Update README.md
Browse files
README.md
CHANGED
|
@@ -19,3 +19,115 @@ configs:
|
|
| 19 |
- split: train
|
| 20 |
path: data/train-*
|
| 21 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
- split: train
|
| 20 |
path: data/train-*
|
| 21 |
---
|
| 22 |
+
|
| 23 |
+
# Synthetic Dataset: High Context, Low Generation
|
| 24 |
+
|
| 25 |
+
## Dataset Description
|
| 26 |
+
|
| 27 |
+
This is a synthetic benchmark dataset designed to test LLM inference performance in **high-context, low-generation** scenarios. The dataset consists of 2,000 samples with randomly generated tokens that simulate real-world workloads where models process long input contexts but generate relatively short responses.
|
| 28 |
+
|
| 29 |
+
### Use Cases
|
| 30 |
+
|
| 31 |
+
This dataset is ideal for benchmarking:
|
| 32 |
+
- **Document analysis** with short answers
|
| 33 |
+
- **Long-context Q&A** systems
|
| 34 |
+
- **Information extraction** from large documents
|
| 35 |
+
- **Prompt processing efficiency** and TTFT (Time-to-First-Token) optimization
|
| 36 |
+
|
| 37 |
+
### Dataset Characteristics
|
| 38 |
+
|
| 39 |
+
- **Number of Samples**: 2,000
|
| 40 |
+
- **Prompt Length Distribution**: Normal distribution
|
| 41 |
+
- Mean: 32,000 tokens
|
| 42 |
+
- Standard deviation: 10,000 tokens
|
| 43 |
+
- **Response Length Distribution**: Normal distribution
|
| 44 |
+
- Mean: 200 tokens
|
| 45 |
+
- Standard deviation: 50 tokens
|
| 46 |
+
- **Tokenizer**: meta-llama/Llama-3.1-8B-Instruct
|
| 47 |
+
|
| 48 |
+
### Dataset Structure
|
| 49 |
+
|
| 50 |
+
Each sample contains:
|
| 51 |
+
- `prompt`: A sequence of randomly generated tokens (high context)
|
| 52 |
+
- `prompt_length`: Number of tokens in the prompt
|
| 53 |
+
- `response_length`: Number of tokens in the response
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
{
|
| 57 |
+
'prompt': str,
|
| 58 |
+
'prompt_length': int,
|
| 59 |
+
'response_length': int
|
| 60 |
+
}
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### Token Generation
|
| 64 |
+
|
| 65 |
+
- Tokens are randomly sampled from the vocabulary of the Llama-3.1-8B-Instruct tokenizer
|
| 66 |
+
- Each sample is independently generated with lengths drawn from the specified distributions
|
| 67 |
+
- The dataset ensures realistic token sequences while maintaining controlled length distributions
|
| 68 |
+
|
| 69 |
+
## Related Datasets
|
| 70 |
+
|
| 71 |
+
This dataset is part of a suite of three synthetic benchmark datasets, each designed for different workload patterns:
|
| 72 |
+
|
| 73 |
+
1. **🔷 synthetic_dataset_high-low** (this dataset)
|
| 74 |
+
- High context (32k tokens), low generation (200 tokens)
|
| 75 |
+
- Focus: Prompt processing efficiency, TTFT optimization
|
| 76 |
+
|
| 77 |
+
2. **synthetic_dataset_mid-mid**
|
| 78 |
+
- Medium context (1k tokens), medium generation (1k tokens)
|
| 79 |
+
- Focus: Balanced workload, realistic API scenarios
|
| 80 |
+
|
| 81 |
+
3. **synthetic_dataset_low-mid**
|
| 82 |
+
- Low context (10-120 tokens), medium generation (1.5k tokens)
|
| 83 |
+
- Focus: Generation throughput, creative writing scenarios
|
| 84 |
+
|
| 85 |
+
## Benchmarking with vLLM
|
| 86 |
+
|
| 87 |
+
This dataset is designed for use with the vLLM inference framework. The vLLM engine supports a `min_tokens` parameter, allowing you to pass `min_tokens=max_tokens=response_length` for each prompt. This ensures that the response length follows the defined distribution.
|
| 88 |
+
|
| 89 |
+
### Setup
|
| 90 |
+
|
| 91 |
+
First, install vLLM and start the server:
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
pip install vllm
|
| 95 |
+
|
| 96 |
+
# Start the vLLM server
|
| 97 |
+
vllm serve meta-llama/Llama-3.1-8B-Instruct
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
### Usage Example
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
from datasets import load_dataset
|
| 104 |
+
from openai import OpenAI
|
| 105 |
+
|
| 106 |
+
# Load the dataset
|
| 107 |
+
dataset = load_dataset("jonasluehrs-jaai/synthetic_dataset_high-low")
|
| 108 |
+
|
| 109 |
+
# Initialize vLLM client (OpenAI-compatible API)
|
| 110 |
+
client = OpenAI(
|
| 111 |
+
base_url="http://localhost:8000/v1",
|
| 112 |
+
api_key="token-abc123",
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Use a sample from the dataset
|
| 116 |
+
sample = dataset['train'][0]
|
| 117 |
+
|
| 118 |
+
# Make a completion request with controlled response length
|
| 119 |
+
completion = client.chat.completions.create(
|
| 120 |
+
model="meta-llama/Llama-3.1-8B-Instruct",
|
| 121 |
+
messages=[{"role": "user", "content": sample['prompt']}],
|
| 122 |
+
max_tokens=sample['response_length'],
|
| 123 |
+
extra_body={"min_tokens": sample['response_length']},
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
print(f"Generated {len(completion.choices[0].message.content)} characters")
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
For more information, see the [vLLM OpenAI-compatible server documentation](https://docs.vllm.ai/en/v0.8.3/serving/openai_compatible_server.html).
|
| 130 |
+
|
| 131 |
+
## License
|
| 132 |
+
|
| 133 |
+
This dataset is released under the MIT License.
|