File size: 2,634 Bytes
b8ecf5f
611c41e
 
 
 
 
 
 
 
b8ecf5f
611c41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
tags:
- ocr
- document-processing
- dots-ocr
- multilingual
- markdown
- uv-script
- generated
---

# Document OCR using dots.ocr

This dataset contains OCR results from images in [biglam/bpl-card-catalog](https://huggingface.co/datasets/biglam/bpl-card-catalog) using DoTS.ocr, a compact 1.7B multilingual model.

## Processing Details

- **Source Dataset**: [biglam/bpl-card-catalog](https://huggingface.co/datasets/biglam/bpl-card-catalog)
- **Model**: [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr)
- **Number of Samples**: 5,000
- **Processing Time**: 32.7 min
- **Processing Date**: 2025-10-07 15:21 UTC

### Configuration

- **Image Column**: `image`
- **Output Column**: `markdown`
- **Dataset Split**: `train`
- **Batch Size**: 128
- **Prompt Mode**: layout-all
- **Max Model Length**: 8,192 tokens
- **Max Output Tokens**: 8,192
- **GPU Memory Utilization**: 80.0%

## Model Information

DoTS.ocr is a compact multilingual document parsing model that excels at:
- ๐ŸŒ **100+ Languages** - Multilingual document support
- ๐Ÿ“Š **Table extraction** - Structured data recognition
- ๐Ÿ“ **Formulas** - Mathematical notation preservation
- ๐Ÿ“ **Layout-aware** - Reading order and structure preservation
- โšก **Fast inference** - 2-3x faster than native HF with vLLM
- ๐ŸŽฏ **Compact** - Only 1.7B parameters

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {info['column_name']} - Model: {info['model_id']}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DoTS OCR script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
    biglam/bpl-card-catalog \
    <output-dataset> \
    --image-column image \
    --batch-size 128 \
    --prompt-mode layout-all \
    --max-model-len 8192 \
    --max-tokens 8192 \
    --gpu-memory-utilization 0.8
```

## Performance

- **Processing Speed**: ~2.5 images/second
- **GPU Configuration**: vLLM with 80% GPU memory utilization

Generated with ๐Ÿค– [UV Scripts](https://huggingface.co/uv-scripts)