.py::TestNominal::test_interval_defaults", "tests/_core/test_scales.py::TestNominal::test_interval_tuple", "tests/_core/test_scales.py::TestNominal::test_interval_tuple_numeric", "tests/_core/test_scales.py::TestNominal::test_interval_list", "tests/_core/test_scales.py::TestNominal::test_interval_dict", "tests/_core/test_scales.py::TestNominal::test_interval_with_transform", "tests/_core/test_scales.py::TestNominal::test_empty_data", "tests/_core/test_scales.py::TestNominal::test_finalize", "tests/_core/test_scales.py::TestBoolean::test_object_defaults", "tests/_core/test_scales.py::TestBoolean::test_object_list", "tests/_core/test_scales.py::TestBoolean::test_object_dict", "tests/_core/test_scales.py::TestBoolean::test_fill", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_stats/test_aggregation.py::TestAgg::test_default", "tests/_stats/test_aggregation.py::TestAgg::test_default_multi", "tests/_stats/test_aggregation.py::TestAgg::test_func[max]", "tests/_stats/test_aggregation.py::TestAgg::test_func[<lambda>]", "tests/_stats/test_aggregation.py::TestEst::test_mean_sd[mean0]", "tests/_stats/test_aggregation.py::TestEst::test_mean_sd[mean1]", "tests/_stats/test_aggregation.py::TestEst::test_sd_single_obs", "tests/_stats/test_aggregation.py::TestEst::test_median_pi", "tests/_stats/test_aggregation.py::TestEst::test_weighted_mean", "tests/_stats/test_aggregation.py::TestEst::test_seed", "tests/_stats/test_counting.py::TestCount::test_single_grouper", "tests/_stats/test_counting.py::TestCount::test_multiple_groupers", "tests/_stats/test_counting.py::TestHist::test_common_norm_default", "tests/_stats/test_counting.py::TestHist::test_common_norm_false", "tests/_stats/test_counting.py::TestHist::test_common_norm_subset", "tests/_stats/test_counting.py::TestHist::test_common_norm_warning", "tests/_stats/test_counting.py::TestHist::test_common_bins_default", "tests/_stats/test_counting.py::TestHist::test_common_bins_false", "tests/_stats/test_counting.py::TestHist::test_common_bins_subset", "tests/_stats/test_counting.py::TestHist::test_common_bins_warning", "tests/_stats/test_counting.py::TestHist::test_histogram_multiple", "tests/_stats/test_density.py::TestKDE::test_columns[x]", "tests/_stats/test_density.py::TestKDE::test_columns[y]", "tests/_stats/test_density.py::TestKDE::test_common_grid[True]", "tests/_stats/test_density.py::TestKDE::test_common_grid[False]", "tests/_stats/test_density.py::TestKDE::test_common_norm[True]", "tests/_stats/test_density.py::TestKDE::test_common_norm[False]", "tests/_stats/test_density.py::TestKDE::test_common_norm_variables", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[norm]", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[grid]", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/_stats/test_density.py::TestKDE::test_singular[vals0]", "tests/_stats/test_density.py::TestKDE::test_singular[vals1]", "tests/_stats/test_density.py::TestKDE::test_singular[vals2]", "tests/_stats/test_density.py::TestKDE::test_singular[vals3]", "tests/_stats/test_order.py::TestPerc::test_int_k", "tests/_stats/test_order.py::TestPerc::test_list_k", "tests/_stats/test_order.py::TestPerc::test_orientation", "tests/_stats/test_order.py::TestPerc::test_method", "tests/_stats/test_order.py::TestPerc::test_grouped", "tests/_stats/test_order.py::TestPerc::test_with_na", "tests/_stats/test_regression.py::TestPolyFit::test_one_grouper", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-33
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex 164120cb..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -171,6 +171,88 @@ def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False):\n .. include:: ../docstrings/color_palette.rst\n \n \"\"\"\n+ if palette is None:\n+ palette = get_color_cycle()\n+ if n_colors is None:\n+ n_colors = len(palette)\n+\n+ elif not isinstance(palette, str):\n+ palette = palette\n+ if n_colors is None:\n+ n_colors = len(palette)\n+ else:\n+\n+ if n_colors is None:\n+ # Use all colors in a qualitative palette or 6 of another kind\n+ n_colors = QUAL_PALETTE_SIZES.get(palette, 6)\n+\n+ if palette in SEABORN_PALETTES:\n+ # Named \"seaborn variant\" of matplotlib default color cycle\n+ palette = SEABORN_PALETTES[palette]\n+\n+ elif palette == \"hls\":\n+ # Evenly spaced colors in cylindrical RGB space\n+ palette = hls_palette(n_colors, as_cmap=as_cmap)\n+\n+ elif palette == \"husl\":\n+ # Evenly spaced colors in cylindrical Lab space\n+ palette = husl_palette(n_colors, as_cmap=as_cmap)\n+\n+ elif palette.lower() == \"jet\":\n+ # Paternalism\n+ raise ValueError(\"No.\")\n+\n+ elif palette.startswith(\"ch:\"):\n+ # Cubehelix palette with params specified in string\n+ args, kwargs = _parse_cubehelix_args(palette)\n+ palette = cubehelix_palette(n_colors, *args, **kwargs, as_cmap=as_cmap)\n+\n+ elif palette.startswith(\"light:\"):\n+ # light palette to color specified in string\n+ _, color = palette.split(\":\")\n+ reverse = color.endswith(\"_r\")\n+ if reverse:\n+ color = color[:-2]\n+ palette = light_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)\n+\n+ elif palette.startswith(\"dark:\"):\n+ # light palette to color specified in string\n+ _, color = palette.split(\":\")\n+ reverse = color.endswith(\"_r\")\n+ if reverse:\n+ color = color[:-2]\n+ palette = dark_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)\n+\n+ elif palette.startswith(\"blend:\"):\n+ # blend palette between colors specified in string\n+ _, colors = palette.split(\":\")\n+ colors = colors.split(\",\")\n+ palette = blend_palette(colors, n_colors, as_cmap=as_cmap)\n+\n+ else:\n+ try:\n+ # Perhaps a named matplotlib colormap?\n+ palette = mpl_palette(palette, n_colors, as_cmap=as_cmap)\n+ except (ValueError, KeyError): # Error class changed in mpl36\n+ raise ValueError(f\"{palette!r} is not a valid palette name\")\n+\n+ if desat is not None:\n+ palette = [desaturate(c, desat) for c in palette]\n+\n+ if not as_cmap:\n+\n+ # Always return as many colors as we asked for\n+ pal_cycle = cycle(palette)\n+ palette = [next(pal_cycle) for _ in range(n_colors)]\n+\n+ # Always return in r, g, b tuple format\n+ try:\n+ palette = map(mpl.colors.colorConverter.to_rgb, palette)\n+ palette = _ColorPalette(palette)\n+ except ValueError:\n+ raise ValueError(f\"Could not generate a palette for {palette}\")\n+\n+ return palette\n \n \n def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..164120cb 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -171,88 +171,6 @@ def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False):\n .. include:: ../docstrings/color_palette.rst\n \n \"\"\"\n- if palette is None:\n- palette = get_color_cycle()\n- if n_colors is None:\n- n_colors = len(palette)\n-\n- elif not isinstance(palette, str):\n- palette = palette\n- if n_colors is None:\n- n_colors = len(palette)\n- else:\n-\n- if n_colors is None:\n- # Use all colors in a qualitative palette or 6 of another kind\n- n_colors = QUAL_PALETTE_SIZES.get(palette, 6)\n-\n- if palette in SEABORN_PALETTES:\n- # Named \"seaborn variant\" of matplotlib default color cycle\n- palette = SEABORN_PALETTES[palette]\n-\n- elif palette == \"hls\":\n- # Evenly spaced colors in cylindrical RGB space\n- palette = hls_palette(n_colors, as_cmap=as_cmap)\n-\n- elif palette == \"husl\":\n- # Evenly spaced colors in cylindrical Lab space\n- palette = husl_palette(n_colors, as_cmap=as_cmap)\n-\n- elif palette.lower() == \"jet\":\n- # Paternalism\n- raise ValueError(\"No.\")\n-\n- elif palette.startswith(\"ch:\"):\n- # Cubehelix palette with params specified in string\n- args, kwargs = _parse_cubehelix_args(palette)\n- palette = cubehelix_palette(n_colors, *args, **kwargs, as_cmap=as_cmap)\n-\n- elif palette.startswith(\"light:\"):\n- # light palette to color specified in string\n- _, color = palette.split(\":\")\n- reverse = color.endswith(\"_r\")\n- if reverse:\n- color = color[:-2]\n- palette = light_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)\n-\n- elif palette.startswith(\"dark:\"):\n- # light palette to color specified in string\n- _, color = palette.split(\":\")\n- reverse = color.endswith(\"_r\")\n- if reverse:\n- color = color[:-2]\n- palette = dark_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)\n-\n- elif palette.startswith(\"blend:\"):\n- # blend palette between colors specified in string\n- _, colors = palette.split(\":\")\n- colors = colors.split(\",\")\n- palette = blend_palette(colors, n_colors, as_cmap=as_cmap)\n-\n- else:\n- try:\n- # Perhaps a named matplotlib colormap?\n- palette = mpl_palette(palette, n_colors, as_cmap=as_cmap)\n- except (ValueError, KeyError): # Error class changed in mpl36\n- raise ValueError(f\"{palette!r} is not a valid palette name\")\n-\n- if desat is not None:\n- palette = [desaturate(c, desat) for c in palette]\n-\n- if not as_cmap:\n-\n- # Always return as many colors as we asked for\n- pal_cycle = cycle(palette)\n- palette = [next(pal_cycle) for _ in range(n_colors)]\n-\n- # Always return in r, g, b tuple format\n- try:\n- palette = map(mpl.colors.colorConverter.to_rgb, palette)\n- palette = _ColorPalette(palette)\n- except ValueError:\n- raise ValueError(f\"Could not generate a palette for {palette}\")\n-\n- return palette\n \n \n def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef color_palette(palette=None, n_colors=None, desat=None, as_cmap=False):\n \"\"\"Return a list of colors or continuous colormap defining a palette.\n\n Possible ``palette`` values include:\n - Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind)\n - Name of matplotlib colormap\n - 'husl' or 'hls'\n - 'ch:<cubehelix arguments>'\n - 'light:<color>', 'dark:<color>', 'blend:<color>,<color>',\n - A sequence of colors in any format matplotlib accepts\n\n Calling this function with ``palette=None`` will return the current\n matplotlib color cycle.\n\n This function can also be used in a ``with`` statement to temporarily\n set the color cycle for a plot or set of plots.\n\n See the :ref:`tutorial <palette_tutorial>` for more information.\n\n Parameters\n ----------\n palette : None, string, or sequence, optional\n Name of palette or None to return current palette. If a sequence, input\n colors are used but possibly cycled and desaturated.\n n_colors : int, optional\n Number of colors in the palette. If ``None``, the default will depend\n on how ``palette`` is specified. Named palettes default to 6 colors,\n but grabbing the current palette or passing in a list of colors will\n not change the number of colors unless this is specified. Asking for\n more colors than exist in the palette will cause it to cycle. Ignored\n when ``as_cmap`` is True.\n desat : float, optional\n Proportion to desaturate each color by.\n as_cmap : bool\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n\n Returns\n -------\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n set_palette : Set the default color cycle for all plots.\n set_color_codes : Reassign color codes like ``\"b\"``, ``\"g\"``, etc. to\n colors from one of the seaborn palettes.\n\n Examples\n --------\n\n .. include:: ../docstrings/color_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette_large", "tests/_core/test_properties.py::TestColor::test_nominal_named_palette", "tests/_core/test_properties.py::TestColor::test_nominal_list_palette", "tests/_core/test_properties.py::TestColor::test_nominal_dict_palette", "tests/_core/test_properties.py::TestColor::test_nominal_dict_with_missing_keys", "tests/_core/test_properties.py::TestColor::test_nominal_list_too_short", "tests/_core/test_properties.py::TestColor::test_nominal_list_too_long", "tests/_core/test_properties.py::TestColor::test_continuous_default_palette", "tests/_core/test_properties.py::TestColor::test_continuous_named_palette", "tests/_core/test_properties.py::TestColor::test_continuous_tuple_palette", "tests/_core/test_properties.py::TestColor::test_continuous_missing", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_axisgrid.py::TestFacetGrid::test_self_data", "tests/test_axisgrid.py::TestFacetGrid::test_self_figure", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_axisgrid.py::TestFacetGrid::test_subplot_kws", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_column_missing_categories", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_axisgrid.py::TestFacetGrid::test_apply", "tests/test_axisgrid.py::TestFacetGrid::test_pipe", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_axisgrid.py::TestPairGrid::test_self_data", "tests/test_axisgrid.py::TestPairGrid::test_ignore_datelike_data", "tests/test_axisgrid.py::TestPairGrid::test_self_figure", "tests/test_axisgrid.py::TestPairGrid::test_self_axes", "tests/test_axisgrid.py::TestPairGrid::test_default_axes", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars1]", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars0-y_vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars1-z]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars2-y_vars2]", "tests/test_axisgrid.py::TestPairGrid::test_corner", "tests/test_axisgrid.py::TestPairGrid::test_size", "tests/test_axisgrid.py::TestPairGrid::test_map", "tests/test_axisgrid.py::TestPairGrid::test_map_nonsquare", "tests/test_axisgrid.py::TestPairGrid::test_map_lower", "tests/test_axisgrid.py::TestPairGrid::test_map_upper", "tests/test_axisgrid.py::TestPairGrid::test_map_mixed_funcsig", "tests/test_axisgrid.py::TestPairGrid::test_map_diag", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_rectangular", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_and_offdiag", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_matplotlib", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_hue_kws", "tests/test_axisgrid.py::TestPairGrid::test_hue_order", "tests/test_axisgrid.py::TestPairGrid::test_hue_order_missing_level", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/test_axisgrid.py::TestPairGrid::test_nondefault_index", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_axisgrid.py::TestPairGrid::test_corner_despine", "tests/test_axisgrid.py::TestPairGrid::test_corner_set", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_axisgrid.py::TestPairGrid::test_tick_params", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_base.py::TestHueMapping::test_plotter_default_init", "tests/test_base.py::TestHueMapping::test_plotter_customization", "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/test_base.py::TestHueMapping::test_hue_map_numeric", "tests/test_base.py::TestHueMapping::test_saturation", "tests/test_base.py::TestSizeMapping::test_array_palette_deprecation", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_base.py::TestVectorPlotter::test_iter_data_values", "tests/test_base.py::TestVectorPlotter::test_iter_data_reverse", "tests/test_base.py::TestVectorPlotter::test_iter_data_dropna", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_base.py::TestVectorPlotter::test_get_axes_single", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_base.py::TestVectorPlotter::test_var_order", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_redundant_hue_backcompat", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestStripPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_with_hue_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_hue_implied_by_palette_deprecation", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning", "tests/test_distributions.py::TestRugPlot::test_wide_vs_long_data", "tests/test_distributions.py::TestRugPlot::test_rug_colors", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_multiple_argument_check", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_cmap", "tests/test_distributions.py::TestHistPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-bars]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-step]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-poly]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_stack", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_dodge", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_as_numpy_dodged", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_common_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_unique_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[proportion]", "tests/test_distributions.py::TestHistPlotUnivariate::test_common_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_unique_bins", "tests/test_distributions.py::TestHistPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_default", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_dodge", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_common_norm", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_unique_norm", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_colors", "tests/test_distributions.py::TestHistPlotBivariate::test_hue_color_limits", "tests/test_distributions.py::TestECDFPlotUnivariate::test_hue", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_distributions.py::TestDisPlot::test_empty", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_miscplot.py::TestPalPlot::test_palplot_size", "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_palettes.py::TestColorPalettes::test_palette_context", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_palettes.py::TestColorPalettes::test_palette_size", "tests/test_palettes.py::TestColorPalettes::test_seaborn_palettes", "tests/test_palettes.py::TestColorPalettes::test_hls_palette", "tests/test_palettes.py::TestColorPalettes::test_husl_palette", "tests/test_palettes.py::TestColorPalettes::test_mpl_palette", "tests/test_palettes.py::TestColorPalettes::test_mpl_dark_palette", "tests/test_palettes.py::TestColorPalettes::test_bad_palette_name", "tests/test_palettes.py::TestColorPalettes::test_terrible_palette_name", "tests/test_palettes.py::TestColorPalettes::test_bad_palette_colors", "tests/test_palettes.py::TestColorPalettes::test_palette_desat", "tests/test_palettes.py::TestColorPalettes::test_palette_is_list_of_tuples", "tests/test_palettes.py::TestColorPalettes::test_palette_cycles", "tests/test_palettes.py::TestColorPalettes::test_light_palette", "tests/test_palettes.py::TestColorPalettes::test_dark_palette", "tests/test_palettes.py::TestColorPalettes::test_blend_palette", "tests/test_palettes.py::TestColorPalettes::test_cubehelix_code", "tests/test_palettes.py::TestColorPalettes::test_xkcd_palette", "tests/test_palettes.py::TestColorPalettes::test_crayon_palette", "tests/test_palettes.py::TestColorPalettes::test_color_codes", "tests/test_palettes.py::TestColorPalettes::test_as_hex", "tests/test_palettes.py::TestColorPalettes::test_preserved_palette_length", "tests/test_palettes.py::TestColorPalettes::test_html_repr", "tests/test_rcmod.py::TestAxesStyle::test_set_rc", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/test_rcmod.py::TestAxesStyle::test_reset_defaults", "tests/test_rcmod.py::TestAxesStyle::test_reset_orig", "tests/test_rcmod.py::TestAxesStyle::test_set_is_alias", "tests/test_rcmod.py::TestPalette::test_set_palette", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_set_serif_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[size]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_relational.py::TestScatterPlotter::test_legend_hue", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_relational.py::TestScatterPlotter::test_legend_data_hue_size_same", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_full", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_brief", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_relational.py::TestScatterPlotter::test_legend_value_error", "tests/test_relational.py::TestScatterPlotter::test_plot", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_relational.py::TestScatterPlotter::test_hue_order", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels", "tests/test_utils.py::test_ticklabels_overlap", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_utils.py::test_move_legend_with_labels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-34
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 9e6a20ff..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -160,6 +160,27 @@ def desaturate(color, prop):\n desaturated color code in RGB tuple representation\n \n \"\"\"\n+ # Check inputs\n+ if not 0 <= prop <= 1:\n+ raise ValueError(\"prop must be between 0 and 1\")\n+\n+ # Get rgb tuple rep\n+ rgb = to_rgb(color)\n+\n+ # Short circuit to avoid floating point issues\n+ if prop == 1:\n+ return rgb\n+\n+ # Convert to hls\n+ h, l, s = colorsys.rgb_to_hls(*rgb)\n+\n+ # Desaturate the saturation channel\n+ s *= prop\n+\n+ # Convert back to rgb\n+ new_color = colorsys.hls_to_rgb(h, l, s)\n+\n+ return new_color\n \n \n def saturate(color):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..9e6a20ff 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -160,27 +160,6 @@ def desaturate(color, prop):\n desaturated color code in RGB tuple representation\n \n \"\"\"\n- # Check inputs\n- if not 0 <= prop <= 1:\n- raise ValueError(\"prop must be between 0 and 1\")\n-\n- # Get rgb tuple rep\n- rgb = to_rgb(color)\n-\n- # Short circuit to avoid floating point issues\n- if prop == 1:\n- return rgb\n-\n- # Convert to hls\n- h, l, s = colorsys.rgb_to_hls(*rgb)\n-\n- # Desaturate the saturation channel\n- s *= prop\n-\n- # Convert back to rgb\n- new_color = colorsys.hls_to_rgb(h, l, s)\n-\n- return new_color\n \n \n def saturate(color):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef desaturate(color, prop):\n \"\"\"Decrease the saturation channel of a color by some percent.\n\n Parameters\n ----------\n color : matplotlib color\n hex, rgb-tuple, or html color name\n prop : float\n saturation channel of color will be multiplied by this value\n\n Returns\n -------\n new_color : rgb tuple\n desaturated color code in RGB tuple representation\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_base.py::TestHueMapping::test_saturation", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs4]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs5]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs6]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[barplot-kwargs7]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs8]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs9]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs10]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxplot-kwargs11]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_two_calls", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_dodge_without_hue", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[x]", "tests/test_categorical.py::TestBoxPlot::test_log_data_scale[y]", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_linecolor", "tests/test_categorical.py::TestBoxPlot::test_linecolor_gray_warning", "tests/test_categorical.py::TestBoxPlot::test_saturation", "tests/test_categorical.py::TestBoxPlot::test_linewidth", "tests/test_categorical.py::TestBoxPlot::test_notch[notch]", "tests/test_categorical.py::TestBoxPlot::test_notch[shownotches]", "tests/test_categorical.py::TestBoxPlot::test_whis", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_showfliers", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_checks", "tests/test_categorical.py::TestBoxenPlot::test_width_method_check", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_two_calls", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_two_calls", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_log_scale[x]", "tests/test_categorical.py::TestBarPlot::test_log_scale[y]", "tests/test_categorical.py::TestBarPlot::test_labels_flat", "tests/test_categorical.py::TestBarPlot::test_single_var[x]", "tests/test_categorical.py::TestBarPlot::test_single_var[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[x]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[y]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[h]", "tests/test_categorical.py::TestBarPlot::test_vector_orient[v]", "tests/test_categorical.py::TestBarPlot::test_xy_vertical", "tests/test_categorical.py::TestBarPlot::test_xy_horizontal", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_grouper", "tests/test_categorical.py::TestBarPlot::test_xy_with_na_value", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale", "tests/test_categorical.py::TestBarPlot::test_xy_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_datetime_native_scale_axis", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_estimate_default", "tests/test_categorical.py::TestBarPlot::test_estimate_string", "tests/test_categorical.py::TestBarPlot::test_estimate_func", "tests/test_categorical.py::TestBarPlot::test_weighted_estimate", "tests/test_categorical.py::TestBarPlot::test_estimate_log_transform", "tests/test_categorical.py::TestBarPlot::test_errorbars", "tests/test_categorical.py::TestBarPlot::test_width", "tests/test_categorical.py::TestBarPlot::test_width_native_scale", "tests/test_categorical.py::TestBarPlot::test_width_spaced_categories", "tests/test_categorical.py::TestBarPlot::test_saturation_color", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_error_caps", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale", "tests/test_categorical.py::TestBarPlot::test_error_caps_native_scale_log_transform", "tests/test_categorical.py::TestBarPlot::test_bar_kwargs", "tests/test_categorical.py::TestBarPlot::test_err_kws[True]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBarPlot::test_errwidth_deprecation", "tests/test_categorical.py::TestBarPlot::test_errcolor_deprecation", "tests/test_categorical.py::TestBarPlot::test_capsize_as_none_deprecation", "tests/test_categorical.py::TestCountPlot::test_labels_long", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_flat_series", "tests/test_categorical.py::TestCountPlot::test_x_series", "tests/test_categorical.py::TestCountPlot::test_y_series", "tests/test_categorical.py::TestCountPlot::test_stat[percent]", "tests/test_categorical.py::TestCountPlot::test_stat[probability]", "tests/test_categorical.py::TestCountPlot::test_stat[proportion]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_palettes.py::TestColorPalettes::test_palette_desat", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels", "tests/test_utils.py::test_desaturate", "tests/test_utils.py::test_desaturation_prop" ], "PASS_TO_PASS": null }
mwaskom__seaborn-35
1.0
{ "code": "diff --git b/seaborn/_core/groupby.py a/seaborn/_core/groupby.py\nindex 4db97378..cb63c670 100644\n--- b/seaborn/_core/groupby.py\n+++ a/seaborn/_core/groupby.py\n@@ -39,6 +39,12 @@ class GroupBy:\n data; these will be dropped before the groups are defined.\n \n \"\"\"\n+ if not order:\n+ raise ValueError(\"GroupBy requires at least one grouping variable\")\n+\n+ if isinstance(order, list):\n+ order = {k: None for k in order}\n+ self.order = order\n \n def _get_groups(\n self, data: DataFrame\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/groupby.py b/seaborn/_core/groupby.py\nindex cb63c670..4db97378 100644\n--- a/seaborn/_core/groupby.py\n+++ b/seaborn/_core/groupby.py\n@@ -39,12 +39,6 @@ class GroupBy:\n data; these will be dropped before the groups are defined.\n \n \"\"\"\n- if not order:\n- raise ValueError(\"GroupBy requires at least one grouping variable\")\n-\n- if isinstance(order, list):\n- order = {k: None for k in order}\n- self.order = order\n \n def _get_groups(\n self, data: DataFrame\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/groupby.py.\nHere is the description for the function:\n def __init__(self, order: list[str] | dict[str, list | None]):\n \"\"\"\n Initialize the GroupBy from grouping variables and optional level orders.\n\n Parameters\n ----------\n order\n List of variable names or dict mapping names to desired level orders.\n Level order values can be None to use default ordering rules. The\n variables can include names that are not expected to appear in the\n data; these will be dropped before the groups are defined.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_stats/test_counting.py::TestCount::test_single_grouper", "tests/_core/test_moves.py::TestJitter::test_default", "tests/_stats/test_aggregation.py::TestAgg::test_default", "tests/_core/test_groupby.py::test_init_from_list", "tests/_stats/test_order.py::TestPerc::test_int_k", "tests/_stats/test_counting.py::TestCount::test_multiple_groupers", "tests/_stats/test_regression.py::TestPolyFit::test_no_grouper", "tests/_stats/test_density.py::TestKDE::test_columns[x]", "tests/_stats/test_density.py::TestKDE::test_columns[y]", "tests/_core/test_groupby.py::test_init_from_dict", "tests/_core/test_groupby.py::test_init_requires_order", "tests/_stats/test_counting.py::TestHist::test_count_stat", "tests/_core/test_moves.py::TestJitter::test_width", "tests/_stats/test_order.py::TestPerc::test_list_k", "tests/_stats/test_order.py::TestPerc::test_orientation", "tests/_core/test_groupby.py::test_at_least_one_grouping_variable_required", "tests/_core/test_groupby.py::test_agg_one_grouper", "tests/_core/test_groupby.py::test_agg_two_groupers", "tests/_stats/test_density.py::TestKDE::test_gridsize[20]", "tests/_stats/test_order.py::TestPerc::test_method", "tests/_stats/test_order.py::TestPerc::test_grouped", "tests/_stats/test_density.py::TestKDE::test_gridsize[30]", "tests/_stats/test_regression.py::TestPolyFit::test_one_grouper", "tests/_stats/test_aggregation.py::TestAgg::test_default_multi", "tests/_stats/test_aggregation.py::TestAgg::test_func[max]", "tests/_stats/test_density.py::TestKDE::test_gridsize[None]", "tests/_stats/test_counting.py::TestHist::test_probability_stat", "tests/_stats/test_counting.py::TestHist::test_proportion_stat", "tests/_stats/test_counting.py::TestHist::test_percent_stat", "tests/_core/test_groupby.py::test_agg_two_groupers_ordered", "tests/_core/test_groupby.py::test_apply_no_grouper", "tests/_stats/test_aggregation.py::TestAgg::test_func[<lambda>]", "tests/_stats/test_density.py::TestKDE::test_cut[1]", "tests/_core/test_moves.py::TestJitter::test_x", "tests/_core/test_moves.py::TestJitter::test_y", "tests/_stats/test_aggregation.py::TestEst::test_mean_sd[mean0]", "tests/_stats/test_aggregation.py::TestEst::test_mean_sd[mean1]", "tests/_core/test_groupby.py::test_apply_one_grouper", "tests/_core/test_groupby.py::test_apply_mutate_columns", "tests/_stats/test_aggregation.py::TestEst::test_sd_single_obs", "tests/_stats/test_aggregation.py::TestEst::test_median_pi", "tests/_core/test_groupby.py::test_apply_replace_columns", "tests/_core/test_moves.py::TestJitter::test_seed", "tests/_core/test_moves.py::TestDodge::test_default", "tests/_stats/test_density.py::TestKDE::test_cut[2]", "tests/_core/test_moves.py::TestDodge::test_fill", "tests/_core/test_moves.py::TestDodge::test_drop", "tests/_stats/test_density.py::TestKDE::test_common_grid[True]", "tests/_core/test_moves.py::TestDodge::test_gap", "tests/_stats/test_density.py::TestKDE::test_common_grid[False]", "tests/_stats/test_density.py::TestKDE::test_common_norm[True]", "tests/_stats/test_density.py::TestKDE::test_common_norm[False]", "tests/_core/test_moves.py::TestDodge::test_widths_default", "tests/_stats/test_aggregation.py::TestEst::test_weighted_mean", "tests/_core/test_moves.py::TestDodge::test_widths_fill", "tests/_stats/test_density.py::TestKDE::test_common_norm_variables", "tests/_stats/test_aggregation.py::TestEst::test_seed", "tests/_stats/test_order.py::TestPerc::test_with_na", "tests/_stats/test_regression.py::TestPolyFit::test_missing_data", "tests/_core/test_moves.py::TestDodge::test_widths_drop", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[norm]", "tests/_stats/test_counting.py::TestHist::test_density_stat", "tests/_stats/test_counting.py::TestHist::test_frequency_stat", "tests/_core/test_moves.py::TestDodge::test_faceted_default", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[grid]", "tests/_stats/test_counting.py::TestHist::test_cumulative_count", "tests/_core/test_plot.py::TestLayerAddition::test_orient[x-x]", "tests/_stats/test_density.py::TestKDE::test_bw_adjust", "tests/_stats/test_density.py::TestKDE::test_bw_method_scalar", "tests/_stats/test_density.py::TestKDE::test_singular[vals0]", "tests/_core/test_moves.py::TestDodge::test_faceted_fill", "tests/_core/test_moves.py::TestDodge::test_faceted_drop", "tests/_stats/test_counting.py::TestHist::test_cumulative_proportion", "tests/_stats/test_counting.py::TestHist::test_cumulative_density", "tests/_stats/test_density.py::TestKDE::test_singular[vals1]", "tests/_stats/test_density.py::TestKDE::test_singular[vals2]", "tests/_stats/test_density.py::TestKDE::test_singular[vals3]", "tests/_core/test_moves.py::TestDodge::test_orient", "tests/_core/test_moves.py::TestDodge::test_single_semantic[grp2]", "tests/_stats/test_density.py::TestKDE::test_missing[y]", "tests/_core/test_moves.py::TestDodge::test_single_semantic[grp3]", "tests/_core/test_moves.py::TestDodge::test_two_semantics", "tests/_stats/test_counting.py::TestHist::test_common_norm_default", "tests/_stats/test_counting.py::TestHist::test_common_norm_false", "tests/_stats/test_counting.py::TestHist::test_common_norm_subset", "tests/_stats/test_density.py::TestKDE::test_missing[weight]", "tests/_stats/test_counting.py::TestHist::test_common_norm_warning", "tests/_core/test_moves.py::TestStack::test_basic", "tests/_stats/test_counting.py::TestHist::test_common_bins_default", "tests/_stats/test_counting.py::TestHist::test_common_bins_false", "tests/_core/test_moves.py::TestStack::test_faceted", "tests/_stats/test_counting.py::TestHist::test_common_bins_subset", "tests/_stats/test_counting.py::TestHist::test_common_bins_warning", "tests/_core/test_moves.py::TestStack::test_misssing_data", "tests/_stats/test_counting.py::TestHist::test_histogram_single", "tests/_core/test_plot.py::TestLayerAddition::test_orient[y-y]", "tests/_stats/test_counting.py::TestHist::test_histogram_multiple", "tests/_core/test_moves.py::TestStack::test_baseline_homogeneity_check", "tests/_core/test_moves.py::TestShift::test_default", "tests/_core/test_moves.py::TestShift::test_moves[0.3-0]", "tests/_core/test_moves.py::TestShift::test_moves[0-0.2]", "tests/_core/test_moves.py::TestShift::test_moves[0.1-0.3]", "tests/_core/test_moves.py::TestNorm::test_default_no_groups[x]", "tests/_core/test_moves.py::TestNorm::test_default_no_groups[y]", "tests/_core/test_moves.py::TestNorm::test_default_groups[x]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[v-x]", "tests/_core/test_moves.py::TestNorm::test_default_groups[y]", "tests/_core/test_moves.py::TestNorm::test_sum", "tests/_core/test_moves.py::TestNorm::test_where", "tests/_core/test_plot.py::TestLayerAddition::test_orient[h-y]", "tests/_core/test_moves.py::TestNorm::test_percent", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_core/test_plot.py::TestScaling::test_computed_var_ticks", "tests/_core/test_plot.py::TestScaling::test_computed_var_transform", "tests/_core/test_plot.py::TestScaling::test_derived_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_pair_single_coordinate_stat_orient", "tests/_core/test_plot.py::TestScaling::test_inferred_nominal_passed_to_stat", "tests/_core/test_plot.py::TestPlotting::test_stat", "tests/_core/test_plot.py::TestPlotting::test_move", "tests/_core/test_plot.py::TestPlotting::test_stat_and_move", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_log_scale", "tests/_core/test_plot.py::TestPlotting::test_multi_move", "tests/_core/test_plot.py::TestPlotting::test_multi_move_with_pairing", "tests/_core/test_plot.py::TestPlotting::test_move_with_range", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_computed_coordinate_orient_inference" ], "PASS_TO_PASS": null }
mwaskom__seaborn-36
1.0
{ "code": "diff --git b/seaborn/external/kde.py a/seaborn/external/kde.py\nindex dc41f918..6add4e19 100644\n--- b/seaborn/external/kde.py\n+++ a/seaborn/external/kde.py\n@@ -229,6 +229,41 @@ class gaussian_kde:\n the dimensionality of the KDE.\n \n \"\"\"\n+ points = atleast_2d(asarray(points))\n+\n+ d, m = points.shape\n+ if d != self.d:\n+ if d == 1 and m == self.d:\n+ # points was passed in as a row vector\n+ points = reshape(points, (self.d, 1))\n+ m = 1\n+ else:\n+ msg = f\"points have dimension {d}, dataset has dimension {self.d}\"\n+ raise ValueError(msg)\n+\n+ output_dtype = np.common_type(self.covariance, points)\n+ result = zeros((m,), dtype=output_dtype)\n+\n+ whitening = linalg.cholesky(self.inv_cov)\n+ scaled_dataset = dot(whitening, self.dataset)\n+ scaled_points = dot(whitening, points)\n+\n+ if m >= self.n:\n+ # there are more points than data, so loop over data\n+ for i in range(self.n):\n+ diff = scaled_dataset[:, i, newaxis] - scaled_points\n+ energy = sum(diff * diff, axis=0) / 2.0\n+ result += self.weights[i]*exp(-energy)\n+ else:\n+ # loop over points\n+ for i in range(m):\n+ diff = scaled_dataset - scaled_points[:, i, newaxis]\n+ energy = sum(diff * diff, axis=0) / 2.0\n+ result[i] = sum(exp(-energy)*self.weights, axis=0)\n+\n+ result = result / self._norm_factor\n+\n+ return result\n \n __call__ = evaluate\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/external/kde.py b/seaborn/external/kde.py\nindex 6add4e19..dc41f918 100644\n--- a/seaborn/external/kde.py\n+++ b/seaborn/external/kde.py\n@@ -229,41 +229,6 @@ class gaussian_kde:\n the dimensionality of the KDE.\n \n \"\"\"\n- points = atleast_2d(asarray(points))\n-\n- d, m = points.shape\n- if d != self.d:\n- if d == 1 and m == self.d:\n- # points was passed in as a row vector\n- points = reshape(points, (self.d, 1))\n- m = 1\n- else:\n- msg = f\"points have dimension {d}, dataset has dimension {self.d}\"\n- raise ValueError(msg)\n-\n- output_dtype = np.common_type(self.covariance, points)\n- result = zeros((m,), dtype=output_dtype)\n-\n- whitening = linalg.cholesky(self.inv_cov)\n- scaled_dataset = dot(whitening, self.dataset)\n- scaled_points = dot(whitening, points)\n-\n- if m >= self.n:\n- # there are more points than data, so loop over data\n- for i in range(self.n):\n- diff = scaled_dataset[:, i, newaxis] - scaled_points\n- energy = sum(diff * diff, axis=0) / 2.0\n- result += self.weights[i]*exp(-energy)\n- else:\n- # loop over points\n- for i in range(m):\n- diff = scaled_dataset - scaled_points[:, i, newaxis]\n- energy = sum(diff * diff, axis=0) / 2.0\n- result[i] = sum(exp(-energy)*self.weights, axis=0)\n-\n- result = result / self._norm_factor\n-\n- return result\n \n __call__ = evaluate\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/external/kde.py.\nHere is the description for the function:\n def evaluate(self, points):\n \"\"\"Evaluate the estimated pdf on a set of points.\n\n Parameters\n ----------\n points : (# of dimensions, # of points)-array\n Alternatively, a (# of dimensions,) vector can be passed in and\n treated as a single point.\n\n Returns\n -------\n values : (# of points,)-array\n The values at each point.\n\n Raises\n ------\n ValueError : if the dimensionality of the input points is different than\n the dimensionality of the KDE.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_distributions.py::TestDistPlot::test_hist_bins", "tests/test_statistics.py::TestKDE::test_gridsize", "tests/_stats/test_density.py::TestKDE::test_columns[x]", "tests/test_statistics.py::TestKDE::test_cut", "tests/_stats/test_density.py::TestKDE::test_columns[y]", "tests/_stats/test_density.py::TestKDE::test_gridsize[20]", "tests/test_statistics.py::TestKDE::test_clip", "tests/_stats/test_density.py::TestKDE::test_gridsize[30]", "tests/test_statistics.py::TestKDE::test_density_normalization", "tests/_stats/test_density.py::TestKDE::test_gridsize[None]", "tests/test_statistics.py::TestKDE::test_cached_support", "tests/_stats/test_density.py::TestKDE::test_cut[1]", "tests/test_statistics.py::TestKDE::test_bw_method", "tests/test_distributions.py::TestDistPlot::test_elements", "tests/_stats/test_density.py::TestKDE::test_cut[2]", "tests/test_statistics.py::TestKDE::test_bw_adjust", "tests/_stats/test_density.py::TestKDE::test_common_grid[True]", "tests/_stats/test_density.py::TestKDE::test_common_grid[False]", "tests/_stats/test_density.py::TestKDE::test_common_norm[True]", "tests/test_statistics.py::TestKDE::test_bivariate_grid", "tests/_stats/test_density.py::TestKDE::test_common_norm[False]", "tests/test_statistics.py::TestKDE::test_bivariate_normalization", "tests/_stats/test_density.py::TestKDE::test_common_norm_variables", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[norm]", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[grid]", "tests/test_distributions.py::TestDistPlot::test_distplot_with_nans", "tests/_stats/test_density.py::TestKDE::test_bw_adjust", "tests/_stats/test_density.py::TestKDE::test_bw_method_scalar", "tests/_stats/test_density.py::TestKDE::test_singular[vals0]", "tests/_stats/test_density.py::TestKDE::test_singular[vals1]", "tests/_stats/test_density.py::TestKDE::test_singular[vals2]", "tests/_stats/test_density.py::TestKDE::test_singular[vals3]", "tests/_stats/test_density.py::TestKDE::test_missing[y]", "tests/_stats/test_density.py::TestKDE::test_missing[weight]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[True]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[x]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[y]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_flat_vector", "tests/test_distributions.py::TestKDEPlotUnivariate::test_variable_assignment", "tests/test_distributions.py::TestKDEPlotUnivariate::test_vertical_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_kernel_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_shade_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color_cycle_interaction", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_datetime_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cut", "tests/test_distributions.py::TestKDEPlotUnivariate::test_clip", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_is_density", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_method", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_adjust", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_implicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_normalization", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weights", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_kws", "tests/test_distributions.py::TestKDEPlotUnivariate::test_axis_labels", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_long_vectors", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotBivariate::test_log_scale", "tests/test_distributions.py::TestKDEPlotBivariate::test_bandwidth", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_colorbar", "tests/test_distributions.py::TestKDEPlotBivariate::test_levels_and_thresh", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[count]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[density]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_default_cut", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_yaxis", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_line_kws", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_kde", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_categorical.py::TestCatPlot::test_plot_elements" ], "PASS_TO_PASS": null }
mwaskom__seaborn-37
1.0
{ "code": "diff --git b/seaborn/external/kde.py a/seaborn/external/kde.py\nindex ae986f29..6add4e19 100644\n--- b/seaborn/external/kde.py\n+++ a/seaborn/external/kde.py\n@@ -316,6 +316,24 @@ class gaussian_kde:\n .. versionadded:: 0.11\n \n \"\"\"\n+ if bw_method is None:\n+ pass\n+ elif bw_method == 'scott':\n+ self.covariance_factor = self.scotts_factor\n+ elif bw_method == 'silverman':\n+ self.covariance_factor = self.silverman_factor\n+ elif np.isscalar(bw_method) and not isinstance(bw_method, str):\n+ self._bw_method = 'use constant'\n+ self.covariance_factor = lambda: bw_method\n+ elif callable(bw_method):\n+ self._bw_method = bw_method\n+ self.covariance_factor = lambda: self._bw_method(self)\n+ else:\n+ msg = \"`bw_method` should be 'scott', 'silverman', a scalar \" \\\n+ \"or a callable.\"\n+ raise ValueError(msg)\n+\n+ self._compute_covariance()\n \n def _compute_covariance(self):\n \"\"\"Computes the covariance matrix for each Gaussian kernel using\n", "test": null }
null
{ "code": "diff --git a/seaborn/external/kde.py b/seaborn/external/kde.py\nindex 6add4e19..ae986f29 100644\n--- a/seaborn/external/kde.py\n+++ b/seaborn/external/kde.py\n@@ -316,24 +316,6 @@ class gaussian_kde:\n .. versionadded:: 0.11\n \n \"\"\"\n- if bw_method is None:\n- pass\n- elif bw_method == 'scott':\n- self.covariance_factor = self.scotts_factor\n- elif bw_method == 'silverman':\n- self.covariance_factor = self.silverman_factor\n- elif np.isscalar(bw_method) and not isinstance(bw_method, str):\n- self._bw_method = 'use constant'\n- self.covariance_factor = lambda: bw_method\n- elif callable(bw_method):\n- self._bw_method = bw_method\n- self.covariance_factor = lambda: self._bw_method(self)\n- else:\n- msg = \"`bw_method` should be 'scott', 'silverman', a scalar \" \\\n- \"or a callable.\"\n- raise ValueError(msg)\n-\n- self._compute_covariance()\n \n def _compute_covariance(self):\n \"\"\"Computes the covariance matrix for each Gaussian kernel using\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/external/kde.py.\nHere is the description for the function:\n def set_bandwidth(self, bw_method=None):\n \"\"\"Compute the estimator bandwidth with given method.\n\n The new bandwidth calculated after a call to `set_bandwidth` is used\n for subsequent evaluations of the estimated density.\n\n Parameters\n ----------\n bw_method : str, scalar or callable, optional\n The method used to calculate the estimator bandwidth. This can be\n 'scott', 'silverman', a scalar constant or a callable. If a\n scalar, this will be used directly as `kde.factor`. If a callable,\n it should take a `gaussian_kde` instance as only parameter and\n return a scalar. If None (default), nothing happens; the current\n `kde.covariance_factor` method is kept.\n\n Notes\n -----\n .. versionadded:: 0.11\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_distributions.py::TestDistPlot::test_hist_bins", "tests/_stats/test_density.py::TestKDE::test_columns[x]", "tests/test_statistics.py::TestKDE::test_gridsize", "tests/_stats/test_density.py::TestKDE::test_columns[y]", "tests/test_statistics.py::TestKDE::test_cut", "tests/_stats/test_density.py::TestKDE::test_gridsize[20]", "tests/_stats/test_density.py::TestKDE::test_gridsize[30]", "tests/test_statistics.py::TestKDE::test_clip", "tests/_stats/test_density.py::TestKDE::test_gridsize[None]", "tests/_stats/test_density.py::TestKDE::test_cut[1]", "tests/test_statistics.py::TestKDE::test_density_normalization", "tests/test_distributions.py::TestDistPlot::test_elements", "tests/_stats/test_density.py::TestKDE::test_cut[2]", "tests/_stats/test_density.py::TestKDE::test_common_grid[True]", "tests/test_statistics.py::TestKDE::test_cached_support", "tests/_stats/test_density.py::TestKDE::test_common_grid[False]", "tests/_stats/test_density.py::TestKDE::test_common_norm[True]", "tests/test_statistics.py::TestKDE::test_bw_method", "tests/_stats/test_density.py::TestKDE::test_common_norm[False]", "tests/_stats/test_density.py::TestKDE::test_common_norm_variables", "tests/test_statistics.py::TestKDE::test_bw_adjust", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[norm]", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[grid]", "tests/_stats/test_density.py::TestKDE::test_bw_adjust", "tests/test_distributions.py::TestDistPlot::test_distplot_with_nans", "tests/test_statistics.py::TestKDE::test_bivariate_grid", "tests/_stats/test_density.py::TestKDE::test_bw_method_scalar", "tests/_stats/test_density.py::TestKDE::test_singular[vals0]", "tests/test_statistics.py::TestKDE::test_bivariate_normalization", "tests/_stats/test_density.py::TestKDE::test_singular[vals1]", "tests/_stats/test_density.py::TestKDE::test_singular[vals2]", "tests/_stats/test_density.py::TestKDE::test_singular[vals3]", "tests/_stats/test_density.py::TestKDE::test_missing[y]", "tests/_stats/test_density.py::TestKDE::test_missing[weight]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs28]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color[False]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs29]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[x]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs30]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_long_vectors[y]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[violinplot-kwargs31]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_flat_vector", "tests/test_distributions.py::TestKDEPlotUnivariate::test_singular_data", "tests/test_distributions.py::TestKDEPlotUnivariate::test_variable_assignment", "tests/test_distributions.py::TestKDEPlotUnivariate::test_vertical_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_kernel_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_shade_deprecation", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_color_cycle_interaction", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[True]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_artist_color[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_datetime_scale", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cut", "tests/test_distributions.py::TestKDEPlotUnivariate::test_clip", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_is_density", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_method", "tests/test_distributions.py::TestKDEPlotUnivariate::test_bw_adjust", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_implicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_explicit", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_normalization", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weights", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_distributions.py::TestKDEPlotUnivariate::test_line_kws", "tests/test_distributions.py::TestKDEPlotUnivariate::test_axis_labels", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_distributions.py::TestKDEPlotBivariate::test_long_vectors", "tests/test_distributions.py::TestKDEPlotBivariate::test_singular_data", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_distributions.py::TestKDEPlotBivariate::test_log_scale", "tests/test_distributions.py::TestKDEPlotBivariate::test_bandwidth", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_line_cmap", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_distributions.py::TestKDEPlotBivariate::test_colorbar", "tests/test_distributions.py::TestKDEPlotBivariate::test_levels_and_thresh", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[count]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[density]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde[probability]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_default_cut", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_yaxis", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_line_kws", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_kde", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_log_scale[x]", "tests/test_categorical.py::TestViolinPlot::test_log_scale[y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[x-y]", "tests/test_categorical.py::TestViolinPlot::test_single_var[y-z]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[None-x]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_categorical.py::TestViolinPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestViolinPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_color", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_linecolor[box]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[quart]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[stick]", "tests/test_categorical.py::TestViolinPlot::test_linecolor[point]", "tests/test_categorical.py::TestViolinPlot::test_linewidth", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_categorical.py::TestViolinPlot::test_saturation", "tests/test_categorical.py::TestViolinPlot::test_fill[box]", "tests/test_categorical.py::TestViolinPlot::test_fill[quart]", "tests/test_categorical.py::TestViolinPlot::test_fill[stick]", "tests/test_categorical.py::TestViolinPlot::test_fill[point]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_box[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_quartiles[y]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_stick[y]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_categorical.py::TestViolinPlot::test_inner_points[x]", "tests/test_categorical.py::TestViolinPlot::test_inner_points[y]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_categorical.py::TestViolinPlot::test_split_single", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_density_norm_width", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_categorical.py::TestViolinPlot::test_bw_adjust", "tests/test_categorical.py::TestViolinPlot::test_bw_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_inner_kws", "tests/test_categorical.py::TestViolinPlot::test_box_inner_kws", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_categorical.py::TestCatPlot::test_plot_elements" ], "PASS_TO_PASS": null }
mwaskom__seaborn-38
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 13577802..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -553,6 +553,80 @@ def load_dataset(name, cache=True, data_home=None, **kws):\n Tabular data, possibly with some preprocessing applied.\n \n \"\"\"\n+ # A common beginner mistake is to assume that one's personal data needs\n+ # to be passed through this function to be usable with seaborn.\n+ # Let's provide a more helpful error than you would otherwise get.\n+ if isinstance(name, pd.DataFrame):\n+ err = (\n+ \"This function accepts only strings (the name of an example dataset). \"\n+ \"You passed a pandas DataFrame. If you have your own dataset, \"\n+ \"it is not necessary to use this function before plotting.\"\n+ )\n+ raise TypeError(err)\n+\n+ url = f\"{DATASET_SOURCE}/{name}.csv\"\n+\n+ if cache:\n+ cache_path = os.path.join(get_data_home(data_home), os.path.basename(url))\n+ if not os.path.exists(cache_path):\n+ if name not in get_dataset_names():\n+ raise ValueError(f\"'{name}' is not one of the example datasets.\")\n+ urlretrieve(url, cache_path)\n+ full_path = cache_path\n+ else:\n+ full_path = url\n+\n+ df = pd.read_csv(full_path, **kws)\n+\n+ if df.iloc[-1].isnull().all():\n+ df = df.iloc[:-1]\n+\n+ # Set some columns as a categorical type with ordered levels\n+\n+ if name == \"tips\":\n+ df[\"day\"] = pd.Categorical(df[\"day\"], [\"Thur\", \"Fri\", \"Sat\", \"Sun\"])\n+ df[\"sex\"] = pd.Categorical(df[\"sex\"], [\"Male\", \"Female\"])\n+ df[\"time\"] = pd.Categorical(df[\"time\"], [\"Lunch\", \"Dinner\"])\n+ df[\"smoker\"] = pd.Categorical(df[\"smoker\"], [\"Yes\", \"No\"])\n+\n+ elif name == \"flights\":\n+ months = df[\"month\"].str[:3]\n+ df[\"month\"] = pd.Categorical(months, months.unique())\n+\n+ elif name == \"exercise\":\n+ df[\"time\"] = pd.Categorical(df[\"time\"], [\"1 min\", \"15 min\", \"30 min\"])\n+ df[\"kind\"] = pd.Categorical(df[\"kind\"], [\"rest\", \"walking\", \"running\"])\n+ df[\"diet\"] = pd.Categorical(df[\"diet\"], [\"no fat\", \"low fat\"])\n+\n+ elif name == \"titanic\":\n+ df[\"class\"] = pd.Categorical(df[\"class\"], [\"First\", \"Second\", \"Third\"])\n+ df[\"deck\"] = pd.Categorical(df[\"deck\"], list(\"ABCDEFG\"))\n+\n+ elif name == \"penguins\":\n+ df[\"sex\"] = df[\"sex\"].str.title()\n+\n+ elif name == \"diamonds\":\n+ df[\"color\"] = pd.Categorical(\n+ df[\"color\"], [\"D\", \"E\", \"F\", \"G\", \"H\", \"I\", \"J\"],\n+ )\n+ df[\"clarity\"] = pd.Categorical(\n+ df[\"clarity\"], [\"IF\", \"VVS1\", \"VVS2\", \"VS1\", \"VS2\", \"SI1\", \"SI2\", \"I1\"],\n+ )\n+ df[\"cut\"] = pd.Categorical(\n+ df[\"cut\"], [\"Ideal\", \"Premium\", \"Very Good\", \"Good\", \"Fair\"],\n+ )\n+\n+ elif name == \"taxis\":\n+ df[\"pickup\"] = pd.to_datetime(df[\"pickup\"])\n+ df[\"dropoff\"] = pd.to_datetime(df[\"dropoff\"])\n+\n+ elif name == \"seaice\":\n+ df[\"Date\"] = pd.to_datetime(df[\"Date\"])\n+\n+ elif name == \"dowjones\":\n+ df[\"Date\"] = pd.to_datetime(df[\"Date\"])\n+\n+ return df\n \n \n def axis_ticklabels_overlap(labels):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..13577802 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -553,80 +553,6 @@ def load_dataset(name, cache=True, data_home=None, **kws):\n Tabular data, possibly with some preprocessing applied.\n \n \"\"\"\n- # A common beginner mistake is to assume that one's personal data needs\n- # to be passed through this function to be usable with seaborn.\n- # Let's provide a more helpful error than you would otherwise get.\n- if isinstance(name, pd.DataFrame):\n- err = (\n- \"This function accepts only strings (the name of an example dataset). \"\n- \"You passed a pandas DataFrame. If you have your own dataset, \"\n- \"it is not necessary to use this function before plotting.\"\n- )\n- raise TypeError(err)\n-\n- url = f\"{DATASET_SOURCE}/{name}.csv\"\n-\n- if cache:\n- cache_path = os.path.join(get_data_home(data_home), os.path.basename(url))\n- if not os.path.exists(cache_path):\n- if name not in get_dataset_names():\n- raise ValueError(f\"'{name}' is not one of the example datasets.\")\n- urlretrieve(url, cache_path)\n- full_path = cache_path\n- else:\n- full_path = url\n-\n- df = pd.read_csv(full_path, **kws)\n-\n- if df.iloc[-1].isnull().all():\n- df = df.iloc[:-1]\n-\n- # Set some columns as a categorical type with ordered levels\n-\n- if name == \"tips\":\n- df[\"day\"] = pd.Categorical(df[\"day\"], [\"Thur\", \"Fri\", \"Sat\", \"Sun\"])\n- df[\"sex\"] = pd.Categorical(df[\"sex\"], [\"Male\", \"Female\"])\n- df[\"time\"] = pd.Categorical(df[\"time\"], [\"Lunch\", \"Dinner\"])\n- df[\"smoker\"] = pd.Categorical(df[\"smoker\"], [\"Yes\", \"No\"])\n-\n- elif name == \"flights\":\n- months = df[\"month\"].str[:3]\n- df[\"month\"] = pd.Categorical(months, months.unique())\n-\n- elif name == \"exercise\":\n- df[\"time\"] = pd.Categorical(df[\"time\"], [\"1 min\", \"15 min\", \"30 min\"])\n- df[\"kind\"] = pd.Categorical(df[\"kind\"], [\"rest\", \"walking\", \"running\"])\n- df[\"diet\"] = pd.Categorical(df[\"diet\"], [\"no fat\", \"low fat\"])\n-\n- elif name == \"titanic\":\n- df[\"class\"] = pd.Categorical(df[\"class\"], [\"First\", \"Second\", \"Third\"])\n- df[\"deck\"] = pd.Categorical(df[\"deck\"], list(\"ABCDEFG\"))\n-\n- elif name == \"penguins\":\n- df[\"sex\"] = df[\"sex\"].str.title()\n-\n- elif name == \"diamonds\":\n- df[\"color\"] = pd.Categorical(\n- df[\"color\"], [\"D\", \"E\", \"F\", \"G\", \"H\", \"I\", \"J\"],\n- )\n- df[\"clarity\"] = pd.Categorical(\n- df[\"clarity\"], [\"IF\", \"VVS1\", \"VVS2\", \"VS1\", \"VS2\", \"SI1\", \"SI2\", \"I1\"],\n- )\n- df[\"cut\"] = pd.Categorical(\n- df[\"cut\"], [\"Ideal\", \"Premium\", \"Very Good\", \"Good\", \"Fair\"],\n- )\n-\n- elif name == \"taxis\":\n- df[\"pickup\"] = pd.to_datetime(df[\"pickup\"])\n- df[\"dropoff\"] = pd.to_datetime(df[\"dropoff\"])\n-\n- elif name == \"seaice\":\n- df[\"Date\"] = pd.to_datetime(df[\"Date\"])\n-\n- elif name == \"dowjones\":\n- df[\"Date\"] = pd.to_datetime(df[\"Date\"])\n-\n- return df\n \n \n def axis_ticklabels_overlap(labels):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef load_dataset(name, cache=True, data_home=None, **kws):\n \"\"\"Load an example dataset from the online repository (requires internet).\n\n This function provides quick access to a small number of example datasets\n that are useful for documenting seaborn or generating reproducible examples\n for bug reports. It is not necessary for normal usage.\n\n Note that some of the datasets have a small amount of preprocessing applied\n to define a proper ordering for categorical variables.\n\n Use :func:`get_dataset_names` to see a list of available datasets.\n\n Parameters\n ----------\n name : str\n Name of the dataset (``{name}.csv`` on\n https://github.com/mwaskom/seaborn-data).\n cache : boolean, optional\n If True, try to load from the local cache first, and save to the cache\n if a download is required.\n data_home : string, optional\n The directory in which to cache data; see :func:`get_data_home`.\n kws : keys and values, optional\n Additional keyword arguments are passed to passed through to\n :func:`pandas.read_csv`.\n\n Returns\n -------\n df : :class:`pandas.DataFrame`\n Tabular data, possibly with some preprocessing applied.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_data.py::TestPlotData::test_data_interchange_support_test", "tests/_core/test_plot.py::TestLayerAddition::test_stat_default", "tests/_core/test_plot.py::TestScaling::test_categorical_as_datetime", "tests/_core/test_plot.py::TestScaling::test_log_scale_name", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_strings", "tests/_core/test_plot.py::TestScaling::test_undefined_variable_raises", "tests/_core/test_scales.py::TestNominal::test_color_numeric_int_float_mix", "tests/_stats/test_density.py::TestKDE::test_cumulative[True]", "tests/_stats/test_density.py::TestKDE::test_cumulative[False]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_cumulative", "tests/test_matrix.py::TestDendrogram::test_ndarray_input", "tests/test_matrix.py::TestDendrogram::test_df_input", "tests/test_matrix.py::TestDendrogram::test_df_multindex_input", "tests/test_matrix.py::TestDendrogram::test_axis0_input", "tests/test_matrix.py::TestDendrogram::test_rotate_input", "tests/test_matrix.py::TestDendrogram::test_rotate_axis0_input", "tests/test_matrix.py::TestDendrogram::test_custom_linkage", "tests/test_matrix.py::TestDendrogram::test_label_false", "tests/test_matrix.py::TestDendrogram::test_linkage_scipy", "tests/test_matrix.py::TestDendrogram::test_fastcluster_other_method", "tests/test_matrix.py::TestDendrogram::test_fastcluster_non_euclidean", "tests/test_matrix.py::TestDendrogram::test_dendrogram_plot", "tests/test_matrix.py::TestDendrogram::test_dendrogram_rotate", "tests/test_matrix.py::TestDendrogram::test_dendrogram_ticklabel_rotation", "tests/test_matrix.py::TestClustermap::test_ndarray_input", "tests/test_matrix.py::TestClustermap::test_df_input", "tests/test_matrix.py::TestClustermap::test_corr_df_input", "tests/test_matrix.py::TestClustermap::test_pivot_input", "tests/test_matrix.py::TestClustermap::test_colors_input", "tests/test_matrix.py::TestClustermap::test_categorical_colors_input", "tests/test_matrix.py::TestClustermap::test_nested_colors_input", "tests/test_matrix.py::TestClustermap::test_colors_input_custom_cmap", "tests/test_matrix.py::TestClustermap::test_z_score", "tests/test_matrix.py::TestClustermap::test_z_score_axis0", "tests/test_matrix.py::TestClustermap::test_standard_scale", "tests/test_matrix.py::TestClustermap::test_standard_scale_axis0", "tests/test_matrix.py::TestClustermap::test_z_score_standard_scale", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_nested_color_list_to_matrix_and_cmap", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_axis1", "tests/test_matrix.py::TestClustermap::test_color_list_to_matrix_and_cmap_different_sizes", "tests/test_matrix.py::TestClustermap::test_savefig", "tests/test_matrix.py::TestClustermap::test_plot_dendrograms", "tests/test_matrix.py::TestClustermap::test_cluster_false", "tests/test_matrix.py::TestClustermap::test_row_col_colors", "tests/test_matrix.py::TestClustermap::test_cluster_false_row_col_colors", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_df_one_axis", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_shuffled", "tests/test_matrix.py::TestClustermap::test_row_col_colors_series_missing", "tests/test_matrix.py::TestClustermap::test_row_col_colors_ignore_heatmap_kwargs", "tests/test_matrix.py::TestClustermap::test_row_col_colors_raise_on_mixed_index_types", "tests/test_matrix.py::TestClustermap::test_mask_reorganization", "tests/test_matrix.py::TestClustermap::test_ticklabel_reorganization", "tests/test_matrix.py::TestClustermap::test_noticklabels", "tests/test_matrix.py::TestClustermap::test_size_ratios", "tests/test_matrix.py::TestClustermap::test_cbar_pos", "tests/test_matrix.py::TestClustermap::test_square_warning", "tests/test_matrix.py::TestClustermap::test_clustermap_annotation", "tests/test_matrix.py::TestClustermap::test_tree_kws", "tests/test_rcmod.py::TestFonts::test_set_font", "tests/test_rcmod.py::TestFonts::test_different_sans_serif", "tests/test_regression.py::TestRegressionPlotter::test_fast_regression", "tests/test_regression.py::TestRegressionPlotter::test_regress_poly", "tests/test_regression.py::TestRegressionPlotter::test_regress_n_boot", "tests/test_regression.py::TestRegressionPlotter::test_regress_without_bootstrap", "tests/test_regression.py::TestRegressionPlotter::test_logistic_regression", "tests/test_regression.py::TestRegressionPlotter::test_logistic_perfect_separation", "tests/test_regression.py::TestRegressionPlotter::test_robust_regression", "tests/test_regression.py::TestRegressionPlotter::test_lowess_regression", "tests/test_regression.py::TestRegressionPlots::test_residplot_lowess", "tests/test_statistics.py::TestKDE::test_cumulative", "tests/test_statistics.py::TestKDE::test_bivariate_cumulative", "tests/test_statistics.py::TestECDF::test_against_statsmodels", "tests/test_utils.py::test_load_datasets", "tests/test_utils.py::test_load_dataset_string_error", "tests/test_utils.py::test_load_dataset_passed_data_error", "tests/test_utils.py::test_load_cached_datasets" ], "PASS_TO_PASS": null }
mwaskom__seaborn-39
1.0
{ "code": "diff --git b/seaborn/matrix.py a/seaborn/matrix.py\nindex ed947415..6b99c118 100644\n--- b/seaborn/matrix.py\n+++ a/seaborn/matrix.py\n@@ -1246,3 +1246,17 @@ def clustermap(\n .. include:: ../docstrings/clustermap.rst\n \n \"\"\"\n+ if _no_scipy:\n+ raise RuntimeError(\"clustermap requires scipy to be available\")\n+\n+ plotter = ClusterGrid(data, pivot_kws=pivot_kws, figsize=figsize,\n+ row_colors=row_colors, col_colors=col_colors,\n+ z_score=z_score, standard_scale=standard_scale,\n+ mask=mask, dendrogram_ratio=dendrogram_ratio,\n+ colors_ratio=colors_ratio, cbar_pos=cbar_pos)\n+\n+ return plotter.plot(metric=metric, method=method,\n+ colorbar_kws=cbar_kws,\n+ row_cluster=row_cluster, col_cluster=col_cluster,\n+ row_linkage=row_linkage, col_linkage=col_linkage,\n+ tree_kws=tree_kws, **kwargs)\n", "test": null }
null
{ "code": "diff --git a/seaborn/matrix.py b/seaborn/matrix.py\nindex 6b99c118..ed947415 100644\n--- a/seaborn/matrix.py\n+++ b/seaborn/matrix.py\n@@ -1246,17 +1246,3 @@ def clustermap(\n .. include:: ../docstrings/clustermap.rst\n \n \"\"\"\n- if _no_scipy:\n- raise RuntimeError(\"clustermap requires scipy to be available\")\n-\n- plotter = ClusterGrid(data, pivot_kws=pivot_kws, figsize=figsize,\n- row_colors=row_colors, col_colors=col_colors,\n- z_score=z_score, standard_scale=standard_scale,\n- mask=mask, dendrogram_ratio=dendrogram_ratio,\n- colors_ratio=colors_ratio, cbar_pos=cbar_pos)\n-\n- return plotter.plot(metric=metric, method=method,\n- colorbar_kws=cbar_kws,\n- row_cluster=row_cluster, col_cluster=col_cluster,\n- row_linkage=row_linkage, col_linkage=col_linkage,\n- tree_kws=tree_kws, **kwargs)\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/matrix.py.\nHere is the description for the function:\ndef clustermap(\n data, *,\n pivot_kws=None, method='average', metric='euclidean',\n z_score=None, standard_scale=None, figsize=(10, 10),\n cbar_kws=None, row_cluster=True, col_cluster=True,\n row_linkage=None, col_linkage=None,\n row_colors=None, col_colors=None, mask=None,\n dendrogram_ratio=.2, colors_ratio=0.03,\n cbar_pos=(.02, .8, .05, .18), tree_kws=None,\n **kwargs\n):\n \"\"\"\n Plot a matrix dataset as a hierarchically-clustered heatmap.\n\n This function requires scipy to be available.\n\n Parameters\n ----------\n data : 2D array-like\n Rectangular data for clustering. Cannot contain NAs.\n pivot_kws : dict, optional\n If `data` is a tidy dataframe, can provide keyword arguments for\n pivot to create a rectangular dataframe.\n method : str, optional\n Linkage method to use for calculating clusters. See\n :func:`scipy.cluster.hierarchy.linkage` documentation for more\n information.\n metric : str, optional\n Distance metric to use for the data. See\n :func:`scipy.spatial.distance.pdist` documentation for more options.\n To use different metrics (or methods) for rows and columns, you may\n construct each linkage matrix yourself and provide them as\n `{row,col}_linkage`.\n z_score : int or None, optional\n Either 0 (rows) or 1 (columns). Whether or not to calculate z-scores\n for the rows or the columns. Z scores are: z = (x - mean)/std, so\n values in each row (column) will get the mean of the row (column)\n subtracted, then divided by the standard deviation of the row (column).\n This ensures that each row (column) has mean of 0 and variance of 1.\n standard_scale : int or None, optional\n Either 0 (rows) or 1 (columns). Whether or not to standardize that\n dimension, meaning for each row or column, subtract the minimum and\n divide each by its maximum.\n figsize : tuple of (width, height), optional\n Overall size of the figure.\n cbar_kws : dict, optional\n Keyword arguments to pass to `cbar_kws` in :func:`heatmap`, e.g. to\n add a label to the colorbar.\n {row,col}_cluster : bool, optional\n If ``True``, cluster the {rows, columns}.\n {row,col}_linkage : :class:`numpy.ndarray`, optional\n Precomputed linkage matrix for the rows or columns. See\n :func:`scipy.cluster.hierarchy.linkage` for specific formats.\n {row,col}_colors : list-like or pandas DataFrame/Series, optional\n List of colors to label for either the rows or columns. Useful to evaluate\n whether samples within a group are clustered together. Can use nested lists or\n DataFrame for multiple color levels of labeling. If given as a\n :class:`pandas.DataFrame` or :class:`pandas.Series`, labels for the colors are\n extracted from the DataFrames column names or from the name of the Series.\n DataFrame/Series colors are also matched to the data by their index, ensuring\n colors are drawn in the correct order.\n mask : bool array or DataFrame, optional\n If passed, data will not be shown in cells where `mask` is True.\n Cells with missing values are automatically masked. Only used for\n visualizing, not for calculating.\n {dendrogram,colors}_ratio : float, or pair of floats, optional\n Proportion of the figure size devoted to the two marginal elements. If\n a pair is given, they correspond to (row, col) ratios.\n cbar_pos : tuple of (left, bottom, width, height), optional\n Position of the colorbar axes in the figure. Setting to ``None`` will\n disable the colorbar.\n tree_kws : dict, optional\n Parameters for the :class:`matplotlib.collections.LineCollection`\n that is used to plot the lines of the dendrogram tree.\n kwargs : other keyword arguments\n All other keyword arguments are passed to :func:`heatmap`.\n\n Returns\n -------\n :class:`ClusterGrid`\n A :class:`ClusterGrid` instance.\n\n See Also\n --------\n heatmap : Plot rectangular data as a color-encoded matrix.\n\n Notes\n -----\n The returned object has a ``savefig`` method that should be used if you\n want to save the figure object without clipping the dendrograms.\n\n To access the reordered row indices, use:\n ``clustergrid.dendrogram_row.reordered_ind``\n\n Column indices, use:\n ``clustergrid.dendrogram_col.reordered_ind``\n\n Examples\n --------\n\n .. include:: ../docstrings/clustermap.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_matrix.py::test_required_scipy_errors" ], "PASS_TO_PASS": null }
mwaskom__seaborn-40
1.0
{ "code": "diff --git b/seaborn/matrix.py a/seaborn/matrix.py\nindex 5a24200c..6b99c118 100644\n--- b/seaborn/matrix.py\n+++ a/seaborn/matrix.py\n@@ -681,6 +681,16 @@ def dendrogram(\n dendrogramplotter.reordered_ind\n \n \"\"\"\n+ if _no_scipy:\n+ raise RuntimeError(\"dendrogram requires scipy to be installed\")\n+\n+ plotter = _DendrogramPlotter(data, linkage=linkage, axis=axis,\n+ metric=metric, method=method,\n+ label=label, rotate=rotate)\n+ if ax is None:\n+ ax = plt.gca()\n+\n+ return plotter.plot(ax=ax, tree_kws=tree_kws)\n \n \n class ClusterGrid(Grid):\n", "test": null }
null
{ "code": "diff --git a/seaborn/matrix.py b/seaborn/matrix.py\nindex 6b99c118..5a24200c 100644\n--- a/seaborn/matrix.py\n+++ b/seaborn/matrix.py\n@@ -681,16 +681,6 @@ def dendrogram(\n dendrogramplotter.reordered_ind\n \n \"\"\"\n- if _no_scipy:\n- raise RuntimeError(\"dendrogram requires scipy to be installed\")\n-\n- plotter = _DendrogramPlotter(data, linkage=linkage, axis=axis,\n- metric=metric, method=method,\n- label=label, rotate=rotate)\n- if ax is None:\n- ax = plt.gca()\n-\n- return plotter.plot(ax=ax, tree_kws=tree_kws)\n \n \n class ClusterGrid(Grid):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/matrix.py.\nHere is the description for the function:\ndef dendrogram(\n data, *,\n linkage=None, axis=1, label=True, metric='euclidean',\n method='average', rotate=False, tree_kws=None, ax=None\n):\n \"\"\"Draw a tree diagram of relationships within a matrix\n\n Parameters\n ----------\n data : pandas.DataFrame\n Rectangular data\n linkage : numpy.array, optional\n Linkage matrix\n axis : int, optional\n Which axis to use to calculate linkage. 0 is rows, 1 is columns.\n label : bool, optional\n If True, label the dendrogram at leaves with column or row names\n metric : str, optional\n Distance metric. Anything valid for scipy.spatial.distance.pdist\n method : str, optional\n Linkage method to use. Anything valid for\n scipy.cluster.hierarchy.linkage\n rotate : bool, optional\n When plotting the matrix, whether to rotate it 90 degrees\n counter-clockwise, so the leaves face right\n tree_kws : dict, optional\n Keyword arguments for the ``matplotlib.collections.LineCollection``\n that is used for plotting the lines of the dendrogram tree.\n ax : matplotlib axis, optional\n Axis to plot on, otherwise uses current axis\n\n Returns\n -------\n dendrogramplotter : _DendrogramPlotter\n A Dendrogram plotter object.\n\n Notes\n -----\n Access the reordered dendrogram indices with\n dendrogramplotter.reordered_ind\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_matrix.py::test_required_scipy_errors" ], "PASS_TO_PASS": null }
mwaskom__seaborn-41
1.0
{ "code": "diff --git b/seaborn/matrix.py a/seaborn/matrix.py\nindex 7a141374..6b99c118 100644\n--- b/seaborn/matrix.py\n+++ a/seaborn/matrix.py\n@@ -442,6 +442,22 @@ def heatmap(\n .. include:: ../docstrings/heatmap.rst\n \n \"\"\"\n+ # Initialize the plotter object\n+ plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,\n+ annot_kws, cbar, cbar_kws, xticklabels,\n+ yticklabels, mask)\n+\n+ # Add the pcolormesh kwargs here\n+ kwargs[\"linewidths\"] = linewidths\n+ kwargs[\"edgecolor\"] = linecolor\n+\n+ # Draw the plot and return the Axes\n+ if ax is None:\n+ ax = plt.gca()\n+ if square:\n+ ax.set_aspect(\"equal\")\n+ plotter.plot(ax, cbar_ax, kwargs)\n+ return ax\n \n \n class _DendrogramPlotter:\n", "test": null }
null
{ "code": "diff --git a/seaborn/matrix.py b/seaborn/matrix.py\nindex 6b99c118..7a141374 100644\n--- a/seaborn/matrix.py\n+++ b/seaborn/matrix.py\n@@ -442,22 +442,6 @@ def heatmap(\n .. include:: ../docstrings/heatmap.rst\n \n \"\"\"\n- # Initialize the plotter object\n- plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,\n- annot_kws, cbar, cbar_kws, xticklabels,\n- yticklabels, mask)\n-\n- # Add the pcolormesh kwargs here\n- kwargs[\"linewidths\"] = linewidths\n- kwargs[\"edgecolor\"] = linecolor\n-\n- # Draw the plot and return the Axes\n- if ax is None:\n- ax = plt.gca()\n- if square:\n- ax.set_aspect(\"equal\")\n- plotter.plot(ax, cbar_ax, kwargs)\n- return ax\n \n \n class _DendrogramPlotter:\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/matrix.py.\nHere is the description for the function:\ndef heatmap(\n data, *,\n vmin=None, vmax=None, cmap=None, center=None, robust=False,\n annot=None, fmt=\".2g\", annot_kws=None,\n linewidths=0, linecolor=\"white\",\n cbar=True, cbar_kws=None, cbar_ax=None,\n square=False, xticklabels=\"auto\", yticklabels=\"auto\",\n mask=None, ax=None,\n **kwargs\n):\n \"\"\"Plot rectangular data as a color-encoded matrix.\n\n This is an Axes-level function and will draw the heatmap into the\n currently-active Axes if none is provided to the ``ax`` argument. Part of\n this Axes space will be taken and used to plot a colormap, unless ``cbar``\n is False or a separate Axes is provided to ``cbar_ax``.\n\n Parameters\n ----------\n data : rectangular dataset\n 2D dataset that can be coerced into an ndarray. If a Pandas DataFrame\n is provided, the index/column information will be used to label the\n columns and rows.\n vmin, vmax : floats, optional\n Values to anchor the colormap, otherwise they are inferred from the\n data and other keyword arguments.\n cmap : matplotlib colormap name or object, or list of colors, optional\n The mapping from data values to color space. If not provided, the\n default will depend on whether ``center`` is set.\n center : float, optional\n The value at which to center the colormap when plotting divergent data.\n Using this parameter will change the default ``cmap`` if none is\n specified.\n robust : bool, optional\n If True and ``vmin`` or ``vmax`` are absent, the colormap range is\n computed with robust quantiles instead of the extreme values.\n annot : bool or rectangular dataset, optional\n If True, write the data value in each cell. If an array-like with the\n same shape as ``data``, then use this to annotate the heatmap instead\n of the data. Note that DataFrames will match on position, not index.\n fmt : str, optional\n String formatting code to use when adding annotations.\n annot_kws : dict of key, value mappings, optional\n Keyword arguments for :meth:`matplotlib.axes.Axes.text` when ``annot``\n is True.\n linewidths : float, optional\n Width of the lines that will divide each cell.\n linecolor : color, optional\n Color of the lines that will divide each cell.\n cbar : bool, optional\n Whether to draw a colorbar.\n cbar_kws : dict of key, value mappings, optional\n Keyword arguments for :meth:`matplotlib.figure.Figure.colorbar`.\n cbar_ax : matplotlib Axes, optional\n Axes in which to draw the colorbar, otherwise take space from the\n main Axes.\n square : bool, optional\n If True, set the Axes aspect to \"equal\" so each cell will be\n square-shaped.\n xticklabels, yticklabels : \"auto\", bool, list-like, or int, optional\n If True, plot the column names of the dataframe. If False, don't plot\n the column names. If list-like, plot these alternate labels as the\n xticklabels. If an integer, use the column names but plot only every\n n label. If \"auto\", try to densely plot non-overlapping labels.\n mask : bool array or DataFrame, optional\n If passed, data will not be shown in cells where ``mask`` is True.\n Cells with missing values are automatically masked.\n ax : matplotlib Axes, optional\n Axes in which to draw the plot, otherwise use the currently-active\n Axes.\n kwargs : other keyword arguments\n All other keyword arguments are passed to\n :meth:`matplotlib.axes.Axes.pcolormesh`.\n\n Returns\n -------\n ax : matplotlib Axes\n Axes object with the heatmap.\n\n See Also\n --------\n clustermap : Plot a matrix using hierarchical clustering to arrange the\n rows and columns.\n\n Examples\n --------\n\n .. include:: ../docstrings/heatmap.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_matrix.py::TestHeatmap::test_default_colors", "tests/test_matrix.py::TestHeatmap::test_custom_vlim_colors", "tests/test_matrix.py::TestHeatmap::test_custom_center_colors", "tests/test_matrix.py::TestHeatmap::test_explicit_none_norm", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_overwrite_kws", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_with_mask", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_mesh_colors", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_other_data", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_different_shapes", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_with_limited_ticklabels", "tests/test_matrix.py::TestHeatmap::test_heatmap_cbar", "tests/test_matrix.py::TestHeatmap::test_heatmap_axes", "tests/test_matrix.py::TestHeatmap::test_heatmap_ticklabel_rotation", "tests/test_matrix.py::TestHeatmap::test_heatmap_inner_lines", "tests/test_matrix.py::TestHeatmap::test_square_aspect", "tests/test_matrix.py::TestHeatmap::test_cbar_ticks" ], "PASS_TO_PASS": null }
mwaskom__seaborn-42
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex e5a8e08d..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -600,6 +600,13 @@ def blend_palette(colors, n_colors=6, as_cmap=False, input=\"rgb\"):\n .. include: ../docstrings/blend_palette.rst\n \n \"\"\"\n+ colors = [_color_to_rgb(color, input) for color in colors]\n+ name = \"blend\"\n+ pal = mpl.colors.LinearSegmentedColormap.from_list(name, colors)\n+ if not as_cmap:\n+ rgb_array = pal(np.linspace(0, 1, int(n_colors)))[:, :3] # no alpha\n+ pal = _ColorPalette(map(tuple, rgb_array))\n+ return pal\n \n \n def xkcd_palette(colors):\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..e5a8e08d 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -600,13 +600,6 @@ def blend_palette(colors, n_colors=6, as_cmap=False, input=\"rgb\"):\n .. include: ../docstrings/blend_palette.rst\n \n \"\"\"\n- colors = [_color_to_rgb(color, input) for color in colors]\n- name = \"blend\"\n- pal = mpl.colors.LinearSegmentedColormap.from_list(name, colors)\n- if not as_cmap:\n- rgb_array = pal(np.linspace(0, 1, int(n_colors)))[:, :3] # no alpha\n- pal = _ColorPalette(map(tuple, rgb_array))\n- return pal\n \n \n def xkcd_palette(colors):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef blend_palette(colors, n_colors=6, as_cmap=False, input=\"rgb\"):\n \"\"\"Make a palette that blends between a list of colors.\n\n Parameters\n ----------\n colors : sequence of colors in various formats interpreted by `input`\n hex code, html color name, or tuple in `input` space.\n n_colors : int, optional\n Number of colors in the palette.\n as_cmap : bool, optional\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n Examples\n --------\n .. include: ../docstrings/blend_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_scales.py::TestContinuous::test_color_tuple_values", "tests/_core/test_properties.py::TestColor::test_continuous_tuple_palette", "tests/test_palettes.py::TestColorPalettes::test_mpl_dark_palette", "tests/_core/test_scales.py::TestContinuous::test_color_callable_values", "tests/test_palettes.py::TestColorPalettes::test_light_palette", "tests/test_palettes.py::TestColorPalettes::test_dark_palette", "tests/test_palettes.py::TestColorPalettes::test_diverging_palette", "tests/test_palettes.py::TestColorPalettes::test_blend_palette", "tests/_core/test_scales.py::TestBoolean::test_color_tuple_palette", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-43
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex 174e514a..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -658,6 +658,8 @@ def crayon_palette(colors):\n xkcd_palette : Make a palette with named colors from the XKCD color survey.\n \n \"\"\"\n+ palette = [crayons[name] for name in colors]\n+ return color_palette(palette, len(palette))\n \n \n def cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8,\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..174e514a 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -658,8 +658,6 @@ def crayon_palette(colors):\n xkcd_palette : Make a palette with named colors from the XKCD color survey.\n \n \"\"\"\n- palette = [crayons[name] for name in colors]\n- return color_palette(palette, len(palette))\n \n \n def cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef crayon_palette(colors):\n \"\"\"Make a palette with color names from Crayola crayons.\n\n Colors are taken from here:\n https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors\n\n This is just a simple wrapper around the `seaborn.crayons` dictionary.\n\n Parameters\n ----------\n colors : list of strings\n List of keys in the `seaborn.crayons` dictionary.\n\n Returns\n -------\n palette\n A list of colors as RGB tuples.\n\n See Also\n --------\n xkcd_palette : Make a palette with named colors from the XKCD color survey.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_crayon_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-44
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex f4770be1..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -721,6 +721,44 @@ def cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8,\n .. include:: ../docstrings/cubehelix_palette.rst\n \n \"\"\"\n+ def get_color_function(p0, p1):\n+ # Copied from matplotlib because it lives in private module\n+ def color(x):\n+ # Apply gamma factor to emphasise low or high intensity values\n+ xg = x ** gamma\n+\n+ # Calculate amplitude and angle of deviation from the black\n+ # to white diagonal in the plane of constant\n+ # perceived intensity.\n+ a = hue * xg * (1 - xg) / 2\n+\n+ phi = 2 * np.pi * (start / 3 + rot * x)\n+\n+ return xg + a * (p0 * np.cos(phi) + p1 * np.sin(phi))\n+ return color\n+\n+ cdict = {\n+ \"red\": get_color_function(-0.14861, 1.78277),\n+ \"green\": get_color_function(-0.29227, -0.90649),\n+ \"blue\": get_color_function(1.97294, 0.0),\n+ }\n+\n+ cmap = mpl.colors.LinearSegmentedColormap(\"cubehelix\", cdict)\n+\n+ x = np.linspace(light, dark, int(n_colors))\n+ pal = cmap(x)[:, :3].tolist()\n+ if reverse:\n+ pal = pal[::-1]\n+\n+ if as_cmap:\n+ x_256 = np.linspace(light, dark, 256)\n+ if reverse:\n+ x_256 = x_256[::-1]\n+ pal_256 = cmap(x_256)\n+ cmap = mpl.colors.ListedColormap(pal_256, \"seaborn_cubehelix\")\n+ return cmap\n+ else:\n+ return _ColorPalette(pal)\n \n \n def _parse_cubehelix_args(argstr):\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..f4770be1 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -721,44 +721,6 @@ def cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8,\n .. include:: ../docstrings/cubehelix_palette.rst\n \n \"\"\"\n- def get_color_function(p0, p1):\n- # Copied from matplotlib because it lives in private module\n- def color(x):\n- # Apply gamma factor to emphasise low or high intensity values\n- xg = x ** gamma\n-\n- # Calculate amplitude and angle of deviation from the black\n- # to white diagonal in the plane of constant\n- # perceived intensity.\n- a = hue * xg * (1 - xg) / 2\n-\n- phi = 2 * np.pi * (start / 3 + rot * x)\n-\n- return xg + a * (p0 * np.cos(phi) + p1 * np.sin(phi))\n- return color\n-\n- cdict = {\n- \"red\": get_color_function(-0.14861, 1.78277),\n- \"green\": get_color_function(-0.29227, -0.90649),\n- \"blue\": get_color_function(1.97294, 0.0),\n- }\n-\n- cmap = mpl.colors.LinearSegmentedColormap(\"cubehelix\", cdict)\n-\n- x = np.linspace(light, dark, int(n_colors))\n- pal = cmap(x)[:, :3].tolist()\n- if reverse:\n- pal = pal[::-1]\n-\n- if as_cmap:\n- x_256 = np.linspace(light, dark, 256)\n- if reverse:\n- x_256 = x_256[::-1]\n- pal_256 = cmap(x_256)\n- cmap = mpl.colors.ListedColormap(pal_256, \"seaborn_cubehelix\")\n- return cmap\n- else:\n- return _ColorPalette(pal)\n \n \n def _parse_cubehelix_args(argstr):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8,\n light=.85, dark=.15, reverse=False, as_cmap=False):\n \"\"\"Make a sequential palette from the cubehelix system.\n\n This produces a colormap with linearly-decreasing (or increasing)\n brightness. That means that information will be preserved if printed to\n black and white or viewed by someone who is colorblind. \"cubehelix\" is\n also available as a matplotlib-based palette, but this function gives the\n user more control over the look of the palette and has a different set of\n defaults.\n\n In addition to using this function, it is also possible to generate a\n cubehelix palette generally in seaborn using a string starting with\n `ch:` and containing other parameters (e.g. `\"ch:s=.25,r=-.5\"`).\n\n Parameters\n ----------\n n_colors : int\n Number of colors in the palette.\n start : float, 0 <= start <= 3\n The hue value at the start of the helix.\n rot : float\n Rotations around the hue wheel over the range of the palette.\n gamma : float 0 <= gamma\n Nonlinearity to emphasize dark (gamma < 1) or light (gamma > 1) colors.\n hue : float, 0 <= hue <= 1\n Saturation of the colors.\n dark : float 0 <= dark <= 1\n Intensity of the darkest color in the palette.\n light : float 0 <= light <= 1\n Intensity of the lightest color in the palette.\n reverse : bool\n If True, the palette will go from dark to light.\n as_cmap : bool\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n choose_cubehelix_palette : Launch an interactive widget to select cubehelix\n palette parameters.\n dark_palette : Create a sequential palette with dark low values.\n light_palette : Create a sequential palette with bright low values.\n\n References\n ----------\n Green, D. A. (2011). \"A colour scheme for the display of astronomical\n intensity images\". Bulletin of the Astromical Society of India, Vol. 39,\n p. 289-295.\n\n Examples\n --------\n .. include:: ../docstrings/cubehelix_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/_core/test_scales.py::TestContinuous::test_color_defaults", "tests/_core/test_properties.py::TestColor::test_continuous_default_palette", "tests/_core/test_scales.py::TestContinuous::test_color_with_norm", "tests/test_base.py::TestHueMapping::test_hue_map_numeric", "tests/_core/test_scales.py::TestContinuous::test_color_with_transform", "tests/_core/test_properties.py::TestColor::test_continuous_missing", "tests/test_base.py::TestSizeMapping::test_array_palette_deprecation", "tests/test_palettes.py::TestColorPalettes::test_cubehelix_against_matplotlib", "tests/test_palettes.py::TestColorPalettes::test_cubehelix_n_colors", "tests/test_palettes.py::TestColorPalettes::test_cubehelix_reverse", "tests/test_palettes.py::TestColorPalettes::test_cubehelix_cmap", "tests/test_palettes.py::TestColorPalettes::test_cubehelix_code", "tests/_core/test_scales.py::TestTemporal::test_color_defaults", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestHistPlotUnivariate::test_weight_norm", "tests/_core/test_plot.py::TestLegend::test_legend_has_no_offset", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_full", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_brief", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-45
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex eb664326..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -473,6 +473,12 @@ def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n .. include:: ../docstrings/dark_palette.rst\n \n \"\"\"\n+ rgb = _color_to_rgb(color, input)\n+ hue, sat, _ = husl.rgb_to_husl(*rgb)\n+ gray_s, gray_l = .15 * sat, 15\n+ gray = _color_to_rgb((hue, gray_s, gray_l), input=\"husl\")\n+ colors = [rgb, gray] if reverse else [gray, rgb]\n+ return blend_palette(colors, n_colors, as_cmap)\n \n \n def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..eb664326 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -473,12 +473,6 @@ def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n .. include:: ../docstrings/dark_palette.rst\n \n \"\"\"\n- rgb = _color_to_rgb(color, input)\n- hue, sat, _ = husl.rgb_to_husl(*rgb)\n- gray_s, gray_l = .15 * sat, 15\n- gray = _color_to_rgb((hue, gray_s, gray_l), input=\"husl\")\n- colors = [rgb, gray] if reverse else [gray, rgb]\n- return blend_palette(colors, n_colors, as_cmap)\n \n \n def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n \"\"\"Make a sequential palette that blends from dark to ``color``.\n\n This kind of palette is good for data that range between relatively\n uninteresting low values and interesting high values.\n\n The ``color`` parameter can be specified in a number of ways, including\n all options for defining a color in matplotlib and several additional\n color spaces that are handled by seaborn. You can also use the database\n of named colors from the XKCD color survey.\n\n If you are using the IPython notebook, you can also choose this palette\n interactively with the :func:`choose_dark_palette` function.\n\n Parameters\n ----------\n color : base color for high values\n hex, rgb-tuple, or html color name\n n_colors : int, optional\n number of colors in the palette\n reverse : bool, optional\n if True, reverse the direction of the blend\n as_cmap : bool, optional\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n input : {'rgb', 'hls', 'husl', xkcd'}\n Color space to interpret the input color. The first three options\n apply to tuple inputs and the latter applies to string inputs.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n light_palette : Create a sequential palette with bright low values.\n diverging_palette : Create a diverging palette with two colors.\n\n Examples\n --------\n .. include:: ../docstrings/dark_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_dark_palette", "tests/test_palettes.py::TestColorPalettes::test_diverging_palette", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation" ], "PASS_TO_PASS": null }
mwaskom__seaborn-46
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex be6756f5..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -568,6 +568,14 @@ def diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, # noqa\n .. include: ../docstrings/diverging_palette.rst\n \n \"\"\"\n+ palfunc = dict(dark=dark_palette, light=light_palette)[center]\n+ n_half = int(128 - (sep // 2))\n+ neg = palfunc((h_neg, s, l), n_half, reverse=True, input=\"husl\")\n+ pos = palfunc((h_pos, s, l), n_half, input=\"husl\")\n+ midpoint = dict(light=[(.95, .95, .95)], dark=[(.133, .133, .133)])[center]\n+ mid = midpoint * sep\n+ pal = blend_palette(np.concatenate([neg, mid, pos]), n, as_cmap=as_cmap)\n+ return pal\n \n \n def blend_palette(colors, n_colors=6, as_cmap=False, input=\"rgb\"):\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..be6756f5 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -568,14 +568,6 @@ def diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, # noqa\n .. include: ../docstrings/diverging_palette.rst\n \n \"\"\"\n- palfunc = dict(dark=dark_palette, light=light_palette)[center]\n- n_half = int(128 - (sep // 2))\n- neg = palfunc((h_neg, s, l), n_half, reverse=True, input=\"husl\")\n- pos = palfunc((h_pos, s, l), n_half, input=\"husl\")\n- midpoint = dict(light=[(.95, .95, .95)], dark=[(.133, .133, .133)])[center]\n- mid = midpoint * sep\n- pal = blend_palette(np.concatenate([neg, mid, pos]), n, as_cmap=as_cmap)\n- return pal\n \n \n def blend_palette(colors, n_colors=6, as_cmap=False, input=\"rgb\"):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, # noqa\n center=\"light\", as_cmap=False):\n \"\"\"Make a diverging palette between two HUSL colors.\n\n If you are using the IPython notebook, you can also choose this palette\n interactively with the :func:`choose_diverging_palette` function.\n\n Parameters\n ----------\n h_neg, h_pos : float in [0, 359]\n Anchor hues for negative and positive extents of the map.\n s : float in [0, 100], optional\n Anchor saturation for both extents of the map.\n l : float in [0, 100], optional\n Anchor lightness for both extents of the map.\n sep : int, optional\n Size of the intermediate region.\n n : int, optional\n Number of colors in the palette (if not returning a cmap)\n center : {\"light\", \"dark\"}, optional\n Whether the center of the palette is light or dark\n as_cmap : bool, optional\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n dark_palette : Create a sequential palette with dark values.\n light_palette : Create a sequential palette with light values.\n\n Examples\n --------\n .. include: ../docstrings/diverging_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_diverging_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-47
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex 79c5c2ec..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -296,6 +296,17 @@ def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa\n .. include:: ../docstrings/hls_palette.rst\n \n \"\"\"\n+ if as_cmap:\n+ n_colors = 256\n+ hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]\n+ hues += h\n+ hues %= 1\n+ hues -= hues.astype(int)\n+ palette = [colorsys.hls_to_rgb(h_i, l, s) for h_i in hues]\n+ if as_cmap:\n+ return mpl.colors.ListedColormap(palette, \"hls\")\n+ else:\n+ return _ColorPalette(palette)\n \n \n def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..79c5c2ec 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -296,17 +296,6 @@ def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa\n .. include:: ../docstrings/hls_palette.rst\n \n \"\"\"\n- if as_cmap:\n- n_colors = 256\n- hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]\n- hues += h\n- hues %= 1\n- hues -= hues.astype(int)\n- palette = [colorsys.hls_to_rgb(h_i, l, s) for h_i in hues]\n- if as_cmap:\n- return mpl.colors.ListedColormap(palette, \"hls\")\n- else:\n- return _ColorPalette(palette)\n \n \n def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa\n \"\"\"\n Return hues with constant lightness and saturation in the HLS system.\n\n The hues are evenly sampled along a circular path. The resulting palette will be\n appropriate for categorical or cyclical data.\n\n The `h`, `l`, and `s` values should be between 0 and 1.\n\n .. note::\n While the separation of the resulting colors will be mathematically\n constant, the HLS system does not construct a perceptually-uniform space,\n so their apparent intensity will vary.\n\n Parameters\n ----------\n n_colors : int\n Number of colors in the palette.\n h : float\n The value of the first hue.\n l : float\n The lightness value.\n s : float\n The saturation intensity.\n as_cmap : bool\n If True, return a matplotlib colormap object.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n husl_palette : Make a palette using evenly spaced hues in the HUSL system.\n\n Examples\n --------\n .. include:: ../docstrings/hls_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_hls_palette", "tests/test_palettes.py::TestColorPalettes::test_hls_values" ], "PASS_TO_PASS": null }
mwaskom__seaborn-48
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex 54fb1dde..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -348,6 +348,19 @@ def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa\n .. include:: ../docstrings/husl_palette.rst\n \n \"\"\"\n+ if as_cmap:\n+ n_colors = 256\n+ hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]\n+ hues += h\n+ hues %= 1\n+ hues *= 359\n+ s *= 99\n+ l *= 99 # noqa\n+ palette = [_color_to_rgb((h_i, s, l), input=\"husl\") for h_i in hues]\n+ if as_cmap:\n+ return mpl.colors.ListedColormap(palette, \"hsl\")\n+ else:\n+ return _ColorPalette(palette)\n \n \n def mpl_palette(name, n_colors=6, as_cmap=False):\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..54fb1dde 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -348,19 +348,6 @@ def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa\n .. include:: ../docstrings/husl_palette.rst\n \n \"\"\"\n- if as_cmap:\n- n_colors = 256\n- hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]\n- hues += h\n- hues %= 1\n- hues *= 359\n- s *= 99\n- l *= 99 # noqa\n- palette = [_color_to_rgb((h_i, s, l), input=\"husl\") for h_i in hues]\n- if as_cmap:\n- return mpl.colors.ListedColormap(palette, \"hsl\")\n- else:\n- return _ColorPalette(palette)\n \n \n def mpl_palette(name, n_colors=6, as_cmap=False):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa\n \"\"\"\n Return hues with constant lightness and saturation in the HUSL system.\n\n The hues are evenly sampled along a circular path. The resulting palette will be\n appropriate for categorical or cyclical data.\n\n The `h`, `l`, and `s` values should be between 0 and 1.\n\n This function is similar to :func:`hls_palette`, but it uses a nonlinear color\n space that is more perceptually uniform.\n\n Parameters\n ----------\n n_colors : int\n Number of colors in the palette.\n h : float\n The value of the first hue.\n l : float\n The lightness value.\n s : float\n The saturation intensity.\n as_cmap : bool\n If True, return a matplotlib colormap object.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n hls_palette : Make a palette using evenly spaced hues in the HSL system.\n\n Examples\n --------\n .. include:: ../docstrings/husl_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_properties.py::TestColor::test_nominal_default_palette_large", "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_miscplot.py::TestPalPlot::test_palplot_size", "tests/test_palettes.py::TestColorPalettes::test_palette_size", "tests/test_palettes.py::TestColorPalettes::test_husl_palette", "tests/test_palettes.py::TestColorPalettes::test_palette_desat", "tests/test_palettes.py::TestColorPalettes::test_husl_values", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_relational.py::TestScatterPlotter::test_plot" ], "PASS_TO_PASS": null }
mwaskom__seaborn-49
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex 0e194c6b..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -521,6 +521,12 @@ def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n .. include:: ../docstrings/light_palette.rst\n \n \"\"\"\n+ rgb = _color_to_rgb(color, input)\n+ hue, sat, _ = husl.rgb_to_husl(*rgb)\n+ gray_s, gray_l = .15 * sat, 95\n+ gray = _color_to_rgb((hue, gray_s, gray_l), input=\"husl\")\n+ colors = [rgb, gray] if reverse else [gray, rgb]\n+ return blend_palette(colors, n_colors, as_cmap)\n \n \n def diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, # noqa\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..0e194c6b 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -521,12 +521,6 @@ def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n .. include:: ../docstrings/light_palette.rst\n \n \"\"\"\n- rgb = _color_to_rgb(color, input)\n- hue, sat, _ = husl.rgb_to_husl(*rgb)\n- gray_s, gray_l = .15 * sat, 95\n- gray = _color_to_rgb((hue, gray_s, gray_l), input=\"husl\")\n- colors = [rgb, gray] if reverse else [gray, rgb]\n- return blend_palette(colors, n_colors, as_cmap)\n \n \n def diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, # noqa\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef light_palette(color, n_colors=6, reverse=False, as_cmap=False, input=\"rgb\"):\n \"\"\"Make a sequential palette that blends from light to ``color``.\n\n The ``color`` parameter can be specified in a number of ways, including\n all options for defining a color in matplotlib and several additional\n color spaces that are handled by seaborn. You can also use the database\n of named colors from the XKCD color survey.\n\n If you are using a Jupyter notebook, you can also choose this palette\n interactively with the :func:`choose_light_palette` function.\n\n Parameters\n ----------\n color : base color for high values\n hex code, html color name, or tuple in `input` space.\n n_colors : int, optional\n number of colors in the palette\n reverse : bool, optional\n if True, reverse the direction of the blend\n as_cmap : bool, optional\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n input : {'rgb', 'hls', 'husl', xkcd'}\n Color space to interpret the input color. The first three options\n apply to tuple inputs and the latter applies to string inputs.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n dark_palette : Create a sequential palette with dark low values.\n diverging_palette : Create a diverging palette with two colors.\n\n Examples\n --------\n .. include:: ../docstrings/light_palette.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_scales.py::TestContinuous::test_color_callable_values", "tests/test_palettes.py::TestColorPalettes::test_light_palette", "tests/test_palettes.py::TestColorPalettes::test_diverging_palette", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs12]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs13]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs14]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[boxenplot-kwargs15]", "tests/test_distributions.py::TestKDEPlotBivariate::test_contour_fill_colors", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_two_calls", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[x]", "tests/test_categorical.py::TestBoxenPlot::test_log_scale[y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_single_var[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[None-x]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[x-y]", "tests/test_categorical.py::TestBoxenPlot::test_vector_data[y-z]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_color", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_linecolor", "tests/test_categorical.py::TestBoxenPlot::test_linewidth", "tests/test_categorical.py::TestBoxenPlot::test_saturation", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_int", "tests/test_categorical.py::TestBoxenPlot::test_k_depth_full", "tests/test_categorical.py::TestBoxenPlot::test_trust_alpha", "tests/test_categorical.py::TestBoxenPlot::test_outlier_prop", "tests/test_categorical.py::TestBoxenPlot::test_exponential_width_method", "tests/test_categorical.py::TestBoxenPlot::test_linear_width_method", "tests/test_categorical.py::TestBoxenPlot::test_area_width_method", "tests/test_categorical.py::TestBoxenPlot::test_box_kws", "tests/test_categorical.py::TestBoxenPlot::test_line_kws", "tests/test_categorical.py::TestBoxenPlot::test_flier_kws", "tests/test_categorical.py::TestBoxenPlot::test_scale_deprecation", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-50
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex c1596469..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -815,3 +815,27 @@ def set_color_codes(palette=\"deep\"):\n sets the matplotlib color cycle.\n \n \"\"\"\n+ if palette == \"reset\":\n+ colors = [\n+ (0., 0., 1.),\n+ (0., .5, 0.),\n+ (1., 0., 0.),\n+ (.75, 0., .75),\n+ (.75, .75, 0.),\n+ (0., .75, .75),\n+ (0., 0., 0.)\n+ ]\n+ elif not isinstance(palette, str):\n+ err = \"set_color_codes requires a named seaborn palette\"\n+ raise TypeError(err)\n+ elif palette in SEABORN_PALETTES:\n+ if not palette.endswith(\"6\"):\n+ palette = palette + \"6\"\n+ colors = SEABORN_PALETTES[palette] + [(.1, .1, .1)]\n+ else:\n+ err = f\"Cannot set colors with palette '{palette}'\"\n+ raise ValueError(err)\n+\n+ for code, color in zip(\"bgrmyck\", colors):\n+ rgb = mpl.colors.colorConverter.to_rgb(color)\n+ mpl.colors.colorConverter.colors[code] = rgb\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..c1596469 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -815,27 +815,3 @@ def set_color_codes(palette=\"deep\"):\n sets the matplotlib color cycle.\n \n \"\"\"\n- if palette == \"reset\":\n- colors = [\n- (0., 0., 1.),\n- (0., .5, 0.),\n- (1., 0., 0.),\n- (.75, 0., .75),\n- (.75, .75, 0.),\n- (0., .75, .75),\n- (0., 0., 0.)\n- ]\n- elif not isinstance(palette, str):\n- err = \"set_color_codes requires a named seaborn palette\"\n- raise TypeError(err)\n- elif palette in SEABORN_PALETTES:\n- if not palette.endswith(\"6\"):\n- palette = palette + \"6\"\n- colors = SEABORN_PALETTES[palette] + [(.1, .1, .1)]\n- else:\n- err = f\"Cannot set colors with palette '{palette}'\"\n- raise ValueError(err)\n-\n- for code, color in zip(\"bgrmyck\", colors):\n- rgb = mpl.colors.colorConverter.to_rgb(color)\n- mpl.colors.colorConverter.colors[code] = rgb\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef set_color_codes(palette=\"deep\"):\n \"\"\"Change how matplotlib color shorthands are interpreted.\n\n Calling this will change how shorthand codes like \"b\" or \"g\"\n are interpreted by matplotlib in subsequent plots.\n\n Parameters\n ----------\n palette : {deep, muted, pastel, dark, bright, colorblind}\n Named seaborn palette to use as the source of colors.\n\n See Also\n --------\n set : Color codes can be set through the high-level seaborn style\n manager.\n set_palette : Color codes can also be set through the function that\n sets the matplotlib color cycle.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_rcmod.py::TestAxesStyle::test_set_rc", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/test_rcmod.py::TestAxesStyle::test_reset_defaults", "tests/test_utils.py::test_ticklabels_overlap", "tests/test_rcmod.py::TestAxesStyle::test_reset_orig", "tests/test_rcmod.py::TestAxesStyle::test_set_is_alias", "tests/test_rcmod.py::TestPalette::test_set_palette", "tests/test_rcmod.py::TestFonts::test_set_serif_font", "tests/test_palettes.py::TestColorPalettes::test_color_codes", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-51
1.0
{ "code": "diff --git b/seaborn/palettes.py a/seaborn/palettes.py\nindex a1c2e711..f7f42984 100644\n--- b/seaborn/palettes.py\n+++ a/seaborn/palettes.py\n@@ -631,6 +631,8 @@ def xkcd_palette(colors):\n crayon_palette : Make a palette with Crayola crayon colors.\n \n \"\"\"\n+ palette = [xkcd_rgb[name] for name in colors]\n+ return color_palette(palette, len(palette))\n \n \n def crayon_palette(colors):\n", "test": null }
null
{ "code": "diff --git a/seaborn/palettes.py b/seaborn/palettes.py\nindex f7f42984..a1c2e711 100644\n--- a/seaborn/palettes.py\n+++ b/seaborn/palettes.py\n@@ -631,8 +631,6 @@ def xkcd_palette(colors):\n crayon_palette : Make a palette with Crayola crayon colors.\n \n \"\"\"\n- palette = [xkcd_rgb[name] for name in colors]\n- return color_palette(palette, len(palette))\n \n \n def crayon_palette(colors):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/palettes.py.\nHere is the description for the function:\ndef xkcd_palette(colors):\n \"\"\"Make a palette with color names from the xkcd color survey.\n\n See xkcd for the full list of colors: https://xkcd.com/color/rgb/\n\n This is just a simple wrapper around the `seaborn.xkcd_rgb` dictionary.\n\n Parameters\n ----------\n colors : list of strings\n List of keys in the `seaborn.xkcd_rgb` dictionary.\n\n Returns\n -------\n palette\n A list of colors as RGB tuples.\n\n See Also\n --------\n crayon_palette : Make a palette with Crayola crayon colors.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_xkcd_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-52
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 1a5b1587..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -798,6 +798,13 @@ class Plot:\n \n \n \"\"\"\n+ new = self._clone()\n+ if title is not None:\n+ new._labels[\"title\"] = title\n+ if legend is not None:\n+ new._labels[\"legend\"] = legend\n+ new._labels.update(variables)\n+ return new\n \n def layout(\n self,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..1a5b1587 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -798,13 +798,6 @@ class Plot:\n \n \n \"\"\"\n- new = self._clone()\n- if title is not None:\n- new._labels[\"title\"] = title\n- if legend is not None:\n- new._labels[\"legend\"] = legend\n- new._labels.update(variables)\n- return new\n \n def layout(\n self,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def label(\n self, *,\n title: str | None = None,\n legend: str | None = None,\n **variables: str | Callable[[str], str]\n ) -> Plot:\n \"\"\"\n Control the labels and titles for axes, legends, and subplots.\n\n Additional keywords correspond to variables defined in the plot.\n Values can be one of the following types:\n\n - string (used literally; pass \"\" to clear the default label)\n - function (called on the default label)\n\n For coordinate variables, the value sets the axis label.\n For semantic variables, the value sets the legend title.\n For faceting variables, `title=` modifies the subplot-specific label,\n while `col=` and/or `row=` add a label for the faceting variable.\n\n When using a single subplot, `title=` sets its title.\n\n The `legend=` parameter sets the title for the \"layer\" legend\n (i.e., when using `label` in :meth:`Plot.add`).\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.label.rst\n\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestPlotting::test_labels_axis", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/_core/test_plot.py::TestPlotting::test_labels_facets", "tests/_core/test_plot.py::TestPlotting::test_title_single", "tests/_core/test_plot.py::TestPlotting::test_title_facet_function", "tests/_core/test_plot.py::TestPairInterface::test_labels", "tests/_core/test_plot.py::TestLegend::test_layer_legend_title" ], "PASS_TO_PASS": null }
mwaskom__seaborn-53
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex c56300b7..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -841,6 +841,21 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.layout.rst\n \n \"\"\"\n+ # TODO add an \"auto\" mode for figsize that roughly scales with the rcParams\n+ # figsize (so that works), but expands to prevent subplots from being squished\n+ # Also should we have height=, aspect=, exclusive with figsize? Or working\n+ # with figsize when only one is defined?\n+\n+ new = self._clone()\n+\n+ if size is not default:\n+ new._figure_spec[\"figsize\"] = size\n+ if engine is not default:\n+ new._layout_spec[\"engine\"] = engine\n+ if extent is not default:\n+ new._layout_spec[\"extent\"] = extent\n+\n+ return new\n \n # TODO def legend (ugh)\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..c56300b7 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -841,21 +841,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.layout.rst\n \n \"\"\"\n- # TODO add an \"auto\" mode for figsize that roughly scales with the rcParams\n- # figsize (so that works), but expands to prevent subplots from being squished\n- # Also should we have height=, aspect=, exclusive with figsize? Or working\n- # with figsize when only one is defined?\n-\n- new = self._clone()\n-\n- if size is not default:\n- new._figure_spec[\"figsize\"] = size\n- if engine is not default:\n- new._layout_spec[\"engine\"] = engine\n- if extent is not default:\n- new._layout_spec[\"extent\"] = extent\n-\n- return new\n \n # TODO def legend (ugh)\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def layout(\n self,\n *,\n size: tuple[float, float] | Default = default,\n engine: str | None | Default = default,\n extent: tuple[float, float, float, float] | Default = default,\n ) -> Plot:\n \"\"\"\n Control the figure size and layout.\n\n .. note::\n\n Default figure sizes and the API for specifying the figure size are subject\n to change in future \"experimental\" releases of the objects API. The default\n layout engine may also change.\n\n Parameters\n ----------\n size : (width, height)\n Size of the resulting figure, in inches. Size is inclusive of legend when\n using pyplot, but not otherwise.\n engine : {{\"tight\", \"constrained\", \"none\"}}\n Name of method for automatically adjusting the layout to remove overlap.\n The default depends on whether :meth:`Plot.on` is used.\n extent : (left, bottom, right, top)\n Boundaries of the plot layout, in fractions of the figure size. Takes\n effect through the layout engine; exact results will vary across engines.\n Note: the extent includes axis decorations when using a layout engine,\n but it is exclusive of them when `engine=\"none\"`.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.layout.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestPlotting::test_layout_size", "tests/_core/test_plot.py::TestPlotting::test_layout_extent", "tests/_core/test_plot.py::TestPlotting::test_constrained_layout_extent", "tests/_core/test_plot.py::TestPlotting::test_base_layout_extent", "tests/_core/test_plot.py::TestPlotting::test_on_layout_algo_spec", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[tight]", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[constrained]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-54
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 9ff4bb84..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -763,6 +763,9 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.limit.rst\n \n \"\"\"\n+ new = self._clone()\n+ new._limits.update(limits)\n+ return new\n \n def label(\n self, *,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..9ff4bb84 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -763,9 +763,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.limit.rst\n \n \"\"\"\n- new = self._clone()\n- new._limits.update(limits)\n- return new\n \n def label(\n self, *,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def limit(self, **limits: tuple[Any, Any]) -> Plot:\n \"\"\"\n Control the range of visible data.\n\n Keywords correspond to variables defined in the plot, and values are a\n `(min, max)` tuple (where either can be `None` to leave unset).\n\n Limits apply only to the axis; data outside the visible range are\n still used for any stat transforms and added to the plot.\n\n Behavior for non-coordinate variables is currently undefined.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.limit.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestScaling::test_nominal_x_axis_tweaks", "tests/_core/test_plot.py::TestScaling::test_nominal_y_axis_tweaks", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[tight]", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[constrained]", "tests/_core/test_plot.py::TestPairInterface::test_limits" ], "PASS_TO_PASS": null }
mwaskom__seaborn-55
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 7c82620f..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -899,6 +899,10 @@ class Plot:\n :meth:`matplotlib.figure.Figure.savefig`.\n \n \"\"\"\n+ # TODO expose important keyword arguments in our signature?\n+ with theme_context(self._theme_with_defaults()):\n+ self._plot().save(loc, **kwargs)\n+ return self\n \n def show(self, **kwargs) -> None:\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..7c82620f 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -899,10 +899,6 @@ class Plot:\n :meth:`matplotlib.figure.Figure.savefig`.\n \n \"\"\"\n- # TODO expose important keyword arguments in our signature?\n- with theme_context(self._theme_with_defaults()):\n- self._plot().save(loc, **kwargs)\n- return self\n \n def show(self, **kwargs) -> None:\n \"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def save(self, loc, **kwargs) -> Plot:\n \"\"\"\n Compile the plot and write it to a buffer or file on disk.\n\n Parameters\n ----------\n loc : str, path, or buffer\n Location on disk to save the figure, or a buffer to write into.\n kwargs\n Other keyword arguments are passed through to\n :meth:`matplotlib.figure.Figure.savefig`.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestPlotting::test_save" ], "PASS_TO_PASS": null }
mwaskom__seaborn-56
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 19bd05d8..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -723,6 +723,9 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.scale.rst\n \n \"\"\"\n+ new = self._clone()\n+ new._scales.update(scales)\n+ return new\n \n def share(self, **shares: bool | str) -> Plot:\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..19bd05d8 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -723,9 +723,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.scale.rst\n \n \"\"\"\n- new = self._clone()\n- new._scales.update(scales)\n- return new\n \n def share(self, **shares: bool | str) -> Plot:\n \"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def scale(self, **scales: Scale) -> Plot:\n \"\"\"\n Specify mappings from data units to visual properties.\n\n Keywords correspond to variables defined in the plot, including coordinate\n variables (`x`, `y`) and semantic variables (`color`, `pointsize`, etc.).\n\n A number of \"magic\" arguments are accepted, including:\n - The name of a transform (e.g., `\"log\"`, `\"sqrt\"`)\n - The name of a palette (e.g., `\"viridis\"`, `\"muted\"`)\n - A tuple of values, defining the output range (e.g. `(1, 5)`)\n - A dict, implying a :class:`Nominal` scale (e.g. `{\"a\": .2, \"b\": .5}`)\n - A list of values, implying a :class:`Nominal` scale (e.g. `[\"b\", \"r\"]`)\n\n For more explicit control, pass a scale spec object such as :class:`Continuous`\n or :class:`Nominal`. Or pass `None` to use an \"identity\" scale, which treats\n data values as literally encoding visual properties.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.scale.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_core/test_plot.py::TestScaling::test_explicit_categorical_converter", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_core/test_plot.py::TestScaling::test_faceted_log_scale", "tests/_core/test_plot.py::TestScaling::test_paired_single_log_scale", "tests/_core/test_plot.py::TestScaling::test_paired_with_common_fallback", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transform_is_inverted", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_core/test_plot.py::TestScaling::test_computed_var_ticks", "tests/_core/test_plot.py::TestScaling::test_computed_var_transform", "tests/_core/test_plot.py::TestScaling::test_explicit_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_derived_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_linewidth", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_tuples", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_log_scale", "tests/_core/test_plot.py::TestExceptions::test_scale_setup", "tests/_core/test_plot.py::TestExceptions::test_coordinate_scaling", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling", "tests/_core/test_plot.py::TestLegend::test_identity_scale_ignored" ], "PASS_TO_PASS": null }
mwaskom__seaborn-57
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex 6179ce95..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -742,6 +742,9 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.share.rst\n \n \"\"\"\n+ new = self._clone()\n+ new._shares.update(shares)\n+ return new\n \n def limit(self, **limits: tuple[Any, Any]) -> Plot:\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..6179ce95 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -742,9 +742,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.share.rst\n \n \"\"\"\n- new = self._clone()\n- new._shares.update(shares)\n- return new\n \n def limit(self, **limits: tuple[Any, Any]) -> Plot:\n \"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def share(self, **shares: bool | str) -> Plot:\n \"\"\"\n Control sharing of axis limits and ticks across subplots.\n\n Keywords correspond to variables defined in the plot, and values can be\n boolean (to share across all subplots), or one of \"row\" or \"col\" (to share\n more selectively across one dimension of a grid).\n\n Behavior for non-coordinate variables is currently undefined.\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.share.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestScaling::test_facet_categories_unshared", "tests/_core/test_plot.py::TestScaling::test_facet_categories_single_dim_shared", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestFacetInterface::test_axis_sharing", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing", "tests/_core/test_plot.py::TestLabelVisibility::test_2d_unshared" ], "PASS_TO_PASS": null }
mwaskom__seaborn-58
1.0
{ "code": "diff --git b/seaborn/_core/plot.py a/seaborn/_core/plot.py\nindex d93bbf96..c9dc61c8 100644\n--- b/seaborn/_core/plot.py\n+++ a/seaborn/_core/plot.py\n@@ -879,6 +879,12 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.theme.rst\n \n \"\"\"\n+ new = self._clone()\n+\n+ rc = mpl.RcParams(config)\n+ new._theme.update(rc)\n+\n+ return new\n \n def save(self, loc, **kwargs) -> Plot:\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py\nindex c9dc61c8..d93bbf96 100644\n--- a/seaborn/_core/plot.py\n+++ b/seaborn/_core/plot.py\n@@ -879,12 +879,6 @@ class Plot:\n .. include:: ../docstrings/objects.Plot.theme.rst\n \n \"\"\"\n- new = self._clone()\n-\n- rc = mpl.RcParams(config)\n- new._theme.update(rc)\n-\n- return new\n \n def save(self, loc, **kwargs) -> Plot:\n \"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/plot.py.\nHere is the description for the function:\n def theme(self, config: Mapping[str, Any], /) -> Plot:\n \"\"\"\n Control the appearance of elements in the plot.\n\n .. note::\n\n The API for customizing plot appearance is not yet finalized.\n Currently, the only valid argument is a dict of matplotlib rc parameters.\n (This dict must be passed as a positional argument.)\n\n It is likely that this method will be enhanced in future releases.\n\n Matplotlib rc parameters are documented on the following page:\n https://matplotlib.org/stable/tutorials/introductory/customizing.html\n\n Examples\n --------\n .. include:: ../docstrings/objects.Plot.theme.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_core/test_plot.py::TestPlotting::test_theme_params", "tests/_core/test_plot.py::TestPlotting::test_theme_validation" ], "PASS_TO_PASS": null }
mwaskom__seaborn-59
1.0
{ "code": "diff --git b/seaborn/_core/properties.py a/seaborn/_core/properties.py\nindex 692f64a9..4e2df91b 100644\n--- b/seaborn/_core/properties.py\n+++ a/seaborn/_core/properties.py\n@@ -459,6 +459,31 @@ class LineStyle(ObjectProperty):\n dashes.\n \n \"\"\"\n+ # Start with dash specs that are well distinguishable\n+ dashes: list[str | DashPattern] = [\n+ \"-\", (4, 1.5), (1, 1), (3, 1.25, 1.5, 1.25), (5, 1, 1, 1),\n+ ]\n+\n+ # Now programmatically build as many as we need\n+ p = 3\n+ while len(dashes) < n:\n+\n+ # Take combinations of long and short dashes\n+ a = itertools.combinations_with_replacement([3, 1.25], p)\n+ b = itertools.combinations_with_replacement([4, 1], p)\n+\n+ # Interleave the combinations, reversing one of the streams\n+ segment_list = itertools.chain(*zip(list(a)[1:-1][::-1], list(b)[1:-1]))\n+\n+ # Now insert the gaps\n+ for segments in segment_list:\n+ gap = min(segments)\n+ spec = tuple(itertools.chain(*((seg, gap) for seg in segments)))\n+ dashes.append(spec)\n+\n+ p += 1\n+\n+ return [self._get_dash_pattern(x) for x in dashes]\n \n @staticmethod\n def _get_dash_pattern(style: str | DashPattern) -> DashPatternWithOffset:\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/properties.py b/seaborn/_core/properties.py\nindex 4e2df91b..692f64a9 100644\n--- a/seaborn/_core/properties.py\n+++ b/seaborn/_core/properties.py\n@@ -459,31 +459,6 @@ class LineStyle(ObjectProperty):\n dashes.\n \n \"\"\"\n- # Start with dash specs that are well distinguishable\n- dashes: list[str | DashPattern] = [\n- \"-\", (4, 1.5), (1, 1), (3, 1.25, 1.5, 1.25), (5, 1, 1, 1),\n- ]\n-\n- # Now programmatically build as many as we need\n- p = 3\n- while len(dashes) < n:\n-\n- # Take combinations of long and short dashes\n- a = itertools.combinations_with_replacement([3, 1.25], p)\n- b = itertools.combinations_with_replacement([4, 1], p)\n-\n- # Interleave the combinations, reversing one of the streams\n- segment_list = itertools.chain(*zip(list(a)[1:-1][::-1], list(b)[1:-1]))\n-\n- # Now insert the gaps\n- for segments in segment_list:\n- gap = min(segments)\n- spec = tuple(itertools.chain(*((seg, gap) for seg in segments)))\n- dashes.append(spec)\n-\n- p += 1\n-\n- return [self._get_dash_pattern(x) for x in dashes]\n \n @staticmethod\n def _get_dash_pattern(style: str | DashPattern) -> DashPatternWithOffset:\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/properties.py.\nHere is the description for the function:\n def _default_values(self, n: int) -> list[DashPatternWithOffset]:\n \"\"\"Build an arbitrarily long list of unique dash styles for lines.\n\n Parameters\n ----------\n n : int\n Number of unique dash specs to generate.\n\n Returns\n -------\n dashes : list of strings or tuples\n Valid arguments for the ``dashes`` parameter on\n :class:`matplotlib.lines.Line2D`. The first spec is a solid\n line (``\"\"``), the remainder are sequences of long and short\n dashes.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_core/test_properties.py::TestLineStyle::test_mapping_default[cat]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_default[num]", "tests/_core/test_properties.py::TestLineStyle::test_unique_default_large_n", "tests/_marks/test_line.py::TestPaths::test_mapped_properties" ], "PASS_TO_PASS": null }
mwaskom__seaborn-60
1.0
{ "code": "diff --git b/seaborn/_core/properties.py a/seaborn/_core/properties.py\nindex 011093ad..4e2df91b 100644\n--- b/seaborn/_core/properties.py\n+++ a/seaborn/_core/properties.py\n@@ -418,6 +418,21 @@ class Marker(ObjectProperty):\n All markers will be filled.\n \n \"\"\"\n+ # Start with marker specs that are well distinguishable\n+ markers = [\n+ \"o\", \"X\", (4, 0, 45), \"P\", (4, 0, 0), (4, 1, 0), \"^\", (4, 1, 45), \"v\",\n+ ]\n+\n+ # Now generate more from regular polygons of increasing order\n+ s = 5\n+ while len(markers) < n:\n+ a = 360 / (s + 1) / 2\n+ markers.extend([(s + 1, 1, a), (s + 1, 0, a), (s, 1, 0), (s, 0, 0)])\n+ s += 1\n+\n+ markers = [MarkerStyle(m) for m in markers[:n]]\n+\n+ return markers\n \n \n class LineStyle(ObjectProperty):\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/properties.py b/seaborn/_core/properties.py\nindex 4e2df91b..011093ad 100644\n--- a/seaborn/_core/properties.py\n+++ b/seaborn/_core/properties.py\n@@ -418,21 +418,6 @@ class Marker(ObjectProperty):\n All markers will be filled.\n \n \"\"\"\n- # Start with marker specs that are well distinguishable\n- markers = [\n- \"o\", \"X\", (4, 0, 45), \"P\", (4, 0, 0), (4, 1, 0), \"^\", (4, 1, 45), \"v\",\n- ]\n-\n- # Now generate more from regular polygons of increasing order\n- s = 5\n- while len(markers) < n:\n- a = 360 / (s + 1) / 2\n- markers.extend([(s + 1, 1, a), (s + 1, 0, a), (s, 1, 0), (s, 0, 0)])\n- s += 1\n-\n- markers = [MarkerStyle(m) for m in markers[:n]]\n-\n- return markers\n \n \n class LineStyle(ObjectProperty):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/properties.py.\nHere is the description for the function:\n def _default_values(self, n: int) -> list[MarkerStyle]:\n \"\"\"Build an arbitrarily long list of unique marker styles.\n\n Parameters\n ----------\n n : int\n Number of unique marker specs to generate.\n\n Returns\n -------\n markers : list of string or tuples\n Values for defining :class:`matplotlib.markers.MarkerStyle` objects.\n All markers will be filled.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_core/test_properties.py::TestMarker::test_mapping_default[cat]", "tests/_core/test_properties.py::TestMarker::test_mapping_default[num]", "tests/_core/test_properties.py::TestMarker::test_unique_default_large_n", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable" ], "PASS_TO_PASS": null }
mwaskom__seaborn-61
1.0
{ "code": "diff --git b/seaborn/rcmod.py a/seaborn/rcmod.py\nindex 5a8eed38..de238323 100644\n--- b/seaborn/rcmod.py\n+++ a/seaborn/rcmod.py\n@@ -465,6 +465,8 @@ def set_context(context=None, font_scale=1, rc=None):\n .. include:: ../docstrings/set_context.rst\n \n \"\"\"\n+ context_object = plotting_context(context, font_scale, rc)\n+ mpl.rcParams.update(context_object)\n \n \n class _RCAesthetics(dict):\n", "test": null }
null
{ "code": "diff --git a/seaborn/rcmod.py b/seaborn/rcmod.py\nindex de238323..5a8eed38 100644\n--- a/seaborn/rcmod.py\n+++ b/seaborn/rcmod.py\n@@ -465,8 +465,6 @@ def set_context(context=None, font_scale=1, rc=None):\n .. include:: ../docstrings/set_context.rst\n \n \"\"\"\n- context_object = plotting_context(context, font_scale, rc)\n- mpl.rcParams.update(context_object)\n \n \n class _RCAesthetics(dict):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/rcmod.py.\nHere is the description for the function:\ndef set_context(context=None, font_scale=1, rc=None):\n \"\"\"\n Set the parameters that control the scaling of plot elements.\n\n These parameters correspond to label size, line thickness, etc.\n Calling this function modifies the global matplotlib `rcParams`. For more\n information, see the :doc:`aesthetics tutorial <../tutorial/aesthetics>`.\n\n The base context is \"notebook\", and the other contexts are \"paper\", \"talk\",\n and \"poster\", which are version of the notebook parameters scaled by different\n values. Font elements can also be scaled independently of (but relative to)\n the other values.\n\n See :func:`plotting_context` to get the parameter values.\n\n Parameters\n ----------\n context : dict, or one of {paper, notebook, talk, poster}\n A dictionary of parameters or the name of a preconfigured set.\n font_scale : float, optional\n Separate scaling factor to independently scale the size of the\n font elements.\n rc : dict, optional\n Parameter mappings to override the values in the preset seaborn\n context dictionaries. This only updates parameters that are\n considered part of the context definition.\n\n Examples\n --------\n\n .. include:: ../docstrings/set_context.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_rcmod.py::TestAxesStyle::test_set_rc", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/test_rcmod.py::TestAxesStyle::test_reset_defaults", "tests/test_rcmod.py::TestAxesStyle::test_reset_orig", "tests/test_rcmod.py::TestAxesStyle::test_set_is_alias", "tests/test_rcmod.py::TestPlottingContext::test_set_context", "tests/test_rcmod.py::TestPlottingContext::test_context_context_manager", "tests/test_utils.py::test_ticklabels_overlap", "tests/test_rcmod.py::TestFonts::test_set_serif_font", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-62
1.0
{ "code": "diff --git b/seaborn/rcmod.py a/seaborn/rcmod.py\nindex 7501e223..de238323 100644\n--- b/seaborn/rcmod.py\n+++ a/seaborn/rcmod.py\n@@ -523,3 +523,11 @@ def set_palette(palette, n_colors=None, desat=None, color_codes=False):\n set_style : set the default parameters for figure style\n \n \"\"\"\n+ colors = palettes.color_palette(palette, n_colors, desat)\n+ cyl = cycler('color', colors)\n+ mpl.rcParams['axes.prop_cycle'] = cyl\n+ if color_codes:\n+ try:\n+ palettes.set_color_codes(palette)\n+ except (ValueError, TypeError):\n+ pass\n", "test": null }
null
{ "code": "diff --git a/seaborn/rcmod.py b/seaborn/rcmod.py\nindex de238323..7501e223 100644\n--- a/seaborn/rcmod.py\n+++ b/seaborn/rcmod.py\n@@ -523,11 +523,3 @@ def set_palette(palette, n_colors=None, desat=None, color_codes=False):\n set_style : set the default parameters for figure style\n \n \"\"\"\n- colors = palettes.color_palette(palette, n_colors, desat)\n- cyl = cycler('color', colors)\n- mpl.rcParams['axes.prop_cycle'] = cyl\n- if color_codes:\n- try:\n- palettes.set_color_codes(palette)\n- except (ValueError, TypeError):\n- pass\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/rcmod.py.\nHere is the description for the function:\ndef set_palette(palette, n_colors=None, desat=None, color_codes=False):\n \"\"\"Set the matplotlib color cycle using a seaborn palette.\n\n Parameters\n ----------\n palette : seaborn color palette | matplotlib colormap | hls | husl\n Palette definition. Should be something :func:`color_palette` can process.\n n_colors : int\n Number of colors in the cycle. The default number of colors will depend\n on the format of ``palette``, see the :func:`color_palette`\n documentation for more information.\n desat : float\n Proportion to desaturate each color by.\n color_codes : bool\n If ``True`` and ``palette`` is a seaborn palette, remap the shorthand\n color codes (e.g. \"b\", \"g\", \"r\", etc.) to the colors from this palette.\n\n See Also\n --------\n color_palette : build a color palette or set the color cycle temporarily\n in a ``with`` statement.\n set_context : set parameters to scale plot elements\n set_style : set the default parameters for figure style\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_rcmod.py::TestAxesStyle::test_set_rc", "tests/test_palettes.py::TestColorPalettes::test_palette_context", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_utils.py::test_ticklabels_overlap", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/test_rcmod.py::TestAxesStyle::test_reset_defaults", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/test_rcmod.py::TestAxesStyle::test_reset_orig", "tests/test_rcmod.py::TestAxesStyle::test_set_is_alias", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/test_rcmod.py::TestPalette::test_set_palette", "tests/test_rcmod.py::TestFonts::test_set_serif_font", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-63
1.0
{ "code": "diff --git b/seaborn/rcmod.py a/seaborn/rcmod.py\nindex 41e820da..de238323 100644\n--- b/seaborn/rcmod.py\n+++ a/seaborn/rcmod.py\n@@ -328,6 +328,8 @@ def set_style(style=None, rc=None):\n .. include:: ../docstrings/set_style.rst\n \n \"\"\"\n+ style_object = axes_style(style, rc)\n+ mpl.rcParams.update(style_object)\n \n \n def plotting_context(context=None, font_scale=1, rc=None):\n", "test": null }
null
{ "code": "diff --git a/seaborn/rcmod.py b/seaborn/rcmod.py\nindex de238323..41e820da 100644\n--- a/seaborn/rcmod.py\n+++ b/seaborn/rcmod.py\n@@ -328,8 +328,6 @@ def set_style(style=None, rc=None):\n .. include:: ../docstrings/set_style.rst\n \n \"\"\"\n- style_object = axes_style(style, rc)\n- mpl.rcParams.update(style_object)\n \n \n def plotting_context(context=None, font_scale=1, rc=None):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/rcmod.py.\nHere is the description for the function:\ndef set_style(style=None, rc=None):\n \"\"\"\n Set the parameters that control the general style of the plots.\n\n The style parameters control properties like the color of the background and\n whether a grid is enabled by default. This is accomplished using the\n matplotlib rcParams system.\n\n The options are illustrated in the\n :doc:`aesthetics tutorial <../tutorial/aesthetics>`.\n\n See :func:`axes_style` to get the parameter values.\n\n Parameters\n ----------\n style : dict, or one of {darkgrid, whitegrid, dark, white, ticks}\n A dictionary of parameters or the name of a preconfigured style.\n rc : dict, optional\n Parameter mappings to override the values in the preset seaborn\n style dictionaries. This only updates parameters that are\n considered part of the style definition.\n\n Examples\n --------\n\n .. include:: ../docstrings/set_style.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_rcmod.py::TestAxesStyle::test_set_style", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_rcmod.py::TestAxesStyle::test_style_context_manager", "tests/test_rcmod.py::TestAxesStyle::test_set_rc", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/test_rcmod.py::TestAxesStyle::test_reset_defaults", "tests/test_rcmod.py::TestAxesStyle::test_reset_orig", "tests/test_rcmod.py::TestAxesStyle::test_set_is_alias", "tests/test_rcmod.py::TestFonts::test_set_serif_font", "tests/test_utils.py::test_ticklabels_overlap", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-64
1.0
{ "code": "diff --git b/seaborn/rcmod.py a/seaborn/rcmod.py\nindex 083d169b..de238323 100644\n--- b/seaborn/rcmod.py\n+++ a/seaborn/rcmod.py\n@@ -116,6 +116,11 @@ def set_theme(context=\"notebook\", style=\"darkgrid\", palette=\"deep\",\n .. include:: ../docstrings/set_theme.rst\n \n \"\"\"\n+ set_context(context, font_scale)\n+ set_style(style, rc={\"font.family\": font})\n+ set_palette(palette, color_codes=color_codes)\n+ if rc is not None:\n+ mpl.rcParams.update(rc)\n \n \n def set(*args, **kwargs):\n", "test": null }
null
{ "code": "diff --git a/seaborn/rcmod.py b/seaborn/rcmod.py\nindex de238323..083d169b 100644\n--- a/seaborn/rcmod.py\n+++ b/seaborn/rcmod.py\n@@ -116,11 +116,6 @@ def set_theme(context=\"notebook\", style=\"darkgrid\", palette=\"deep\",\n .. include:: ../docstrings/set_theme.rst\n \n \"\"\"\n- set_context(context, font_scale)\n- set_style(style, rc={\"font.family\": font})\n- set_palette(palette, color_codes=color_codes)\n- if rc is not None:\n- mpl.rcParams.update(rc)\n \n \n def set(*args, **kwargs):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/rcmod.py.\nHere is the description for the function:\ndef set_theme(context=\"notebook\", style=\"darkgrid\", palette=\"deep\",\n font=\"sans-serif\", font_scale=1, color_codes=True, rc=None):\n \"\"\"\n Set aspects of the visual theme for all matplotlib and seaborn plots.\n\n This function changes the global defaults for all plots using the\n matplotlib rcParams system. The themeing is decomposed into several distinct\n sets of parameter values.\n\n The options are illustrated in the :doc:`aesthetics <../tutorial/aesthetics>`\n and :doc:`color palette <../tutorial/color_palettes>` tutorials.\n\n Parameters\n ----------\n context : string or dict\n Scaling parameters, see :func:`plotting_context`.\n style : string or dict\n Axes style parameters, see :func:`axes_style`.\n palette : string or sequence\n Color palette, see :func:`color_palette`.\n font : string\n Font family, see matplotlib font manager.\n font_scale : float, optional\n Separate scaling factor to independently scale the size of the\n font elements.\n color_codes : bool\n If ``True`` and ``palette`` is a seaborn palette, remap the shorthand\n color codes (e.g. \"b\", \"g\", \"r\", etc.) to the colors from this palette.\n rc : dict or None\n Dictionary of rc parameter mappings to override the above.\n\n Examples\n --------\n\n .. include:: ../docstrings/set_theme.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/test_rcmod.py::TestAxesStyle::test_set_rc", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/test_rcmod.py::TestAxesStyle::test_reset_defaults", "tests/test_rcmod.py::TestAxesStyle::test_reset_orig", "tests/test_rcmod.py::TestAxesStyle::test_set_is_alias", "tests/test_utils.py::test_ticklabels_overlap", "tests/test_rcmod.py::TestFonts::test_set_serif_font", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_palette" ], "PASS_TO_PASS": null }
mwaskom__seaborn-65
1.0
{ "code": "diff --git b/seaborn/regression.py a/seaborn/regression.py\nindex 5c229f4d..b9a0c455 100644\n--- b/seaborn/regression.py\n+++ a/seaborn/regression.py\n@@ -922,3 +922,29 @@ def residplot(\n .. include:: ../docstrings/residplot.rst\n \n \"\"\"\n+ plotter = _RegressionPlotter(x, y, data, ci=None,\n+ order=order, robust=robust,\n+ x_partial=x_partial, y_partial=y_partial,\n+ dropna=dropna, color=color, label=label)\n+\n+ if ax is None:\n+ ax = plt.gca()\n+\n+ # Calculate the residual from a linear regression\n+ _, yhat, _ = plotter.fit_regression(grid=plotter.x)\n+ plotter.y = plotter.y - yhat\n+\n+ # Set the regression option on the plotter\n+ if lowess:\n+ plotter.lowess = True\n+ else:\n+ plotter.fit_reg = False\n+\n+ # Plot a horizontal line at 0\n+ ax.axhline(0, ls=\":\", c=\".2\")\n+\n+ # Draw the scatterplot\n+ scatter_kws = {} if scatter_kws is None else scatter_kws.copy()\n+ line_kws = {} if line_kws is None else line_kws.copy()\n+ plotter.plot(ax, scatter_kws, line_kws)\n+ return ax\n", "test": null }
null
{ "code": "diff --git a/seaborn/regression.py b/seaborn/regression.py\nindex b9a0c455..5c229f4d 100644\n--- a/seaborn/regression.py\n+++ b/seaborn/regression.py\n@@ -922,29 +922,3 @@ def residplot(\n .. include:: ../docstrings/residplot.rst\n \n \"\"\"\n- plotter = _RegressionPlotter(x, y, data, ci=None,\n- order=order, robust=robust,\n- x_partial=x_partial, y_partial=y_partial,\n- dropna=dropna, color=color, label=label)\n-\n- if ax is None:\n- ax = plt.gca()\n-\n- # Calculate the residual from a linear regression\n- _, yhat, _ = plotter.fit_regression(grid=plotter.x)\n- plotter.y = plotter.y - yhat\n-\n- # Set the regression option on the plotter\n- if lowess:\n- plotter.lowess = True\n- else:\n- plotter.fit_reg = False\n-\n- # Plot a horizontal line at 0\n- ax.axhline(0, ls=\":\", c=\".2\")\n-\n- # Draw the scatterplot\n- scatter_kws = {} if scatter_kws is None else scatter_kws.copy()\n- line_kws = {} if line_kws is None else line_kws.copy()\n- plotter.plot(ax, scatter_kws, line_kws)\n- return ax\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/regression.py.\nHere is the description for the function:\ndef residplot(\n data=None, *, x=None, y=None,\n x_partial=None, y_partial=None, lowess=False,\n order=1, robust=False, dropna=True, label=None, color=None,\n scatter_kws=None, line_kws=None, ax=None\n):\n \"\"\"Plot the residuals of a linear regression.\n\n This function will regress y on x (possibly as a robust or polynomial\n regression) and then draw a scatterplot of the residuals. You can\n optionally fit a lowess smoother to the residual plot, which can\n help in determining if there is structure to the residuals.\n\n Parameters\n ----------\n data : DataFrame, optional\n DataFrame to use if `x` and `y` are column names.\n x : vector or string\n Data or column name in `data` for the predictor variable.\n y : vector or string\n Data or column name in `data` for the response variable.\n {x, y}_partial : vectors or string(s) , optional\n These variables are treated as confounding and are removed from\n the `x` or `y` variables before plotting.\n lowess : boolean, optional\n Fit a lowess smoother to the residual scatterplot.\n order : int, optional\n Order of the polynomial to fit when calculating the residuals.\n robust : boolean, optional\n Fit a robust linear regression when calculating the residuals.\n dropna : boolean, optional\n If True, ignore observations with missing data when fitting and\n plotting.\n label : string, optional\n Label that will be used in any plot legends.\n color : matplotlib color, optional\n Color to use for all elements of the plot.\n {scatter, line}_kws : dictionaries, optional\n Additional keyword arguments passed to scatter() and plot() for drawing\n the components of the plot.\n ax : matplotlib axis, optional\n Plot into this axis, otherwise grab the current axis or make a new\n one if not existing.\n\n Returns\n -------\n ax: matplotlib axes\n Axes with the regression plot.\n\n See Also\n --------\n regplot : Plot a simple linear regression model.\n jointplot : Draw a :func:`residplot` with univariate marginal distributions\n (when used with ``kind=\"resid\"``).\n\n Examples\n --------\n\n .. include:: ../docstrings/residplot.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_regression.py::TestRegressionPlots::test_residplot", "tests/test_regression.py::TestRegressionPlots::test_residplot_statsmodels_missing_errors[robust]", "tests/test_regression.py::TestRegressionPlots::test_residplot_statsmodels_missing_errors[lowess]", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict" ], "PASS_TO_PASS": null }
mwaskom__seaborn-66
1.0
{ "code": "diff --git b/seaborn/_core/rules.py a/seaborn/_core/rules.py\nindex a9daa3af..de6c651d 100644\n--- b/seaborn/_core/rules.py\n+++ a/seaborn/_core/rules.py\n@@ -66,6 +66,81 @@ def variable_type(\n Name identifying the type of data in the vector.\n \"\"\"\n \n+ # If a categorical dtype is set, infer categorical\n+ if isinstance(getattr(vector, 'dtype', None), pd.CategoricalDtype):\n+ return VarType(\"categorical\")\n+\n+ # Special-case all-na data, which is always \"numeric\"\n+ if pd.isna(vector).all():\n+ return VarType(\"numeric\")\n+\n+ # Now drop nulls to simplify further type inference\n+ vector = vector.dropna()\n+\n+ # Special-case binary/boolean data, allow caller to determine\n+ # This triggers a numpy warning when vector has strings/objects\n+ # https://github.com/numpy/numpy/issues/6784\n+ # Because we reduce with .all(), we are agnostic about whether the\n+ # comparison returns a scalar or vector, so we will ignore the warning.\n+ # It triggers a separate DeprecationWarning when the vector has datetimes:\n+ # https://github.com/numpy/numpy/issues/13548\n+ # This is considered a bug by numpy and will likely go away.\n+ with warnings.catch_warnings():\n+ warnings.simplefilter(\n+ action='ignore',\n+ category=(FutureWarning, DeprecationWarning) # type: ignore # mypy bug?\n+ )\n+ if strict_boolean:\n+ if isinstance(vector.dtype, pd.core.dtypes.base.ExtensionDtype):\n+ boolean_dtypes = [\"bool\", \"boolean\"]\n+ else:\n+ boolean_dtypes = [\"bool\"]\n+ boolean_vector = vector.dtype in boolean_dtypes\n+ else:\n+ try:\n+ boolean_vector = bool(np.isin(vector, [0, 1]).all())\n+ except TypeError:\n+ # .isin comparison is not guaranteed to be possible under NumPy\n+ # casting rules, depending on the (unknown) dtype of 'vector'\n+ boolean_vector = False\n+ if boolean_vector:\n+ return VarType(boolean_type)\n+\n+ # Defer to positive pandas tests\n+ if pd.api.types.is_numeric_dtype(vector):\n+ return VarType(\"numeric\")\n+\n+ if pd.api.types.is_datetime64_dtype(vector):\n+ return VarType(\"datetime\")\n+\n+ # --- If we get to here, we need to check the entries\n+\n+ # Check for a collection where everything is a number\n+\n+ def all_numeric(x):\n+ for x_i in x:\n+ if not isinstance(x_i, Number):\n+ return False\n+ return True\n+\n+ if all_numeric(vector):\n+ return VarType(\"numeric\")\n+\n+ # Check for a collection where everything is a datetime\n+\n+ def all_datetime(x):\n+ for x_i in x:\n+ if not isinstance(x_i, (datetime, np.datetime64)):\n+ return False\n+ return True\n+\n+ if all_datetime(vector):\n+ return VarType(\"datetime\")\n+\n+ # Otherwise, our final fallback is to consider things categorical\n+\n+ return VarType(\"categorical\")\n+\n \n def categorical_order(vector: Series, order: list | None = None) -> list:\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/rules.py b/seaborn/_core/rules.py\nindex de6c651d..a9daa3af 100644\n--- a/seaborn/_core/rules.py\n+++ b/seaborn/_core/rules.py\n@@ -66,81 +66,6 @@ def variable_type(\n Name identifying the type of data in the vector.\n \"\"\"\n \n- # If a categorical dtype is set, infer categorical\n- if isinstance(getattr(vector, 'dtype', None), pd.CategoricalDtype):\n- return VarType(\"categorical\")\n-\n- # Special-case all-na data, which is always \"numeric\"\n- if pd.isna(vector).all():\n- return VarType(\"numeric\")\n-\n- # Now drop nulls to simplify further type inference\n- vector = vector.dropna()\n-\n- # Special-case binary/boolean data, allow caller to determine\n- # This triggers a numpy warning when vector has strings/objects\n- # https://github.com/numpy/numpy/issues/6784\n- # Because we reduce with .all(), we are agnostic about whether the\n- # comparison returns a scalar or vector, so we will ignore the warning.\n- # It triggers a separate DeprecationWarning when the vector has datetimes:\n- # https://github.com/numpy/numpy/issues/13548\n- # This is considered a bug by numpy and will likely go away.\n- with warnings.catch_warnings():\n- warnings.simplefilter(\n- action='ignore',\n- category=(FutureWarning, DeprecationWarning) # type: ignore # mypy bug?\n- )\n- if strict_boolean:\n- if isinstance(vector.dtype, pd.core.dtypes.base.ExtensionDtype):\n- boolean_dtypes = [\"bool\", \"boolean\"]\n- else:\n- boolean_dtypes = [\"bool\"]\n- boolean_vector = vector.dtype in boolean_dtypes\n- else:\n- try:\n- boolean_vector = bool(np.isin(vector, [0, 1]).all())\n- except TypeError:\n- # .isin comparison is not guaranteed to be possible under NumPy\n- # casting rules, depending on the (unknown) dtype of 'vector'\n- boolean_vector = False\n- if boolean_vector:\n- return VarType(boolean_type)\n-\n- # Defer to positive pandas tests\n- if pd.api.types.is_numeric_dtype(vector):\n- return VarType(\"numeric\")\n-\n- if pd.api.types.is_datetime64_dtype(vector):\n- return VarType(\"datetime\")\n-\n- # --- If we get to here, we need to check the entries\n-\n- # Check for a collection where everything is a number\n-\n- def all_numeric(x):\n- for x_i in x:\n- if not isinstance(x_i, Number):\n- return False\n- return True\n-\n- if all_numeric(vector):\n- return VarType(\"numeric\")\n-\n- # Check for a collection where everything is a datetime\n-\n- def all_datetime(x):\n- for x_i in x:\n- if not isinstance(x_i, (datetime, np.datetime64)):\n- return False\n- return True\n-\n- if all_datetime(vector):\n- return VarType(\"datetime\")\n-\n- # Otherwise, our final fallback is to consider things categorical\n-\n- return VarType(\"categorical\")\n-\n \n def categorical_order(vector: Series, order: list | None = None) -> list:\n \"\"\"\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/rules.py.\nHere is the description for the function:\ndef variable_type(\n vector: Series,\n boolean_type: Literal[\"numeric\", \"categorical\", \"boolean\"] = \"numeric\",\n strict_boolean: bool = False,\n) -> VarType:\n \"\"\"\n Determine whether a vector contains numeric, categorical, or datetime data.\n\n This function differs from the pandas typing API in a few ways:\n\n - Python sequences or object-typed PyData objects are considered numeric if\n all of their entries are numeric.\n - String or mixed-type data are considered categorical even if not\n explicitly represented as a :class:`pandas.api.types.CategoricalDtype`.\n - There is some flexibility about how to treat binary / boolean data.\n\n Parameters\n ----------\n vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence\n Input data to test.\n boolean_type : 'numeric', 'categorical', or 'boolean'\n Type to use for vectors containing only 0s and 1s (and NAs).\n strict_boolean : bool\n If True, only consider data to be boolean when the dtype is bool or Boolean.\n\n Returns\n -------\n var_type : 'numeric', 'categorical', or 'datetime'\n Name identifying the type of data in the vector.\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_stats/test_aggregation.py::TestAgg::test_default", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_stats/test_density.py::TestKDE::test_columns[x]", "tests/_marks/test_area.py::TestArea::test_single_defaults", "tests/_core/test_moves.py::TestDodge::test_default", "tests/_stats/test_regression.py::TestPolyFit::test_one_grouper", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_stats/test_order.py::TestPerc::test_int_k", "tests/_core/test_rules.py::test_variable_type", "tests/_stats/test_counting.py::TestCount::test_single_grouper", "tests/_core/test_groupby.py::test_agg_one_grouper", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette_large", "tests/_stats/test_aggregation.py::TestAgg::test_default_multi", "tests/_core/test_plot.py::TestLayerAddition::test_without_data", "tests/_stats/test_counting.py::TestCount::test_multiple_groupers", "tests/_stats/test_density.py::TestKDE::test_columns[y]", "tests/_stats/test_aggregation.py::TestAgg::test_func[max]", "tests/_core/test_moves.py::TestDodge::test_fill", "tests/_core/test_groupby.py::test_agg_two_groupers", "tests/_stats/test_aggregation.py::TestAgg::test_func[<lambda>]", "tests/_stats/test_order.py::TestPerc::test_list_k", "tests/_stats/test_aggregation.py::TestEst::test_mean_sd[mean0]", "tests/_stats/test_order.py::TestPerc::test_orientation", "tests/_core/test_groupby.py::test_apply_one_grouper", "tests/_stats/test_aggregation.py::TestEst::test_mean_sd[mean1]", "tests/_core/test_groupby.py::test_apply_mutate_columns", "tests/_core/test_groupby.py::test_apply_replace_columns", "tests/_stats/test_aggregation.py::TestEst::test_sd_single_obs", "tests/_stats/test_order.py::TestPerc::test_method", "tests/_stats/test_counting.py::TestHist::test_common_norm_default", "tests/_core/test_moves.py::TestDodge::test_drop", "tests/_core/test_properties.py::TestColor::test_nominal_named_palette", "tests/_core/test_rules.py::test_categorical_order", "tests/_stats/test_counting.py::TestHist::test_common_norm_false", "tests/_stats/test_order.py::TestPerc::test_grouped", "tests/_core/test_properties.py::TestColor::test_nominal_list_palette", "tests/_core/test_moves.py::TestDodge::test_gap", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_marks/test_area.py::TestArea::test_set_properties", "tests/_stats/test_aggregation.py::TestEst::test_median_pi", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_core/test_properties.py::TestColor::test_nominal_dict_palette", "tests/_stats/test_density.py::TestKDE::test_common_grid[True]", "tests/_stats/test_counting.py::TestHist::test_common_norm_subset", "tests/_stats/test_order.py::TestPerc::test_with_na", "tests/_core/test_moves.py::TestDodge::test_widths_default", "tests/_stats/test_aggregation.py::TestEst::test_weighted_mean", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_core/test_properties.py::TestColor::test_nominal_dict_with_missing_keys", "tests/_stats/test_density.py::TestKDE::test_common_grid[False]", "tests/_stats/test_counting.py::TestHist::test_common_norm_warning", "tests/_core/test_moves.py::TestDodge::test_widths_fill", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_name", "tests/_stats/test_aggregation.py::TestEst::test_seed", "tests/_core/test_properties.py::TestColor::test_nominal_list_too_short", "tests/_stats/test_density.py::TestKDE::test_common_norm[True]", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_line.py::TestPath::test_shared_colors_direct", "tests/_core/test_moves.py::TestDodge::test_widths_drop", "tests/_core/test_scales.py::TestNominal::test_coordinate_defaults", "tests/_core/test_properties.py::TestColor::test_nominal_list_too_long", "tests/_stats/test_counting.py::TestHist::test_common_bins_default", "tests/_stats/test_density.py::TestKDE::test_common_norm[False]", "tests/_core/test_moves.py::TestDodge::test_faceted_default", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical", "tests/_stats/test_density.py::TestKDE::test_common_norm_variables", "tests/_core/test_moves.py::TestDodge::test_faceted_fill", "tests/_stats/test_counting.py::TestHist::test_common_bins_false", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[norm]", "tests/_core/test_moves.py::TestDodge::test_faceted_drop", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/_core/test_scales.py::TestNominal::test_coordinate_axis", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_stats/test_density.py::TestKDE::test_common_input_checks[grid]", "tests/_core/test_moves.py::TestDodge::test_orient", "tests/_stats/test_counting.py::TestHist::test_common_bins_subset", "tests/_core/test_moves.py::TestDodge::test_single_semantic[grp2]", "tests/_marks/test_area.py::TestArea::test_unfilled", "tests/_core/test_moves.py::TestDodge::test_single_semantic[grp3]", "tests/_stats/test_counting.py::TestHist::test_common_bins_warning", "tests/_core/test_moves.py::TestDodge::test_two_semantics", "tests/_core/test_properties.py::TestColor::test_bad_scale_values_nominal", "tests/_core/test_scales.py::TestNominal::test_coordinate_numeric_data", "tests/_stats/test_density.py::TestKDE::test_singular[vals0]", "tests/_core/test_properties.py::TestColor::test_bad_inference_arg", "tests/_core/test_moves.py::TestStack::test_basic", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal", "tests/_stats/test_density.py::TestKDE::test_singular[vals1]", "tests/_core/test_properties.py::TestColor::test_default[cat-Nominal]", "tests/_core/test_scales.py::TestNominal::test_color_defaults", "tests/_stats/test_counting.py::TestHist::test_histogram_multiple", "tests/_core/test_properties.py::TestColor::test_default[num-Continuous]", "tests/_stats/test_density.py::TestKDE::test_singular[vals2]", "tests/_core/test_scales.py::TestNominal::test_color_named_palette", "tests/_marks/test_line.py::TestPath::test_separate_colors_direct", "tests/_core/test_properties.py::TestColor::test_default[bool-Boolean]", "tests/_stats/test_density.py::TestKDE::test_singular[vals3]", "tests/_core/test_scales.py::TestNominal::test_color_list_palette", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_vector", "tests/_core/test_properties.py::TestColor::test_default_numeric_data_category_dtype", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_core/test_moves.py::TestStack::test_faceted", "tests/_core/test_scales.py::TestNominal::test_color_dict_palette", "tests/_core/test_properties.py::TestColor::test_default_binary_data", "tests/_core/test_scales.py::TestNominal::test_color_numeric_data", "tests/_core/test_properties.py::TestColor::test_inference[viridis-cat-Nominal]", "tests/_marks/test_area.py::TestBand::test_range", "tests/_core/test_moves.py::TestStack::test_misssing_data", "tests/_core/test_properties.py::TestColor::test_inference[viridis-num-Continuous]", "tests/_core/test_properties.py::TestColor::test_inference[viridis-bool-Boolean]", "tests/_core/test_moves.py::TestStack::test_baseline_homogeneity_check", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_core/test_moves.py::TestNorm::test_default_groups[x]", "tests/_core/test_moves.py::TestNorm::test_default_groups[y]", "tests/_core/test_scales.py::TestNominal::test_color_alpha_in_palette", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_area.py::TestBand::test_auto_range", "tests/_core/test_plot.py::TestLayerAddition::test_with_late_data_definition", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_core/test_scales.py::TestNominal::test_color_unknown_palette", "tests/_core/test_scales.py::TestNominal::test_object_defaults", "tests/_core/test_scales.py::TestNominal::test_object_list", "tests/_core/test_properties.py::TestColor::test_inference[muted-num-Nominal]", "tests/_core/test_properties.py::TestColor::test_inference[values4-num-Nominal]", "tests/_core/test_properties.py::TestColor::test_inference[values5-num-Nominal]", "tests/_core/test_scales.py::TestNominal::test_object_dict", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_core/test_properties.py::TestColor::test_inference[values6-num-Continuous]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_core/test_properties.py::TestColor::test_inference[values7-cat-Nominal]", "tests/_core/test_scales.py::TestNominal::test_objects_that_are_weird", "tests/_core/test_scales.py::TestNominal::test_alpha_default", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_core/test_properties.py::TestColor::test_inference[values8-bool-Boolean]", "tests/_core/test_properties.py::TestColor::test_inference[values9-num-Continuous]", "tests/_core/test_scales.py::TestNominal::test_fill", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_data_definition", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_line.py::TestPath::test_color_with_alpha", "tests/_core/test_properties.py::TestMarker::test_default[cat]", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_core/test_properties.py::TestMarker::test_default[num]", "tests/_core/test_properties.py::TestMarker::test_default[bool]", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_core/test_scales.py::TestNominal::test_fill_dict", "tests/_core/test_scales.py::TestNominal::test_fill_nunique_warning", "tests/_core/test_scales.py::TestNominal::test_interval_defaults", "tests/_core/test_properties.py::TestMarker::test_inference_list[cat]", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_line.py::TestPath::test_color_and_alpha", "tests/_core/test_scales.py::TestNominal::test_interval_tuple", "tests/_core/test_plot.py::TestLayerAddition::test_drop_variable", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_core/test_properties.py::TestMarker::test_inference_list[num]", "tests/_marks/test_bar.py::TestBars::test_positions", "tests/_core/test_properties.py::TestMarker::test_inference_list[bool]", "tests/_core/test_scales.py::TestNominal::test_interval_tuple_numeric", "tests/_core/test_properties.py::TestMarker::test_inference_dict[cat]", "tests/_core/test_scales.py::TestNominal::test_interval_list", "tests/_core/test_properties.py::TestMarker::test_inference_dict[num]", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_line.py::TestPath::test_other_props_direct", "tests/_core/test_properties.py::TestMarker::test_inference_dict[bool]", "tests/_core/test_scales.py::TestNominal::test_interval_dict", "tests/_core/test_properties.py::TestMarker::test_dict_missing", "tests/_marks/test_bar.py::TestBars::test_positions_horizontal", "tests/_core/test_properties.py::TestMarker::test_mapping_default[cat]", "tests/_core/test_scales.py::TestNominal::test_interval_with_transform", "tests/_core/test_properties.py::TestMarker::test_mapping_default[num]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[x-x]", "tests/_core/test_scales.py::TestNominal::test_empty_data", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_core/test_properties.py::TestMarker::test_mapping_from_list[cat]", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_marks/test_bar.py::TestBars::test_width", "tests/_core/test_properties.py::TestMarker::test_mapping_from_list[num]", "tests/_core/test_scales.py::TestNominal::test_finalize", "tests/_core/test_properties.py::TestMarker::test_mapping_from_dict[cat]", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_core/test_properties.py::TestMarker::test_mapping_from_dict[num]", "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_core/test_properties.py::TestMarker::test_mapping_with_null_value", "tests/_core/test_plot.py::TestLayerAddition::test_orient[y-y]", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_core/test_properties.py::TestMarker::test_unique_default_large_n", "tests/_core/test_properties.py::TestMarker::test_bad_scale_values", "tests/_core/test_properties.py::TestLineStyle::test_default[cat]", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_marks/test_bar.py::TestBars::test_mapped_edgewidth", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_core/test_properties.py::TestLineStyle::test_default[num]", "tests/_core/test_plot.py::TestLayerAddition::test_orient[v-x]", "tests/_core/test_properties.py::TestLineStyle::test_default[bool]", "tests/_core/test_properties.py::TestLineStyle::test_inference_list[cat]", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_bar.py::TestBars::test_auto_edgewidth", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_core/test_properties.py::TestLineStyle::test_inference_list[num]", "tests/_core/test_properties.py::TestLineStyle::test_inference_list[bool]", "tests/_core/test_properties.py::TestLineStyle::test_inference_dict[cat]", "tests/_core/test_properties.py::TestLineStyle::test_inference_dict[num]", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_core/test_plot.py::TestLayerAddition::test_orient[h-y]", "tests/_core/test_properties.py::TestLineStyle::test_inference_dict[bool]", "tests/_marks/test_line.py::TestPaths::test_set_properties", "tests/_core/test_properties.py::TestLineStyle::test_dict_missing", "tests/_marks/test_bar.py::TestBars::test_unfilled", "tests/_core/test_properties.py::TestLineStyle::test_mapping_default[cat]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_default[num]", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_list[cat]", "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_list[num]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_dict[cat]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_from_dict[num]", "tests/_core/test_properties.py::TestLineStyle::test_mapping_with_null_value", "tests/_marks/test_line.py::TestPaths::test_color_with_alpha", "tests/_core/test_properties.py::TestLineStyle::test_unique_default_large_n", "tests/_core/test_properties.py::TestLineStyle::test_bad_scale_values", "tests/_core/test_plot.py::TestScaling::test_inference_from_layer_data", "tests/_core/test_properties.py::TestFill::test_default[cat]", "tests/_marks/test_line.py::TestPaths::test_color_and_alpha", "tests/_core/test_properties.py::TestFill::test_default[num]", "tests/_core/test_properties.py::TestFill::test_default[bool]", "tests/_core/test_properties.py::TestFill::test_inference_list[cat]", "tests/_core/test_properties.py::TestFill::test_inference_list[num]", "tests/_core/test_properties.py::TestFill::test_inference_list[bool]", "tests/_marks/test_line.py::TestPaths::test_capstyle", "tests/_core/test_plot.py::TestScaling::test_inference_joins", "tests/_core/test_properties.py::TestFill::test_inference_dict[cat]", "tests/_core/test_properties.py::TestFill::test_inference_dict[num]", "tests/_core/test_properties.py::TestFill::test_inference_dict[bool]", "tests/_core/test_properties.py::TestFill::test_mapping_categorical_data", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_core/test_properties.py::TestFill::test_mapping_numeric_data", "tests/_core/test_plot.py::TestScaling::test_inferred_categorical_converter", "tests/_core/test_properties.py::TestFill::test_mapping_list", "tests/_core/test_properties.py::TestFill::test_mapping_truthy_list", "tests/_marks/test_line.py::TestLines::test_single_orient_value", "tests/_core/test_properties.py::TestFill::test_mapping_dict", "tests/_core/test_properties.py::TestFill::test_cycle_warning", "tests/_core/test_properties.py::TestFill::test_values_error", "tests/_core/test_properties.py::TestAlpha::test_default[cat-Nominal]", "tests/_core/test_plot.py::TestScaling::test_explicit_categorical_converter", "tests/_marks/test_line.py::TestRange::test_xy_data", "tests/_core/test_properties.py::TestAlpha::test_default[num-Continuous]", "tests/_core/test_properties.py::TestAlpha::test_default[bool-Boolean]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg0-cat-Nominal]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg1-num-Continuous]", "tests/_core/test_plot.py::TestScaling::test_faceted_log_scale", "tests/_marks/test_line.py::TestRange::test_auto_range", "tests/_core/test_properties.py::TestAlpha::test_inference[arg2-bool-Boolean]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg3-cat-Nominal]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg4-num-Nominal]", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_core/test_plot.py::TestScaling::test_paired_single_log_scale", "tests/_core/test_properties.py::TestAlpha::test_inference[arg5-bool-Boolean]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg6-cat-Nominal]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg7-num-Nominal]", "tests/_core/test_properties.py::TestAlpha::test_inference[arg8-bool-Boolean]", "tests/_core/test_properties.py::TestAlpha::test_mapped_interval_categorical", "tests/_marks/test_line.py::TestRange::test_direct_properties", "tests/_core/test_properties.py::TestAlpha::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestLineWidth::test_default[cat-Nominal]", "tests/_marks/test_line.py::TestDash::test_xy_data", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_core/test_properties.py::TestLineWidth::test_default[num-Continuous]", "tests/_core/test_properties.py::TestLineWidth::test_default[bool-Boolean]", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg0-cat-Nominal]", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg1-num-Continuous]", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg2-bool-Boolean]", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_categorical", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg3-cat-Nominal]", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg4-num-Nominal]", "tests/_marks/test_line.py::TestDash::test_set_properties", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg5-bool-Boolean]", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg6-cat-Nominal]", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg7-num-Nominal]", "tests/_core/test_properties.py::TestLineWidth::test_inference[arg8-bool-Boolean]", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_datetime", "tests/_core/test_properties.py::TestLineWidth::test_mapped_interval_categorical", "tests/_core/test_properties.py::TestLineWidth::test_bad_scale_values_categorical_data", "tests/_marks/test_line.py::TestDash::test_width", "tests/_core/test_properties.py::TestEdgeWidth::test_default[cat-Nominal]", "tests/_core/test_properties.py::TestEdgeWidth::test_default[num-Continuous]", "tests/_core/test_properties.py::TestEdgeWidth::test_default[bool-Boolean]", "tests/_core/test_plot.py::TestScaling::test_computed_var_ticks", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg0-cat-Nominal]", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg1-num-Continuous]", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg2-bool-Boolean]", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg3-cat-Nominal]", "tests/_core/test_plot.py::TestScaling::test_computed_var_transform", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg4-num-Nominal]", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg5-bool-Boolean]", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg6-cat-Nominal]", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg7-num-Nominal]", "tests/_core/test_properties.py::TestEdgeWidth::test_inference[arg8-bool-Boolean]", "tests/_core/test_properties.py::TestEdgeWidth::test_mapped_interval_categorical", "tests/_core/test_plot.py::TestScaling::test_explicit_range_with_axis_scaling", "tests/_core/test_properties.py::TestEdgeWidth::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestPointSize::test_default[cat-Nominal]", "tests/_core/test_properties.py::TestPointSize::test_default[num-Continuous]", "tests/_core/test_properties.py::TestPointSize::test_default[bool-Boolean]", "tests/_core/test_plot.py::TestScaling::test_derived_range_with_axis_scaling", "tests/_core/test_properties.py::TestPointSize::test_inference[arg0-cat-Nominal]", "tests/_core/test_properties.py::TestPointSize::test_inference[arg1-num-Continuous]", "tests/_core/test_properties.py::TestPointSize::test_inference[arg2-bool-Boolean]", "tests/_core/test_properties.py::TestPointSize::test_inference[arg3-cat-Nominal]", "tests/_core/test_properties.py::TestPointSize::test_inference[arg4-num-Nominal]", "tests/_core/test_plot.py::TestScaling::test_facet_categories", "tests/_core/test_properties.py::TestPointSize::test_inference[arg5-bool-Boolean]", "tests/_core/test_properties.py::TestPointSize::test_inference[arg6-cat-Nominal]", "tests/_core/test_properties.py::TestPointSize::test_inference[arg7-num-Nominal]", "tests/_core/test_plot.py::TestScaling::test_facet_categories_unshared", "tests/_core/test_properties.py::TestPointSize::test_inference[arg8-bool-Boolean]", "tests/_core/test_properties.py::TestPointSize::test_mapped_interval_categorical", "tests/_core/test_properties.py::TestPointSize::test_bad_scale_values_categorical_data", "tests/_core/test_properties.py::TestPointSize::test_areal_scaling_categorical", "tests/_core/test_plot.py::TestScaling::test_facet_categories_single_dim_shared", "tests/_core/test_plot.py::TestScaling::test_pair_categories", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_linewidth", "tests/_core/test_plot.py::TestScaling::test_pair_single_coordinate_stat_orient", "tests/_core/test_plot.py::TestScaling::test_inferred_nominal_passed_to_stat", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_tuples", "tests/_core/test_plot.py::TestScaling::test_nominal_x_axis_tweaks", "tests/_core/test_plot.py::TestScaling::test_nominal_y_axis_tweaks", "tests/_core/test_plot.py::TestPlotting::test_no_orient_variance", "tests/_core/test_plot.py::TestPlotting::test_single_split_single_layer", "tests/_core/test_plot.py::TestPlotting::test_single_split_multi_layer", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[color]", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[group]", "tests/_core/test_plot.py::TestPlotting::test_two_grouping_variables", "tests/_core/test_plot.py::TestPlotting::test_specified_width", "tests/_core/test_plot.py::TestPlotting::test_facets_no_subgroups", "tests/_core/test_plot.py::TestPlotting::test_facets_one_subgroup", "tests/_core/test_plot.py::TestPlotting::test_layer_specific_facet_disabling", "tests/_core/test_plot.py::TestPlotting::test_paired_variables", "tests/_core/test_plot.py::TestPlotting::test_paired_one_dimension", "tests/_core/test_plot.py::TestPlotting::test_paired_variables_one_subset", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_stat", "tests/_core/test_plot.py::TestPlotting::test_move", "tests/_core/test_plot.py::TestPlotting::test_stat_and_move", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_log_scale", "tests/_core/test_plot.py::TestPlotting::test_multi_move", "tests/_core/test_plot.py::TestPlotting::test_multi_move_with_pairing", "tests/_core/test_plot.py::TestPlotting::test_move_with_range", "tests/_core/test_plot.py::TestPlotting::test_on_axes", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_figure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_axes_with_subplots_error", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_from_constructor", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_from_layer", "tests/_core/test_plot.py::TestPlotting::test_axis_labels_are_first_name", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestPlotting::test_labels_axis", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/_core/test_plot.py::TestPlotting::test_labels_facets", "tests/_core/test_plot.py::TestPlotting::test_title_facet_function", "tests/_core/test_plot.py::TestExceptions::test_scale_setup", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling", "tests/_core/test_plot.py::TestFacetInterface::test_1d[row]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_as_vector[row]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_1d[col]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_as_vector[col]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-subset]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-subset]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[subset]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[col-expand]", "tests/_core/test_plot.py::TestFacetInterface::test_1d_with_order[row-expand]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[expand]", "tests/_core/test_plot.py::TestFacetInterface::test_2d_with_order[reverse]", "tests/_core/test_plot.py::TestFacetInterface::test_2d", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[tight]", "tests/_core/test_plot.py::TestFacetInterface::test_layout_algo[constrained]", "tests/_core/test_plot.py::TestFacetInterface::test_axis_sharing", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestFacetInterface::test_col_wrapping", "tests/_core/test_plot.py::TestFacetInterface::test_row_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[list]", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[Index]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[x]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[y]", "tests/_core/test_plot.py::TestPairInterface::test_non_cross", "tests/_core/test_plot.py::TestPairInterface::test_list_of_vectors", "tests/_core/test_plot.py::TestPairInterface::test_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_facet_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables0]", "tests/_core/test_plot.py::TestPairInterface::test_error_on_wrap_overlap[variables1]", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_x_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_y_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_computed_coordinate_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_limits", "tests/_core/test_plot.py::TestPairInterface::test_labels", "tests/_core/test_plot.py::TestLabelVisibility::test_single_subplot", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws1-pair_kws1]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row[facet_kws1-pair_kws1]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row_wrapped", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped_non_cross", "tests/_core/test_plot.py::TestLabelVisibility::test_2d", "tests/_core/test_plot.py::TestLabelVisibility::test_2d_unshared", "tests/_core/test_plot.py::TestLegend::test_single_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_different_artists", "tests/_core/test_plot.py::TestLegend::test_three_layers", "tests/_core/test_plot.py::TestLegend::test_identity_scale_ignored", "tests/_core/test_plot.py::TestLegend::test_suppression_in_add_method", "tests/_core/test_plot.py::TestLegend::test_anonymous_title", "tests/_core/test_plot.py::TestLegend::test_legendless_mark", "tests/_core/test_plot.py::TestLegend::test_legend_has_no_offset", "tests/_core/test_plot.py::TestLegend::test_layer_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_with_scale_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_title" ], "PASS_TO_PASS": null }
mwaskom__seaborn-67
1.0
{ "code": "diff --git b/seaborn/_core/scales.py a/seaborn/_core/scales.py\nindex 897e5c2b..1e7bef8a 100644\n--- b/seaborn/_core/scales.py\n+++ a/seaborn/_core/scales.py\n@@ -571,6 +571,30 @@ class Continuous(ContinuousBase):\n Copy of self with new tick configuration.\n \n \"\"\"\n+ # Input checks\n+ if locator is not None and not isinstance(locator, Locator):\n+ raise TypeError(\n+ f\"Tick locator must be an instance of {Locator!r}, \"\n+ f\"not {type(locator)!r}.\"\n+ )\n+ log_base, symlog_thresh = self._parse_for_log_params(self.trans)\n+ if log_base or symlog_thresh:\n+ if count is not None and between is None:\n+ raise RuntimeError(\"`count` requires `between` with log transform.\")\n+ if every is not None:\n+ raise RuntimeError(\"`every` not supported with log transform.\")\n+\n+ new = copy(self)\n+ new._tick_params = {\n+ \"locator\": locator,\n+ \"at\": at,\n+ \"upto\": upto,\n+ \"count\": count,\n+ \"every\": every,\n+ \"between\": between,\n+ \"minor\": minor,\n+ }\n+ return new\n \n def label(\n self,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/scales.py b/seaborn/_core/scales.py\nindex 1e7bef8a..897e5c2b 100644\n--- a/seaborn/_core/scales.py\n+++ b/seaborn/_core/scales.py\n@@ -571,30 +571,6 @@ class Continuous(ContinuousBase):\n Copy of self with new tick configuration.\n \n \"\"\"\n- # Input checks\n- if locator is not None and not isinstance(locator, Locator):\n- raise TypeError(\n- f\"Tick locator must be an instance of {Locator!r}, \"\n- f\"not {type(locator)!r}.\"\n- )\n- log_base, symlog_thresh = self._parse_for_log_params(self.trans)\n- if log_base or symlog_thresh:\n- if count is not None and between is None:\n- raise RuntimeError(\"`count` requires `between` with log transform.\")\n- if every is not None:\n- raise RuntimeError(\"`every` not supported with log transform.\")\n-\n- new = copy(self)\n- new._tick_params = {\n- \"locator\": locator,\n- \"at\": at,\n- \"upto\": upto,\n- \"count\": count,\n- \"every\": every,\n- \"between\": between,\n- \"minor\": minor,\n- }\n- return new\n \n def label(\n self,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/scales.py.\nHere is the description for the function:\n def tick(\n self,\n locator: Locator | None = None, *,\n at: Sequence[float] | None = None,\n upto: int | None = None,\n count: int | None = None,\n every: float | None = None,\n between: tuple[float, float] | None = None,\n minor: int | None = None,\n ) -> Continuous:\n \"\"\"\n Configure the selection of ticks for the scale's axis or legend.\n\n Parameters\n ----------\n locator : :class:`matplotlib.ticker.Locator` subclass\n Pre-configured matplotlib locator; other parameters will not be used.\n at : sequence of floats\n Place ticks at these specific locations (in data units).\n upto : int\n Choose \"nice\" locations for ticks, but do not exceed this number.\n count : int\n Choose exactly this number of ticks, bounded by `between` or axis limits.\n every : float\n Choose locations at this interval of separation (in data units).\n between : pair of floats\n Bound upper / lower ticks when using `every` or `count`.\n minor : int\n Number of unlabeled ticks to draw between labeled \"major\" ticks.\n\n Returns\n -------\n scale\n Copy of self with new tick configuration.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_marks/test_dot.py::TestDot::test_simple", "tests/_core/test_scales.py::TestContinuous::test_coordinate_defaults", "tests/_marks/test_line.py::TestPath::test_xy_data", "tests/_marks/test_text.py::TestText::test_simple", "tests/_marks/test_area.py::TestArea::test_single_defaults", "tests/_core/test_scales.py::TestContinuous::test_coordinate_transform", "tests/_core/test_scales.py::TestContinuous::test_coordinate_transform_with_parameter", "tests/_core/test_scales.py::TestContinuous::test_coordinate_transform_error", "tests/_core/test_scales.py::TestContinuous::test_interval_defaults", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical", "tests/_marks/test_line.py::TestPath::test_shared_colors_direct", "tests/_marks/test_text.py::TestText::test_set_properties", "tests/_marks/test_area.py::TestArea::test_set_properties", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/_core/test_scales.py::TestContinuous::test_interval_with_range", "tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal", "tests/_core/test_scales.py::TestContinuous::test_interval_with_norm", "tests/_marks/test_area.py::TestArea::test_mapped_properties", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/_marks/test_line.py::TestPath::test_separate_colors_direct", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/_core/test_scales.py::TestContinuous::test_interval_with_range_norm_and_transform", "tests/_core/test_plot.py::TestLayerAddition::test_without_data", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_name", "tests/_core/test_scales.py::TestContinuous::test_interval_with_bools", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical", "tests/_marks/test_area.py::TestArea::test_unfilled", "tests/_core/test_scales.py::TestContinuous::test_color_defaults", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/_core/test_scales.py::TestContinuous::test_color_named_values", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/_marks/test_text.py::TestText::test_mapped_alignment", "tests/_core/test_scales.py::TestContinuous::test_color_tuple_values", "tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal", "tests/_marks/test_area.py::TestBand::test_range", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/_core/test_scales.py::TestContinuous::test_color_callable_values", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_variable_by_vector", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/_marks/test_text.py::TestText::test_identity_fontsize", "tests/_core/test_scales.py::TestContinuous::test_color_with_norm", "tests/_core/test_scales.py::TestContinuous::test_color_with_transform", "tests/_marks/test_bar.py::TestBar::test_set_properties", "tests/_marks/test_area.py::TestBand::test_auto_range", "tests/_core/test_scales.py::TestContinuous::test_tick_locator", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_core/test_scales.py::TestContinuous::test_tick_locator_input_check", "tests/_core/test_plot.py::TestLayerAddition::test_with_late_data_definition", "tests/_marks/test_line.py::TestPath::test_color_with_alpha", "tests/_core/test_scales.py::TestContinuous::test_tick_upto", "tests/_marks/test_text.py::TestText::test_offset_centered", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_core/test_scales.py::TestContinuous::test_tick_every", "tests/_core/test_scales.py::TestContinuous::test_tick_every_between", "tests/_core/test_scales.py::TestContinuous::test_tick_at", "tests/_core/test_scales.py::TestContinuous::test_tick_count", "tests/_core/test_plot.py::TestLayerAddition::test_with_new_data_definition", "tests/_marks/test_bar.py::TestBar::test_zero_height_skipped", "tests/_marks/test_line.py::TestPath::test_color_and_alpha", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_text.py::TestText::test_offset_valign", "tests/_core/test_scales.py::TestContinuous::test_tick_count_between", "tests/_core/test_scales.py::TestContinuous::test_tick_minor", "tests/_marks/test_bar.py::TestBar::test_artist_kws_clip", "tests/_marks/test_text.py::TestText::test_offset_halign", "tests/_marks/test_line.py::TestPath::test_other_props_direct", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_core/test_plot.py::TestLayerAddition::test_drop_variable", "tests/_marks/test_line.py::TestPath::test_other_props_mapped", "tests/_core/test_scales.py::TestContinuous::test_log_tick_default", "tests/_core/test_scales.py::TestContinuous::test_log_tick_upto", "tests/_core/test_scales.py::TestContinuous::test_log_tick_count", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/_marks/test_bar.py::TestBars::test_positions", "tests/_core/test_scales.py::TestContinuous::test_log_tick_format_disabled", "tests/_core/test_scales.py::TestContinuous::test_log_tick_every", "tests/_marks/test_line.py::TestPath::test_capstyle", "tests/_core/test_scales.py::TestContinuous::test_symlog_tick_default", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/_core/test_plot.py::TestLayerAddition::test_orient[x-x]", "tests/_marks/test_bar.py::TestBars::test_positions_horizontal", "tests/_core/test_scales.py::TestContinuous::test_label_formatter", "tests/_core/test_scales.py::TestContinuous::test_label_like_pattern", "tests/_marks/test_line.py::TestLine::test_xy_data", "tests/_marks/test_bar.py::TestBars::test_width", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_core/test_scales.py::TestContinuous::test_label_like_string", "tests/_core/test_scales.py::TestContinuous::test_label_like_function", "tests/_core/test_plot.py::TestLayerAddition::test_orient[y-y]", "tests/_core/test_scales.py::TestContinuous::test_label_base", "tests/_marks/test_line.py::TestPaths::test_xy_data", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_core/test_scales.py::TestContinuous::test_label_unit", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/_core/test_scales.py::TestContinuous::test_label_unit_with_sep", "tests/_core/test_plot.py::TestLayerAddition::test_orient[v-x]", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_line.py::TestPaths::test_set_properties", "tests/_core/test_scales.py::TestContinuous::test_label_empty_unit", "tests/_marks/test_bar.py::TestBars::test_mapped_edgewidth", "tests/_core/test_scales.py::TestContinuous::test_label_base_from_transform", "tests/_marks/test_bar.py::TestBars::test_auto_edgewidth", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/_core/test_plot.py::TestLayerAddition::test_orient[h-y]", "tests/_marks/test_line.py::TestPaths::test_color_with_alpha", "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_marks/test_bar.py::TestBars::test_unfilled", "tests/_marks/test_line.py::TestPaths::test_color_and_alpha", "tests/_marks/test_bar.py::TestBars::test_log_scale", "tests/_marks/test_line.py::TestPaths::test_capstyle", "tests/_core/test_plot.py::TestScaling::test_inference_joins", "tests/_marks/test_line.py::TestLines::test_xy_data", "tests/_marks/test_line.py::TestLines::test_single_orient_value", "tests/_core/test_plot.py::TestScaling::test_faceted_log_scale", "tests/_marks/test_line.py::TestRange::test_xy_data", "tests/_core/test_plot.py::TestScaling::test_paired_single_log_scale", "tests/_marks/test_line.py::TestRange::test_auto_range", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/_core/test_plot.py::TestScaling::test_paired_with_common_fallback", "tests/_marks/test_line.py::TestRange::test_direct_properties", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transform_is_inverted", "tests/_marks/test_line.py::TestDash::test_xy_data", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/_core/test_plot.py::TestScaling::test_mark_data_log_transfrom_with_stat", "tests/_marks/test_line.py::TestDash::test_set_properties", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/_core/test_plot.py::TestScaling::test_computed_var_ticks", "tests/_core/test_plot.py::TestScaling::test_computed_var_transform", "tests/_marks/test_line.py::TestDash::test_width", "tests/_marks/test_line.py::TestDash::test_dodge", "tests/_core/test_plot.py::TestScaling::test_explicit_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_derived_range_with_axis_scaling", "tests/_core/test_plot.py::TestScaling::test_pair_categories", "tests/_core/test_plot.py::TestScaling::test_pair_categories_shared", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_linewidth", "tests/_core/test_plot.py::TestScaling::test_pair_single_coordinate_stat_orient", "tests/_core/test_plot.py::TestScaling::test_identity_mapping_color_tuples", "tests/_core/test_plot.py::TestScaling::test_nominal_x_axis_tweaks", "tests/_core/test_plot.py::TestScaling::test_nominal_y_axis_tweaks", "tests/_core/test_plot.py::TestPlotting::test_no_orient_variance", "tests/_core/test_plot.py::TestPlotting::test_single_split_single_layer", "tests/_core/test_plot.py::TestPlotting::test_single_split_multi_layer", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[color]", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[group]", "tests/_core/test_plot.py::TestPlotting::test_two_grouping_variables", "tests/_core/test_plot.py::TestPlotting::test_specified_width", "tests/_core/test_plot.py::TestPlotting::test_facets_no_subgroups", "tests/_core/test_plot.py::TestPlotting::test_facets_one_subgroup", "tests/_core/test_plot.py::TestPlotting::test_layer_specific_facet_disabling", "tests/_core/test_plot.py::TestPlotting::test_paired_variables", "tests/_core/test_plot.py::TestPlotting::test_paired_one_dimension", "tests/_core/test_plot.py::TestPlotting::test_paired_variables_one_subset", "tests/_core/test_plot.py::TestPlotting::test_paired_and_faceted", "tests/_core/test_plot.py::TestPlotting::test_stat", "tests/_core/test_plot.py::TestPlotting::test_move", "tests/_core/test_plot.py::TestPlotting::test_stat_and_move", "tests/_core/test_plot.py::TestPlotting::test_stat_log_scale", "tests/_core/test_plot.py::TestPlotting::test_move_log_scale", "tests/_core/test_plot.py::TestPlotting::test_multi_move", "tests/_core/test_plot.py::TestPlotting::test_multi_move_with_pairing", "tests/_core/test_plot.py::TestPlotting::test_move_with_range", "tests/_core/test_plot.py::TestPlotting::test_on_axes", "tests/_core/test_plot.py::TestPlotting::test_on_figure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_figure[False]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[True]", "tests/_core/test_plot.py::TestPlotting::test_on_subfigure[False]", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestPlotting::test_labels_axis", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/_core/test_plot.py::TestExceptions::test_semantic_scaling", "tests/_core/test_plot.py::TestFacetInterface::test_unshared_spacing", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[list]", "tests/_core/test_plot.py::TestPairInterface::test_all_numeric[Index]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[x]", "tests/_core/test_plot.py::TestPairInterface::test_single_dimension[y]", "tests/_core/test_plot.py::TestPairInterface::test_non_cross", "tests/_core/test_plot.py::TestPairInterface::test_list_of_vectors", "tests/_core/test_plot.py::TestPairInterface::test_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing", "tests/_core/test_plot.py::TestPairInterface::test_axis_sharing_with_facets", "tests/_core/test_plot.py::TestPairInterface::test_x_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_y_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping", "tests/_core/test_plot.py::TestPairInterface::test_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_computed_coordinate_orient_inference", "tests/_core/test_plot.py::TestPairInterface::test_limits", "tests/_core/test_plot.py::TestPairInterface::test_labels", "tests/_core/test_plot.py::TestLabelVisibility::test_single_subplot", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column[facet_kws1-pair_kws1]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row[facet_kws0-pair_kws0]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_row[facet_kws1-pair_kws1]", "tests/_core/test_plot.py::TestLabelVisibility::test_1d_column_wrapped_non_cross", "tests/_core/test_plot.py::TestLegend::test_single_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_single_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable", "tests/_core/test_plot.py::TestLegend::test_multi_layer_different_artists", "tests/_core/test_plot.py::TestLegend::test_three_layers", "tests/_core/test_plot.py::TestLegend::test_identity_scale_ignored", "tests/_core/test_plot.py::TestLegend::test_suppression_in_add_method", "tests/_core/test_plot.py::TestLegend::test_anonymous_title", "tests/_core/test_plot.py::TestLegend::test_legendless_mark", "tests/_core/test_plot.py::TestLegend::test_legend_has_no_offset", "tests/_core/test_plot.py::TestLegend::test_layer_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_with_scale_legend", "tests/_core/test_plot.py::TestLegend::test_layer_legend_title" ], "PASS_TO_PASS": null }
mwaskom__seaborn-68
1.0
{ "code": "diff --git b/seaborn/_core/scales.py a/seaborn/_core/scales.py\nindex 0ade15ea..1e7bef8a 100644\n--- b/seaborn/_core/scales.py\n+++ a/seaborn/_core/scales.py\n@@ -836,6 +836,9 @@ class Temporal(ContinuousBase):\n Copy of self with new label configuration.\n \n \"\"\"\n+ new = copy(self)\n+ new._label_params = {\"formatter\": formatter, \"concise\": concise}\n+ return new\n \n def _get_locators(self, locator, upto):\n \n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/scales.py b/seaborn/_core/scales.py\nindex 1e7bef8a..0ade15ea 100644\n--- a/seaborn/_core/scales.py\n+++ b/seaborn/_core/scales.py\n@@ -836,9 +836,6 @@ class Temporal(ContinuousBase):\n Copy of self with new label configuration.\n \n \"\"\"\n- new = copy(self)\n- new._label_params = {\"formatter\": formatter, \"concise\": concise}\n- return new\n \n def _get_locators(self, locator, upto):\n \n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/scales.py.\nHere is the description for the function:\n def label(\n self,\n formatter: Formatter | None = None, *,\n concise: bool = False,\n ) -> Temporal:\n \"\"\"\n Configure the appearance of tick labels for the scale's axis or legend.\n\n .. note::\n This API is under construction and will be enhanced over time.\n\n Parameters\n ----------\n formatter : :class:`matplotlib.ticker.Formatter` subclass\n Pre-configured formatter to use; other parameters will be ignored.\n concise : bool\n If True, use :class:`matplotlib.dates.ConciseDateFormatter` to make\n the tick labels as compact as possible.\n\n Returns\n -------\n scale\n Copy of self with new label configuration.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_core/test_scales.py::TestTemporal::test_coordinate_defaults", "tests/_core/test_scales.py::TestTemporal::test_interval_defaults", "tests/_core/test_scales.py::TestTemporal::test_interval_with_range", "tests/_core/test_scales.py::TestTemporal::test_interval_with_norm", "tests/_core/test_scales.py::TestTemporal::test_color_defaults", "tests/_core/test_scales.py::TestTemporal::test_color_named_values", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_datetime", "tests/_core/test_scales.py::TestTemporal::test_coordinate_axis", "tests/_core/test_scales.py::TestTemporal::test_tick_locator", "tests/_core/test_scales.py::TestTemporal::test_tick_upto", "tests/_core/test_scales.py::TestTemporal::test_label_formatter", "tests/_core/test_scales.py::TestTemporal::test_label_concise", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestExceptions::test_coordinate_scaling", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping" ], "PASS_TO_PASS": null }
mwaskom__seaborn-69
1.0
{ "code": "diff --git b/seaborn/_core/scales.py a/seaborn/_core/scales.py\nindex 95844f59..1e7bef8a 100644\n--- b/seaborn/_core/scales.py\n+++ a/seaborn/_core/scales.py\n@@ -800,6 +800,16 @@ class Temporal(ContinuousBase):\n Copy of self with new tick configuration.\n \n \"\"\"\n+ if locator is not None and not isinstance(locator, Locator):\n+ err = (\n+ f\"Tick locator must be an instance of {Locator!r}, \"\n+ f\"not {type(locator)!r}.\"\n+ )\n+ raise TypeError(err)\n+\n+ new = copy(self)\n+ new._tick_params = {\"locator\": locator, \"upto\": upto}\n+ return new\n \n def label(\n self,\n", "test": null }
null
{ "code": "diff --git a/seaborn/_core/scales.py b/seaborn/_core/scales.py\nindex 1e7bef8a..95844f59 100644\n--- a/seaborn/_core/scales.py\n+++ b/seaborn/_core/scales.py\n@@ -800,16 +800,6 @@ class Temporal(ContinuousBase):\n Copy of self with new tick configuration.\n \n \"\"\"\n- if locator is not None and not isinstance(locator, Locator):\n- err = (\n- f\"Tick locator must be an instance of {Locator!r}, \"\n- f\"not {type(locator)!r}.\"\n- )\n- raise TypeError(err)\n-\n- new = copy(self)\n- new._tick_params = {\"locator\": locator, \"upto\": upto}\n- return new\n \n def label(\n self,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/_core/scales.py.\nHere is the description for the function:\n def tick(\n self, locator: Locator | None = None, *,\n upto: int | None = None,\n ) -> Temporal:\n \"\"\"\n Configure the selection of ticks for the scale's axis or legend.\n\n .. note::\n This API is under construction and will be enhanced over time.\n\n Parameters\n ----------\n locator : :class:`matplotlib.ticker.Locator` subclass\n Pre-configured matplotlib locator; other parameters will not be used.\n upto : int\n Choose \"nice\" locations for ticks, but do not exceed this number.\n\n Returns\n -------\n scale\n Copy of self with new tick configuration.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/_core/test_plot.py::TestScaling::test_inference", "tests/_core/test_scales.py::TestTemporal::test_coordinate_defaults", "tests/_core/test_scales.py::TestTemporal::test_interval_defaults", "tests/_core/test_scales.py::TestTemporal::test_interval_with_range", "tests/_core/test_scales.py::TestTemporal::test_interval_with_norm", "tests/_core/test_scales.py::TestTemporal::test_color_defaults", "tests/_core/test_scales.py::TestTemporal::test_color_named_values", "tests/_core/test_scales.py::TestTemporal::test_coordinate_axis", "tests/_core/test_scales.py::TestTemporal::test_tick_locator", "tests/_core/test_scales.py::TestTemporal::test_tick_upto", "tests/_core/test_scales.py::TestTemporal::test_label_formatter", "tests/_core/test_scales.py::TestTemporal::test_label_concise", "tests/_core/test_plot.py::TestScaling::test_mark_data_from_datetime", "tests/_core/test_plot.py::TestPlotting::test_limits", "tests/_core/test_plot.py::TestExceptions::test_coordinate_scaling", "tests/_core/test_plot.py::TestPairInterface::test_non_cross_wrapping" ], "PASS_TO_PASS": null }
mwaskom__seaborn-70
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 35b92317..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -42,6 +42,17 @@ def ci_to_errsize(cis, heights):\n format as argument for plt.bar\n \n \"\"\"\n+ cis = np.atleast_2d(cis).reshape(2, -1)\n+ heights = np.atleast_1d(heights)\n+ errsize = []\n+ for i, (low, high) in enumerate(np.transpose(cis)):\n+ h = heights[i]\n+ elow = h - low\n+ ehigh = high - h\n+ errsize.append([elow, ehigh])\n+\n+ errsize = np.asarray(errsize).T\n+ return errsize\n \n \n def _draw_figure(fig):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..35b92317 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -42,17 +42,6 @@ def ci_to_errsize(cis, heights):\n format as argument for plt.bar\n \n \"\"\"\n- cis = np.atleast_2d(cis).reshape(2, -1)\n- heights = np.atleast_1d(heights)\n- errsize = []\n- for i, (low, high) in enumerate(np.transpose(cis)):\n- h = heights[i]\n- elow = h - low\n- ehigh = high - h\n- errsize.append([elow, ehigh])\n-\n- errsize = np.asarray(errsize).T\n- return errsize\n \n \n def _draw_figure(fig):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef ci_to_errsize(cis, heights):\n \"\"\"Convert intervals to error arguments relative to plot heights.\n\n Parameters\n ----------\n cis : 2 x n sequence\n sequence of confidence interval limits\n heights : n sequence\n sequence of plot heights\n\n Returns\n -------\n errsize : 2 x n array\n sequence of error size relative to height values in correct\n format as argument for plt.bar\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_utils.py::test_ci_to_errsize" ], "PASS_TO_PASS": null }
mwaskom__seaborn-71
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 2be6f4a4..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -298,6 +298,82 @@ def despine(fig=None, ax=None, top=True, right=True, left=False,\n None\n \n \"\"\"\n+ # Get references to the axes we want\n+ if fig is None and ax is None:\n+ axes = plt.gcf().axes\n+ elif fig is not None:\n+ axes = fig.axes\n+ elif ax is not None:\n+ axes = [ax]\n+\n+ for ax_i in axes:\n+ for side in [\"top\", \"right\", \"left\", \"bottom\"]:\n+ # Toggle the spine objects\n+ is_visible = not locals()[side]\n+ ax_i.spines[side].set_visible(is_visible)\n+ if offset is not None and is_visible:\n+ try:\n+ val = offset.get(side, 0)\n+ except AttributeError:\n+ val = offset\n+ ax_i.spines[side].set_position(('outward', val))\n+\n+ # Potentially move the ticks\n+ if left and not right:\n+ maj_on = any(\n+ t.tick1line.get_visible()\n+ for t in ax_i.yaxis.majorTicks\n+ )\n+ min_on = any(\n+ t.tick1line.get_visible()\n+ for t in ax_i.yaxis.minorTicks\n+ )\n+ ax_i.yaxis.set_ticks_position(\"right\")\n+ for t in ax_i.yaxis.majorTicks:\n+ t.tick2line.set_visible(maj_on)\n+ for t in ax_i.yaxis.minorTicks:\n+ t.tick2line.set_visible(min_on)\n+\n+ if bottom and not top:\n+ maj_on = any(\n+ t.tick1line.get_visible()\n+ for t in ax_i.xaxis.majorTicks\n+ )\n+ min_on = any(\n+ t.tick1line.get_visible()\n+ for t in ax_i.xaxis.minorTicks\n+ )\n+ ax_i.xaxis.set_ticks_position(\"top\")\n+ for t in ax_i.xaxis.majorTicks:\n+ t.tick2line.set_visible(maj_on)\n+ for t in ax_i.xaxis.minorTicks:\n+ t.tick2line.set_visible(min_on)\n+\n+ if trim:\n+ # clip off the parts of the spines that extend past major ticks\n+ xticks = np.asarray(ax_i.get_xticks())\n+ if xticks.size:\n+ firsttick = np.compress(xticks >= min(ax_i.get_xlim()),\n+ xticks)[0]\n+ lasttick = np.compress(xticks <= max(ax_i.get_xlim()),\n+ xticks)[-1]\n+ ax_i.spines['bottom'].set_bounds(firsttick, lasttick)\n+ ax_i.spines['top'].set_bounds(firsttick, lasttick)\n+ newticks = xticks.compress(xticks <= lasttick)\n+ newticks = newticks.compress(newticks >= firsttick)\n+ ax_i.set_xticks(newticks)\n+\n+ yticks = np.asarray(ax_i.get_yticks())\n+ if yticks.size:\n+ firsttick = np.compress(yticks >= min(ax_i.get_ylim()),\n+ yticks)[0]\n+ lasttick = np.compress(yticks <= max(ax_i.get_ylim()),\n+ yticks)[-1]\n+ ax_i.spines['left'].set_bounds(firsttick, lasttick)\n+ ax_i.spines['right'].set_bounds(firsttick, lasttick)\n+ newticks = yticks.compress(yticks <= lasttick)\n+ newticks = newticks.compress(newticks >= firsttick)\n+ ax_i.set_yticks(newticks)\n \n \n def move_legend(obj, loc, **kwargs):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..2be6f4a4 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -298,82 +298,6 @@ def despine(fig=None, ax=None, top=True, right=True, left=False,\n None\n \n \"\"\"\n- # Get references to the axes we want\n- if fig is None and ax is None:\n- axes = plt.gcf().axes\n- elif fig is not None:\n- axes = fig.axes\n- elif ax is not None:\n- axes = [ax]\n-\n- for ax_i in axes:\n- for side in [\"top\", \"right\", \"left\", \"bottom\"]:\n- # Toggle the spine objects\n- is_visible = not locals()[side]\n- ax_i.spines[side].set_visible(is_visible)\n- if offset is not None and is_visible:\n- try:\n- val = offset.get(side, 0)\n- except AttributeError:\n- val = offset\n- ax_i.spines[side].set_position(('outward', val))\n-\n- # Potentially move the ticks\n- if left and not right:\n- maj_on = any(\n- t.tick1line.get_visible()\n- for t in ax_i.yaxis.majorTicks\n- )\n- min_on = any(\n- t.tick1line.get_visible()\n- for t in ax_i.yaxis.minorTicks\n- )\n- ax_i.yaxis.set_ticks_position(\"right\")\n- for t in ax_i.yaxis.majorTicks:\n- t.tick2line.set_visible(maj_on)\n- for t in ax_i.yaxis.minorTicks:\n- t.tick2line.set_visible(min_on)\n-\n- if bottom and not top:\n- maj_on = any(\n- t.tick1line.get_visible()\n- for t in ax_i.xaxis.majorTicks\n- )\n- min_on = any(\n- t.tick1line.get_visible()\n- for t in ax_i.xaxis.minorTicks\n- )\n- ax_i.xaxis.set_ticks_position(\"top\")\n- for t in ax_i.xaxis.majorTicks:\n- t.tick2line.set_visible(maj_on)\n- for t in ax_i.xaxis.minorTicks:\n- t.tick2line.set_visible(min_on)\n-\n- if trim:\n- # clip off the parts of the spines that extend past major ticks\n- xticks = np.asarray(ax_i.get_xticks())\n- if xticks.size:\n- firsttick = np.compress(xticks >= min(ax_i.get_xlim()),\n- xticks)[0]\n- lasttick = np.compress(xticks <= max(ax_i.get_xlim()),\n- xticks)[-1]\n- ax_i.spines['bottom'].set_bounds(firsttick, lasttick)\n- ax_i.spines['top'].set_bounds(firsttick, lasttick)\n- newticks = xticks.compress(xticks <= lasttick)\n- newticks = newticks.compress(newticks >= firsttick)\n- ax_i.set_xticks(newticks)\n-\n- yticks = np.asarray(ax_i.get_yticks())\n- if yticks.size:\n- firsttick = np.compress(yticks >= min(ax_i.get_ylim()),\n- yticks)[0]\n- lasttick = np.compress(yticks <= max(ax_i.get_ylim()),\n- yticks)[-1]\n- ax_i.spines['left'].set_bounds(firsttick, lasttick)\n- ax_i.spines['right'].set_bounds(firsttick, lasttick)\n- newticks = yticks.compress(yticks <= lasttick)\n- newticks = newticks.compress(newticks >= firsttick)\n- ax_i.set_yticks(newticks)\n \n \n def move_legend(obj, loc, **kwargs):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef despine(fig=None, ax=None, top=True, right=True, left=False,\n bottom=False, offset=None, trim=False):\n \"\"\"Remove the top and right spines from plot(s).\n\n fig : matplotlib figure, optional\n Figure to despine all axes of, defaults to the current figure.\n ax : matplotlib axes, optional\n Specific axes object to despine. Ignored if fig is provided.\n top, right, left, bottom : boolean, optional\n If True, remove that spine.\n offset : int or dict, optional\n Absolute distance, in points, spines should be moved away\n from the axes (negative values move spines inward). A single value\n applies to all spines; a dict can be used to set offset values per\n side.\n trim : bool, optional\n If True, limit spines to the smallest and largest major tick\n on each non-despined axis.\n\n Returns\n -------\n None\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_axisgrid.py::TestFacetGrid::test_self_data", "tests/test_matrix.py::TestHeatmap::test_default_colors", "tests/test_axisgrid.py::TestFacetGrid::test_self_figure", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_matrix.py::TestHeatmap::test_custom_vlim_colors", "tests/test_utils.py::TestSpineUtils::test_despine", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_utils.py::TestSpineUtils::test_despine_specific_axes", "tests/test_matrix.py::TestHeatmap::test_custom_center_colors", "tests/test_utils.py::TestSpineUtils::test_despine_with_offset", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_utils.py::TestSpineUtils::test_despine_side_specific_offset", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_utils.py::TestSpineUtils::test_despine_with_offset_specific_axes", "tests/test_utils.py::TestSpineUtils::test_despine_trim_spines", "tests/test_utils.py::TestSpineUtils::test_despine_trim_inverted", "tests/test_matrix.py::TestHeatmap::test_explicit_none_norm", "tests/test_utils.py::TestSpineUtils::test_despine_trim_noticks", "tests/test_utils.py::TestSpineUtils::test_despine_trim_categorical", "tests/test_utils.py::TestSpineUtils::test_despine_moved_ticks", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_overwrite_kws", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_with_mask", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_mesh_colors", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_other_data", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_matrix.py::TestHeatmap::test_heatmap_annotation_with_limited_ticklabels", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_matrix.py::TestHeatmap::test_heatmap_cbar", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_matrix.py::TestHeatmap::test_heatmap_axes", "tests/test_matrix.py::TestHeatmap::test_heatmap_ticklabel_rotation", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_matrix.py::TestHeatmap::test_heatmap_inner_lines", "tests/test_matrix.py::TestHeatmap::test_square_aspect", "tests/test_matrix.py::TestHeatmap::test_cbar_ticks", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_column_missing_categories", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_axisgrid.py::TestFacetGrid::test_apply", "tests/test_axisgrid.py::TestFacetGrid::test_pipe", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_axisgrid.py::TestPairGrid::test_self_data", "tests/test_axisgrid.py::TestPairGrid::test_ignore_datelike_data", "tests/test_axisgrid.py::TestPairGrid::test_self_figure", "tests/test_axisgrid.py::TestPairGrid::test_self_axes", "tests/test_axisgrid.py::TestPairGrid::test_default_axes", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars1]", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars0-y_vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars1-z]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars2-y_vars2]", "tests/test_axisgrid.py::TestPairGrid::test_corner", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_axisgrid.py::TestPairGrid::test_size", "tests/test_axisgrid.py::TestPairGrid::test_map", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_axisgrid.py::TestPairGrid::test_map_nonsquare", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_axisgrid.py::TestPairGrid::test_map_lower", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_axisgrid.py::TestPairGrid::test_map_upper", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_axisgrid.py::TestPairGrid::test_map_mixed_funcsig", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_rectangular", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_and_offdiag", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_matplotlib", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_hue_kws", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_axisgrid.py::TestPairGrid::test_hue_order", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_axisgrid.py::TestPairGrid::test_hue_order_missing_level", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/test_axisgrid.py::TestPairGrid::test_nondefault_index", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_axisgrid.py::TestPairGrid::test_tick_params", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_lists", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_arrays", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_series", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_from_dataframe", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_axisgrid.py::TestJointGrid::test_margin_grid_axis_labels", "tests/test_axisgrid.py::TestJointGrid::test_dropna", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_axisgrid.py::TestJointGrid::test_axlims", "tests/test_axisgrid.py::TestJointGrid::test_marginal_ticks", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_axisgrid.py::TestJointGrid::test_bivariate_plot", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_matplotlib", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_axisgrid.py::TestJointGrid::test_plot", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_axisgrid.py::TestJointGrid::test_space", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_axisgrid.py::TestJointGrid::test_refline", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_empty", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-72
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex ec986525..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -270,6 +270,8 @@ def get_color_cycle():\n List of matplotlib colors in the current cycle, or dark gray if\n the current color cycle is empty.\n \"\"\"\n+ cycler = mpl.rcParams['axes.prop_cycle']\n+ return cycler.by_key()['color'] if 'color' in cycler.keys else [\".15\"]\n \n \n def despine(fig=None, ax=None, top=True, right=True, left=False,\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..ec986525 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -270,8 +270,6 @@ def get_color_cycle():\n List of matplotlib colors in the current cycle, or dark gray if\n the current color cycle is empty.\n \"\"\"\n- cycler = mpl.rcParams['axes.prop_cycle']\n- return cycler.by_key()['color'] if 'color' in cycler.keys else [\".15\"]\n \n \n def despine(fig=None, ax=None, top=True, right=True, left=False,\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef get_color_cycle():\n \"\"\"Return the list of colors in the current matplotlib color cycle\n\n Parameters\n ----------\n None\n\n Returns\n -------\n colors : list\n List of matplotlib colors in the current cycle, or dark gray if\n the current color cycle is empty.\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_axisgrid.py::TestFacetGrid::test_self_data", "tests/test_base.py::TestHueMapping::test_plotter_default_init", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette", "tests/test_palettes.py::TestColorPalettes::test_current_palette", "tests/test_rcmod.py::TestAxesStyle::test_set_with_palette", "tests/_marks/test_dot.py::TestDot::test_simple", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/_marks/test_line.py::TestPath::test_shared_colors_mapped", "tests/test_palettes.py::TestColorPalettes::test_palette_context", "tests/test_palettes.py::TestColorPalettes::test_big_palette_context", "tests/_core/test_properties.py::TestColor::test_nominal_default_palette_large", "tests/_marks/test_text.py::TestText::test_mapped_properties", "tests/test_base.py::TestHueMapping::test_plotter_customization", "tests/test_axisgrid.py::TestFacetGrid::test_self_figure", "tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix", "tests/test_palettes.py::TestColorPalettes::test_html_repr", "tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_rcmod.py::TestPalette::test_set_palette", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill]", "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]", "tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]", "tests/_marks/test_dot.py::TestDots::test_simple", "tests/_marks/test_bar.py::TestBar::test_mapped_properties", "tests/_marks/test_dot.py::TestDots::test_set_color", "tests/_marks/test_line.py::TestPath::test_separate_colors_mapped", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/_marks/test_dot.py::TestDots::test_map_color", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_utils.py::test_move_legend_grid_object", "tests/_core/test_scales.py::TestNominal::test_color_defaults", "tests/_marks/test_dot.py::TestDots::test_fill", "tests/test_base.py::TestHueMapping::test_saturation", "tests/_core/test_scales.py::TestNominal::test_color_numeric_data", "tests/_marks/test_dot.py::TestDots::test_pointsize", "tests/_core/test_scales.py::TestNominal::test_color_numeric_with_order_subset", "tests/test_utils.py::test_move_legend_with_labels", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/_marks/test_dot.py::TestDots::test_stroke", "tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix", "tests/_marks/test_bar.py::TestBars::test_mapped_color_direct_alpha", "tests/test_distributions.py::TestRugPlot::test_wide_vs_long_data", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/_core/test_scales.py::TestBoolean::test_color_defaults", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/_marks/test_line.py::TestPaths::test_mapped_properties", "tests/test_distributions.py::TestRugPlot::test_rug_colors", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/_marks/test_line.py::TestRange::test_mapped_color", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_base.py::TestVectorPlotter::test_iter_data_values", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_base.py::TestVectorPlotter::test_iter_data_reverse", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/_marks/test_line.py::TestDash::test_xy_data_grouped", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_base.py::TestVectorPlotter::test_iter_data_dropna", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/_core/test_plot.py::TestPlotting::test_single_split_multi_layer", "tests/_marks/test_line.py::TestDash::test_mapped_properties", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_distributions.py::TestKDEPlotUnivariate::test_wide_vs_long_data", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/_core/test_plot.py::TestPlotting::test_one_grouping_variable[color]", "tests/test_axisgrid.py::TestFacetGrid::test_subplot_kws", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[layer]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/_core/test_plot.py::TestPlotting::test_two_grouping_variables", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[stack]", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_categorical.py::TestCategoricalPlotterNew::test_redundant_hue_backcompat", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_colors[fill]", "tests/test_relational.py::TestRelationalPlotter::test_lineplot_2d_dashes", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_base.py::TestVectorPlotter::test_get_axes_single", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_categorical.py::TestStripPlot::test_labels_long[x]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_stacking", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_distributions.py::TestKDEPlotUnivariate::test_hue_filling", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_categorical.py::TestStripPlot::test_labels_long[y]", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_base.py::TestVectorPlotter::test_var_order", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[stack]", "tests/test_categorical.py::TestStripPlot::test_labels_wide", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_default[fill]", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[layer]", "tests/test_categorical.py::TestStripPlot::test_labels_hue_order", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[stack]", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_categorical.py::TestStripPlot::test_redundant_hue_legend", "tests/test_distributions.py::TestKDEPlotUnivariate::test_fill_nondefault[fill]", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_column_missing_categories", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_distributions.py::TestKDEPlotUnivariate::test_multiple_argument_check", "tests/test_axisgrid.py::TestFacetGrid::test_apply", "tests/test_axisgrid.py::TestFacetGrid::test_pipe", "tests/test_categorical.py::TestStripPlot::test_wide[h-dataframe]", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_norm", "tests/test_relational.py::TestLinePlotter::test_legend_hue_categorical", "tests/test_utils.py::test_get_color_cycle[cycler0-result0]", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_utils.py::test_get_color_cycle[cycler1-result1]", "tests/test_utils.py::test_get_color_cycle[cycler2-result2]", "tests/test_categorical.py::TestStripPlot::test_wide[h-dict]", "tests/test_utils.py::test_get_color_cycle[cycler3-result3]", "tests/test_utils.py::test_get_color_cycle[cycler4-result4]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_common_grid", "tests/test_utils.py::test_get_color_cycle[cycler5-result5]", "tests/test_utils.py::test_get_color_cycle[cycler6-result6]", "tests/test_axisgrid.py::TestPairGrid::test_self_data", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_same", "tests/_core/test_plot.py::TestPlotting::test_labels_legend", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_style_diff", "tests/test_categorical.py::TestStripPlot::test_wide[v-dataframe]", "tests/test_axisgrid.py::TestPairGrid::test_ignore_datelike_data", "tests/test_relational.py::TestLinePlotter::test_legend_hue_and_size_same", "tests/test_axisgrid.py::TestPairGrid::test_self_figure", "tests/test_categorical.py::TestStripPlot::test_wide[v-dict]", "tests/test_axisgrid.py::TestPairGrid::test_self_axes", "tests/test_categorical.py::TestStripPlot::test_wide[y-dataframe]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_log_scale_with_hue", "tests/test_axisgrid.py::TestPairGrid::test_default_axes", "tests/test_categorical.py::TestStripPlot::test_wide[y-dict]", "tests/test_relational.py::TestLinePlotter::test_legend_value_error", "tests/test_distributions.py::TestKDEPlotUnivariate::test_sticky_edges", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars0]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dataframe]", "tests/test_axisgrid.py::TestPairGrid::test_specific_square_axes[vars1]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[hue]", "tests/test_axisgrid.py::TestPairGrid::test_remove_hue_from_default", "tests/test_distributions.py::TestKDEPlotUnivariate::test_legend", "tests/test_relational.py::TestLinePlotter::test_legend_binary_var[size]", "tests/test_categorical.py::TestStripPlot::test_wide[x-dict]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars0-y_vars0]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars1-z]", "tests/test_axisgrid.py::TestPairGrid::test_specific_nonsquare_axes[x_vars2-y_vars2]", "tests/test_distributions.py::TestKDEPlotBivariate::test_fill_artists", "tests/test_categorical.py::TestStripPlot::test_positions[variables2-None]", "tests/test_axisgrid.py::TestPairGrid::test_corner", "tests/test_distributions.py::TestKDEPlotBivariate::test_common_norm", "tests/test_categorical.py::TestStripPlot::test_positions[variables3-None]", "tests/test_axisgrid.py::TestPairGrid::test_size", "tests/test_categorical.py::TestStripPlot::test_positions[variables4-None]", "tests/test_relational.py::TestLinePlotter::test_plot", "tests/test_axisgrid.py::TestPairGrid::test_map", "tests/test_distributions.py::TestKDEPlotBivariate::test_weights", "tests/test_axisgrid.py::TestPairGrid::test_map_nonsquare", "tests/test_axisgrid.py::TestPairGrid::test_map_lower", "tests/test_distributions.py::TestKDEPlotBivariate::test_hue_ignores_cmap", "tests/test_axisgrid.py::TestPairGrid::test_map_upper", "tests/test_axisgrid.py::TestPairGrid::test_map_mixed_funcsig", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_axes", "tests/test_axisgrid.py::TestPairGrid::test_map_diag", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables1]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_rectangular", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_color", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_palette", "tests/test_relational.py::TestLinePlotter::test_legend_attributes_with_hue_and_style", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_distributions.py::TestHistPlotUnivariate::test_wide_vs_long_data", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[a]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_and_offdiag", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-bars]", "tests/test_categorical.py::TestStripPlot::test_hue_categorical[b]", "tests/_core/test_plot.py::TestLegend::test_single_layer_single_variable", "tests/test_axisgrid.py::TestPairGrid::test_diag_sharey", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-step]", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[a]", "tests/test_axisgrid.py::TestPairGrid::test_map_diag_matplotlib", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_variable", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[layer-poly]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/_core/test_plot.py::TestLegend::test_single_layer_common_unnamed_variable", "tests/test_categorical.py::TestStripPlot::test_hue_dodged[b]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-bars]", "tests/test_axisgrid.py::TestPairGrid::test_palette", "tests/test_axisgrid.py::TestPairGrid::test_hue_kws", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-step]", "tests/_core/test_plot.py::TestLegend::test_single_layer_multi_variable", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_categorical.py::TestStripPlot::test_single[x-b-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[dodge-poly]", "tests/test_axisgrid.py::TestPairGrid::test_hue_order", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/_core/test_plot.py::TestLegend::test_multi_layer_single_variable", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-bars]", "tests/test_categorical.py::TestStripPlot::test_single[x-y-a]", "tests/test_axisgrid.py::TestPairGrid::test_hue_order_missing_level", "tests/_core/test_plot.py::TestLegend::test_multi_layer_multi_variable", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-step]", "tests/test_axisgrid.py::TestPairGrid::test_hue_in_map", "tests/_core/test_plot.py::TestLegend::test_multi_layer_different_artists", "tests/test_categorical.py::TestStripPlot::test_single[x-t-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[stack-poly]", "tests/test_axisgrid.py::TestPairGrid::test_nondefault_index", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/_core/test_plot.py::TestLegend::test_three_layers", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-bars]", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatterplot]", "tests/test_categorical.py::TestStripPlot::test_single[y-b-a]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-step]", "tests/_core/test_plot.py::TestLegend::test_suppression_in_add_method", "tests/test_axisgrid.py::TestPairGrid::test_dropna[scatter]", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill_colors[fill-poly]", "tests/test_categorical.py::TestStripPlot::test_single[y-y-a]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/_core/test_plot.py::TestLegend::test_anonymous_title", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_stack", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_categorical.py::TestStripPlot::test_single[y-t-a]", "tests/_core/test_plot.py::TestLegend::test_legendless_mark", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_fill", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_dodge", "tests/_core/test_plot.py::TestLegend::test_layer_legend_with_scale_legend", "tests/test_categorical.py::TestStripPlot::test_legend_categorical", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_distributions.py::TestHistPlotUnivariate::test_hue_as_numpy_dodged", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_diag_kde", "tests/test_categorical.py::TestStripPlot::test_legend_attributes", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_common_norm", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_kde", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_categorical.py::TestStripPlot::test_legend_disabled", "tests/test_distributions.py::TestHistPlotUnivariate::test_density_stat_unique_norm", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_hist", "tests/test_categorical.py::TestStripPlot::test_palette_from_color_deprecation", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[probability]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_common_norm[proportion]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[probability]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_column_multiindex", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestHistPlotUnivariate::test_probability_stat_unique_norm[proportion]", "tests/test_axisgrid.py::TestPairGrid::test_corner_despine", "tests/test_axisgrid.py::TestPairGrid::test_corner_set", "tests/test_distributions.py::TestHistPlotUnivariate::test_common_bins", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestHistPlotUnivariate::test_unique_bins", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_axisgrid.py::TestPairGrid::test_tick_params", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_axisgrid.py::TestPairGrid::test_data_interchange", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-layer]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_same", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[count-dodge]", "tests/test_relational.py::TestScatterPlotter::test_legend_hue_style_different", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-layer]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_relational.py::TestScatterPlotter::test_legend_data_hue_size_same", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[density-dodge]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-layer]", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_with_hue[probability-dodge]", "tests/test_relational.py::TestScatterPlotter::test_legend_attributes_hue_and_style", "tests/test_distributions.py::TestHistPlotUnivariate::test_kde_hue", "tests/test_relational.py::TestScatterPlotter::test_legend_value_error", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_relational.py::TestScatterPlotter::test_plot", "tests/test_distributions.py::TestHistPlotUnivariate::test_element_default", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_axes", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[x]", "tests/test_axisgrid.py::TestJointGrid::test_hue[True]", "tests/test_categorical.py::TestSwarmPlot::test_labels_long[y]", "tests/test_axisgrid.py::TestJointGrid::test_hue[False]", "tests/test_relational.py::TestScatterPlotter::test_hue_order", "tests/test_categorical.py::TestSwarmPlot::test_labels_wide", "tests/test_categorical.py::TestSwarmPlot::test_labels_hue_order", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_distributions.py::TestHistPlotUnivariate::test_log_scale_dodge", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_categorical.py::TestSwarmPlot::test_redundant_hue_legend", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dataframe]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_hue_unique_bins", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_categorical.py::TestSwarmPlot::test_wide[h-dict]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dataframe]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_categorical.py::TestSwarmPlot::test_wide[v-dict]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_common_norm", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dataframe]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_unique_norm", "tests/test_categorical.py::TestSwarmPlot::test_wide[y-dict]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_colors", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dataframe]", "tests/test_distributions.py::TestHistPlotBivariate::test_hue_color_limits", "tests/test_categorical.py::TestSwarmPlot::test_wide[x-dict]", "tests/test_distributions.py::TestECDFPlotUnivariate::test_hue", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables2-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables3-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables4-None]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_categorical.py::TestSwarmPlot::test_hue_categorical[b]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_hue_dodged[b]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-b-a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-y-a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_single[x-t-a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-b-a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-y-a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_categorical.py::TestSwarmPlot::test_single[y-t-a]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_categorical.py::TestSwarmPlot::test_legend_categorical", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_legend_attributes", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_legend_disabled", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_categorical.py::TestSwarmPlot::test_palette_from_color_deprecation", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_empty", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxPlot::test_labels_wide", "tests/test_categorical.py::TestBoxPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxPlot::test_hue_not_dodged", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestBoxPlot::test_wide_data_multicolored", "tests/test_categorical.py::TestBoxPlot::test_wide_data_single_color", "tests/test_categorical.py::TestBoxPlot::test_hue_colors", "tests/test_categorical.py::TestBoxPlot::test_gap", "tests/test_categorical.py::TestBoxPlot::test_prop_dicts", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[True]", "tests/test_categorical.py::TestBoxenPlot::test_legend_fill[False]", "tests/test_categorical.py::TestBoxenPlot::test_legend_attributes", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[x]", "tests/test_categorical.py::TestBoxenPlot::test_labels_long[y]", "tests/test_categorical.py::TestBoxenPlot::test_labels_wide", "tests/test_categorical.py::TestBoxenPlot::test_labels_hue_order", "tests/test_categorical.py::TestBoxenPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[h]", "tests/test_categorical.py::TestBoxenPlot::test_wide_data[v]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestBoxenPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestBoxenPlot::test_dodge_native_scale", "tests/test_categorical.py::TestBoxenPlot::test_hue_colors", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[True]", "tests/test_categorical.py::TestViolinPlot::test_legend_fill[False]", "tests/test_categorical.py::TestViolinPlot::test_legend_attributes", "tests/test_categorical.py::TestViolinPlot::test_labels_long[x]", "tests/test_categorical.py::TestViolinPlot::test_labels_long[y]", "tests/test_categorical.py::TestViolinPlot::test_labels_wide", "tests/test_categorical.py::TestViolinPlot::test_labels_hue_order", "tests/test_categorical.py::TestViolinPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestViolinPlot::test_wide_data[h]", "tests/test_categorical.py::TestViolinPlot::test_wide_data[v]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[x]", "tests/test_categorical.py::TestViolinPlot::test_hue_grouped[y]", "tests/test_categorical.py::TestViolinPlot::test_hue_not_dodged", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale", "tests/test_categorical.py::TestViolinPlot::test_dodge_native_scale_log", "tests/test_categorical.py::TestViolinPlot::test_hue_colors", "tests/test_categorical.py::TestViolinPlot::test_split_multi", "tests/test_categorical.py::TestViolinPlot::test_density_norm_area", "tests/test_categorical.py::TestViolinPlot::test_density_norm_count", "tests/test_categorical.py::TestViolinPlot::test_common_norm", "tests/test_categorical.py::TestViolinPlot::test_scale_deprecation", "tests/test_categorical.py::TestViolinPlot::test_scale_hue_deprecation", "tests/test_categorical.py::TestViolinPlot::test_gap", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_labels_long[x]", "tests/test_categorical.py::TestBarPlot::test_labels_long[y]", "tests/test_categorical.py::TestBarPlot::test_labels_wide", "tests/test_categorical.py::TestBarPlot::test_labels_hue_order", "tests/test_categorical.py::TestBarPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestBarPlot::test_wide_df[x]", "tests/test_categorical.py::TestBarPlot::test_wide_df[y]", "tests/test_categorical.py::TestBarPlot::test_wide_df[h]", "tests/test_categorical.py::TestBarPlot::test_wide_df[v]", "tests/test_categorical.py::TestBarPlot::test_hue_redundant", "tests/test_categorical.py::TestBarPlot::test_hue_matched", "tests/test_categorical.py::TestBarPlot::test_hue_matched_by_name", "tests/test_categorical.py::TestBarPlot::test_hue_dodged", "tests/test_categorical.py::TestBarPlot::test_gap", "tests/test_categorical.py::TestBarPlot::test_hue_undodged", "tests/test_categorical.py::TestBarPlot::test_hue_order", "tests/test_categorical.py::TestBarPlot::test_fill", "tests/test_categorical.py::TestBarPlot::test_native_scale_dodged", "tests/test_categorical.py::TestBarPlot::test_native_scale_log_transform_dodged", "tests/test_categorical.py::TestBarPlot::test_saturation_palette", "tests/test_categorical.py::TestBarPlot::test_legend_disabled", "tests/test_categorical.py::TestBarPlot::test_legend_attributes", "tests/test_categorical.py::TestBarPlot::test_legend_unfilled", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_labels_long[x]", "tests/test_categorical.py::TestPointPlot::test_labels_long[y]", "tests/test_categorical.py::TestPointPlot::test_labels_wide", "tests/test_categorical.py::TestPointPlot::test_labels_hue_order", "tests/test_categorical.py::TestPointPlot::test_redundant_hue_legend", "tests/test_categorical.py::TestPointPlot::test_wide_df[x]", "tests/test_categorical.py::TestPointPlot::test_wide_df[y]", "tests/test_categorical.py::TestPointPlot::test_wide_df[h]", "tests/test_categorical.py::TestPointPlot::test_wide_df[v]", "tests/test_categorical.py::TestPointPlot::test_hue", "tests/test_categorical.py::TestPointPlot::test_wide_data_is_joined", "tests/test_categorical.py::TestPointPlot::test_markers_linestyles_mapped", "tests/test_categorical.py::TestPointPlot::test_dodge_boolean", "tests/test_categorical.py::TestPointPlot::test_dodge_float", "tests/test_categorical.py::TestPointPlot::test_dodge_log_scale", "tests/test_categorical.py::TestPointPlot::test_legend_contents", "tests/test_categorical.py::TestPointPlot::test_legend_set_props", "tests/test_categorical.py::TestPointPlot::test_legend_synced_props", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestPointPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_wide_data", "tests/test_categorical.py::TestCountPlot::test_hue_redundant", "tests/test_categorical.py::TestCountPlot::test_hue_dodged", "tests/test_categorical.py::TestCountPlot::test_legend_disabled", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-73
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 4c3933fc..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -404,6 +404,75 @@ def move_legend(obj, loc, **kwargs):\n .. include:: ../docstrings/move_legend.rst\n \n \"\"\"\n+ # This is a somewhat hackish solution that will hopefully be obviated by\n+ # upstream improvements to matplotlib legends that make them easier to\n+ # modify after creation.\n+\n+ from seaborn.axisgrid import Grid # Avoid circular import\n+\n+ # Locate the legend object and a method to recreate the legend\n+ if isinstance(obj, Grid):\n+ old_legend = obj.legend\n+ legend_func = obj.figure.legend\n+ elif isinstance(obj, mpl.axes.Axes):\n+ old_legend = obj.legend_\n+ legend_func = obj.legend\n+ elif isinstance(obj, mpl.figure.Figure):\n+ if obj.legends:\n+ old_legend = obj.legends[-1]\n+ else:\n+ old_legend = None\n+ legend_func = obj.legend\n+ else:\n+ err = \"`obj` must be a seaborn Grid or matplotlib Axes or Figure instance.\"\n+ raise TypeError(err)\n+\n+ if old_legend is None:\n+ err = f\"{obj} has no legend attached.\"\n+ raise ValueError(err)\n+\n+ # Extract the components of the legend we need to reuse\n+ # Import here to avoid a circular import\n+ from seaborn._compat import get_legend_handles\n+ handles = get_legend_handles(old_legend)\n+ labels = [t.get_text() for t in old_legend.get_texts()]\n+\n+ # Handle the case where the user is trying to override the labels\n+ if (new_labels := kwargs.pop(\"labels\", None)) is not None:\n+ if len(new_labels) != len(labels):\n+ err = \"Length of new labels does not match existing legend.\"\n+ raise ValueError(err)\n+ labels = new_labels\n+\n+ # Extract legend properties that can be passed to the recreation method\n+ # (Vexingly, these don't all round-trip)\n+ legend_kws = inspect.signature(mpl.legend.Legend).parameters\n+ props = {k: v for k, v in old_legend.properties().items() if k in legend_kws}\n+\n+ # Delegate default bbox_to_anchor rules to matplotlib\n+ props.pop(\"bbox_to_anchor\")\n+\n+ # Try to propagate the existing title and font properties; respect new ones too\n+ title = props.pop(\"title\")\n+ if \"title\" in kwargs:\n+ title.set_text(kwargs.pop(\"title\"))\n+ title_kwargs = {k: v for k, v in kwargs.items() if k.startswith(\"title_\")}\n+ for key, val in title_kwargs.items():\n+ title.set(**{key[6:]: val})\n+ kwargs.pop(key)\n+\n+ # Try to respect the frame visibility\n+ kwargs.setdefault(\"frameon\", old_legend.legendPatch.get_visible())\n+\n+ # Remove the old legend and create the new one\n+ props.update(kwargs)\n+ old_legend.remove()\n+ new_legend = legend_func(handles, labels, loc=loc, **props)\n+ new_legend.set_title(title.get_text(), title.get_fontproperties())\n+\n+ # Let the Grid object continue to track the correct legend object\n+ if isinstance(obj, Grid):\n+ obj._legend = new_legend\n \n \n def _kde_support(data, bw, gridsize, cut, clip):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..4c3933fc 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -404,75 +404,6 @@ def move_legend(obj, loc, **kwargs):\n .. include:: ../docstrings/move_legend.rst\n \n \"\"\"\n- # This is a somewhat hackish solution that will hopefully be obviated by\n- # upstream improvements to matplotlib legends that make them easier to\n- # modify after creation.\n-\n- from seaborn.axisgrid import Grid # Avoid circular import\n-\n- # Locate the legend object and a method to recreate the legend\n- if isinstance(obj, Grid):\n- old_legend = obj.legend\n- legend_func = obj.figure.legend\n- elif isinstance(obj, mpl.axes.Axes):\n- old_legend = obj.legend_\n- legend_func = obj.legend\n- elif isinstance(obj, mpl.figure.Figure):\n- if obj.legends:\n- old_legend = obj.legends[-1]\n- else:\n- old_legend = None\n- legend_func = obj.legend\n- else:\n- err = \"`obj` must be a seaborn Grid or matplotlib Axes or Figure instance.\"\n- raise TypeError(err)\n-\n- if old_legend is None:\n- err = f\"{obj} has no legend attached.\"\n- raise ValueError(err)\n-\n- # Extract the components of the legend we need to reuse\n- # Import here to avoid a circular import\n- from seaborn._compat import get_legend_handles\n- handles = get_legend_handles(old_legend)\n- labels = [t.get_text() for t in old_legend.get_texts()]\n-\n- # Handle the case where the user is trying to override the labels\n- if (new_labels := kwargs.pop(\"labels\", None)) is not None:\n- if len(new_labels) != len(labels):\n- err = \"Length of new labels does not match existing legend.\"\n- raise ValueError(err)\n- labels = new_labels\n-\n- # Extract legend properties that can be passed to the recreation method\n- # (Vexingly, these don't all round-trip)\n- legend_kws = inspect.signature(mpl.legend.Legend).parameters\n- props = {k: v for k, v in old_legend.properties().items() if k in legend_kws}\n-\n- # Delegate default bbox_to_anchor rules to matplotlib\n- props.pop(\"bbox_to_anchor\")\n-\n- # Try to propagate the existing title and font properties; respect new ones too\n- title = props.pop(\"title\")\n- if \"title\" in kwargs:\n- title.set_text(kwargs.pop(\"title\"))\n- title_kwargs = {k: v for k, v in kwargs.items() if k.startswith(\"title_\")}\n- for key, val in title_kwargs.items():\n- title.set(**{key[6:]: val})\n- kwargs.pop(key)\n-\n- # Try to respect the frame visibility\n- kwargs.setdefault(\"frameon\", old_legend.legendPatch.get_visible())\n-\n- # Remove the old legend and create the new one\n- props.update(kwargs)\n- old_legend.remove()\n- new_legend = legend_func(handles, labels, loc=loc, **props)\n- new_legend.set_title(title.get_text(), title.get_fontproperties())\n-\n- # Let the Grid object continue to track the correct legend object\n- if isinstance(obj, Grid):\n- obj._legend = new_legend\n \n \n def _kde_support(data, bw, gridsize, cut, clip):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef move_legend(obj, loc, **kwargs):\n \"\"\"\n Recreate a plot's legend at a new location.\n\n The name is a slight misnomer. Matplotlib legends do not expose public\n control over their position parameters. So this function creates a new legend,\n copying over the data from the original object, which is then removed.\n\n Parameters\n ----------\n obj : the object with the plot\n This argument can be either a seaborn or matplotlib object:\n\n - :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid`\n - :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure`\n\n loc : str or int\n Location argument, as in :meth:`matplotlib.axes.Axes.legend`.\n\n kwargs\n Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`.\n\n Examples\n --------\n\n .. include:: ../docstrings/move_legend.rst\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_utils.py::test_move_legend_matplotlib_objects", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_utils.py::test_move_legend_input_checks", "tests/test_utils.py::test_move_legend_with_labels" ], "PASS_TO_PASS": null }
mwaskom__seaborn-74
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 78f182f1..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -254,6 +254,7 @@ def remove_na(vector):\n Vector of data with null values removed. May be a copy or a view.\n \n \"\"\"\n+ return vector[pd.notnull(vector)]\n \n \n def get_color_cycle():\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..78f182f1 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -254,7 +254,6 @@ def remove_na(vector):\n Vector of data with null values removed. May be a copy or a view.\n \n \"\"\"\n- return vector[pd.notnull(vector)]\n \n \n def get_color_cycle():\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef remove_na(vector):\n \"\"\"Helper method for removing null values from data vectors.\n\n Parameters\n ----------\n vector : vector object\n Must implement boolean masking with [] subscript syntax.\n\n Returns\n -------\n clean_clean : same type as ``vector``\n Vector of data with null values removed. May be a copy or a view.\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_distributions.py::TestDistPlot::test_hist_bins", "tests/test_base.py::TestHueMapping::test_hue_map_categorical", "tests/test_distributions.py::TestDistPlot::test_elements", "tests/test_base.py::TestHueMapping::test_hue_map_numeric", "tests/test_distributions.py::TestDistPlot::test_distplot_with_nans", "tests/test_base.py::TestSizeMapping::test_map_size_numeric", "tests/test_base.py::TestSizeMapping::test_array_palette_deprecation", "tests/test_base.py::TestVectorPlotter::test_iter_data_quantitites", "tests/test_base.py::TestVectorPlotter::test_iter_data_keys", "tests/test_base.py::TestVectorPlotter::test_iter_data_values", "tests/test_categorical.py::TestStripPlot::test_positions[variables5-None]", "tests/test_distributions.py::TestKDEPlotUnivariate::test_weight_norm", "tests/test_categorical.py::TestStripPlot::test_positions_dodged[variables2]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_utils.py::test_remove_na", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_categorical.py::TestStripPlot::test_legend_numeric", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestHistPlotUnivariate::test_weight_norm", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_categorical.py::TestSwarmPlot::test_positions[variables5-None]", "tests/test_categorical.py::TestSwarmPlot::test_positions_dodged[variables2]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_full[size]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_numerical_brief[size]", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_log_norm[size]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[hue]", "tests/test_relational.py::TestLinePlotter::test_legend_binary_numberic_brief[size]", "tests/test_categorical.py::TestSwarmPlot::test_legend_numeric", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_relational.py::TestLinePlotter::test_lineplot_smoke", "tests/test_categorical.py::TestBoxenPlot::test_gap", "tests/test_categorical.py::TestBoxenPlot::test_fill", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_list", "tests/test_relational.py::TestScatterPlotter::test_legend_size_numeric_dict", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_full", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_hue_brief", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_size_full", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_relational.py::TestScatterPlotter::test_legend_numeric_size_brief", "tests/test_relational.py::TestScatterPlotter::test_size_norm_extrapolation", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_smoke", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_hue_norm", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestBarPlot::test_legend_numeric_full", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_axisgrid.py::TestJointGrid::test_univariate_plot_distplot", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_legend_numeric_auto", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]" ], "PASS_TO_PASS": null }
mwaskom__seaborn-75
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex ff55ce41..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -197,6 +197,7 @@ def saturate(color):\n saturated color code in RGB tuple representation\n \n \"\"\"\n+ return set_hls_values(color, s=1)\n \n \n def set_hls_values(color, h=None, l=None, s=None): # noqa\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..ff55ce41 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -197,7 +197,6 @@ def saturate(color):\n saturated color code in RGB tuple representation\n \n \"\"\"\n- return set_hls_values(color, s=1)\n \n \n def set_hls_values(color, h=None, l=None, s=None): # noqa\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef saturate(color):\n \"\"\"Return a fully saturated color with the same hue.\n\n Parameters\n ----------\n color : matplotlib color\n hex, rgb-tuple, or html color name\n\n Returns\n -------\n new_color : rgb tuple\n saturated color code in RGB tuple representation\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_utils.py::test_saturate" ], "PASS_TO_PASS": null }
mwaskom__seaborn-76
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex e8054081..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -216,6 +216,15 @@ def set_hls_values(color, h=None, l=None, s=None): # noqa\n new color code in RGB tuple representation\n \n \"\"\"\n+ # Get an RGB tuple representation\n+ rgb = to_rgb(color)\n+ vals = list(colorsys.rgb_to_hls(*rgb))\n+ for i, val in enumerate([h, l, s]):\n+ if val is not None:\n+ vals[i] = val\n+\n+ rgb = colorsys.hls_to_rgb(*vals)\n+ return rgb\n \n \n def axlabel(xlabel, ylabel, **kwargs):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..e8054081 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -216,15 +216,6 @@ def set_hls_values(color, h=None, l=None, s=None): # noqa\n new color code in RGB tuple representation\n \n \"\"\"\n- # Get an RGB tuple representation\n- rgb = to_rgb(color)\n- vals = list(colorsys.rgb_to_hls(*rgb))\n- for i, val in enumerate([h, l, s]):\n- if val is not None:\n- vals[i] = val\n-\n- rgb = colorsys.hls_to_rgb(*vals)\n- return rgb\n \n \n def axlabel(xlabel, ylabel, **kwargs):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef set_hls_values(color, h=None, l=None, s=None): # noqa\n \"\"\"Independently manipulate the h, l, or s channels of a color.\n\n Parameters\n ----------\n color : matplotlib color\n hex, rgb-tuple, or html color name\n h, l, s : floats between 0 and 1, or None\n new values for each channel in hls space\n\n Returns\n -------\n new_color : rgb tuple\n new color code in RGB tuple representation\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_utils.py::test_saturate", "tests/test_axisgrid.py::TestJointPlot::test_scatter", "tests/test_axisgrid.py::TestJointPlot::test_scatter_hue", "tests/test_axisgrid.py::TestJointPlot::test_reg", "tests/test_axisgrid.py::TestJointPlot::test_resid", "tests/test_axisgrid.py::TestJointPlot::test_hist", "tests/test_axisgrid.py::TestJointPlot::test_hex", "tests/test_axisgrid.py::TestJointPlot::test_kde", "tests/test_axisgrid.py::TestJointPlot::test_kde_hue", "tests/test_axisgrid.py::TestJointPlot::test_color", "tests/test_axisgrid.py::TestJointPlot::test_palette", "tests/test_axisgrid.py::TestJointPlot::test_hex_customise", "tests/test_axisgrid.py::TestJointPlot::test_leaky_dict", "tests/test_axisgrid.py::TestJointPlot::test_distplot_kwarg_warning", "tests/test_axisgrid.py::TestJointPlot::test_ax_warning" ], "PASS_TO_PASS": null }
mwaskom__seaborn-77
1.0
{ "code": "diff --git b/seaborn/utils.py a/seaborn/utils.py\nindex 9593d7c2..98720ba3 100644\n--- b/seaborn/utils.py\n+++ a/seaborn/utils.py\n@@ -739,6 +739,12 @@ def to_utf8(obj):\n UTF-8-decoded string representation of ``obj``\n \n \"\"\"\n+ if isinstance(obj, str):\n+ return obj\n+ try:\n+ return obj.decode(encoding=\"utf-8\")\n+ except AttributeError: # obj is not bytes-like\n+ return str(obj)\n \n \n def _check_argument(param, options, value, prefix=False):\n", "test": null }
null
{ "code": "diff --git a/seaborn/utils.py b/seaborn/utils.py\nindex 98720ba3..9593d7c2 100644\n--- a/seaborn/utils.py\n+++ b/seaborn/utils.py\n@@ -739,12 +739,6 @@ def to_utf8(obj):\n UTF-8-decoded string representation of ``obj``\n \n \"\"\"\n- if isinstance(obj, str):\n- return obj\n- try:\n- return obj.decode(encoding=\"utf-8\")\n- except AttributeError: # obj is not bytes-like\n- return str(obj)\n \n \n def _check_argument(param, options, value, prefix=False):\n", "test": null }
null
mwaskom/seaborn
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
2024-07-22T07:32:48-04:00
null
null
{ "code": "I want to add a new function in file in seaborn/utils.py.\nHere is the description for the function:\ndef to_utf8(obj):\n \"\"\"Return a string representing a Python object.\n\n Strings (i.e. type ``str``) are returned unchanged.\n\n Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings.\n\n For other objects, the method ``__str__()`` is called, and the result is\n returned as a string.\n\n Parameters\n ----------\n obj : object\n Any Python object\n\n Returns\n -------\n s : str\n UTF-8-decoded string representation of ``obj``\n\n \"\"\"\n", "test": null }
b4e5f8d261d6d5524a00b7dd35e00a40e4855872
{ "FAIL_TO_PASS": [ "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs0]", "tests/test_axisgrid.py::TestFacetGrid::test_self_data", "tests/test_utils.py::test_to_utf8[a-a0]", "tests/test_matrix.py::TestHeatmap::test_df_multindex_input", "tests/test_utils.py::test_to_utf8[abc-abc0]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_simple", "tests/test_utils.py::test_to_utf8[a-a1]", "tests/test_utils.py::test_to_utf8[abc-abc1]", "tests/test_axisgrid.py::TestFacetGrid::test_self_figure", "tests/test_utils.py::test_to_utf8[s4-abc]", "tests/test_utils.py::test_to_utf8[s5-]", "tests/test_utils.py::test_to_utf8[1-1]", "tests/test_utils.py::test_to_utf8[0-0]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_complex", "tests/test_utils.py::test_to_utf8[s8-[]]", "tests/test_axisgrid.py::TestFacetGrid::test_self_axes", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs1]", "tests/test_axisgrid.py::TestFacetGrid::test_axes_array_size", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[series]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs2]", "tests/test_axisgrid.py::TestFacetGrid::test_single_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[numpy]", "tests/test_axisgrid.py::TestFacetGrid::test_col_wrap", "tests/test_utils.py::test_move_legend_grid_object", "tests/test_relational.py::TestRelationalPlotter::test_relplot_vectors[list]", "tests/test_categorical.py::TestCategoricalPlotterNew::test_axis_labels[catplot-kwargs3]", "tests/test_relational.py::TestRelationalPlotter::test_relplot_wide", "tests/test_axisgrid.py::TestFacetGrid::test_normal_axes", "tests/test_relational.py::TestRelationalPlotter::test_relplot_hues", "tests/test_axisgrid.py::TestFacetGrid::test_wrapped_axes", "tests/test_axisgrid.py::TestFacetGrid::test_axes_dict", "tests/test_relational.py::TestRelationalPlotter::test_relplot_sizes", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size", "tests/test_base.py::TestVectorPlotter::test_attach_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_styles", "tests/test_regression.py::TestRegressionPlots::test_lmplot_basic", "tests/test_axisgrid.py::TestFacetGrid::test_figure_size_with_legend", "tests/test_relational.py::TestRelationalPlotter::test_relplot_weighted_estimator", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue", "tests/test_base.py::TestVectorPlotter::test_scale_transform_identity_facets", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data", "tests/test_relational.py::TestRelationalPlotter::test_relplot_stringy_numerics", "tests/test_regression.py::TestRegressionPlots::test_lmplot_markers", "tests/test_base.py::TestVectorPlotter::test_scale_transform_facets", "tests/test_axisgrid.py::TestFacetGrid::test_legend_data_missing_level", "tests/test_regression.py::TestRegressionPlots::test_lmplot_marker_linewidths", "tests/test_relational.py::TestRelationalPlotter::test_relplot_legend", "tests/test_axisgrid.py::TestFacetGrid::test_get_boolean_legend_data", "tests/test_base.py::TestVectorPlotter::test_scale_transform_mixed_facets", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_unshared_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tuples", "tests/test_base.py::TestVectorPlotter::test_attach_shared_axes", "tests/test_regression.py::TestRegressionPlots::test_lmplot_hue_col_nolegend", "tests/test_axisgrid.py::TestFacetGrid::test_legend_options", "tests/test_regression.py::TestRegressionPlots::test_lmplot_scatter_kws", "tests/test_base.py::TestVectorPlotter::test_get_axes_facets", "tests/test_relational.py::TestRelationalPlotter::test_relplot_data", "tests/test_axisgrid.py::TestFacetGrid::test_legendout_with_colwrap", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[True]", "tests/test_relational.py::TestRelationalPlotter::test_facet_variable_collision", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_truncate[False]", "tests/test_axisgrid.py::TestFacetGrid::test_legend_tight_layout", "tests/test_categorical.py::TestCategoricalPlotterNew::test_empty[catplot]", "tests/test_regression.py::TestRegressionPlots::test_lmplot_sharey", "tests/test_relational.py::TestRelationalPlotter::test_relplot_scatter_unused_variables", "tests/test_axisgrid.py::TestFacetGrid::test_subplot_kws", "tests/test_regression.py::TestRegressionPlots::test_lmplot_facet_kws", "tests/test_relational.py::TestRelationalPlotter::test_ax_kwarg_removal", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws", "tests/test_relational.py::TestRelationalPlotter::test_legend_has_no_offset", "tests/test_axisgrid.py::TestFacetGrid::test_gridspec_kws_col_wrap", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue", "tests/test_axisgrid.py::TestFacetGrid::test_data_generator", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_style", "tests/test_axisgrid.py::TestFacetGrid::test_map", "tests/test_relational.py::TestRelationalPlotter::test_legend_attributes_hue_and_style", "tests/test_axisgrid.py::TestFacetGrid::test_map_dataframe", "tests/test_axisgrid.py::TestFacetGrid::test_set", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_titles_margin_titles", "tests/test_axisgrid.py::TestFacetGrid::test_set_ticklabels", "tests/test_axisgrid.py::TestFacetGrid::test_set_axis_labels", "tests/test_axisgrid.py::TestFacetGrid::test_axis_lims", "tests/test_axisgrid.py::TestFacetGrid::test_data_orders", "tests/test_axisgrid.py::TestFacetGrid::test_palette", "tests/test_axisgrid.py::TestFacetGrid::test_hue_kws", "tests/test_axisgrid.py::TestFacetGrid::test_dropna", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_column_missing_categories", "tests/test_axisgrid.py::TestFacetGrid::test_categorical_warning", "tests/test_axisgrid.py::TestFacetGrid::test_refline", "tests/test_axisgrid.py::TestFacetGrid::test_apply", "tests/test_axisgrid.py::TestFacetGrid::test_pipe", "tests/test_axisgrid.py::TestFacetGrid::test_tick_params", "tests/test_axisgrid.py::TestFacetGrid::test_data_interchange", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestStripPlot::test_vs_catplot[kwargs8]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics0]", "tests/test_distributions.py::TestHistPlotBivariate::test_mesh_with_col_unique_bins", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs0]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs2]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs4]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs7]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs10]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics9]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs12]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics10]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs13]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs14]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_histplot[kwargs15]", "tests/test_relational.py::TestLinePlotter::test_lineplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs1]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs3]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs4]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs5]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs7]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs9]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs10]", "tests/test_categorical.py::TestSwarmPlot::test_vs_catplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_kdeplot[kwargs11]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs7]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs8]", "tests/test_distributions.py::TestDisPlot::test_versus_single_ecdfplot[kwargs9]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_with_rug[kwargs2]", "tests/test_distributions.py::TestDisPlot::test_facets[col]", "tests/test_distributions.py::TestDisPlot::test_facets[row]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs0]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[dodge]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs1]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[stack]", "tests/test_distributions.py::TestDisPlot::test_facet_multiple[fill]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs2]", "tests/test_axisgrid.py::TestPairGrid::test_histplot_legend", "tests/test_distributions.py::TestDisPlot::test_ax_warning", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs3]", "tests/test_distributions.py::TestDisPlot::test_array_faceting[col]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot", "tests/test_distributions.py::TestDisPlot::test_array_faceting[row]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs4]", "tests/test_distributions.py::TestDisPlot::test_legend", "tests/test_distributions.py::TestDisPlot::test_empty", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs5]", "tests/test_distributions.py::TestDisPlot::test_bivariate_ecdf_error", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs6]", "tests/test_distributions.py::TestDisPlot::test_bivariate_kde_norm", "tests/test_distributions.py::TestDisPlot::test_bivariate_hist_norm", "tests/test_distributions.py::TestDisPlot::test_facetgrid_data", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics0]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_reg_hue", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs10]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics1]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics2]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs11]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics3]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics4]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs12]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics5]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics6]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs13]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics7]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics8]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs14]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics9]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics10]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs15]", "tests/test_relational.py::TestScatterPlotter::test_scatterplot_vs_relplot[long_semantics11]", "tests/test_categorical.py::TestBoxPlot::test_vs_catplot[kwargs16]", "tests/test_axisgrid.py::TestPairGrid::test_pairplot_markers", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs1]", "tests/test_axisgrid.py::TestPairGrid::test_legend", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestBoxenPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestViolinPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestBarPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs17]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs18]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs19]", "tests/test_categorical.py::TestPointPlot::test_vs_catplot[kwargs20]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs0]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs1]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs2]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs3]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs4]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs5]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs6]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs7]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs8]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs9]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs10]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs11]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs12]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs13]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs14]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs15]", "tests/test_categorical.py::TestCountPlot::test_vs_catplot[kwargs16]", "tests/test_categorical.py::TestCatPlot::test_facet_organization", "tests/test_categorical.py::TestCatPlot::test_plot_elements", "tests/test_categorical.py::TestCatPlot::test_bad_plot_kind_error", "tests/test_categorical.py::TestCatPlot::test_plot_colors", "tests/test_categorical.py::TestCatPlot::test_ax_kwarg_removal", "tests/test_categorical.py::TestCatPlot::test_share_xy", "tests/test_categorical.py::TestCatPlot::test_facetgrid_data", "tests/test_categorical.py::TestCatPlot::test_array_faceter[col]", "tests/test_categorical.py::TestCatPlot::test_array_faceter[row]", "tests/test_categorical.py::TestCatPlot::test_invalid_kind", "tests/test_categorical.py::TestCatPlot::test_legend_with_auto", "tests/test_categorical.py::TestCatPlot::test_weights_warning" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-0
1.0
{ "code": "diff --git b/sklearn/linear_model/_bayes.py a/sklearn/linear_model/_bayes.py\nindex 2df229969..b6527d4f2 100644\n--- b/sklearn/linear_model/_bayes.py\n+++ a/sklearn/linear_model/_bayes.py\n@@ -607,6 +607,7 @@ class ARDRegression(RegressorMixin, LinearModel):\n self.copy_X = copy_X\n self.verbose = verbose\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data and parameters.\n \n@@ -625,6 +626,114 @@ class ARDRegression(RegressorMixin, LinearModel):\n self : object\n Fitted estimator.\n \"\"\"\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ dtype=[np.float64, np.float32],\n+ force_writeable=True,\n+ y_numeric=True,\n+ ensure_min_samples=2,\n+ )\n+ dtype = X.dtype\n+\n+ n_samples, n_features = X.shape\n+ coef_ = np.zeros(n_features, dtype=dtype)\n+\n+ X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data(\n+ X, y, fit_intercept=self.fit_intercept, copy=self.copy_X\n+ )\n+\n+ self.X_offset_ = X_offset_\n+ self.X_scale_ = X_scale_\n+\n+ # Launch the convergence loop\n+ keep_lambda = np.ones(n_features, dtype=bool)\n+\n+ lambda_1 = self.lambda_1\n+ lambda_2 = self.lambda_2\n+ alpha_1 = self.alpha_1\n+ alpha_2 = self.alpha_2\n+ verbose = self.verbose\n+\n+ # Initialization of the values of the parameters\n+ eps = np.finfo(np.float64).eps\n+ # Add `eps` in the denominator to omit division by zero if `np.var(y)`\n+ # is zero.\n+ # Explicitly set dtype to avoid unintended type promotion with numpy 2.\n+ alpha_ = np.asarray(1.0 / (np.var(y) + eps), dtype=dtype)\n+ lambda_ = np.ones(n_features, dtype=dtype)\n+\n+ self.scores_ = list()\n+ coef_old_ = None\n+\n+ def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):\n+ coef_[keep_lambda] = alpha_ * np.linalg.multi_dot(\n+ [sigma_, X[:, keep_lambda].T, y]\n+ )\n+ return coef_\n+\n+ update_sigma = (\n+ self._update_sigma\n+ if n_samples >= n_features\n+ else self._update_sigma_woodbury\n+ )\n+ # Iterative procedure of ARDRegression\n+ for iter_ in range(self.max_iter):\n+ sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)\n+ coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)\n+\n+ # Update alpha and lambda\n+ rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)\n+ gamma_ = 1.0 - lambda_[keep_lambda] * np.diag(sigma_)\n+ lambda_[keep_lambda] = (gamma_ + 2.0 * lambda_1) / (\n+ (coef_[keep_lambda]) ** 2 + 2.0 * lambda_2\n+ )\n+ alpha_ = (n_samples - gamma_.sum() + 2.0 * alpha_1) / (\n+ rmse_ + 2.0 * alpha_2\n+ )\n+\n+ # Prune the weights with a precision over a threshold\n+ keep_lambda = lambda_ < self.threshold_lambda\n+ coef_[~keep_lambda] = 0\n+\n+ # Compute the objective function\n+ if self.compute_score:\n+ s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()\n+ s += alpha_1 * log(alpha_) - alpha_2 * alpha_\n+ s += 0.5 * (\n+ fast_logdet(sigma_)\n+ + n_samples * log(alpha_)\n+ + np.sum(np.log(lambda_))\n+ )\n+ s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_**2).sum())\n+ self.scores_.append(s)\n+\n+ # Check for convergence\n+ if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:\n+ if verbose:\n+ print(\"Converged after %s iterations\" % iter_)\n+ break\n+ coef_old_ = np.copy(coef_)\n+\n+ if not keep_lambda.any():\n+ break\n+\n+ self.n_iter_ = iter_ + 1\n+\n+ if keep_lambda.any():\n+ # update sigma and mu using updated params from the last iteration\n+ sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)\n+ coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)\n+ else:\n+ sigma_ = np.array([]).reshape(0, 0)\n+\n+ self.coef_ = coef_\n+ self.alpha_ = alpha_\n+ self.sigma_ = sigma_\n+ self.lambda_ = lambda_\n+ self._set_intercept(X_offset_, y_offset_, X_scale_)\n+ return self\n \n def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda):\n # See slides as referenced in the docstring note\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_bayes.py b/sklearn/linear_model/_bayes.py\nindex b6527d4f2..2df229969 100644\n--- a/sklearn/linear_model/_bayes.py\n+++ b/sklearn/linear_model/_bayes.py\n@@ -607,7 +607,6 @@ class ARDRegression(RegressorMixin, LinearModel):\n self.copy_X = copy_X\n self.verbose = verbose\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data and parameters.\n \n@@ -626,114 +625,6 @@ class ARDRegression(RegressorMixin, LinearModel):\n self : object\n Fitted estimator.\n \"\"\"\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- dtype=[np.float64, np.float32],\n- force_writeable=True,\n- y_numeric=True,\n- ensure_min_samples=2,\n- )\n- dtype = X.dtype\n-\n- n_samples, n_features = X.shape\n- coef_ = np.zeros(n_features, dtype=dtype)\n-\n- X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data(\n- X, y, fit_intercept=self.fit_intercept, copy=self.copy_X\n- )\n-\n- self.X_offset_ = X_offset_\n- self.X_scale_ = X_scale_\n-\n- # Launch the convergence loop\n- keep_lambda = np.ones(n_features, dtype=bool)\n-\n- lambda_1 = self.lambda_1\n- lambda_2 = self.lambda_2\n- alpha_1 = self.alpha_1\n- alpha_2 = self.alpha_2\n- verbose = self.verbose\n-\n- # Initialization of the values of the parameters\n- eps = np.finfo(np.float64).eps\n- # Add `eps` in the denominator to omit division by zero if `np.var(y)`\n- # is zero.\n- # Explicitly set dtype to avoid unintended type promotion with numpy 2.\n- alpha_ = np.asarray(1.0 / (np.var(y) + eps), dtype=dtype)\n- lambda_ = np.ones(n_features, dtype=dtype)\n-\n- self.scores_ = list()\n- coef_old_ = None\n-\n- def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):\n- coef_[keep_lambda] = alpha_ * np.linalg.multi_dot(\n- [sigma_, X[:, keep_lambda].T, y]\n- )\n- return coef_\n-\n- update_sigma = (\n- self._update_sigma\n- if n_samples >= n_features\n- else self._update_sigma_woodbury\n- )\n- # Iterative procedure of ARDRegression\n- for iter_ in range(self.max_iter):\n- sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)\n- coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)\n-\n- # Update alpha and lambda\n- rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)\n- gamma_ = 1.0 - lambda_[keep_lambda] * np.diag(sigma_)\n- lambda_[keep_lambda] = (gamma_ + 2.0 * lambda_1) / (\n- (coef_[keep_lambda]) ** 2 + 2.0 * lambda_2\n- )\n- alpha_ = (n_samples - gamma_.sum() + 2.0 * alpha_1) / (\n- rmse_ + 2.0 * alpha_2\n- )\n-\n- # Prune the weights with a precision over a threshold\n- keep_lambda = lambda_ < self.threshold_lambda\n- coef_[~keep_lambda] = 0\n-\n- # Compute the objective function\n- if self.compute_score:\n- s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()\n- s += alpha_1 * log(alpha_) - alpha_2 * alpha_\n- s += 0.5 * (\n- fast_logdet(sigma_)\n- + n_samples * log(alpha_)\n- + np.sum(np.log(lambda_))\n- )\n- s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_**2).sum())\n- self.scores_.append(s)\n-\n- # Check for convergence\n- if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:\n- if verbose:\n- print(\"Converged after %s iterations\" % iter_)\n- break\n- coef_old_ = np.copy(coef_)\n-\n- if not keep_lambda.any():\n- break\n-\n- self.n_iter_ = iter_ + 1\n-\n- if keep_lambda.any():\n- # update sigma and mu using updated params from the last iteration\n- sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)\n- coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)\n- else:\n- sigma_ = np.array([]).reshape(0, 0)\n-\n- self.coef_ = coef_\n- self.alpha_ = alpha_\n- self.sigma_ = sigma_\n- self.lambda_ = lambda_\n- self._set_intercept(X_offset_, y_offset_, X_scale_)\n- return self\n \n def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda):\n # See slides as referenced in the docstring note\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_bayes.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit the model according to the given training data and parameters.\n\n Iterative procedure to maximize the evidence\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n y : array-like of shape (n_samples,)\n Target values (integers). Will be cast to X's dtype if necessary.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_requires_y_none]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]", "sklearn/utils/tests/test_validation.py::test_check_is_fitted", "sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]", "sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]", "sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-ARDRegression]", "sklearn/linear_model/tests/test_bayes.py::test_prediction_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_std_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_update_of_sigma_in_ard", "sklearn/linear_model/tests/test_bayes.py::test_toy_ard_object", "sklearn/linear_model/tests/test_bayes.py::test_ard_accuracy_on_easy_problem[42-10-100]", "sklearn/linear_model/tests/test_bayes.py::test_ard_accuracy_on_easy_problem[42-100-10]", "sklearn/linear_model/tests/test_bayes.py::test_return_std[array]", "sklearn/linear_model/tests/test_bayes.py::test_return_std[dataframe]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[ARDRegression-float32]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[ARDRegression-float64]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_correctness[ARDRegression]", "sklearn/linear_model/_bayes.py::sklearn.linear_model._bayes.ARDRegression", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ARDRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ARDRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[ARDRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ARDRegression(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-1
1.0
{ "code": "diff --git b/sklearn/linear_model/_bayes.py a/sklearn/linear_model/_bayes.py\nindex f50c85533..b6527d4f2 100644\n--- b/sklearn/linear_model/_bayes.py\n+++ a/sklearn/linear_model/_bayes.py\n@@ -786,3 +786,12 @@ class ARDRegression(RegressorMixin, LinearModel):\n y_std : array-like of shape (n_samples,)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n+ y_mean = self._decision_function(X)\n+ if return_std is False:\n+ return y_mean\n+ else:\n+ col_index = self.lambda_ < self.threshold_lambda\n+ X = _safe_indexing(X, indices=col_index, axis=1)\n+ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)\n+ y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_))\n+ return y_mean, y_std\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_bayes.py b/sklearn/linear_model/_bayes.py\nindex b6527d4f2..f50c85533 100644\n--- a/sklearn/linear_model/_bayes.py\n+++ b/sklearn/linear_model/_bayes.py\n@@ -786,12 +786,3 @@ class ARDRegression(RegressorMixin, LinearModel):\n y_std : array-like of shape (n_samples,)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n- y_mean = self._decision_function(X)\n- if return_std is False:\n- return y_mean\n- else:\n- col_index = self.lambda_ < self.threshold_lambda\n- X = _safe_indexing(X, indices=col_index, axis=1)\n- sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)\n- y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_))\n- return y_mean, y_std\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_bayes.py.\nHere is the description for the function:\n def predict(self, X, return_std=False):\n \"\"\"Predict using the linear model.\n\n In addition to the mean of the predictive distribution, also its\n standard deviation can be returned.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Samples.\n\n return_std : bool, default=False\n Whether to return the standard deviation of posterior prediction.\n\n Returns\n -------\n y_mean : array-like of shape (n_samples,)\n Mean of predictive distribution of query points.\n\n y_std : array-like of shape (n_samples,)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ARDRegression(max_iter=5)-check_fit2d_predict1d]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-ARDRegression]", "sklearn/linear_model/tests/test_bayes.py::test_prediction_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_std_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_update_of_sigma_in_ard", "sklearn/linear_model/tests/test_bayes.py::test_toy_ard_object", "sklearn/linear_model/tests/test_bayes.py::test_return_std[array]", "sklearn/linear_model/tests/test_bayes.py::test_return_std[dataframe]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[ARDRegression-float32]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[ARDRegression-float64]", "sklearn/linear_model/_bayes.py::sklearn.linear_model._bayes.ARDRegression", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ARDRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ARDRegression(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-2
1.0
{ "code": "diff --git b/sklearn/ensemble/_weight_boosting.py a/sklearn/ensemble/_weight_boosting.py\nindex 4bbbc8073..290360622 100644\n--- b/sklearn/ensemble/_weight_boosting.py\n+++ a/sklearn/ensemble/_weight_boosting.py\n@@ -783,6 +783,33 @@ class AdaBoostClassifier(\n values closer to -1 or 1 mean more like the first or second\n class in ``classes_``, respectively.\n \"\"\"\n+ check_is_fitted(self)\n+ X = self._check_X(X)\n+\n+ n_classes = self.n_classes_\n+ classes = self.classes_[:, np.newaxis]\n+\n+ # TODO(1.6): Remove, because \"algorithm\" param will be deprecated in 1.6\n+ if self.algorithm == \"SAMME.R\":\n+ # The weights are all 1. for SAMME.R\n+ pred = sum(\n+ _samme_proba(estimator, n_classes, X) for estimator in self.estimators_\n+ )\n+ else: # self.algorithm == \"SAMME\"\n+ pred = sum(\n+ np.where(\n+ (estimator.predict(X) == classes).T,\n+ w,\n+ -1 / (n_classes - 1) * w,\n+ )\n+ for estimator, w in zip(self.estimators_, self.estimator_weights_)\n+ )\n+\n+ pred /= self.estimator_weights_.sum()\n+ if n_classes == 2:\n+ pred[:, 0] *= -1\n+ return pred.sum(axis=1)\n+ return pred\n \n def staged_decision_function(self, X):\n \"\"\"Compute decision function of ``X`` for each boosting iteration.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_weight_boosting.py b/sklearn/ensemble/_weight_boosting.py\nindex 290360622..4bbbc8073 100644\n--- a/sklearn/ensemble/_weight_boosting.py\n+++ b/sklearn/ensemble/_weight_boosting.py\n@@ -783,33 +783,6 @@ class AdaBoostClassifier(\n values closer to -1 or 1 mean more like the first or second\n class in ``classes_``, respectively.\n \"\"\"\n- check_is_fitted(self)\n- X = self._check_X(X)\n-\n- n_classes = self.n_classes_\n- classes = self.classes_[:, np.newaxis]\n-\n- # TODO(1.6): Remove, because \"algorithm\" param will be deprecated in 1.6\n- if self.algorithm == \"SAMME.R\":\n- # The weights are all 1. for SAMME.R\n- pred = sum(\n- _samme_proba(estimator, n_classes, X) for estimator in self.estimators_\n- )\n- else: # self.algorithm == \"SAMME\"\n- pred = sum(\n- np.where(\n- (estimator.predict(X) == classes).T,\n- w,\n- -1 / (n_classes - 1) * w,\n- )\n- for estimator, w in zip(self.estimators_, self.estimator_weights_)\n- )\n-\n- pred /= self.estimator_weights_.sum()\n- if n_classes == 2:\n- pred[:, 0] *= -1\n- return pred.sum(axis=1)\n- return pred\n \n def staged_decision_function(self, X):\n \"\"\"Compute decision function of ``X`` for each boosting iteration.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_weight_boosting.py.\nHere is the description for the function:\n def decision_function(self, X):\n \"\"\"Compute the decision function of ``X``.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The training input samples. Sparse matrix can be CSC, CSR, COO,\n DOK, or LIL. COO, DOK, and LIL are converted to CSR.\n\n Returns\n -------\n score : ndarray of shape of (n_samples, k)\n The decision function of the input samples. The order of\n outputs is the same as that of the :term:`classes_` attribute.\n Binary classification is a special cases with ``k == 1``,\n otherwise ``k==n_classes``. For binary classification,\n values closer to -1 or 1 mean more like the first or second\n class in ``classes_``, respectively.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME]", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME.R]", "sklearn/ensemble/tests/test_weight_boosting.py::test_iris", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]", "sklearn/ensemble/tests/test_weight_boosting.py::test_pickle", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csc_matrix-csc_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csc_array-csc_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csr_matrix-csr_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[csr_array-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[lil_matrix-csr_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[lil_array-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[coo_matrix-csr_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[coo_array-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[dok_matrix-csr_matrix]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification[dok_array-csr_array]", "sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME.R]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME.R]", "sklearn/ensemble/_weight_boosting.py::sklearn.ensemble._weight_boosting.AdaBoostClassifier", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostClassifier(n_estimators=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-3
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex 57824340d..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -656,6 +656,7 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):\n self.sample_steps = sample_steps\n self.sample_interval = sample_interval\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Only validates estimator's parameters.\n \n@@ -677,6 +678,15 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):\n self : object\n Returns the transformer.\n \"\"\"\n+ X = validate_data(self, X, accept_sparse=\"csr\", ensure_non_negative=True)\n+\n+ if self.sample_interval is None and self.sample_steps not in (1, 2, 3):\n+ raise ValueError(\n+ \"If sample_steps is not in [1, 2, 3],\"\n+ \" you need to provide sample_interval\"\n+ )\n+\n+ return self\n \n def transform(self, X):\n \"\"\"Apply approximate feature map to X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..57824340d 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -656,7 +656,6 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):\n self.sample_steps = sample_steps\n self.sample_interval = sample_interval\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Only validates estimator's parameters.\n \n@@ -678,15 +677,6 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):\n self : object\n Returns the transformer.\n \"\"\"\n- X = validate_data(self, X, accept_sparse=\"csr\", ensure_non_negative=True)\n-\n- if self.sample_interval is None and self.sample_steps not in (1, 2, 3):\n- raise ValueError(\n- \"If sample_steps is not in [1, 2, 3],\"\n- \" you need to provide sample_interval\"\n- )\n-\n- return self\n \n def transform(self, X):\n \"\"\"Apply approximate feature map to X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Only validates estimator's parameters.\n\n This method allows to: (i) validate the estimator's parameters and\n (ii) be consistent with the scikit-learn transformer API.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : array-like, shape (n_samples,) or (n_samples, n_outputs), \\\n default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : object\n Returns the transformer.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit_non_negative]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[1-fit]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[1-fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[2-fit]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[2-fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[3-fit]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[3-fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_wrong_sample_steps[fit]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_wrong_sample_steps[fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_exceptions", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_additivechi2sampler_get_feature_names_out", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.AdditiveChi2Sampler", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_check_param_validation[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-AdditiveChi2Sampler()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-4
1.0
{ "code": "diff --git b/sklearn/kernel_approximation.py a/sklearn/kernel_approximation.py\nindex b150d94d3..92d906dde 100644\n--- b/sklearn/kernel_approximation.py\n+++ a/sklearn/kernel_approximation.py\n@@ -704,6 +704,35 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):\n Whether the return value is an array or sparse matrix depends on\n the type of the input X.\n \"\"\"\n+ X = validate_data(\n+ self, X, accept_sparse=\"csr\", reset=False, ensure_non_negative=True\n+ )\n+ sparse = sp.issparse(X)\n+\n+ if self.sample_interval is None:\n+ # See figure 2 c) of \"Efficient additive kernels via explicit feature maps\" # noqa\n+ # <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>\n+ # A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, # noqa\n+ # 2011\n+ if self.sample_steps == 1:\n+ sample_interval = 0.8\n+ elif self.sample_steps == 2:\n+ sample_interval = 0.5\n+ elif self.sample_steps == 3:\n+ sample_interval = 0.4\n+ else:\n+ raise ValueError(\n+ \"If sample_steps is not in [1, 2, 3],\"\n+ \" you need to provide sample_interval\"\n+ )\n+ else:\n+ sample_interval = self.sample_interval\n+\n+ # zeroth component\n+ # 1/cosh = sech\n+ # cosh(0) = 1.0\n+ transf = self._transform_sparse if sparse else self._transform_dense\n+ return transf(X, self.sample_steps, sample_interval)\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n", "test": null }
null
{ "code": "diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py\nindex 92d906dde..b150d94d3 100644\n--- a/sklearn/kernel_approximation.py\n+++ b/sklearn/kernel_approximation.py\n@@ -704,35 +704,6 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):\n Whether the return value is an array or sparse matrix depends on\n the type of the input X.\n \"\"\"\n- X = validate_data(\n- self, X, accept_sparse=\"csr\", reset=False, ensure_non_negative=True\n- )\n- sparse = sp.issparse(X)\n-\n- if self.sample_interval is None:\n- # See figure 2 c) of \"Efficient additive kernels via explicit feature maps\" # noqa\n- # <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>\n- # A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, # noqa\n- # 2011\n- if self.sample_steps == 1:\n- sample_interval = 0.8\n- elif self.sample_steps == 2:\n- sample_interval = 0.5\n- elif self.sample_steps == 3:\n- sample_interval = 0.4\n- else:\n- raise ValueError(\n- \"If sample_steps is not in [1, 2, 3],\"\n- \" you need to provide sample_interval\"\n- )\n- else:\n- sample_interval = self.sample_interval\n-\n- # zeroth component\n- # 1/cosh = sech\n- # cosh(0) = 1.0\n- transf = self._transform_sparse if sparse else self._transform_dense\n- return transf(X, self.sample_steps, sample_interval)\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/kernel_approximation.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Apply approximate feature map to X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n Returns\n -------\n X_new : {ndarray, sparse matrix}, \\\n shape = (n_samples, n_features * (2*sample_steps - 1))\n Whether the return value is an array or sparse matrix depends on\n the type of the input X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_transformers_unfitted_stateless]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[AdditiveChi2Sampler()-check_fit2d_predict1d]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler[csr_array]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[1-fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[1-transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[2-fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[2-transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[3-fit_transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_sample_steps[3-transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_wrong_sample_steps[transform]", "sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_exceptions", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_matrix]", "sklearn/tests/test_kernel_approximation.py::test_input_validation[csr_array]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.AdditiveChi2Sampler", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform[AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-AdditiveChi2Sampler()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-AdditiveChi2Sampler()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-5
1.0
{ "code": "diff --git b/sklearn/cluster/_affinity_propagation.py a/sklearn/cluster/_affinity_propagation.py\nindex 080462fce..33bbcb77f 100644\n--- b/sklearn/cluster/_affinity_propagation.py\n+++ a/sklearn/cluster/_affinity_propagation.py\n@@ -483,6 +483,7 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):\n tags.input_tags.pairwise = self.affinity == \"precomputed\"\n return tags\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the clustering from features, or affinity matrix.\n \n@@ -502,6 +503,46 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):\n self\n Returns the instance itself.\n \"\"\"\n+ if self.affinity == \"precomputed\":\n+ X = validate_data(self, X, copy=self.copy, force_writeable=True)\n+ self.affinity_matrix_ = X\n+ else: # self.affinity == \"euclidean\"\n+ X = validate_data(self, X, accept_sparse=\"csr\")\n+ self.affinity_matrix_ = -euclidean_distances(X, squared=True)\n+\n+ if self.affinity_matrix_.shape[0] != self.affinity_matrix_.shape[1]:\n+ raise ValueError(\n+ \"The matrix of similarities must be a square array. \"\n+ f\"Got {self.affinity_matrix_.shape} instead.\"\n+ )\n+\n+ if self.preference is None:\n+ preference = np.median(self.affinity_matrix_)\n+ else:\n+ preference = self.preference\n+ preference = np.asarray(preference)\n+\n+ random_state = check_random_state(self.random_state)\n+\n+ (\n+ self.cluster_centers_indices_,\n+ self.labels_,\n+ self.n_iter_,\n+ ) = _affinity_propagation(\n+ self.affinity_matrix_,\n+ max_iter=self.max_iter,\n+ convergence_iter=self.convergence_iter,\n+ preference=preference,\n+ damping=self.damping,\n+ verbose=self.verbose,\n+ return_n_iter=True,\n+ random_state=random_state,\n+ )\n+\n+ if self.affinity != \"precomputed\":\n+ self.cluster_centers_ = X[self.cluster_centers_indices_].copy()\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Predict the closest cluster each sample in X belongs to.\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py\nindex 33bbcb77f..080462fce 100644\n--- a/sklearn/cluster/_affinity_propagation.py\n+++ b/sklearn/cluster/_affinity_propagation.py\n@@ -483,7 +483,6 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):\n tags.input_tags.pairwise = self.affinity == \"precomputed\"\n return tags\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the clustering from features, or affinity matrix.\n \n@@ -503,46 +502,6 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):\n self\n Returns the instance itself.\n \"\"\"\n- if self.affinity == \"precomputed\":\n- X = validate_data(self, X, copy=self.copy, force_writeable=True)\n- self.affinity_matrix_ = X\n- else: # self.affinity == \"euclidean\"\n- X = validate_data(self, X, accept_sparse=\"csr\")\n- self.affinity_matrix_ = -euclidean_distances(X, squared=True)\n-\n- if self.affinity_matrix_.shape[0] != self.affinity_matrix_.shape[1]:\n- raise ValueError(\n- \"The matrix of similarities must be a square array. \"\n- f\"Got {self.affinity_matrix_.shape} instead.\"\n- )\n-\n- if self.preference is None:\n- preference = np.median(self.affinity_matrix_)\n- else:\n- preference = self.preference\n- preference = np.asarray(preference)\n-\n- random_state = check_random_state(self.random_state)\n-\n- (\n- self.cluster_centers_indices_,\n- self.labels_,\n- self.n_iter_,\n- ) = _affinity_propagation(\n- self.affinity_matrix_,\n- max_iter=self.max_iter,\n- convergence_iter=self.convergence_iter,\n- preference=preference,\n- damping=self.damping,\n- verbose=self.verbose,\n- return_n_iter=True,\n- random_state=random_state,\n- )\n-\n- if self.affinity != \"precomputed\":\n- self.cluster_centers_ = X[self.cluster_centers_indices_].copy()\n-\n- return self\n \n def predict(self, X):\n \"\"\"Predict the closest cluster each sample in X belongs to.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_affinity_propagation.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the clustering from features, or affinity matrix.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features), or \\\n array-like of shape (n_samples, n_samples)\n Training instances to cluster, or similarities / affinities between\n instances if ``affinity='precomputed'``. If a sparse feature matrix\n is provided, it will be converted into a sparse ``csr_matrix``.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.cluster.affinity_propagation-sklearn.cluster.AffinityPropagation]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation[float64-42]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_precomputed", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_no_copy", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_affinity_shape", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_precomputed_with_sparse_input[csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_precomputed_with_sparse_input[csr_array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict[float64-42]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_error", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_fit_non_convergence[float64]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_equal_mutual_similarities[float64]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_non_convergence[float64]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_non_convergence_regressiontest[float64]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_random_state", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float64-csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float64-csr_array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float64-array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_correct_clusters[float64]", "sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_predict[csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_predict[csr_array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_fit_predict[csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_fit_predict[csr_array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_equal_points", "sklearn/cluster/_affinity_propagation.py::sklearn.cluster._affinity_propagation.AffinityPropagation", "sklearn/cluster/_affinity_propagation.py::sklearn.cluster._affinity_propagation.affinity_propagation", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AffinityPropagation(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AffinityPropagation(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[AffinityPropagation(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[AffinityPropagation(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-6
1.0
{ "code": "diff --git b/sklearn/cluster/_affinity_propagation.py a/sklearn/cluster/_affinity_propagation.py\nindex 2b377d697..33bbcb77f 100644\n--- b/sklearn/cluster/_affinity_propagation.py\n+++ a/sklearn/cluster/_affinity_propagation.py\n@@ -558,6 +558,26 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):\n labels : ndarray of shape (n_samples,)\n Cluster labels.\n \"\"\"\n+ check_is_fitted(self)\n+ X = validate_data(self, X, reset=False, accept_sparse=\"csr\")\n+ if not hasattr(self, \"cluster_centers_\"):\n+ raise ValueError(\n+ \"Predict method is not supported when affinity='precomputed'.\"\n+ )\n+\n+ if self.cluster_centers_.shape[0] > 0:\n+ with config_context(assume_finite=True):\n+ return pairwise_distances_argmin(X, self.cluster_centers_)\n+ else:\n+ warnings.warn(\n+ (\n+ \"This model does not have any cluster centers \"\n+ \"because affinity propagation did not converge. \"\n+ \"Labeling every sample as '-1'.\"\n+ ),\n+ ConvergenceWarning,\n+ )\n+ return np.array([-1] * X.shape[0])\n \n def fit_predict(self, X, y=None):\n \"\"\"Fit clustering from features/affinity matrix; return cluster labels.\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py\nindex 33bbcb77f..2b377d697 100644\n--- a/sklearn/cluster/_affinity_propagation.py\n+++ b/sklearn/cluster/_affinity_propagation.py\n@@ -558,26 +558,6 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):\n labels : ndarray of shape (n_samples,)\n Cluster labels.\n \"\"\"\n- check_is_fitted(self)\n- X = validate_data(self, X, reset=False, accept_sparse=\"csr\")\n- if not hasattr(self, \"cluster_centers_\"):\n- raise ValueError(\n- \"Predict method is not supported when affinity='precomputed'.\"\n- )\n-\n- if self.cluster_centers_.shape[0] > 0:\n- with config_context(assume_finite=True):\n- return pairwise_distances_argmin(X, self.cluster_centers_)\n- else:\n- warnings.warn(\n- (\n- \"This model does not have any cluster centers \"\n- \"because affinity propagation did not converge. \"\n- \"Labeling every sample as '-1'.\"\n- ),\n- ConvergenceWarning,\n- )\n- return np.array([-1] * X.shape[0])\n \n def fit_predict(self, X, y=None):\n \"\"\"Fit clustering from features/affinity matrix; return cluster labels.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_affinity_propagation.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict the closest cluster each sample in X belongs to.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n New data to predict. If a sparse matrix is provided, it will be\n converted into a sparse ``csr_matrix``.\n\n Returns\n -------\n labels : ndarray of shape (n_samples,)\n Cluster labels.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[AffinityPropagation(max_iter=5)-check_fit2d_predict1d]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict[float64-42]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_error", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_non_convergence[float64]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float64-csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float64-csr_array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_convergence_warning_dense_sparse[float64-array]", "sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_predict[csr_matrix]", "sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_predict[csr_array]", "sklearn/cluster/_affinity_propagation.py::sklearn.cluster._affinity_propagation.AffinityPropagation", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AffinityPropagation(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AffinityPropagation(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-7
1.0
{ "code": "diff --git b/sklearn/ensemble/_bagging.py a/sklearn/ensemble/_bagging.py\nindex 84ba62938..7c630e2f3 100644\n--- b/sklearn/ensemble/_bagging.py\n+++ a/sklearn/ensemble/_bagging.py\n@@ -989,6 +989,43 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):\n The class log-probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n+ check_is_fitted(self)\n+ if hasattr(self.estimator_, \"predict_log_proba\"):\n+ # Check data\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=[\"csr\", \"csc\"],\n+ dtype=None,\n+ ensure_all_finite=False,\n+ reset=False,\n+ )\n+\n+ # Parallel loop\n+ n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)\n+\n+ all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(\n+ delayed(_parallel_predict_log_proba)(\n+ self.estimators_[starts[i] : starts[i + 1]],\n+ self.estimators_features_[starts[i] : starts[i + 1]],\n+ X,\n+ self.n_classes_,\n+ )\n+ for i in range(n_jobs)\n+ )\n+\n+ # Reduce\n+ log_proba = all_log_proba[0]\n+\n+ for j in range(1, len(all_log_proba)):\n+ log_proba = np.logaddexp(log_proba, all_log_proba[j])\n+\n+ log_proba -= np.log(self.n_estimators)\n+\n+ else:\n+ log_proba = np.log(self.predict_proba(X))\n+\n+ return log_proba\n \n @available_if(_estimator_has(\"decision_function\"))\n def decision_function(self, X):\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_bagging.py b/sklearn/ensemble/_bagging.py\nindex 7c630e2f3..84ba62938 100644\n--- a/sklearn/ensemble/_bagging.py\n+++ b/sklearn/ensemble/_bagging.py\n@@ -989,43 +989,6 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):\n The class log-probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n- check_is_fitted(self)\n- if hasattr(self.estimator_, \"predict_log_proba\"):\n- # Check data\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=[\"csr\", \"csc\"],\n- dtype=None,\n- ensure_all_finite=False,\n- reset=False,\n- )\n-\n- # Parallel loop\n- n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)\n-\n- all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(\n- delayed(_parallel_predict_log_proba)(\n- self.estimators_[starts[i] : starts[i + 1]],\n- self.estimators_features_[starts[i] : starts[i + 1]],\n- X,\n- self.n_classes_,\n- )\n- for i in range(n_jobs)\n- )\n-\n- # Reduce\n- log_proba = all_log_proba[0]\n-\n- for j in range(1, len(all_log_proba)):\n- log_proba = np.logaddexp(log_proba, all_log_proba[j])\n-\n- log_proba -= np.log(self.n_estimators)\n-\n- else:\n- log_proba = np.log(self.predict_proba(X))\n-\n- return log_proba\n \n @available_if(_estimator_has(\"decision_function\"))\n def decision_function(self, X):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_bagging.py.\nHere is the description for the function:\n def predict_log_proba(self, X):\n \"\"\"Predict class log-probabilities for X.\n\n The predicted class log-probabilities of an input sample is computed as\n the log of the mean predicted class probabilities of the base\n estimators in the ensemble.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The training input samples. Sparse matrices are accepted only if\n they are supported by the base estimator.\n\n Returns\n -------\n p : ndarray of shape (n_samples, n_classes)\n The class log-probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_unfitted]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params2-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params6-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params10-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params14-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params18-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params22-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params26-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params30-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params34-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params38-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params42-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params46-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params50-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params54-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params58-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params62-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_probability", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5,oob_score=True)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-8
1.0
{ "code": "diff --git b/sklearn/ensemble/_bagging.py a/sklearn/ensemble/_bagging.py\nindex 1a6f5e1fd..7c630e2f3 100644\n--- b/sklearn/ensemble/_bagging.py\n+++ a/sklearn/ensemble/_bagging.py\n@@ -939,6 +939,36 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):\n The class probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n+ check_is_fitted(self)\n+ # Check data\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=[\"csr\", \"csc\"],\n+ dtype=None,\n+ ensure_all_finite=False,\n+ reset=False,\n+ )\n+\n+ # Parallel loop\n+ n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)\n+\n+ all_proba = Parallel(\n+ n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args()\n+ )(\n+ delayed(_parallel_predict_proba)(\n+ self.estimators_[starts[i] : starts[i + 1]],\n+ self.estimators_features_[starts[i] : starts[i + 1]],\n+ X,\n+ self.n_classes_,\n+ )\n+ for i in range(n_jobs)\n+ )\n+\n+ # Reduce\n+ proba = sum(all_proba) / self.n_estimators\n+\n+ return proba\n \n def predict_log_proba(self, X):\n \"\"\"Predict class log-probabilities for X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_bagging.py b/sklearn/ensemble/_bagging.py\nindex 7c630e2f3..1a6f5e1fd 100644\n--- a/sklearn/ensemble/_bagging.py\n+++ b/sklearn/ensemble/_bagging.py\n@@ -939,36 +939,6 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):\n The class probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n- check_is_fitted(self)\n- # Check data\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=[\"csr\", \"csc\"],\n- dtype=None,\n- ensure_all_finite=False,\n- reset=False,\n- )\n-\n- # Parallel loop\n- n_jobs, _, starts = _partition_estimators(self.n_estimators, self.n_jobs)\n-\n- all_proba = Parallel(\n- n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args()\n- )(\n- delayed(_parallel_predict_proba)(\n- self.estimators_[starts[i] : starts[i + 1]],\n- self.estimators_features_[starts[i] : starts[i + 1]],\n- X,\n- self.n_classes_,\n- )\n- for i in range(n_jobs)\n- )\n-\n- # Reduce\n- proba = sum(all_proba) / self.n_estimators\n-\n- return proba\n \n def predict_log_proba(self, X):\n \"\"\"Predict class log-probabilities for X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_bagging.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Predict class probabilities for X.\n\n The predicted class probabilities of an input sample is computed as\n the mean predicted class probabilities of the base estimators in the\n ensemble. If base estimators do not implement a ``predict_proba``\n method, then it resorts to voting and the predicted class probabilities\n of an input sample represents the proportion of estimators predicting\n each class.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The training input samples. Sparse matrices are accepted only if\n they are supported by the base estimator.\n\n Returns\n -------\n p : ndarray of shape (n_samples, n_classes)\n The class probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params0-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params1-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params2-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params4-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params5-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params6-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params8-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params9-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params10-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params12-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params13-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_matrix-params14-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params16-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params17-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params18-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params20-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params21-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params22-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params24-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params25-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params26-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params28-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params29-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csr_array-params30-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params32-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params33-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params34-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params36-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params37-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params38-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params40-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params41-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params42-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params44-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params45-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_matrix-params46-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params48-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params49-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params50-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params52-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params53-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params54-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params56-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params57-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params58-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params60-predict]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params61-predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_sparse_classification[csc_array-params62-predict_log_proba]", "sklearn/ensemble/tests/test_bagging.py::test_probability", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_classification", "sklearn/ensemble/tests/test_bagging.py::test_parallel_classification", "sklearn/ensemble/tests/test_bagging.py::test_bagging_sample_weight_unsupported_but_passed", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equal_n_estimators", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equivalence", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeClassifier", "sklearn/ensemble/_bagging.py::sklearn.ensemble._bagging.BaggingClassifier", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5,oob_score=True)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-9
1.0
{ "code": "diff --git b/sklearn/linear_model/_bayes.py a/sklearn/linear_model/_bayes.py\nindex c5ee61003..b6527d4f2 100644\n--- b/sklearn/linear_model/_bayes.py\n+++ a/sklearn/linear_model/_bayes.py\n@@ -213,6 +213,7 @@ class BayesianRidge(RegressorMixin, LinearModel):\n self.copy_X = copy_X\n self.verbose = verbose\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model.\n \n@@ -234,6 +235,115 @@ class BayesianRidge(RegressorMixin, LinearModel):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ dtype=[np.float64, np.float32],\n+ force_writeable=True,\n+ y_numeric=True,\n+ )\n+ dtype = X.dtype\n+\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=dtype)\n+\n+ X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data(\n+ X,\n+ y,\n+ fit_intercept=self.fit_intercept,\n+ copy=self.copy_X,\n+ sample_weight=sample_weight,\n+ )\n+\n+ if sample_weight is not None:\n+ # Sample weight can be implemented via a simple rescaling.\n+ X, y, _ = _rescale_data(X, y, sample_weight)\n+\n+ self.X_offset_ = X_offset_\n+ self.X_scale_ = X_scale_\n+ n_samples, n_features = X.shape\n+\n+ # Initialization of the values of the parameters\n+ eps = np.finfo(np.float64).eps\n+ # Add `eps` in the denominator to omit division by zero if `np.var(y)`\n+ # is zero\n+ alpha_ = self.alpha_init\n+ lambda_ = self.lambda_init\n+ if alpha_ is None:\n+ alpha_ = 1.0 / (np.var(y) + eps)\n+ if lambda_ is None:\n+ lambda_ = 1.0\n+\n+ # Avoid unintended type promotion to float64 with numpy 2\n+ alpha_ = np.asarray(alpha_, dtype=dtype)\n+ lambda_ = np.asarray(lambda_, dtype=dtype)\n+\n+ verbose = self.verbose\n+ lambda_1 = self.lambda_1\n+ lambda_2 = self.lambda_2\n+ alpha_1 = self.alpha_1\n+ alpha_2 = self.alpha_2\n+\n+ self.scores_ = list()\n+ coef_old_ = None\n+\n+ XT_y = np.dot(X.T, y)\n+ U, S, Vh = linalg.svd(X, full_matrices=False)\n+ eigen_vals_ = S**2\n+\n+ # Convergence loop of the bayesian ridge regression\n+ for iter_ in range(self.max_iter):\n+ # update posterior mean coef_ based on alpha_ and lambda_ and\n+ # compute corresponding rmse\n+ coef_, rmse_ = self._update_coef_(\n+ X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_\n+ )\n+ if self.compute_score:\n+ # compute the log marginal likelihood\n+ s = self._log_marginal_likelihood(\n+ n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_\n+ )\n+ self.scores_.append(s)\n+\n+ # Update alpha and lambda according to (MacKay, 1992)\n+ gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))\n+ lambda_ = (gamma_ + 2 * lambda_1) / (np.sum(coef_**2) + 2 * lambda_2)\n+ alpha_ = (n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)\n+\n+ # Check for convergence\n+ if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:\n+ if verbose:\n+ print(\"Convergence after \", str(iter_), \" iterations\")\n+ break\n+ coef_old_ = np.copy(coef_)\n+\n+ self.n_iter_ = iter_ + 1\n+\n+ # return regularization parameters and corresponding posterior mean,\n+ # log marginal likelihood and posterior covariance\n+ self.alpha_ = alpha_\n+ self.lambda_ = lambda_\n+ self.coef_, rmse_ = self._update_coef_(\n+ X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_\n+ )\n+ if self.compute_score:\n+ # compute the log marginal likelihood\n+ s = self._log_marginal_likelihood(\n+ n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_\n+ )\n+ self.scores_.append(s)\n+ self.scores_ = np.array(self.scores_)\n+\n+ # posterior covariance is given by 1/alpha_ * scaled_sigma_\n+ scaled_sigma_ = np.dot(\n+ Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]\n+ )\n+ self.sigma_ = (1.0 / alpha_) * scaled_sigma_\n+\n+ self._set_intercept(X_offset_, y_offset_, X_scale_)\n+\n+ return self\n \n def predict(self, X, return_std=False):\n \"\"\"Predict using the linear model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_bayes.py b/sklearn/linear_model/_bayes.py\nindex b6527d4f2..c5ee61003 100644\n--- a/sklearn/linear_model/_bayes.py\n+++ b/sklearn/linear_model/_bayes.py\n@@ -213,7 +213,6 @@ class BayesianRidge(RegressorMixin, LinearModel):\n self.copy_X = copy_X\n self.verbose = verbose\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model.\n \n@@ -235,115 +234,6 @@ class BayesianRidge(RegressorMixin, LinearModel):\n self : object\n Returns the instance itself.\n \"\"\"\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- dtype=[np.float64, np.float32],\n- force_writeable=True,\n- y_numeric=True,\n- )\n- dtype = X.dtype\n-\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=dtype)\n-\n- X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data(\n- X,\n- y,\n- fit_intercept=self.fit_intercept,\n- copy=self.copy_X,\n- sample_weight=sample_weight,\n- )\n-\n- if sample_weight is not None:\n- # Sample weight can be implemented via a simple rescaling.\n- X, y, _ = _rescale_data(X, y, sample_weight)\n-\n- self.X_offset_ = X_offset_\n- self.X_scale_ = X_scale_\n- n_samples, n_features = X.shape\n-\n- # Initialization of the values of the parameters\n- eps = np.finfo(np.float64).eps\n- # Add `eps` in the denominator to omit division by zero if `np.var(y)`\n- # is zero\n- alpha_ = self.alpha_init\n- lambda_ = self.lambda_init\n- if alpha_ is None:\n- alpha_ = 1.0 / (np.var(y) + eps)\n- if lambda_ is None:\n- lambda_ = 1.0\n-\n- # Avoid unintended type promotion to float64 with numpy 2\n- alpha_ = np.asarray(alpha_, dtype=dtype)\n- lambda_ = np.asarray(lambda_, dtype=dtype)\n-\n- verbose = self.verbose\n- lambda_1 = self.lambda_1\n- lambda_2 = self.lambda_2\n- alpha_1 = self.alpha_1\n- alpha_2 = self.alpha_2\n-\n- self.scores_ = list()\n- coef_old_ = None\n-\n- XT_y = np.dot(X.T, y)\n- U, S, Vh = linalg.svd(X, full_matrices=False)\n- eigen_vals_ = S**2\n-\n- # Convergence loop of the bayesian ridge regression\n- for iter_ in range(self.max_iter):\n- # update posterior mean coef_ based on alpha_ and lambda_ and\n- # compute corresponding rmse\n- coef_, rmse_ = self._update_coef_(\n- X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_\n- )\n- if self.compute_score:\n- # compute the log marginal likelihood\n- s = self._log_marginal_likelihood(\n- n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_\n- )\n- self.scores_.append(s)\n-\n- # Update alpha and lambda according to (MacKay, 1992)\n- gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))\n- lambda_ = (gamma_ + 2 * lambda_1) / (np.sum(coef_**2) + 2 * lambda_2)\n- alpha_ = (n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)\n-\n- # Check for convergence\n- if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:\n- if verbose:\n- print(\"Convergence after \", str(iter_), \" iterations\")\n- break\n- coef_old_ = np.copy(coef_)\n-\n- self.n_iter_ = iter_ + 1\n-\n- # return regularization parameters and corresponding posterior mean,\n- # log marginal likelihood and posterior covariance\n- self.alpha_ = alpha_\n- self.lambda_ = lambda_\n- self.coef_, rmse_ = self._update_coef_(\n- X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_\n- )\n- if self.compute_score:\n- # compute the log marginal likelihood\n- s = self._log_marginal_likelihood(\n- n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_\n- )\n- self.scores_.append(s)\n- self.scores_ = np.array(self.scores_)\n-\n- # posterior covariance is given by 1/alpha_ * scaled_sigma_\n- scaled_sigma_ = np.dot(\n- Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]\n- )\n- self.sigma_ = (1.0 / alpha_) * scaled_sigma_\n-\n- self._set_intercept(X_offset_, y_offset_, X_scale_)\n-\n- return self\n \n def predict(self, X, return_std=False):\n \"\"\"Predict using the linear model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_bayes.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples, n_features)\n Training data.\n y : ndarray of shape (n_samples,)\n Target values. Will be cast to X's dtype if necessary.\n\n sample_weight : ndarray of shape (n_samples,), default=None\n Individual weights for each sample.\n\n .. versionadded:: 0.20\n parameter *sample_weight* support to BayesianRidge.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-constant]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_warning", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]", "sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]", "sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_requires_y_none]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-BayesianRidge]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-BayesianRidge]", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_ridge_scores", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_ridge_score_values", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_ridge_parameter", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_sample_weights", "sklearn/linear_model/tests/test_bayes.py::test_toy_bayesian_ridge_object", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_initial_params", "sklearn/linear_model/tests/test_bayes.py::test_prediction_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_std_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_return_std[array]", "sklearn/linear_model/tests/test_bayes.py::test_return_std[dataframe]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[BayesianRidge-float32]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[BayesianRidge-float64]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_correctness[BayesianRidge]", "sklearn/linear_model/_bayes.py::sklearn.linear_model._bayes.BayesianRidge", "sklearn/impute/_iterative.py::sklearn.impute._iterative.IterativeImputer", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BayesianRidge(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IterativeImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BayesianRidge(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IterativeImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[IterativeImputer()]", "sklearn/tests/test_common.py::test_check_param_validation[BayesianRidge(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[BayesianRidge(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-10
1.0
{ "code": "diff --git b/sklearn/linear_model/_bayes.py a/sklearn/linear_model/_bayes.py\nindex 475588ca0..b6527d4f2 100644\n--- b/sklearn/linear_model/_bayes.py\n+++ a/sklearn/linear_model/_bayes.py\n@@ -367,6 +367,13 @@ class BayesianRidge(RegressorMixin, LinearModel):\n y_std : array-like of shape (n_samples,)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n+ y_mean = self._decision_function(X)\n+ if not return_std:\n+ return y_mean\n+ else:\n+ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)\n+ y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_))\n+ return y_mean, y_std\n \n def _update_coef_(\n self, X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_bayes.py b/sklearn/linear_model/_bayes.py\nindex b6527d4f2..475588ca0 100644\n--- a/sklearn/linear_model/_bayes.py\n+++ b/sklearn/linear_model/_bayes.py\n@@ -367,13 +367,6 @@ class BayesianRidge(RegressorMixin, LinearModel):\n y_std : array-like of shape (n_samples,)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n- y_mean = self._decision_function(X)\n- if not return_std:\n- return y_mean\n- else:\n- sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)\n- y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_))\n- return y_mean, y_std\n \n def _update_coef_(\n self, X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_bayes.py.\nHere is the description for the function:\n def predict(self, X, return_std=False):\n \"\"\"Predict using the linear model.\n\n In addition to the mean of the predictive distribution, also its\n standard deviation can be returned.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Samples.\n\n return_std : bool, default=False\n Whether to return the standard deviation of posterior prediction.\n\n Returns\n -------\n y_mean : array-like of shape (n_samples,)\n Mean of predictive distribution of query points.\n\n y_std : array-like of shape (n_samples,)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-constant]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_warning", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]", "sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]", "sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BayesianRidge(max_iter=5)-check_fit2d_predict1d]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-BayesianRidge]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-BayesianRidge]", "sklearn/linear_model/tests/test_bayes.py::test_toy_bayesian_ridge_object", "sklearn/linear_model/tests/test_bayes.py::test_bayesian_initial_params", "sklearn/linear_model/tests/test_bayes.py::test_prediction_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_std_bayesian_ridge_ard_with_constant_input", "sklearn/linear_model/tests/test_bayes.py::test_return_std[array]", "sklearn/linear_model/tests/test_bayes.py::test_return_std[dataframe]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[BayesianRidge-float32]", "sklearn/linear_model/tests/test_bayes.py::test_dtype_match[BayesianRidge-float64]", "sklearn/linear_model/_bayes.py::sklearn.linear_model._bayes.BayesianRidge", "sklearn/impute/_iterative.py::sklearn.impute._iterative.IterativeImputer", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BayesianRidge(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BayesianRidge(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-11
1.0
{ "code": "diff --git b/sklearn/neural_network/_rbm.py a/sklearn/neural_network/_rbm.py\nindex 9e29bd3d7..49848e9f9 100644\n--- b/sklearn/neural_network/_rbm.py\n+++ a/sklearn/neural_network/_rbm.py\n@@ -382,6 +382,7 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n # log(expit(x)) = log(1 / (1 + exp(-x)) = -np.logaddexp(0, -x)\n return -v.shape[1] * np.logaddexp(0, -(fe_ - fe))\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model to the data X.\n \n@@ -398,6 +399,44 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n self : BernoulliRBM\n The fitted model.\n \"\"\"\n+ X = validate_data(self, X, accept_sparse=\"csr\", dtype=(np.float64, np.float32))\n+ n_samples = X.shape[0]\n+ rng = check_random_state(self.random_state)\n+\n+ self.components_ = np.asarray(\n+ rng.normal(0, 0.01, (self.n_components, X.shape[1])),\n+ order=\"F\",\n+ dtype=X.dtype,\n+ )\n+ self._n_features_out = self.components_.shape[0]\n+ self.intercept_hidden_ = np.zeros(self.n_components, dtype=X.dtype)\n+ self.intercept_visible_ = np.zeros(X.shape[1], dtype=X.dtype)\n+ self.h_samples_ = np.zeros((self.batch_size, self.n_components), dtype=X.dtype)\n+\n+ n_batches = int(np.ceil(float(n_samples) / self.batch_size))\n+ batch_slices = list(\n+ gen_even_slices(n_batches * self.batch_size, n_batches, n_samples=n_samples)\n+ )\n+ verbose = self.verbose\n+ begin = time.time()\n+ for iteration in range(1, self.n_iter + 1):\n+ for batch_slice in batch_slices:\n+ self._fit(X[batch_slice], rng)\n+\n+ if verbose:\n+ end = time.time()\n+ print(\n+ \"[%s] Iteration %d, pseudo-likelihood = %.2f, time = %.2fs\"\n+ % (\n+ type(self).__name__,\n+ iteration,\n+ self.score_samples(X).mean(),\n+ end - begin,\n+ )\n+ )\n+ begin = end\n+\n+ return self\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py\nindex 49848e9f9..9e29bd3d7 100644\n--- a/sklearn/neural_network/_rbm.py\n+++ b/sklearn/neural_network/_rbm.py\n@@ -382,7 +382,6 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n # log(expit(x)) = log(1 / (1 + exp(-x)) = -np.logaddexp(0, -x)\n return -v.shape[1] * np.logaddexp(0, -(fe_ - fe))\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model to the data X.\n \n@@ -399,44 +398,6 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n self : BernoulliRBM\n The fitted model.\n \"\"\"\n- X = validate_data(self, X, accept_sparse=\"csr\", dtype=(np.float64, np.float32))\n- n_samples = X.shape[0]\n- rng = check_random_state(self.random_state)\n-\n- self.components_ = np.asarray(\n- rng.normal(0, 0.01, (self.n_components, X.shape[1])),\n- order=\"F\",\n- dtype=X.dtype,\n- )\n- self._n_features_out = self.components_.shape[0]\n- self.intercept_hidden_ = np.zeros(self.n_components, dtype=X.dtype)\n- self.intercept_visible_ = np.zeros(X.shape[1], dtype=X.dtype)\n- self.h_samples_ = np.zeros((self.batch_size, self.n_components), dtype=X.dtype)\n-\n- n_batches = int(np.ceil(float(n_samples) / self.batch_size))\n- batch_slices = list(\n- gen_even_slices(n_batches * self.batch_size, n_batches, n_samples=n_samples)\n- )\n- verbose = self.verbose\n- begin = time.time()\n- for iteration in range(1, self.n_iter + 1):\n- for batch_slice in batch_slices:\n- self._fit(X[batch_slice], rng)\n-\n- if verbose:\n- end = time.time()\n- print(\n- \"[%s] Iteration %d, pseudo-likelihood = %.2f, time = %.2fs\"\n- % (\n- type(self).__name__,\n- iteration,\n- self.score_samples(X).mean(),\n- end - begin,\n- )\n- )\n- begin = end\n-\n- return self\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neural_network/_rbm.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the model to the data X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : BernoulliRBM\n The fitted model.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_components=1,n_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit2d_predict1d]", "sklearn/neural_network/tests/test_rbm.py::test_fit", "sklearn/neural_network/tests/test_rbm.py::test_transform", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse[csr_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse[csr_array]", "sklearn/neural_network/tests/test_rbm.py::test_sample_hiddens", "sklearn/neural_network/tests/test_rbm.py::test_fit_gibbs[csc_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_fit_gibbs[csc_array]", "sklearn/neural_network/tests/test_rbm.py::test_gibbs_smoke", "sklearn/neural_network/tests/test_rbm.py::test_score_samples[lil_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_score_samples[lil_array]", "sklearn/neural_network/tests/test_rbm.py::test_rbm_verbose", "sklearn/neural_network/tests/test_rbm.py::test_sparse_and_verbose[csc_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_sparse_and_verbose[csc_array]", "sklearn/neural_network/tests/test_rbm.py::test_transformer_dtypes_casting[float32-float32]", "sklearn/neural_network/tests/test_rbm.py::test_transformer_dtypes_casting[float64-float64]", "sklearn/neural_network/tests/test_rbm.py::test_transformer_dtypes_casting[int-float64]", "sklearn/neural_network/tests/test_rbm.py::test_convergence_dtype_consistency", "sklearn/neural_network/tests/test_rbm.py::test_feature_names_out[fit]", "sklearn/neural_network/_rbm.py::sklearn.neural_network._rbm.BernoulliRBM", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-BernoulliRBM(n_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-12
1.0
{ "code": "diff --git b/sklearn/neural_network/_rbm.py a/sklearn/neural_network/_rbm.py\nindex 2f53aedb8..49848e9f9 100644\n--- b/sklearn/neural_network/_rbm.py\n+++ a/sklearn/neural_network/_rbm.py\n@@ -269,6 +269,7 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n \n return v_\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n \"\"\"Fit the model to the partial segment of the data X.\n \n@@ -285,6 +286,30 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n self : BernoulliRBM\n The fitted model.\n \"\"\"\n+ first_pass = not hasattr(self, \"components_\")\n+ X = validate_data(\n+ self, X, accept_sparse=\"csr\", dtype=np.float64, reset=first_pass\n+ )\n+ if not hasattr(self, \"random_state_\"):\n+ self.random_state_ = check_random_state(self.random_state)\n+ if not hasattr(self, \"components_\"):\n+ self.components_ = np.asarray(\n+ self.random_state_.normal(0, 0.01, (self.n_components, X.shape[1])),\n+ order=\"F\",\n+ )\n+ self._n_features_out = self.components_.shape[0]\n+ if not hasattr(self, \"intercept_hidden_\"):\n+ self.intercept_hidden_ = np.zeros(\n+ self.n_components,\n+ )\n+ if not hasattr(self, \"intercept_visible_\"):\n+ self.intercept_visible_ = np.zeros(\n+ X.shape[1],\n+ )\n+ if not hasattr(self, \"h_samples_\"):\n+ self.h_samples_ = np.zeros((self.batch_size, self.n_components))\n+\n+ self._fit(X, self.random_state_)\n \n def _fit(self, v_pos, rng):\n \"\"\"Inner fit for one mini-batch.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py\nindex 49848e9f9..2f53aedb8 100644\n--- a/sklearn/neural_network/_rbm.py\n+++ b/sklearn/neural_network/_rbm.py\n@@ -269,7 +269,6 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n \n return v_\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n \"\"\"Fit the model to the partial segment of the data X.\n \n@@ -286,30 +285,6 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n self : BernoulliRBM\n The fitted model.\n \"\"\"\n- first_pass = not hasattr(self, \"components_\")\n- X = validate_data(\n- self, X, accept_sparse=\"csr\", dtype=np.float64, reset=first_pass\n- )\n- if not hasattr(self, \"random_state_\"):\n- self.random_state_ = check_random_state(self.random_state)\n- if not hasattr(self, \"components_\"):\n- self.components_ = np.asarray(\n- self.random_state_.normal(0, 0.01, (self.n_components, X.shape[1])),\n- order=\"F\",\n- )\n- self._n_features_out = self.components_.shape[0]\n- if not hasattr(self, \"intercept_hidden_\"):\n- self.intercept_hidden_ = np.zeros(\n- self.n_components,\n- )\n- if not hasattr(self, \"intercept_visible_\"):\n- self.intercept_visible_ = np.zeros(\n- X.shape[1],\n- )\n- if not hasattr(self, \"h_samples_\"):\n- self.h_samples_ = np.zeros((self.batch_size, self.n_components))\n-\n- self._fit(X, self.random_state_)\n \n def _fit(self, v_pos, rng):\n \"\"\"Inner fit for one mini-batch.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neural_network/_rbm.py.\nHere is the description for the function:\n def partial_fit(self, X, y=None):\n \"\"\"Fit the model to the partial segment of the data X.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : BernoulliRBM\n The fitted model.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[BernoulliRBM(n_iter=5)-check_fit_score_takes_y]", "sklearn/neural_network/tests/test_rbm.py::test_partial_fit", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csc_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csc_array]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csr_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csr_array]", "sklearn/neural_network/tests/test_rbm.py::test_feature_names_out[partial_fit]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BernoulliRBM(n_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[BernoulliRBM(n_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-13
1.0
{ "code": "diff --git b/sklearn/neural_network/_rbm.py a/sklearn/neural_network/_rbm.py\nindex 4d1bb5988..49848e9f9 100644\n--- b/sklearn/neural_network/_rbm.py\n+++ a/sklearn/neural_network/_rbm.py\n@@ -360,6 +360,27 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n free energy on X, then on a randomly corrupted version of X, and\n returns the log of the logistic function of the difference.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ v = validate_data(self, X, accept_sparse=\"csr\", reset=False)\n+ rng = check_random_state(self.random_state)\n+\n+ # Randomly corrupt one feature in each sample in v.\n+ ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0]))\n+ if sp.issparse(v):\n+ data = -2 * v[ind] + 1\n+ if isinstance(data, np.matrix): # v is a sparse matrix\n+ v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape)\n+ else: # v is a sparse array\n+ v_ = v + sp.csr_array((data.ravel(), ind), shape=v.shape)\n+ else:\n+ v_ = v.copy()\n+ v_[ind] = 1 - v_[ind]\n+\n+ fe = self._free_energy(v)\n+ fe_ = self._free_energy(v_)\n+ # log(expit(x)) = log(1 / (1 + exp(-x)) = -np.logaddexp(0, -x)\n+ return -v.shape[1] * np.logaddexp(0, -(fe_ - fe))\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py\nindex 49848e9f9..4d1bb5988 100644\n--- a/sklearn/neural_network/_rbm.py\n+++ b/sklearn/neural_network/_rbm.py\n@@ -360,27 +360,6 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima\n free energy on X, then on a randomly corrupted version of X, and\n returns the log of the logistic function of the difference.\n \"\"\"\n- check_is_fitted(self)\n-\n- v = validate_data(self, X, accept_sparse=\"csr\", reset=False)\n- rng = check_random_state(self.random_state)\n-\n- # Randomly corrupt one feature in each sample in v.\n- ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0]))\n- if sp.issparse(v):\n- data = -2 * v[ind] + 1\n- if isinstance(data, np.matrix): # v is a sparse matrix\n- v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape)\n- else: # v is a sparse array\n- v_ = v + sp.csr_array((data.ravel(), ind), shape=v.shape)\n- else:\n- v_ = v.copy()\n- v_[ind] = 1 - v_[ind]\n-\n- fe = self._free_energy(v)\n- fe_ = self._free_energy(v_)\n- # log(expit(x)) = log(1 / (1 + exp(-x)) = -np.logaddexp(0, -x)\n- return -v.shape[1] * np.logaddexp(0, -(fe_ - fe))\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neural_network/_rbm.py.\nHere is the description for the function:\n def score_samples(self, X):\n \"\"\"Compute the pseudo-likelihood of X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Values of the visible layer. Must be all-boolean (not checked).\n\n Returns\n -------\n pseudo_likelihood : ndarray of shape (n_samples,)\n Value of the pseudo-likelihood (proxy for likelihood).\n\n Notes\n -----\n This method is not deterministic: it computes a quantity called the\n free energy on X, then on a randomly corrupted version of X, and\n returns the log of the logistic function of the difference.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neural_network/tests/test_rbm.py::test_fit", "sklearn/neural_network/tests/test_rbm.py::test_partial_fit", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csc_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csc_array]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csr_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit[csr_array]", "sklearn/neural_network/tests/test_rbm.py::test_score_samples[lil_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_score_samples[lil_array]", "sklearn/neural_network/tests/test_rbm.py::test_rbm_verbose", "sklearn/neural_network/tests/test_rbm.py::test_sparse_and_verbose[csc_matrix]", "sklearn/neural_network/tests/test_rbm.py::test_sparse_and_verbose[csc_array]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BernoulliRBM(n_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-14
1.0
{ "code": "diff --git b/sklearn/cluster/_bisect_k_means.py a/sklearn/cluster/_bisect_k_means.py\nindex 44a9451a8..83ac46829 100644\n--- b/sklearn/cluster/_bisect_k_means.py\n+++ a/sklearn/cluster/_bisect_k_means.py\n@@ -356,6 +356,7 @@ class BisectingKMeans(_BaseKMeans):\n \n cluster_to_bisect.split(best_labels, best_centers, scores)\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute bisecting k-means clustering.\n \n@@ -382,6 +383,72 @@ class BisectingKMeans(_BaseKMeans):\n self\n Fitted estimator.\n \"\"\"\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=\"csr\",\n+ dtype=[np.float64, np.float32],\n+ order=\"C\",\n+ copy=self.copy_x,\n+ accept_large_sparse=False,\n+ )\n+\n+ self._check_params_vs_input(X)\n+\n+ self._random_state = check_random_state(self.random_state)\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+ self._n_threads = _openmp_effective_n_threads()\n+\n+ if self.algorithm == \"lloyd\" or self.n_clusters == 1:\n+ self._kmeans_single = _kmeans_single_lloyd\n+ self._check_mkl_vcomp(X, X.shape[0])\n+ else:\n+ self._kmeans_single = _kmeans_single_elkan\n+\n+ # Subtract of mean of X for more accurate distance computations\n+ if not sp.issparse(X):\n+ self._X_mean = X.mean(axis=0)\n+ X -= self._X_mean\n+\n+ # Initialize the hierarchical clusters tree\n+ self._bisecting_tree = _BisectingTree(\n+ indices=np.arange(X.shape[0]),\n+ center=X.mean(axis=0),\n+ score=0,\n+ )\n+\n+ x_squared_norms = row_norms(X, squared=True)\n+\n+ for _ in range(self.n_clusters - 1):\n+ # Chose cluster to bisect\n+ cluster_to_bisect = self._bisecting_tree.get_cluster_to_bisect()\n+\n+ # Split this cluster into 2 subclusters\n+ self._bisect(X, x_squared_norms, sample_weight, cluster_to_bisect)\n+\n+ # Aggregate final labels and centers from the bisecting tree\n+ self.labels_ = np.full(X.shape[0], -1, dtype=np.int32)\n+ self.cluster_centers_ = np.empty((self.n_clusters, X.shape[1]), dtype=X.dtype)\n+\n+ for i, cluster_node in enumerate(self._bisecting_tree.iter_leaves()):\n+ self.labels_[cluster_node.indices] = i\n+ self.cluster_centers_[i] = cluster_node.center\n+ cluster_node.label = i # label final clusters for future prediction\n+ cluster_node.indices = None # release memory\n+\n+ # Restore original data\n+ if not sp.issparse(X):\n+ X += self._X_mean\n+ self.cluster_centers_ += self._X_mean\n+\n+ _inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense\n+ self.inertia_ = _inertia(\n+ X, sample_weight, self.cluster_centers_, self.labels_, self._n_threads\n+ )\n+\n+ self._n_features_out = self.cluster_centers_.shape[0]\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Predict which cluster each sample in X belongs to.\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_bisect_k_means.py b/sklearn/cluster/_bisect_k_means.py\nindex 83ac46829..44a9451a8 100644\n--- a/sklearn/cluster/_bisect_k_means.py\n+++ b/sklearn/cluster/_bisect_k_means.py\n@@ -356,7 +356,6 @@ class BisectingKMeans(_BaseKMeans):\n \n cluster_to_bisect.split(best_labels, best_centers, scores)\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute bisecting k-means clustering.\n \n@@ -383,72 +382,6 @@ class BisectingKMeans(_BaseKMeans):\n self\n Fitted estimator.\n \"\"\"\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=\"csr\",\n- dtype=[np.float64, np.float32],\n- order=\"C\",\n- copy=self.copy_x,\n- accept_large_sparse=False,\n- )\n-\n- self._check_params_vs_input(X)\n-\n- self._random_state = check_random_state(self.random_state)\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n- self._n_threads = _openmp_effective_n_threads()\n-\n- if self.algorithm == \"lloyd\" or self.n_clusters == 1:\n- self._kmeans_single = _kmeans_single_lloyd\n- self._check_mkl_vcomp(X, X.shape[0])\n- else:\n- self._kmeans_single = _kmeans_single_elkan\n-\n- # Subtract of mean of X for more accurate distance computations\n- if not sp.issparse(X):\n- self._X_mean = X.mean(axis=0)\n- X -= self._X_mean\n-\n- # Initialize the hierarchical clusters tree\n- self._bisecting_tree = _BisectingTree(\n- indices=np.arange(X.shape[0]),\n- center=X.mean(axis=0),\n- score=0,\n- )\n-\n- x_squared_norms = row_norms(X, squared=True)\n-\n- for _ in range(self.n_clusters - 1):\n- # Chose cluster to bisect\n- cluster_to_bisect = self._bisecting_tree.get_cluster_to_bisect()\n-\n- # Split this cluster into 2 subclusters\n- self._bisect(X, x_squared_norms, sample_weight, cluster_to_bisect)\n-\n- # Aggregate final labels and centers from the bisecting tree\n- self.labels_ = np.full(X.shape[0], -1, dtype=np.int32)\n- self.cluster_centers_ = np.empty((self.n_clusters, X.shape[1]), dtype=X.dtype)\n-\n- for i, cluster_node in enumerate(self._bisecting_tree.iter_leaves()):\n- self.labels_[cluster_node.indices] = i\n- self.cluster_centers_[i] = cluster_node.center\n- cluster_node.label = i # label final clusters for future prediction\n- cluster_node.indices = None # release memory\n-\n- # Restore original data\n- if not sp.issparse(X):\n- X += self._X_mean\n- self.cluster_centers_ += self._X_mean\n-\n- _inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense\n- self.inertia_ = _inertia(\n- X, sample_weight, self.cluster_centers_, self.labels_, self._n_threads\n- )\n-\n- self._n_features_out = self.cluster_centers_.shape[0]\n-\n- return self\n \n def predict(self, X):\n \"\"\"Predict which cluster each sample in X belongs to.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_bisect_k_means.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute bisecting k-means clustering.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n\n Training instances to cluster.\n\n .. note:: The data will be converted to C ordering,\n which will cause a memory copy\n if the given data is not C-contiguous.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n The weights for each observation in X. If None, all observations\n are assigned equal weight. `sample_weight` is not used during\n initialization if `init` is a callable.\n\n Returns\n -------\n self\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[k-means++-biggest_inertia]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[k-means++-largest_cluster]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[random-biggest_inertia]", "sklearn/cluster/tests/test_bisect_k_means.py::test_three_clusters[random-largest_cluster]", "sklearn/cluster/tests/test_bisect_k_means.py::test_sparse[csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_sparse[csr_array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_n_clusters[4]", "sklearn/cluster/tests/test_bisect_k_means.py::test_n_clusters[5]", "sklearn/cluster/tests/test_bisect_k_means.py::test_one_cluster", "sklearn/cluster/tests/test_bisect_k_means.py::test_fit_predict[csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_fit_predict[csr_array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_fit_predict[None]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float64-csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float64-csr_array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_dtype_preserved[float64-None]", "sklearn/cluster/tests/test_bisect_k_means.py::test_float32_float64_equivalence[csr_matrix]", "sklearn/cluster/tests/test_bisect_k_means.py::test_float32_float64_equivalence[csr_array]", "sklearn/cluster/tests/test_bisect_k_means.py::test_float32_float64_equivalence[None]", "sklearn/cluster/tests/test_bisect_k_means.py::test_no_crash_on_empty_bisections[lloyd]", "sklearn/cluster/tests/test_bisect_k_means.py::test_no_crash_on_empty_bisections[elkan]", "sklearn/cluster/tests/test_bisect_k_means.py::test_one_feature", "sklearn/cluster/_bisect_k_means.py::sklearn.cluster._bisect_k_means.BisectingKMeans", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_param_validation[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform[BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-BisectingKMeans(max_iter=5,n_clusters=2,n_init=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-15
1.0
{ "code": "diff --git b/sklearn/calibration.py a/sklearn/calibration.py\nindex e08464533..8b053f538 100644\n--- b/sklearn/calibration.py\n+++ a/sklearn/calibration.py\n@@ -289,6 +289,10 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)\n \n return estimator\n \n+ @_fit_context(\n+ # CalibratedClassifierCV.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y, sample_weight=None, **fit_params):\n \"\"\"Fit the calibrated model.\n \n@@ -312,6 +316,156 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)\n self : object\n Returns an instance of self.\n \"\"\"\n+ check_classification_targets(y)\n+ X, y = indexable(X, y)\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+\n+ estimator = self._get_estimator()\n+\n+ self.calibrated_classifiers_ = []\n+ if self.cv == \"prefit\":\n+ # `classes_` should be consistent with that of estimator\n+ check_is_fitted(self.estimator, attributes=[\"classes_\"])\n+ self.classes_ = self.estimator.classes_\n+\n+ predictions, _ = _get_response_values(\n+ estimator,\n+ X,\n+ response_method=[\"decision_function\", \"predict_proba\"],\n+ )\n+ if predictions.ndim == 1:\n+ # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`\n+ predictions = predictions.reshape(-1, 1)\n+\n+ calibrated_classifier = _fit_calibrator(\n+ estimator,\n+ predictions,\n+ y,\n+ self.classes_,\n+ self.method,\n+ sample_weight,\n+ )\n+ self.calibrated_classifiers_.append(calibrated_classifier)\n+ else:\n+ # Set `classes_` using all `y`\n+ label_encoder_ = LabelEncoder().fit(y)\n+ self.classes_ = label_encoder_.classes_\n+\n+ if _routing_enabled():\n+ routed_params = process_routing(\n+ self,\n+ \"fit\",\n+ sample_weight=sample_weight,\n+ **fit_params,\n+ )\n+ else:\n+ # sample_weight checks\n+ fit_parameters = signature(estimator.fit).parameters\n+ supports_sw = \"sample_weight\" in fit_parameters\n+ if sample_weight is not None and not supports_sw:\n+ estimator_name = type(estimator).__name__\n+ warnings.warn(\n+ f\"Since {estimator_name} does not appear to accept\"\n+ \" sample_weight, sample weights will only be used for the\"\n+ \" calibration itself. This can be caused by a limitation of\"\n+ \" the current scikit-learn API. See the following issue for\"\n+ \" more details:\"\n+ \" https://github.com/scikit-learn/scikit-learn/issues/21134.\"\n+ \" Be warned that the result of the calibration is likely to be\"\n+ \" incorrect.\"\n+ )\n+ routed_params = Bunch()\n+ routed_params.splitter = Bunch(split={}) # no routing for splitter\n+ routed_params.estimator = Bunch(fit=fit_params)\n+ if sample_weight is not None and supports_sw:\n+ routed_params.estimator.fit[\"sample_weight\"] = sample_weight\n+\n+ # Check that each cross-validation fold can have at least one\n+ # example per class\n+ if isinstance(self.cv, int):\n+ n_folds = self.cv\n+ elif hasattr(self.cv, \"n_splits\"):\n+ n_folds = self.cv.n_splits\n+ else:\n+ n_folds = None\n+ if n_folds and np.any(np.unique(y, return_counts=True)[1] < n_folds):\n+ raise ValueError(\n+ f\"Requesting {n_folds}-fold \"\n+ \"cross-validation but provided less than \"\n+ f\"{n_folds} examples for at least one class.\"\n+ )\n+ if isinstance(self.cv, LeaveOneOut):\n+ raise ValueError(\n+ \"LeaveOneOut cross-validation does not allow\"\n+ \"all classes to be present in test splits. \"\n+ \"Please use a cross-validation generator that allows \"\n+ \"all classes to appear in every test and train split.\"\n+ )\n+ cv = check_cv(self.cv, y, classifier=True)\n+\n+ if self.ensemble:\n+ parallel = Parallel(n_jobs=self.n_jobs)\n+ self.calibrated_classifiers_ = parallel(\n+ delayed(_fit_classifier_calibrator_pair)(\n+ clone(estimator),\n+ X,\n+ y,\n+ train=train,\n+ test=test,\n+ method=self.method,\n+ classes=self.classes_,\n+ sample_weight=sample_weight,\n+ fit_params=routed_params.estimator.fit,\n+ )\n+ for train, test in cv.split(X, y, **routed_params.splitter.split)\n+ )\n+ else:\n+ this_estimator = clone(estimator)\n+ method_name = _check_response_method(\n+ this_estimator,\n+ [\"decision_function\", \"predict_proba\"],\n+ ).__name__\n+ predictions = cross_val_predict(\n+ estimator=this_estimator,\n+ X=X,\n+ y=y,\n+ cv=cv,\n+ method=method_name,\n+ n_jobs=self.n_jobs,\n+ params=routed_params.estimator.fit,\n+ )\n+ if len(self.classes_) == 2:\n+ # Ensure shape (n_samples, 1) in the binary case\n+ if method_name == \"predict_proba\":\n+ # Select the probability column of the postive class\n+ predictions = _process_predict_proba(\n+ y_pred=predictions,\n+ target_type=\"binary\",\n+ classes=self.classes_,\n+ pos_label=self.classes_[1],\n+ )\n+ predictions = predictions.reshape(-1, 1)\n+\n+ this_estimator.fit(X, y, **routed_params.estimator.fit)\n+ # Note: Here we don't pass on fit_params because the supported\n+ # calibrators don't support fit_params anyway\n+ calibrated_classifier = _fit_calibrator(\n+ this_estimator,\n+ predictions,\n+ y,\n+ self.classes_,\n+ self.method,\n+ sample_weight,\n+ )\n+ self.calibrated_classifiers_.append(calibrated_classifier)\n+\n+ first_clf = self.calibrated_classifiers_[0].estimator\n+ if hasattr(first_clf, \"n_features_in_\"):\n+ self.n_features_in_ = first_clf.n_features_in_\n+ if hasattr(first_clf, \"feature_names_in_\"):\n+ self.feature_names_in_ = first_clf.feature_names_in_\n+ return self\n \n def predict_proba(self, X):\n \"\"\"Calibrated probabilities of classification.\n", "test": null }
null
{ "code": "diff --git a/sklearn/calibration.py b/sklearn/calibration.py\nindex 8b053f538..e08464533 100644\n--- a/sklearn/calibration.py\n+++ b/sklearn/calibration.py\n@@ -289,10 +289,6 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)\n \n return estimator\n \n- @_fit_context(\n- # CalibratedClassifierCV.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y, sample_weight=None, **fit_params):\n \"\"\"Fit the calibrated model.\n \n@@ -316,156 +312,6 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)\n self : object\n Returns an instance of self.\n \"\"\"\n- check_classification_targets(y)\n- X, y = indexable(X, y)\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X)\n-\n- estimator = self._get_estimator()\n-\n- self.calibrated_classifiers_ = []\n- if self.cv == \"prefit\":\n- # `classes_` should be consistent with that of estimator\n- check_is_fitted(self.estimator, attributes=[\"classes_\"])\n- self.classes_ = self.estimator.classes_\n-\n- predictions, _ = _get_response_values(\n- estimator,\n- X,\n- response_method=[\"decision_function\", \"predict_proba\"],\n- )\n- if predictions.ndim == 1:\n- # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`\n- predictions = predictions.reshape(-1, 1)\n-\n- calibrated_classifier = _fit_calibrator(\n- estimator,\n- predictions,\n- y,\n- self.classes_,\n- self.method,\n- sample_weight,\n- )\n- self.calibrated_classifiers_.append(calibrated_classifier)\n- else:\n- # Set `classes_` using all `y`\n- label_encoder_ = LabelEncoder().fit(y)\n- self.classes_ = label_encoder_.classes_\n-\n- if _routing_enabled():\n- routed_params = process_routing(\n- self,\n- \"fit\",\n- sample_weight=sample_weight,\n- **fit_params,\n- )\n- else:\n- # sample_weight checks\n- fit_parameters = signature(estimator.fit).parameters\n- supports_sw = \"sample_weight\" in fit_parameters\n- if sample_weight is not None and not supports_sw:\n- estimator_name = type(estimator).__name__\n- warnings.warn(\n- f\"Since {estimator_name} does not appear to accept\"\n- \" sample_weight, sample weights will only be used for the\"\n- \" calibration itself. This can be caused by a limitation of\"\n- \" the current scikit-learn API. See the following issue for\"\n- \" more details:\"\n- \" https://github.com/scikit-learn/scikit-learn/issues/21134.\"\n- \" Be warned that the result of the calibration is likely to be\"\n- \" incorrect.\"\n- )\n- routed_params = Bunch()\n- routed_params.splitter = Bunch(split={}) # no routing for splitter\n- routed_params.estimator = Bunch(fit=fit_params)\n- if sample_weight is not None and supports_sw:\n- routed_params.estimator.fit[\"sample_weight\"] = sample_weight\n-\n- # Check that each cross-validation fold can have at least one\n- # example per class\n- if isinstance(self.cv, int):\n- n_folds = self.cv\n- elif hasattr(self.cv, \"n_splits\"):\n- n_folds = self.cv.n_splits\n- else:\n- n_folds = None\n- if n_folds and np.any(np.unique(y, return_counts=True)[1] < n_folds):\n- raise ValueError(\n- f\"Requesting {n_folds}-fold \"\n- \"cross-validation but provided less than \"\n- f\"{n_folds} examples for at least one class.\"\n- )\n- if isinstance(self.cv, LeaveOneOut):\n- raise ValueError(\n- \"LeaveOneOut cross-validation does not allow\"\n- \"all classes to be present in test splits. \"\n- \"Please use a cross-validation generator that allows \"\n- \"all classes to appear in every test and train split.\"\n- )\n- cv = check_cv(self.cv, y, classifier=True)\n-\n- if self.ensemble:\n- parallel = Parallel(n_jobs=self.n_jobs)\n- self.calibrated_classifiers_ = parallel(\n- delayed(_fit_classifier_calibrator_pair)(\n- clone(estimator),\n- X,\n- y,\n- train=train,\n- test=test,\n- method=self.method,\n- classes=self.classes_,\n- sample_weight=sample_weight,\n- fit_params=routed_params.estimator.fit,\n- )\n- for train, test in cv.split(X, y, **routed_params.splitter.split)\n- )\n- else:\n- this_estimator = clone(estimator)\n- method_name = _check_response_method(\n- this_estimator,\n- [\"decision_function\", \"predict_proba\"],\n- ).__name__\n- predictions = cross_val_predict(\n- estimator=this_estimator,\n- X=X,\n- y=y,\n- cv=cv,\n- method=method_name,\n- n_jobs=self.n_jobs,\n- params=routed_params.estimator.fit,\n- )\n- if len(self.classes_) == 2:\n- # Ensure shape (n_samples, 1) in the binary case\n- if method_name == \"predict_proba\":\n- # Select the probability column of the postive class\n- predictions = _process_predict_proba(\n- y_pred=predictions,\n- target_type=\"binary\",\n- classes=self.classes_,\n- pos_label=self.classes_[1],\n- )\n- predictions = predictions.reshape(-1, 1)\n-\n- this_estimator.fit(X, y, **routed_params.estimator.fit)\n- # Note: Here we don't pass on fit_params because the supported\n- # calibrators don't support fit_params anyway\n- calibrated_classifier = _fit_calibrator(\n- this_estimator,\n- predictions,\n- y,\n- self.classes_,\n- self.method,\n- sample_weight,\n- )\n- self.calibrated_classifiers_.append(calibrated_classifier)\n-\n- first_clf = self.calibrated_classifiers_[0].estimator\n- if hasattr(first_clf, \"n_features_in_\"):\n- self.n_features_in_ = first_clf.n_features_in_\n- if hasattr(first_clf, \"feature_names_in_\"):\n- self.feature_names_in_ = first_clf.feature_names_in_\n- return self\n \n def predict_proba(self, X):\n \"\"\"Calibrated probabilities of classification.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/calibration.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None, **fit_params):\n \"\"\"Fit the calibrated model.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted.\n\n **fit_params : dict\n Parameters to pass to the `fit` method of the underlying\n classifier.\n\n Returns\n -------\n self : object\n Returns an instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_requires_y_none]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration_default_estimator", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]", "sklearn/tests/test_calibration.py::test_calibration_cv_nfold", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[True]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X0]", "sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X1]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf1-prefit]", "sklearn/tests/test_calibration.py::test_calibration_inconsistent_prefit_n_features_in", "sklearn/tests/test_calibration.py::test_calibration_votingclassifier", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[list]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[array]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator", "sklearn/tests/test_calibration.py::test_calibration_with_non_sample_aligned_fit_param", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/tests/test_calibration.py::test_float32_predict_proba", "sklearn/tests/test_calibration.py::test_error_less_class_samples_than_folds", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[CalibratedClassifierCV]", "sklearn/calibration.py::sklearn.calibration.CalibratedClassifierCV", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[CalibratedClassifierCV]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_param_validation[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-16
1.0
{ "code": "diff --git b/sklearn/calibration.py a/sklearn/calibration.py\nindex 54d104feb..8b053f538 100644\n--- b/sklearn/calibration.py\n+++ a/sklearn/calibration.py\n@@ -483,6 +483,17 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)\n C : ndarray of shape (n_samples, n_classes)\n The predicted probas.\n \"\"\"\n+ check_is_fitted(self)\n+ # Compute the arithmetic mean of the predictions of the calibrated\n+ # classifiers\n+ mean_proba = np.zeros((_num_samples(X), len(self.classes_)))\n+ for calibrated_classifier in self.calibrated_classifiers_:\n+ proba = calibrated_classifier.predict_proba(X)\n+ mean_proba += proba\n+\n+ mean_proba /= len(self.calibrated_classifiers_)\n+\n+ return mean_proba\n \n def predict(self, X):\n \"\"\"Predict the target of new samples.\n", "test": null }
null
{ "code": "diff --git a/sklearn/calibration.py b/sklearn/calibration.py\nindex 8b053f538..54d104feb 100644\n--- a/sklearn/calibration.py\n+++ b/sklearn/calibration.py\n@@ -483,17 +483,6 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)\n C : ndarray of shape (n_samples, n_classes)\n The predicted probas.\n \"\"\"\n- check_is_fitted(self)\n- # Compute the arithmetic mean of the predictions of the calibrated\n- # classifiers\n- mean_proba = np.zeros((_num_samples(X), len(self.classes_)))\n- for calibrated_classifier in self.calibrated_classifiers_:\n- proba = calibrated_classifier.predict_proba(X)\n- mean_proba += proba\n-\n- mean_proba /= len(self.calibrated_classifiers_)\n-\n- return mean_proba\n \n def predict(self, X):\n \"\"\"Predict the target of new samples.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/calibration.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Calibrated probabilities of classification.\n\n This function returns calibrated probabilities of classification\n according to each class on an array of test vectors X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The samples, as accepted by `estimator.predict_proba`.\n\n Returns\n -------\n C : ndarray of shape (n_samples, n_classes)\n The predicted probas.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/calibration.py::sklearn.calibration.CalibratedClassifierCV", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-17
1.0
{ "code": "diff --git b/sklearn/calibration.py a/sklearn/calibration.py\nindex 31ca23c40..8b053f538 100644\n--- b/sklearn/calibration.py\n+++ a/sklearn/calibration.py\n@@ -1144,6 +1144,31 @@ class CalibrationDisplay(_BinaryClassifierCurveDisplayMixin):\n display : :class:`~sklearn.calibration.CalibrationDisplay`\n Object that stores computed values.\n \"\"\"\n+ self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name)\n+\n+ info_pos_label = (\n+ f\"(Positive class: {self.pos_label})\" if self.pos_label is not None else \"\"\n+ )\n+\n+ line_kwargs = {\"marker\": \"s\", \"linestyle\": \"-\"}\n+ if name is not None:\n+ line_kwargs[\"label\"] = name\n+ line_kwargs.update(**kwargs)\n+\n+ ref_line_label = \"Perfectly calibrated\"\n+ existing_ref_line = ref_line_label in self.ax_.get_legend_handles_labels()[1]\n+ if ref_line and not existing_ref_line:\n+ self.ax_.plot([0, 1], [0, 1], \"k:\", label=ref_line_label)\n+ self.line_ = self.ax_.plot(self.prob_pred, self.prob_true, **line_kwargs)[0]\n+\n+ # We always have to show the legend for at least the reference line\n+ self.ax_.legend(loc=\"lower right\")\n+\n+ xlabel = f\"Mean predicted probability {info_pos_label}\"\n+ ylabel = f\"Fraction of positives {info_pos_label}\"\n+ self.ax_.set(xlabel=xlabel, ylabel=ylabel)\n+\n+ return self\n \n @classmethod\n def from_estimator(\n", "test": null }
null
{ "code": "diff --git a/sklearn/calibration.py b/sklearn/calibration.py\nindex 8b053f538..31ca23c40 100644\n--- a/sklearn/calibration.py\n+++ b/sklearn/calibration.py\n@@ -1144,31 +1144,6 @@ class CalibrationDisplay(_BinaryClassifierCurveDisplayMixin):\n display : :class:`~sklearn.calibration.CalibrationDisplay`\n Object that stores computed values.\n \"\"\"\n- self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name)\n-\n- info_pos_label = (\n- f\"(Positive class: {self.pos_label})\" if self.pos_label is not None else \"\"\n- )\n-\n- line_kwargs = {\"marker\": \"s\", \"linestyle\": \"-\"}\n- if name is not None:\n- line_kwargs[\"label\"] = name\n- line_kwargs.update(**kwargs)\n-\n- ref_line_label = \"Perfectly calibrated\"\n- existing_ref_line = ref_line_label in self.ax_.get_legend_handles_labels()[1]\n- if ref_line and not existing_ref_line:\n- self.ax_.plot([0, 1], [0, 1], \"k:\", label=ref_line_label)\n- self.line_ = self.ax_.plot(self.prob_pred, self.prob_true, **line_kwargs)[0]\n-\n- # We always have to show the legend for at least the reference line\n- self.ax_.legend(loc=\"lower right\")\n-\n- xlabel = f\"Mean predicted probability {info_pos_label}\"\n- ylabel = f\"Fraction of positives {info_pos_label}\"\n- self.ax_.set(xlabel=xlabel, ylabel=ylabel)\n-\n- return self\n \n @classmethod\n def from_estimator(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/calibration.py.\nHere is the description for the function:\n def plot(self, *, ax=None, name=None, ref_line=True, **kwargs):\n \"\"\"Plot visualization.\n\n Extra keyword arguments will be passed to\n :func:`matplotlib.pyplot.plot`.\n\n Parameters\n ----------\n ax : Matplotlib Axes, default=None\n Axes object to plot on. If `None`, a new figure and axes is\n created.\n\n name : str, default=None\n Name for labeling curve. If `None`, use `estimator_name` if\n not `None`, otherwise no labeling is shown.\n\n ref_line : bool, default=True\n If `True`, plots a reference line representing a perfectly\n calibrated classifier.\n\n **kwargs : dict\n Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.\n\n Returns\n -------\n display : :class:`~sklearn.calibration.CalibrationDisplay`\n Object that stores computed values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_predictions-CalibrationDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-CalibrationDisplay]", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay.from_estimator", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay.from_predictions", "sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-5]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-10]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-5]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-10]", "sklearn/tests/test_calibration.py::test_plot_calibration_curve_pipeline", "sklearn/tests/test_calibration.py::test_calibration_display_default_labels[None-_line1]", "sklearn/tests/test_calibration.py::test_calibration_display_default_labels[my_est-my_est]", "sklearn/tests/test_calibration.py::test_calibration_display_label_class_plot", "sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_predictions]", "sklearn/tests/test_calibration.py::test_calibration_display_ref_line", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[None-1]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[0-0]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[1-1]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-18
1.0
{ "code": "diff --git b/sklearn/utils/_mocking.py a/sklearn/utils/_mocking.py\nindex f3964dd33..5e9973f37 100644\n--- b/sklearn/utils/_mocking.py\n+++ a/sklearn/utils/_mocking.py\n@@ -295,6 +295,18 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n else (n_samples, n_classes)\n Confidence score.\n \"\"\"\n+ if (\n+ self.methods_to_check == \"all\"\n+ or \"decision_function\" in self.methods_to_check\n+ ):\n+ X, y = self._check_X_y(X)\n+ rng = check_random_state(self.random_state)\n+ if len(self.classes_) == 2:\n+ # for binary classifier, the confidence score is related to\n+ # classes_[1] and therefore should be null.\n+ return rng.randn(_num_samples(X))\n+ else:\n+ return rng.randn(_num_samples(X), len(self.classes_))\n \n def score(self, X=None, Y=None):\n \"\"\"Fake score.\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/_mocking.py b/sklearn/utils/_mocking.py\nindex 5e9973f37..f3964dd33 100644\n--- a/sklearn/utils/_mocking.py\n+++ b/sklearn/utils/_mocking.py\n@@ -295,18 +295,6 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n else (n_samples, n_classes)\n Confidence score.\n \"\"\"\n- if (\n- self.methods_to_check == \"all\"\n- or \"decision_function\" in self.methods_to_check\n- ):\n- X, y = self._check_X_y(X)\n- rng = check_random_state(self.random_state)\n- if len(self.classes_) == 2:\n- # for binary classifier, the confidence score is related to\n- # classes_[1] and therefore should be null.\n- return rng.randn(_num_samples(X))\n- else:\n- return rng.randn(_num_samples(X), len(self.classes_))\n \n def score(self, X=None, Y=None):\n \"\"\"Fake score.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/_mocking.py.\nHere is the description for the function:\n def decision_function(self, X):\n \"\"\"Confidence score.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The input data.\n\n Returns\n -------\n decision : ndarray of shape (n_samples,) if n_classes == 2\\\n else (n_samples, n_classes)\n Confidence score.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_array]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[decision_function]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[list]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[array]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[sparse]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[dataframe]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[decision_function-methods_to_check0]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[decision_function-methods_to_check1]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[list]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[array]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-19
1.0
{ "code": "diff --git b/sklearn/utils/_mocking.py a/sklearn/utils/_mocking.py\nindex eb39c9f09..5e9973f37 100644\n--- b/sklearn/utils/_mocking.py\n+++ a/sklearn/utils/_mocking.py\n@@ -215,6 +215,29 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n -------\n self\n \"\"\"\n+ assert _num_samples(X) == _num_samples(y)\n+ if self.methods_to_check == \"all\" or \"fit\" in self.methods_to_check:\n+ X, y = self._check_X_y(X, y, should_be_fitted=False)\n+ self.n_features_in_ = np.shape(X)[1]\n+ self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True))\n+ if self.expected_fit_params:\n+ missing = set(self.expected_fit_params) - set(fit_params)\n+ if missing:\n+ raise AssertionError(\n+ f\"Expected fit parameter(s) {list(missing)} not seen.\"\n+ )\n+ for key, value in fit_params.items():\n+ if _num_samples(value) != _num_samples(X):\n+ raise AssertionError(\n+ f\"Fit parameter {key} has length {_num_samples(value)}\"\n+ f\"; expected {_num_samples(X)}.\"\n+ )\n+ if self.expected_sample_weight:\n+ if sample_weight is None:\n+ raise AssertionError(\"Expected sample_weight to be passed\")\n+ _check_sample_weight(sample_weight, X)\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Predict the first class seen in `classes_`.\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/_mocking.py b/sklearn/utils/_mocking.py\nindex 5e9973f37..eb39c9f09 100644\n--- a/sklearn/utils/_mocking.py\n+++ b/sklearn/utils/_mocking.py\n@@ -215,29 +215,6 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n -------\n self\n \"\"\"\n- assert _num_samples(X) == _num_samples(y)\n- if self.methods_to_check == \"all\" or \"fit\" in self.methods_to_check:\n- X, y = self._check_X_y(X, y, should_be_fitted=False)\n- self.n_features_in_ = np.shape(X)[1]\n- self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True))\n- if self.expected_fit_params:\n- missing = set(self.expected_fit_params) - set(fit_params)\n- if missing:\n- raise AssertionError(\n- f\"Expected fit parameter(s) {list(missing)} not seen.\"\n- )\n- for key, value in fit_params.items():\n- if _num_samples(value) != _num_samples(X):\n- raise AssertionError(\n- f\"Fit parameter {key} has length {_num_samples(value)}\"\n- f\"; expected {_num_samples(X)}.\"\n- )\n- if self.expected_sample_weight:\n- if sample_weight is None:\n- raise AssertionError(\"Expected sample_weight to be passed\")\n- _check_sample_weight(sample_weight, X)\n-\n- return self\n \n def predict(self, X):\n \"\"\"Predict the first class seen in `classes_`.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/_mocking.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None, **fit_params):\n \"\"\"Fit classifier.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples, n_outputs) or (n_samples,), \\\n default=None\n Target relative to X for classification or regression;\n None for unsupervised learning.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted.\n\n **fit_params : dict of string -> object\n Parameters passed to the ``fit`` method of the estimator\n\n Returns\n -------\n self\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_matrix]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[GridSearchCV]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score[coo_array]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[RandomizedSearchCV]", "sklearn/model_selection/tests/test_search.py::test_gridsearch_nd", "sklearn/model_selection/tests/test_search.py::test_X_as_list", "sklearn/model_selection/tests/test_search.py::test_y_as_list", "sklearn/model_selection/tests/test_search.py::test_pandas_input", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_params", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[list]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types[coo_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_params", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_matrix]", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_params", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/utils/tests/test_mocking.py::test_check_on_fit_success[kwargs0]", "sklearn/utils/tests/test_mocking.py::test_check_on_fit_success[kwargs1]", "sklearn/utils/tests/test_mocking.py::test_check_on_fit_success[kwargs2]", "sklearn/utils/tests/test_mocking.py::test_check_on_fit_success[kwargs3]", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[predict]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[predict_proba]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[decision_function]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[score]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_fail[predict]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_fail[predict_proba]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_fail[decision_function]", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_fail[score]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[list]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[array]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[sparse]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[dataframe]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_with_params[csr_matrix]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_with_params[csr_array]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_fit_params", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_missing_fit_params", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[predict-methods_to_check0]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[predict-methods_to_check1]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[predict_proba-methods_to_check0]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[predict_proba-methods_to_check1]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[decision_function-methods_to_check0]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[decision_function-methods_to_check1]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[score-methods_to_check0]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[score-methods_to_check1]", "sklearn/utils/_mocking.py::sklearn.utils._mocking.CheckingClassifier", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[list]", "sklearn/tests/test_calibration.py::test_calibration_with_fit_params[array]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight0]", "sklearn/tests/test_calibration.py::test_calibration_with_sample_weight_estimator[sample_weight1]", "sklearn/tests/test_calibration.py::test_calibration_without_sample_weight_estimator", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[list]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[array]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-20
1.0
{ "code": "diff --git b/sklearn/utils/_mocking.py a/sklearn/utils/_mocking.py\nindex 65add68cc..5e9973f37 100644\n--- b/sklearn/utils/_mocking.py\n+++ a/sklearn/utils/_mocking.py\n@@ -273,6 +273,13 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n proba : ndarray of shape (n_samples, n_classes)\n The probabilities for each sample and class.\n \"\"\"\n+ if self.methods_to_check == \"all\" or \"predict_proba\" in self.methods_to_check:\n+ X, y = self._check_X_y(X)\n+ rng = check_random_state(self.random_state)\n+ proba = rng.randn(_num_samples(X), len(self.classes_))\n+ proba = np.abs(proba, out=proba)\n+ proba /= np.sum(proba, axis=1)[:, np.newaxis]\n+ return proba\n \n def decision_function(self, X):\n \"\"\"Confidence score.\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/_mocking.py b/sklearn/utils/_mocking.py\nindex 5e9973f37..65add68cc 100644\n--- a/sklearn/utils/_mocking.py\n+++ b/sklearn/utils/_mocking.py\n@@ -273,13 +273,6 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n proba : ndarray of shape (n_samples, n_classes)\n The probabilities for each sample and class.\n \"\"\"\n- if self.methods_to_check == \"all\" or \"predict_proba\" in self.methods_to_check:\n- X, y = self._check_X_y(X)\n- rng = check_random_state(self.random_state)\n- proba = rng.randn(_num_samples(X), len(self.classes_))\n- proba = np.abs(proba, out=proba)\n- proba /= np.sum(proba, axis=1)[:, np.newaxis]\n- return proba\n \n def decision_function(self, X):\n \"\"\"Confidence score.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/_mocking.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Predict probabilities for each class.\n\n Here, the dummy classifier will provide a probability of 1 for the\n first class of `classes_` and 0 otherwise.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The input data.\n\n Returns\n -------\n proba : ndarray of shape (n_samples, n_classes)\n The probabilities for each sample and class.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[list]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_fit_params[array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sample_weight_fit_param", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[predict_proba]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[list]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[array]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[sparse]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[dataframe]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[predict_proba-methods_to_check0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[list]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_fit_params[array]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-21
1.0
{ "code": "diff --git b/sklearn/utils/_mocking.py a/sklearn/utils/_mocking.py\nindex 61e8e2ca1..5e9973f37 100644\n--- b/sklearn/utils/_mocking.py\n+++ a/sklearn/utils/_mocking.py\n@@ -327,6 +327,13 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>\n score=1` otherwise `score=0`).\n \"\"\"\n+ if self.methods_to_check == \"all\" or \"score\" in self.methods_to_check:\n+ self._check_X_y(X, Y)\n+ if self.foo_param > 1:\n+ score = 1.0\n+ else:\n+ score = 0.0\n+ return score\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/utils/_mocking.py b/sklearn/utils/_mocking.py\nindex 5e9973f37..61e8e2ca1 100644\n--- a/sklearn/utils/_mocking.py\n+++ b/sklearn/utils/_mocking.py\n@@ -327,13 +327,6 @@ class CheckingClassifier(ClassifierMixin, BaseEstimator):\n Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>\n score=1` otherwise `score=0`).\n \"\"\"\n- if self.methods_to_check == \"all\" or \"score\" in self.methods_to_check:\n- self._check_X_y(X, Y)\n- if self.foo_param > 1:\n- score = 1.0\n- else:\n- score = 0.0\n- return score\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/utils/_mocking.py.\nHere is the description for the function:\n def score(self, X=None, Y=None):\n \"\"\"Fake score.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n Y : array-like of shape (n_samples, n_output) or (n_samples,)\n Target relative to X for classification or regression;\n None for unsupervised learning.\n\n Returns\n -------\n score : float\n Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>\n score=1` otherwise `score=0`).\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[GridSearchCV]", "sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[RandomizedSearchCV]", "sklearn/model_selection/tests/test_search.py::test_gridsearch_nd", "sklearn/model_selection/tests/test_search.py::test_X_as_list", "sklearn/model_selection/tests/test_search.py::test_y_as_list", "sklearn/model_selection/tests/test_search.py::test_pandas_input", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_params", "sklearn/model_selection/tests/test_validation.py::test_learning_curve_params", "sklearn/model_selection/tests/test_validation.py::test_validation_curve_params", "sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas", "sklearn/utils/tests/test_mocking.py::test_check_X_on_predict_success[score]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[list]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[array]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[sparse]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier[dataframe]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[score-methods_to_check0]", "sklearn/utils/tests/test_mocking.py::test_checking_classifier_methods_to_check[score-methods_to_check1]" ], "PASS_TO_PASS": null }