IoanaLiviaPopescu's picture
End of training
eb97822 verified
---
library_name: transformers
language:
- ro
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B
metrics:
- wer
model-index:
- name: IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B
type: IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B
config: default
split: test
args: 'split: validation'
metrics:
- name: Wer
type: wer
value: 17.00165959800848
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3759
- Wer: 17.0017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 0 | 0 | 0.6024 | 27.8812 |
| 0.2756 | 1.0 | 51 | 0.4008 | 17.9974 |
| 0.1052 | 2.0 | 102 | 0.3728 | 17.3705 |
| 0.0551 | 3.0 | 153 | 0.3759 | 17.0017 |
| 0.0322 | 4.0 | 204 | 0.3911 | 17.5180 |
| 0.0227 | 5.0 | 255 | 0.4033 | 17.6102 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1