metadata
tags:
- ocr
- document-processing
- dots-ocr
- multilingual
- markdown
- uv-script
- generated
Document OCR using dots.ocr
This dataset contains OCR results from images in biglam/bpl-card-catalog using DoTS.ocr, a compact 1.7B multilingual model.
Processing Details
- Source Dataset: biglam/bpl-card-catalog
- Model: rednote-hilab/dots.ocr
- Number of Samples: 5,000
- Processing Time: 32.7 min
- Processing Date: 2025-10-07 15:21 UTC
Configuration
- Image Column:
image - Output Column:
markdown - Dataset Split:
train - Batch Size: 128
- Prompt Mode: layout-all
- Max Model Length: 8,192 tokens
- Max Output Tokens: 8,192
- GPU Memory Utilization: 80.0%
Model Information
DoTS.ocr is a compact multilingual document parsing model that excels at:
- ๐ 100+ Languages - Multilingual document support
- ๐ Table extraction - Structured data recognition
- ๐ Formulas - Mathematical notation preservation
- ๐ Layout-aware - Reading order and structure preservation
- โก Fast inference - 2-3x faster than native HF with vLLM
- ๐ฏ Compact - Only 1.7B parameters
Dataset Structure
The dataset contains all original columns plus:
markdown: The extracted text in markdown formatinference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr DoTS OCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
biglam/bpl-card-catalog \
<output-dataset> \
--image-column image \
--batch-size 128 \
--prompt-mode layout-all \
--max-model-len 8192 \
--max-tokens 8192 \
--gpu-memory-utilization 0.8
Performance
- Processing Speed: ~2.5 images/second
- GPU Configuration: vLLM with 80% GPU memory utilization
Generated with ๐ค UV Scripts