MiniCrit-1.5B / README.md
wmaousley's picture
Update README.md
289a418 verified
metadata
license: mit
language:
  - en
tags:
  - finance
  - financial-reasoning
  - adversarial
  - critique-model
  - lora
  - safety
  - trading
datasets:
  - wmaousley/minicrit-training-12k
  - wmaousley/finrebut-600
model-index:
  - name: MiniCrit-1.5B
    results:
      - task:
          type: text-classification
          name: Financial Reasoning Critique
        dataset:
          name: MiniCrit-Training-12k
          type: wmaousley/minicrit-training-12k
        metrics:
          - name: Weak Reasoning F1
            type: f1
            value: 0.82
          - name: Hallucination Detection F1
            type: f1
            value: 0.76

🧠 MiniCrit-1.5B

Adversarial Financial Critic LLM for Trading-Rationale Evaluation

MiniCrit-1.5B is an adversarial financial-critic LLM trained to evaluate, stress-test, and rebut trading rationales produced by other LLMs.
It serves as a validator layer for autonomous or semi-autonomous trading systems where hallucinated logic or weak reasoning may create financial risk.

The model does not generate trades.
It only critiques reasoning quality.


πŸ“¦ Model Description

Base Model: 1.5B-parameter transformer
Tuning Method: ATAC-LoRA
Training Data:

  • MiniCrit-Training-12k (12,132 rationale β†’ critique pairs)
  • FinRebut-600 curated evaluation set

Primary Abilities

  • Detect flawed or risky trading logic
  • Identify hallucinated financial statistics
  • Flag improper use of indicators
  • Provide adversarial rebuttals
  • Validate rationales before execution

πŸ“š Datasets

1. MiniCrit-Training-12k

Large-scale dataset of institutional rationale/critique pairs.
➑ https://huggingface.co/datasets/wmaousley/minicrit-training-12k

2. FinRebut-600

Curated, high-quality adversarial rebuttal set.
➑ https://huggingface.co/datasets/wmaousley/finrebut-600

Both datasets are available under CC-BY-4.0.


πŸš€ Intended Use

βœ” Recommended:

  • Validating LLM-generated trading rationales
  • Hallucination detection in financial explanations
  • Model-to-model critique pipelines
  • AI-safety analysis for financial agents
  • Research in adversarial financial reasoning

❌ Not Recommended:

  • Generating trades
  • Investment decision-making
  • Fully autonomous trading without human review

This model is for research and evaluation only.


πŸ“ˆ Performance

Forward-Test (Paper Trading)

Metric Value
Sharpe (baseline) +0.20
Sharpe (MiniCrit-validated) +0.80
Hallucination reduction –48%
Weak-reasoning detection F1 0.82
Hallucination F1 0.76

Qualitative Strengths

  • Detects regime mismatch
  • Identifies liquidity illusions
  • Flags circular or self-justifying logic
  • Highlights data-mining
  • Generates strong evidence-demanding rebuttals

πŸ”§ Usage

This example works after the full model is uploaded to this repository.

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "wmaousley/MiniCrit-1.5B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

prompt = """Rationale:
'NVDA is oversold so I will long because RSI is below 30.'

Provide a critique.
"""

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
    **inputs,
    max_new_tokens=200,
    do_sample=False,
    temperature=0.0,
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

πŸ›‘οΈ Safety & Limitations

Model Risks

  • May produce overly forceful critiques
  • Sensitive to prompt phrasing
  • Limited deep macroeconomic understanding
  • Not a trading or financial-advice model

Mitigations

  • Does not produce trade signals
  • Outputs critique only
  • Warns about high-risk reasoning patterns
  • Datasets avoid target-label leakage

πŸ“„ Citation

If you use MiniCrit-1.5B, please cite:

Ousley, W. A. (2025). MiniCrit-1.5B: Adversarial Financial Critic Model.
Zenodo. https://doi.org/10.5281/zenodo.17594497

πŸ‘€ Author

William Alexander Ousley
AI/ML Researcher β€” Autonomous Trading Systems
ORCID: https://orcid.org/0009-0009-2503-2010


🀝 Contributions

Pull requests welcome.

Ideal contributions include:

  • Dataset expansions
  • Adversarial-evaluation benchmarks
  • Safety improvements
  • ATAC-LoRA optimization
  • Forward-test research

πŸ“¬ Contact

πŸ“§ Email: [email protected]
πŸ”— GitHub: https://github.com/wmaousley