jonasluehrs-jaai's picture
Update README.md
b20f67d verified
|
raw
history blame
4.03 kB
---
dataset_info:
features:
- name: messages
dtype: string
- name: prompt_length
dtype: int64
- name: response_length
dtype: int64
splits:
- name: train
num_bytes: 423667776
num_examples: 2000
download_size: 384009093
dataset_size: 423667776
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Synthetic Dataset: High Context, Low Generation
## Dataset Description
This is a synthetic benchmark dataset designed to test LLM inference performance in **high-context, low-generation** scenarios. The dataset consists of 2,000 samples with randomly generated tokens that simulate real-world workloads where models process long input contexts but generate relatively short responses.
### Use Cases
This dataset is ideal for benchmarking:
- **Document analysis** with short answers
- **Long-context Q&A** systems
- **Information extraction** from large documents
- **Prompt processing efficiency** and TTFT (Time-to-First-Token) optimization
### Dataset Characteristics
- **Number of Samples**: 2,000
- **Prompt Length Distribution**: Normal distribution
- Mean: 32,000 tokens
- Standard deviation: 10,000 tokens
- **Response Length Distribution**: Normal distribution
- Mean: 200 tokens
- Standard deviation: 50 tokens
- **Tokenizer**: meta-llama/Llama-3.1-8B-Instruct
### Dataset Structure
Each sample contains:
- `prompt`: A sequence of randomly generated tokens (high context)
- `prompt_length`: Number of tokens in the prompt
- `response_length`: Number of tokens in the response
```python
{
'prompt': str,
'prompt_length': int,
'response_length': int
}
```
### Token Generation
- Tokens are randomly sampled from the vocabulary of the Llama-3.1-8B-Instruct tokenizer
- Each sample is independently generated with lengths drawn from the specified distributions
- The dataset ensures realistic token sequences while maintaining controlled length distributions
## Related Datasets
This dataset is part of a suite of three synthetic benchmark datasets, each designed for different workload patterns:
1. **🔷 synthetic_dataset_high-low** (this dataset)
- High context (32k tokens), low generation (200 tokens)
- Focus: Prompt processing efficiency, TTFT optimization
2. **synthetic_dataset_mid-mid**
- Medium context (1k tokens), medium generation (1k tokens)
- Focus: Balanced workload, realistic API scenarios
3. **synthetic_dataset_low-mid**
- Low context (10-120 tokens), medium generation (1.5k tokens)
- Focus: Generation throughput, creative writing scenarios
## Benchmarking with vLLM
This dataset is designed for use with the vLLM inference framework. The vLLM engine supports a `min_tokens` parameter, allowing you to pass `min_tokens=max_tokens=response_length` for each prompt. This ensures that the response length follows the defined distribution.
### Setup
First, install vLLM and start the server:
```bash
pip install vllm
# Start the vLLM server
vllm serve meta-llama/Llama-3.1-8B-Instruct
```
### Usage Example
```python
from datasets import load_dataset
from openai import OpenAI
# Load the dataset
dataset = load_dataset("jonasluehrs-jaai/synthetic_dataset_high-low")
# Initialize vLLM client (OpenAI-compatible API)
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
# Use a sample from the dataset
sample = dataset['train'][0]
# Make a completion request with controlled response length
completion = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
messages=[{"role": "user", "content": sample['prompt']}],
max_tokens=sample['response_length'],
extra_body={"min_tokens": sample['response_length']},
)
print(f"Generated {len(completion.choices[0].message.content)} characters")
```
For more information, see the [vLLM OpenAI-compatible server documentation](https://docs.vllm.ai/en/v0.8.3/serving/openai_compatible_server.html).
## License
This dataset is released under the MIT License.