ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan-optimized

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8353
  • Accuracy: 0.875
  • Precision: 0.8852
  • Recall: 0.875
  • F1: 0.8757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
9.9362 1.0 22 0.1333 0.0927 2.4114 0.0742 0.1333
8.8573 2.0 44 0.3167 0.3088 2.0453 0.3933 0.3167
7.2272 3.0 66 0.6722 0.6791 1.5591 0.6966 0.6722
5.3183 4.0 88 0.7556 0.7557 1.1642 0.7839 0.7556
3.527 5.0 110 0.8111 0.8108 0.9838 0.8235 0.8111
3.074 6.0 132 0.7778 0.7820 0.9769 0.8054 0.7778
2.7507 7.0 154 0.8389 0.8384 0.8948 0.8423 0.8389
2.4184 8.0 176 0.8222 0.8230 0.9135 0.8423 0.8222
2.2014 9.0 198 0.8333 0.8351 0.8896 0.8448 0.8333
2.093 10.0 220 0.8333 0.8344 0.8813 0.8388 0.8333
2.0531 11.0 242 0.8333 0.8342 0.8742 0.8415 0.8333
2.0729 12.0 264 0.8222 0.8224 0.8972 0.8335 0.8222
2.3772 13.0 286 0.8980 0.8278 0.8375 0.8278 0.8290
2.1131 14.0 308 0.8904 0.8278 0.8408 0.8278 0.8293
2.0553 15.0 330 0.8555 0.8389 0.8546 0.8389 0.8428
2.0367 16.0 352 0.8485 0.8444 0.8533 0.8444 0.8469
2.0353 17.0 374 0.8616 0.8444 0.8509 0.8444 0.8466
2.0233 18.0 396 0.8422 0.8556 0.8600 0.8556 0.8570
2.0208 19.0 418 0.8436 0.85 0.8599 0.85 0.8524
2.0145 20.0 440 0.8409 0.8556 0.8658 0.8556 0.8587
2.0121 21.0 462 0.8345 0.8667 0.8759 0.8667 0.8694
2.0096 22.0 484 0.8434 0.8722 0.8861 0.8722 0.8753
2.0093 23.0 506 0.8341 0.8444 0.8498 0.8444 0.8460
2.0058 24.0 528 0.8301 0.8444 0.8515 0.8444 0.8465
2.0053 25.0 550 0.8269 0.8556 0.8636 0.8556 0.8575
2.0037 26.0 572 0.8362 0.8556 0.8630 0.8556 0.8577
2.0026 27.0 594 0.8334 0.8611 0.8661 0.8611 0.8628

Framework versions

  • Transformers 4.57.0.dev0
  • Pytorch 2.9.0.dev20250716+cu129
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
1
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zikangzheng/ast-finetuned-audioset-10-10-0.4593-gtzan-optimized

Finetuned
(144)
this model

Dataset used to train zikangzheng/ast-finetuned-audioset-10-10-0.4593-gtzan-optimized

Evaluation results