--- library_name: transformers language: - ro license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B metrics: - wer model-index: - name: IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B type: IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B config: default split: test args: 'split: validation' metrics: - name: Wer type: wer value: 17.00165959800848 --- # IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1200-1-Wavenet-B-whisper-small-v0 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLiviaPopescu/RealVoiceSynthVoice-1200-1-Wavenet-B dataset. It achieves the following results on the evaluation set: - Loss: 0.3759 - Wer: 17.0017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0 | 0 | 0.6024 | 27.8812 | | 0.2756 | 1.0 | 51 | 0.4008 | 17.9974 | | 0.1052 | 2.0 | 102 | 0.3728 | 17.3705 | | 0.0551 | 3.0 | 153 | 0.3759 | 17.0017 | | 0.0322 | 4.0 | 204 | 0.3911 | 17.5180 | | 0.0227 | 5.0 | 255 | 0.4033 | 17.6102 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1