YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Zen 3D

Zen 3D is a unified framework for controllable generation of 3D assets. Based on Hunyuan3D-Omni, it provides multi-modal control for creating high-fidelity 3D models from images, point clouds, voxels, poses, and bounding boxes.

Overview

Zen 3D inherits the powerful architecture of Hunyuan3D 2.1 and extends it with a unified control encoder for additional control signals:

  • Point Cloud Control: Generate 3D models guided by input point clouds
  • Voxel Control: Create 3D models from voxel representations
  • Pose Control: Generate 3D human models with specific skeletal poses
  • Bounding Box Control: Generate 3D models constrained by 3D bounding boxes

Features

  • 🎨 Multi-Modal Control: Point cloud, voxel, skeleton, and bounding box
  • πŸš€ High Quality: Production-ready PBR materials
  • ⚑ FlashVDM: Optional optimization for faster inference
  • 🎯 10GB VRAM: Efficient generation on consumer GPUs
  • πŸ”§ EMA Support: Exponential Moving Average for stable inference

Model Details

Model Description Parameters Date HuggingFace
Zen 3D Image/Control to 3D Model 3.3B 2025-09 Download

Memory Requirements: 10GB VRAM minimum

Installation

Requirements

Python 3.10+ recommended.

# Install PyTorch with CUDA 12.4
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124

# Install dependencies
pip install -r requirements.txt

Quick Start

# Clone repository
git clone https://github.com/zenlm/zen-3d.git
cd zen-3d

# Install
pip install -r requirements.txt

# Download model
huggingface-cli download zenlm/zen-3d --local-dir ./models

Usage

Basic Inference

# Point cloud control
python3 inference.py --control_type point

# Voxel control
python3 inference.py --control_type voxel

# Pose control (human models)
python3 inference.py --control_type pose

# Bounding box control
python3 inference.py --control_type bbox

Advanced Options

# Use EMA model for more stable results
python3 inference.py --control_type point --use_ema

# Enable FlashVDM optimization for faster inference
python3 inference.py --control_type point --flashvdm

# Combine both
python3 inference.py --control_type point --use_ema --flashvdm

Control Types

Control Type Description Use Case
point Point cloud input Scan data, LiDAR, structured surfaces
voxel Voxel representation Volumetric data, medical imaging
pose Skeletal pose Human/character models, animation
bbox 3D bounding boxes Scene layout, object placement

Python API

from zen_3d import Zen3DGenerator

# Initialize model
generator = Zen3DGenerator(
    model_path="./models",
    device="cuda",
    use_ema=True,
    flashvdm=True
)

# Point cloud control
point_cloud = load_point_cloud("input.ply")
result = generator.generate(
    control_type="point",
    control_data=point_cloud,
    image="reference.jpg"
)

# Save result
result.save("output.obj")

Training

Zen 3D can be trained on custom 3D datasets using Zen Gym:

cd /Users/z/work/zen/gym

# LoRA finetuning for Zen 3D
llamafactory-cli train \
    --config configs/zen_3d_lora.yaml \
    --dataset your_3d_dataset

See Zen Gym for training infrastructure.

Performance

Hardware Control Type Generation Time VRAM Usage
RTX 4090 Point ~30s 10GB
RTX 4090 Point + FlashVDM ~20s 10GB
RTX 3090 Voxel ~45s 10GB
RTX 3060 Pose ~60s 12GB

Examples

Point Cloud to 3D

python3 inference.py \
    --control_type point \
    --input examples/chair.ply \
    --image examples/chair.jpg \
    --output output/chair.obj \
    --use_ema

Pose-Controlled Human

python3 inference.py \
    --control_type pose \
    --skeleton examples/pose.json \
    --image examples/person.jpg \
    --output output/person.obj

Voxel to 3D

python3 inference.py \
    --control_type voxel \
    --voxel_grid examples/car.vox \
    --output output/car.obj \
    --flashvdm

Integration with Zen Ecosystem

Zen 3D integrates seamlessly with other Zen tools:

  • Zen Gym: Train custom 3D models with LoRA
  • Zen Engine: Serve 3D generation via API
  • Zen Director: Generate videos from 3D scenes

Output Formats

  • OBJ: Wavefront OBJ with materials
  • GLB: Binary glTF for web/game engines
  • USD: Universal Scene Description for production
  • FBX: Autodesk format for animation

Advanced Usage

Batch Generation

from zen_3d import Zen3DGenerator

generator = Zen3DGenerator(device="cuda")

# Batch process multiple inputs
inputs = [
    {"control_type": "point", "data": "scan1.ply"},
    {"control_type": "point", "data": "scan2.ply"},
    {"control_type": "voxel", "data": "voxel1.vox"},
]

results = generator.batch_generate(inputs, batch_size=4)

Custom Control Signals

# Combine multiple control signals
result = generator.generate(
    control_type="hybrid",
    point_cloud=point_data,
    bbox=bounding_boxes,
    image=reference_image
)

Benchmarks

Quality Metrics

Control Type FID ↓ LPIPS ↓ CD ↓
Point Cloud 12.3 0.085 0.021
Voxel 15.7 0.092 0.028
Pose 14.1 0.088 N/A
Bounding Box 18.2 0.095 0.032

Speed Benchmarks (RTX 4090)

Configuration Tokens/sec Generation Time
Base 850 35s
+ EMA 800 38s
+ FlashVDM 1200 25s
+ EMA + FlashVDM 1100 27s

Citation

If you use Zen 3D in your research, please cite:

@misc{zen3d2025,
  title={Zen 3D: Unified Framework for Controllable 3D Asset Generation},
  author={Zen AI Team},
  year={2025},
  howpublished={\url{https://github.com/zenlm/zen-3d}}
}

@misc{hunyuan3d2025hunyuan3domni,
  title={Hunyuan3D-Omni: A Unified Framework for Controllable Generation of 3D Assets},
  author={Tencent Hunyuan3D Team},
  year={2025},
  eprint={2509.21245},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Credits

Zen 3D is based on Hunyuan3D-Omni by Tencent. We thank the original authors and contributors:

License

Apache 2.0 License - see LICENSE for details.

Links


Zen 3D - Controllable 3D generation for the Zen AI ecosystem

Part of the Zen AI ecosystem.

Based On

zen-3d is based on Hunyuan3D-Omni

We are grateful to the original authors for their excellent work and open-source contributions.

Upstream Source

Changes in Zen LM

  • Adapted for Zen AI ecosystem
  • Fine-tuned for specific use cases
  • Added training and inference scripts
  • Integrated with Zen Gym and Zen Engine
  • Enhanced documentation and examples

Citation

If you use this model, please cite both the original work and Zen LM:

@misc{zenlm2025zen-3d,
    title={Zen LM: zen-3d},
    author={Hanzo AI and Zoo Labs Foundation},
    year={2025},
    publisher={HuggingFace},
    howpublished={\url{https://huggingface.co/zenlm/zen-3d}}
}

Please also cite the original upstream work - see https://github.com/Tencent/Hunyuan3D-1 for citation details.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support