SiMenz's picture
End of training
6824063 verified
metadata
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-finetuned-gtzan2
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

wav2vec2-base-finetuned-gtzan2

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6890
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2597 0.9912 56 2.0173 0.49
1.8041 2.0 113 1.5455 0.6
1.3996 2.9912 169 1.6014 0.5
1.2821 4.0 226 1.4333 0.53
1.0763 4.9912 282 1.0503 0.65
0.9496 6.0 339 1.1490 0.64
0.8102 6.9912 395 1.0606 0.7
0.5868 8.0 452 0.9500 0.72
0.3912 8.9912 508 0.5193 0.87
0.3939 10.0 565 0.8336 0.77
0.3945 10.9912 621 0.8204 0.78
0.395 12.0 678 0.5713 0.86
0.2702 12.9912 734 0.7380 0.82
0.2035 14.0 791 0.7632 0.82
0.2397 14.9912 847 0.6820 0.84
0.0944 16.0 904 0.9130 0.84
0.116 16.9912 960 0.4568 0.91
0.0989 18.0 1017 0.7468 0.87
0.1069 18.9912 1073 0.7100 0.86
0.0419 20.0 1130 0.7169 0.86
0.0344 20.9912 1186 0.7216 0.87
0.0612 22.0 1243 0.6798 0.89
0.0473 22.9912 1299 0.6920 0.88
0.0248 24.0 1356 0.6526 0.89
0.0157 24.7788 1400 0.6890 0.88

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.19.1