End of training
Browse files- README.md +102 -0
- model.safetensors +1 -1
README.md
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: facebook/wav2vec2-base
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- marsyas/gtzan
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
model-index:
|
| 10 |
+
- name: wav2vec2-base-finetuned-gtzan2
|
| 11 |
+
results:
|
| 12 |
+
- task:
|
| 13 |
+
name: Audio Classification
|
| 14 |
+
type: audio-classification
|
| 15 |
+
dataset:
|
| 16 |
+
name: GTZAN
|
| 17 |
+
type: marsyas/gtzan
|
| 18 |
+
config: all
|
| 19 |
+
split: train
|
| 20 |
+
args: all
|
| 21 |
+
metrics:
|
| 22 |
+
- name: Accuracy
|
| 23 |
+
type: accuracy
|
| 24 |
+
value: 0.88
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 28 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 29 |
+
|
| 30 |
+
# wav2vec2-base-finetuned-gtzan2
|
| 31 |
+
|
| 32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
|
| 33 |
+
It achieves the following results on the evaluation set:
|
| 34 |
+
- Loss: 0.6890
|
| 35 |
+
- Accuracy: 0.88
|
| 36 |
+
|
| 37 |
+
## Model description
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Intended uses & limitations
|
| 42 |
+
|
| 43 |
+
More information needed
|
| 44 |
+
|
| 45 |
+
## Training and evaluation data
|
| 46 |
+
|
| 47 |
+
More information needed
|
| 48 |
+
|
| 49 |
+
## Training procedure
|
| 50 |
+
|
| 51 |
+
### Training hyperparameters
|
| 52 |
+
|
| 53 |
+
The following hyperparameters were used during training:
|
| 54 |
+
- learning_rate: 7e-05
|
| 55 |
+
- train_batch_size: 8
|
| 56 |
+
- eval_batch_size: 8
|
| 57 |
+
- seed: 42
|
| 58 |
+
- gradient_accumulation_steps: 2
|
| 59 |
+
- total_train_batch_size: 16
|
| 60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 61 |
+
- lr_scheduler_type: linear
|
| 62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 63 |
+
- num_epochs: 25
|
| 64 |
+
- mixed_precision_training: Native AMP
|
| 65 |
+
|
| 66 |
+
### Training results
|
| 67 |
+
|
| 68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 69 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
| 70 |
+
| 2.2597 | 0.9912 | 56 | 2.0173 | 0.49 |
|
| 71 |
+
| 1.8041 | 2.0 | 113 | 1.5455 | 0.6 |
|
| 72 |
+
| 1.3996 | 2.9912 | 169 | 1.6014 | 0.5 |
|
| 73 |
+
| 1.2821 | 4.0 | 226 | 1.4333 | 0.53 |
|
| 74 |
+
| 1.0763 | 4.9912 | 282 | 1.0503 | 0.65 |
|
| 75 |
+
| 0.9496 | 6.0 | 339 | 1.1490 | 0.64 |
|
| 76 |
+
| 0.8102 | 6.9912 | 395 | 1.0606 | 0.7 |
|
| 77 |
+
| 0.5868 | 8.0 | 452 | 0.9500 | 0.72 |
|
| 78 |
+
| 0.3912 | 8.9912 | 508 | 0.5193 | 0.87 |
|
| 79 |
+
| 0.3939 | 10.0 | 565 | 0.8336 | 0.77 |
|
| 80 |
+
| 0.3945 | 10.9912 | 621 | 0.8204 | 0.78 |
|
| 81 |
+
| 0.395 | 12.0 | 678 | 0.5713 | 0.86 |
|
| 82 |
+
| 0.2702 | 12.9912 | 734 | 0.7380 | 0.82 |
|
| 83 |
+
| 0.2035 | 14.0 | 791 | 0.7632 | 0.82 |
|
| 84 |
+
| 0.2397 | 14.9912 | 847 | 0.6820 | 0.84 |
|
| 85 |
+
| 0.0944 | 16.0 | 904 | 0.9130 | 0.84 |
|
| 86 |
+
| 0.116 | 16.9912 | 960 | 0.4568 | 0.91 |
|
| 87 |
+
| 0.0989 | 18.0 | 1017 | 0.7468 | 0.87 |
|
| 88 |
+
| 0.1069 | 18.9912 | 1073 | 0.7100 | 0.86 |
|
| 89 |
+
| 0.0419 | 20.0 | 1130 | 0.7169 | 0.86 |
|
| 90 |
+
| 0.0344 | 20.9912 | 1186 | 0.7216 | 0.87 |
|
| 91 |
+
| 0.0612 | 22.0 | 1243 | 0.6798 | 0.89 |
|
| 92 |
+
| 0.0473 | 22.9912 | 1299 | 0.6920 | 0.88 |
|
| 93 |
+
| 0.0248 | 24.0 | 1356 | 0.6526 | 0.89 |
|
| 94 |
+
| 0.0157 | 24.7788 | 1400 | 0.6890 | 0.88 |
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
### Framework versions
|
| 98 |
+
|
| 99 |
+
- Transformers 4.40.2
|
| 100 |
+
- Pytorch 2.8.0+cu128
|
| 101 |
+
- Datasets 3.6.0
|
| 102 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 378310592
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:023385b9abc404c844329910f79ce3b51e7a4aebefdfb105cfcad86c4f9c24d2
|
| 3 |
size 378310592
|