|
|
--- |
|
|
library_name: transformers |
|
|
tags: |
|
|
- exaone |
|
|
language: |
|
|
- ko |
|
|
- en |
|
|
base_model: |
|
|
- LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct |
|
|
--- |
|
|
# Model Card for EXAONE-3.5-7.8B-s1-Ko-no-sample-packing |
|
|
|
|
|
### Base Model |
|
|
|
|
|
- [beomi/EXAONE-3.5-7.8B-Instruct-Llamafied](https://huggingface.co/beomi/EXAONE-3.5-7.8B-Instruct-Llamafied), Llamafied version of [LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct) |
|
|
|
|
|
### Dataset |
|
|
|
|
|
- [werty1248/s1k-KoEnKo-formatted](https://huggingface.co/datasets/werty1248/s1k-KoEnKo-formatted) |
|
|
- From [simplescaling/s1K](https://huggingface.co/datasets/simplescaling/s1K), **only question and attempt** translated, thinking part not translated. |
|
|
- template: <think>{thinking_trajectories}</think>{attempt} |
|
|
|
|
|
### Training |
|
|
|
|
|
- 4xH100 SXM, 1 hours - Total 4 GPU Hours with H100 SXM |
|
|
|
|
|
- Trained with Axolotl, but trying to follow [simplescaling's training config](https://github.com/simplescaling/s1/blob/main/train/sft.sh) as much as possible. |
|
|
|
|
|
- Difference |
|
|
- optimizer: paged_adamw_32bit |
|
|
- deepspeed: ./deepspeed_configs/zero3_bf16.json |
|
|
- plugins: |
|
|
- axolotl.integrations.liger.LigerPlugin |
|
|
|
|
|
- νΉμ΄μ¬ν: sample packing μλ μ epoch λΉ 12stepλ°μ λμ§ μμ, 첫 batchμ λν νμ΅μ΄ μ λλ‘ μ΄λ£¨μ΄μ§μ§ μμ. |
|
|
|
|
|
 |
|
|
|
|
|
<details><summary>Axolotl config</summary> |
|
|
|
|
|
``` |
|
|
base_model: beomi/EXAONE-3.5-7.8B-Instruct-Llamafied |
|
|
model_type: AutoModelForCausalLM |
|
|
tokenizer_config: beomi/EXAONE-3.5-7.8B-Instruct-Llamafied |
|
|
tokenizer_type: AutoTokenizer |
|
|
|
|
|
load_in_8bit: false |
|
|
load_in_4bit: false |
|
|
strict: false |
|
|
|
|
|
datasets: |
|
|
- path: werty1248/s1k-KoEnKo-formatted |
|
|
field_messages: conversations |
|
|
type: chat_template |
|
|
chat_template: chatml |
|
|
|
|
|
dataset_prepared_path: ./data_preparation |
|
|
output_dir: /workspace/data |
|
|
|
|
|
hf_use_auth_token: true |
|
|
|
|
|
sequence_len: 32768 |
|
|
sample_packing: true |
|
|
pad_to_sequence_len: true |
|
|
|
|
|
plugins: |
|
|
- axolotl.integrations.liger.LigerPlugin |
|
|
liger_rope: true |
|
|
liger_rms_norm: true |
|
|
liger_layer_norm: true |
|
|
liger_glu_activation: true |
|
|
liger_fused_linear_cross_entropy: true |
|
|
|
|
|
wandb_project: |
|
|
#wandb_entity: |
|
|
#wandb_watch: |
|
|
wandb_name: |
|
|
#wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 4 |
|
|
micro_batch_size: 1 |
|
|
num_epochs: 5 |
|
|
optimizer: paged_adamw_32bit |
|
|
lr_scheduler: cosine |
|
|
learning_rate: 1.0e-5 |
|
|
adam_beta1: 0.9 |
|
|
adam_beta2: 0.95 |
|
|
|
|
|
train_on_inputs: false |
|
|
group_by_length: false |
|
|
bf16: auto |
|
|
fp16: |
|
|
tf32: false |
|
|
|
|
|
gradient_checkpointing: true |
|
|
early_stopping_patience: |
|
|
resume_from_checkpoint: |
|
|
local_rank: |
|
|
logging_steps: 1 |
|
|
xformers_attention: |
|
|
flash_attention: true |
|
|
|
|
|
warmup_ratio: 0.05 |
|
|
eval_table_size: |
|
|
|
|
|
deepspeed: ./deepspeed_configs/zero3_bf16.json |
|
|
``` |
|
|
|
|
|
</details> |
|
|
|
|
|
### Example |
|
|
|
|
|
#### Q1: From [ChuGyouk/GSM8k-Ko](https://huggingface.co/datasets/ChuGyouk/GSM8k-Ko) |
|
|
|
|
|
``` |
|
|
input = tokenizer.apply_chat_template([ { "content": "Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\\n\\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution written in the same language as the question.} <|end_of_solution|> Now, try to solve the following question through the above guidelines", "role": "system" }, |
|
|
{ "content": "Janetμ μ€λ¦¬λ ν루μ 16κ°μ λ¬κ±μ λ³μ΅λλ€. κ·Έλ
λ λ§€μΌ μμΉ¨ 3κ°μ λ¬κ±μ λ¨Ήκ³ , μΉκ΅¬λ€μ μν΄ 4κ°μ λ¬κ±λ‘ λ¨Ένμ κ΅½μ΅λλ€. κ·Έλ
λ λ¨μ λ¬κ±μ λμ°λ¬Ό μμ₯μμ μ μ ν μ€λ¦¬μ κ°λΉ 2λ¬λ¬μ νλ§€ν©λλ€. κ·Έλ
λ λμ°λ¬Ό μμ₯μμ λ§€μΌ μΌλ§λ λ§μ λμ λ²κΉμ?", "role": "user" },], add_generation_prompt=True, return_tensors='pt') |
|
|
res = model.generate(input.to('cuda'), max_length = 2048, tokenizer=tokenizer) |
|
|
tokenizer.decode(res[0]) |
|
|
``` |
|
|
|
|
|
<details><summary>Output(eos ν ν° μμ)</summary> |
|
|
|
|
|
``` |
|
|
[|assistant|]λ€μμ λ¬Έμ λ₯Ό ν΄κ²°νλ λ°©λ²μ
λλ€. |
|
|
|
|
|
* **λ§€μΌ νμ΄λλ λ¬κ±μ μ:** μ€λ¦¬λ ν루μ 16κ°μ λ¬κ±μ λ³μ΅λλ€. |
|
|
* **λ¬κ± μ¬μ©λ:** |
|
|
* Janetμ μμΉ¨μ 3κ°μ λ¬κ±μ λ¨Ήμ΅λλ€. |
|
|
* κ·Έλ
λ μΉκ΅¬λ€μ μν΄ 4κ°μ λ¬κ±μΌλ‘ λ¨Ένμ κ΅½μ΅λλ€. |
|
|
* **μ΄ λ¬κ± μ¬μ©λ:** 3 + 4 = 7κ° |
|
|
* **νλ§€μ©μΌλ‘ λ¨μ λ¬κ± μ:** |
|
|
* **λ¨μ λ¬κ±:** 16 (νμ΄λλ λ¬κ±) - 7 (μ¬μ©ν λ¬κ±) = 9κ° |
|
|
* **λ§€μΌ μμ΅:** |
|
|
* κ·Έλ
λ κ° μ€λ¦¬μμ 2λ¬λ¬μ νλ§€ν©λλ€. |
|
|
* **λ§€μΌ μμ΅:** 9 (νλ§€μ©μΌλ‘ λ¨μ λ¬κ±) x 2 (κ° μ€λ¦¬μμ κ°κ²©) = 18λ¬λ¬ |
|
|
|
|
|
**λ΅:** Janetμ λμ°λ¬Ό μμ₯μμ λ§€μΌ 18λ¬λ¬λ₯Ό λ²κ² λ©λλ€. |
|
|
|
|
|
**μμ½:** |
|
|
|
|
|
* νμ΄λλ λ¬κ±: 16κ° |
|
|
* μ¬μ©νλ λ¬κ±: 3 + 4 = 7κ° |
|
|
* λ¨μ λ¬κ±: 16 - 7 = 9κ° |
|
|
* κ° λ¨μ λ¬κ±μ κ°κ²©: $2 |
|
|
* λ§€μΌ μμ΅: 9 x 2 = $18 |
|
|
|
|
|
Final Answer: The final answer is $\boxed{18}$ |
|
|
``` |
|
|
|
|
|
</details> |
|
|
|
|
|
#### Q2: From [KSM, HAERAE-HUB/HRM8K](https://huggingface.co/datasets/HAERAE-HUB/HRM8K) |
|
|
|
|
|
``` |
|
|
input = tokenizer.apply_chat_template([ { "content": "Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\\n\\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution written in the same language as the question.} <|end_of_solution|> Now, try to solve the following question through the above guidelines", "role": "system" }, |
|
|
{ "content": "μμ μ€μ \\( t \\)μ λνμ¬ ν¨μ \\( f \\)λ₯Ό \\[ f(t) = \\int_{0}^{\\sqrt{t}} \\int_{y}^{\\sqrt{t}} \\frac{1}{2 + \\sin(x^2)} \\, dx \\, dy \\] λ‘ μ μν λ, \\( f'\\left(\\frac{\\pi}{2}\\right) \\)μ κ°μ ꡬνμμ€.", "role": "user" },], add_generation_prompt=True, return_tensors='pt') |
|
|
res = model.generate(input.to('cuda'), max_length = 8192, stop_strings = ['<|end_of_solution|>'], tokenizer=tokenizer) |
|
|
tokenizer.decode(res[0]) |
|
|
``` |
|
|
|
|
|
<details><summary>Output(μ€λ΅, think μμ, eos ν ν° μμ)</summary> |
|
|
|
|
|
``` |
|
|
[|assistant|]λ¨Όμ , μ£Όμ΄μ§ ν¨μ \( f(t) \)λ₯Ό λ€μκ³Ό κ°μ΄ λνλΌ μ μμ΅λλ€: |
|
|
\[ f(t) = \iint_{D(t)} \frac{1}{2 + \sin(x^2)} \, dA \] |
|
|
μ¬κΈ°μ \( D(t) = [0, \sqrt{t}] \times [\sqrt{t}, \sqrt{t}] \)μ
λλ€. |
|
|
|
|
|
ν¨μ \( f(t) \)λ λ λ³μ ν¨μμ μ λΆμΌλ‘ ννλ μ μμΌλ―λ‘, λΌμ΄λ² λμΈ κ·μΉμ μ¬μ©νμ¬ λν¨μλ₯Ό ꡬν μ μμ΅λλ€: |
|
|
\[ f'(t) = \frac{d}{dt} \left( \iint_{D(t)} \frac{1}{2 + \sin(x^2)} \, dA \right) = \iint_{D'(t)} \frac{\partial}{\partial t} \left( \frac{1}{2 + \sin(x^2)} \right) \, dA \] |
|
|
μ¬κΈ°μ \( D'(t) \)λ μμ \( D(t) \)μ κ²½κ³κ° \( t \)μ λν΄ λ―ΈλΆ κ°λ₯νκ² λ³ν λ, \( t \)μ μμ‘΄νλ λΆλΆμ
λλ€. |
|
|
|
|
|
μμ \( D(t) \)μ κ²½κ³λ λ€μκ³Ό κ°μ΅λλ€: |
|
|
\( t \ge 0 \)μ λν΄, \( 0 \le y \le \sqrt{t} \)μ΄κ³ \( y \le x \le \sqrt{t} \)μ
λλ€. |
|
|
\( t \)μ λν λν¨μλ₯Ό ꡬνκΈ° μν΄, \( x \)μ \( y \)μ λν μ 보λ₯Ό μ¬μ©ν©λλ€. |
|
|
\( t \)μ λν \( y \)μ λ²μλ \( y = \sqrt{t} \)μ
λλ€. |
|
|
\( t \)μ λν \( x \)μ λ²μλ \( x = \sqrt{t} \)μ
λλ€. |
|
|
|
|
|
\( D(t) \)μ κ²½κ³ \( \sqrt{t} = \sqrt{t} \)μ \( x = y \)λ‘ μ£Όμ΄μ§λλ€. |
|
|
\( t \)μ λν \( x=y \)μ λ³νλ \( x=y \)λ₯Ό λ°λΌ λ°μν©λλ€. |
|
|
λν, κ²½κ³ \( y = \sqrt{t} \)λ₯Ό λ°λΌ \( x \)κ° μ¦κ°ν©λλ€. |
|
|
|
|
|
\( f'(t) \)λ₯Ό ꡬνκΈ° μν΄, μ°λ¦¬λ λ€μκ³Ό κ°μ μμμμ μ λΆν΄μΌ ν©λλ€: |
|
|
\( D'(t) = [0, \sqrt{t}] \times [\sqrt{t}, \sqrt{t}] \)μμ \( t \)μ μμ‘΄νλ λΆλΆμ
λλ€. |
|
|
\( y = \sqrt{t} \)μ \( x = y \)λ‘ κ²½κ³κ° νμ±λ©λλ€. |
|
|
|
|
|
\( t \)μ λν λν¨μλ₯Ό κ³μ°ν΄ λ΄
μλ€: |
|
|
\( \frac{\partial}{\partial t} \left( \frac{1}{2 + \sin(x^2)} \right) = 0 \)μ
λλ€. μ΄λ \( \frac{1}{2 + \sin(x^2)} \)κ° \( t \)μ 무κ΄νκΈ° λλ¬Έμ
λλ€. |
|
|
|
|
|
λ°λΌμ, \( f'(t) = \iint_{D'(t)} 0 \, dA = 0 \)μ
λλ€. |
|
|
μ΄κ²μ λΆλΆ μ λΆμ΄ νμ 0μ΄λΌλ μλ―ΈμΌκΉμ? μλλ©΄ λν¨μ κ³μ°μ λ¬Έμ κ° μλ κ²μΌκΉμ? |
|
|
|
|
|
μ°λ¦¬λ λ¨Όμ \( f(t) \)λ₯Ό μ§μ λ―ΈλΆν μ μλμ§ μ΄ν΄λ΄μΌ ν©λλ€. |
|
|
\( f(t) = \int_{0}^{\sqrt{t}} \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \, dy \) |
|
|
μ΄κ²μ Leibniz μ λΆ κ·μΉμ μ¬μ©νμ¬ λ―ΈλΆνλ©΄: |
|
|
\( f'(t) = \frac{d}{dt} \left( \int_{0}}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) \times \text{μμ} + \int_{0}^{\int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \, dy} \frac{\partial}{\partial t} \left( \frac{1}{2 + \sin(x^2)} \right) \, dy \) |
|
|
μ΄κ²μ μ½κ° 볡μ‘νκ² λ€λ¦΄ μ μμ΅λλ€. |
|
|
|
|
|
λ λ² μ λΆνλ λ λ€λ₯Έ λ°©λ²μ κ³ λ €ν΄ λ³΄κ² μ΅λλ€. |
|
|
\( f(t) = \int_{0}^{\sqrt{t}} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) dy \) |
|
|
Leibniz κ·μΉμ μν΄: |
|
|
\( f'(t) = \frac{d}{dt} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right)_{y=\sqrt{t}} + \int_{0}^{\sqrt{t}} \frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) dy \) |
|
|
첫 λ²μ§Έ νμ λ€μκ³Ό κ°μ΅λλ€: |
|
|
\( \frac{d}{dt} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) = \frac{1}{2 + \sin((\sqrt{t})^2)} \cdot \frac{d}{dt} (\sqrt{t}) = \frac{1}{2 + \sin(t)} \cdot \frac{1}{2\sqrt{t}} \) |
|
|
μ΄ νμ \( y = \sqrt{t} \)μμ νκ°λ©λλ€. |
|
|
|
|
|
λ λ²μ§Έ νμ λ€μκ³Ό κ°μ΅λλ€: |
|
|
\( \int_{0}^{\sqrt{t}} \frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) dy \) |
|
|
\( \frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) = -\frac{1}{2 + \sin((\sqrt{t})^2)} \cdot \frac{1}{2\sqrt{t}} = -\frac{1}{2 + \sin(t)} \cdot \frac{1}{2\sqrt{t}} \) |
|
|
μ΄κ²μ μ λΆν©λλ€: |
|
|
\( -\int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \cdot \frac{1}{2\sqrt{t}} dx = -\frac{1}{2\sqrt{t}} \int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} dx \) |
|
|
|
|
|
\( f'(t) \)μ λν μ 체 ννμ λ€μκ³Ό κ°μ΅λλ€: |
|
|
\( f'(t) = \frac{1}{2\sqrt{t}(2 + \sin(t))} - \frac{1}{2\sqrt{t}} \int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} dx \) |
|
|
|
|
|
\( f'\left(\frac{\pi}{2}\right) \)λ₯Ό ꡬν΄μΌ ν©λλ€. |
|
|
\( t = \frac{\pi}{2} \)λ₯Ό λμ
νλ©΄: |
|
|
\( f'\left(\frac{\pi}{2}\right) = \frac{1}{2\sqrt{\pi/2}(2 + \sin(\pi/2))} - \frac{1}{2\sqrt{\pi/2}} \int_{0}^{\sqrt{\pi/2}} \frac{1}{2 + \sin(x^2)} dx \) |
|
|
\( f'\left(\frac{\pi}{2}\right) = \frac{1}{2 \cdot \frac{\sqrt{2\pi}}{2} (2 + 1)} - \frac{1}{\sqrt{2\pi}} \int_{0}^{\sqrt{\pi/2}} \frac{1}{2 + \sin(x^2)} dx \) |
|
|
\( f'\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2\pi} \cdot 3} - \frac{1}{\sqrt{2\pi}} \int_{0}^{\sqrt{\pi/2}} \frac{1}{2 + \sin(x^2)} dx \) |
|
|
\( f'\left(\frac{\pi}{2}\right) = \frac{1}{3\sqrt{2\pi}} - \frac{1}{\sqrt{2\pi}} \int_{0}^{\sqrt{\pi/2}} \frac{1}{2 + \sin(x^2)} dx \) |
|
|
|
|
|
λλ, \( f'(t) = 0 \)μ΄λΌκ³ μκ°ν΄ λ΄
μλ€. μ΄λ κ²½κ³ \( D'(t) \)κ° μ€μ λ‘ μ‘΄μ¬νκ³ μ λΆμ΄ 0μ΄ μλμ μλ―Ένμ§λ μμ΅λλ€. |
|
|
\( D(t) \)μ κ²½κ³λ₯Ό \( \partial D(t) \)λΌκ³ ν©μλ€. |
|
|
\( f(t) = \iint_{D(t)} g(x, y) \, dA \)λΌκ³ ν©μλ€. μ¬κΈ°μ \( g(x, y) = \frac{1}{2 + \sin(x^2)} \). |
|
|
Leibniz κ·μΉμ μν΄: |
|
|
\( f'(t) = \iint_{\partial D(t)} g(x, y) \mathbf{n} \cdot \mathbf{k} \, dS \) + \( \iint_{D(t)} \frac{\partial g}{\partial t} \, dA \) |
|
|
μ¬κΈ°μ \( \mathbf{n} \)μ μΈλΆ λ²μ 벑ν°μ΄κ³ , \( \mathbf{k} \)λ \( t \) λ°©ν₯μ λ¨μ 벑ν°μ
λλ€. |
|
|
\( \mathbf{n} \cdot \mathbf{k} \)λ κ²½κ³μμ \( t \)μ λν λ¨μ λ²μ μ κ³μμ
λλ€. |
|
|
|
|
|
μμ \( D(t) \)μ κ²½κ³λ \( y = \sqrt{t} \)μ \( x = y \)λ‘ κ΅¬μ±λ©λλ€. |
|
|
\( t \)μ λν λ³νλ \( y = \sqrt{t} \)μμ λ°μνκ³ , μ΄λ \( x=y \)λ₯Ό λ°λΌ μΌμ΄λ©λλ€. |
|
|
|
|
|
κ²½κ³ \( y = \sqrt{t} \)λ₯Ό κ³ λ €ν΄ λ΄
μλ€. μ¬κΈ°μ μΈλΆ λ²μ 벑ν°λ \( \mathbf{n} \)μ \( \frac{\partial(x, y)}{\partial t} \)μ λ¨μ λ²μ μ
λλ€, μ¦ \( \mathbf{n} = \frac{(1, 0)}{\sqrt{1 + 0^2}} = (1, 0) \)μ
λλ€. |
|
|
\( \mathbf{n} \cdot \mathbf{k} = 0 \)μ
λλ€. |
|
|
|
|
|
κ²½κ³ \( x = y \)λ₯Ό κ³ λ €ν΄ λ΄
μλ€. μ¬κΈ°μ \( t \)μ λν \( x \)μ λ³νκ° λ°μν©λλ€. |
|
|
μΈλΆ λ²μ 벑ν°λ \( \frac{\partial(x, y)}{\partial t} \)μ
λλ€. |
|
|
μ΄ κ²½κ³μμ \( \mathbf{n} \cdot \mathbf{k} \)λ \( \frac{\partial x}{\partial t} \)μ
λλ€. |
|
|
\( x = y \)μ΄λ―λ‘, \( \frac{\partial x}{\partial t} = \frac{\partial y}{\partial t} = \frac{1}{2\sqrt{t}} \)μ
λλ€. |
|
|
|
|
|
\( f'(t) \)μ λν ννμ λ€μκ³Ό κ°μ΅λλ€: |
|
|
\( f'(t) = \iint_{\partial D(t)} g(x, y) \cdot 0 \, dS + \iint_{D(t)} \frac{\partial g}{\partial t} \, dA \) |
|
|
\( f'(t) = \iint_{D(t)} \frac{\partial}{\partial t} \left( \frac{1}{2 + \sin(x^2)} \right) \, dA \) |
|
|
μ΄λ μ΄μ μ μ»μ κ²°κ³Όμ μΌμΉν©λλ€. \( \frac{\partial}{\partial t} \left( \frac{1}{2 + \sin(x^2)} \right) = 0 \)μ΄κΈ° λλ¬Έμ
λλ€. |
|
|
|
|
|
Final Answer: The final answer is $\boxed{0}$ |
|
|
``` |
|
|
|
|
|
</details> |
|
|
|
|
|
#### Q3: General Knowledge |
|
|
|
|
|
``` |
|
|
input = tokenizer.apply_chat_template([ { "content": "Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\\n\\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution written in the same language as the question.} <|end_of_solution|> Now, try to solve the following question through the above guidelines", "role": "system" }, |
|
|
{ "content": "μΈκ³μμ μΈ λ²μ§Έλ‘ λμ μ°μ?", "role": "user" },], add_generation_prompt=True, return_tensors='pt') |
|
|
res = model.generate(input.to('cuda'), max_length = 2048, temperature = 0.5, stop_strings = ['<|end_of_solution|>'], tokenizer=tokenizer) |
|
|
tokenizer.decode(res[0]) |
|
|
``` |
|
|
|
|
|
- Normal temperature: hallucination (unstable answer) |
|
|
- Low temperature: repitition |
|
|
|
|
|
<details><summary>Output(μ€λ΅, think μμ)</summary> |
|
|
|
|
|
``` |
|
|
[|assistant|]μΈκ³μμ μΈ λ²μ§Έλ‘ λμ μ°μ **K2(μ€κ΅λͺ
μΉ΄λΌμ½λ K2)**μ
λλ€. |
|
|
|
|
|
* **λμ΄:** 8,611λ―Έν° (28,251νΌνΈ) |
|
|
* **μμΉ:** νν€μ€νκ³Ό μ€κ΅(μ μ₯) κ΅κ²½, μΉ΄λΌμ½λ μ°λ§₯ |
|
|
* **λ±λ° μμ¬:** 1954λ
μ²μ λ±λ° μ±κ³΅ (μλλΌ λ±λ°λ) |
|
|
* **νΉμ§:** K2λ κ°μ₯ λμ μ°μΈ μλ² λ μ€νΈμ λ€ λ²μ§Έλ‘ λμ μ°μΈ μΉΈμ²Έΰ€ungaλ³΄λ€ λ μ΄λ ΅κ³ μνν λ±λ°μΌλ‘ μλ €μ Έ μμ΅λλ€. "μΈμμμ κ°μ₯ μνν μ°"μ΄λΌλ λ³λͺ
μ κ°μ§κ³ μμ΅λλ€. |
|
|
|
|
|
**μ°Έκ³ :** μ°μ λμ΄μ λν λ
Όμμ μ’
μ’
μ‘΄μ¬νλ©°, νΉν λ νλ©΄μ λ³λμ±μΌλ‘ μΈν΄ λμ± κ·Έλ μ΅λλ€. μμ λμ΄λ λμ΄λ μΌλ°μ μΌλ‘ μΈμ©λλ κ°μ
λλ€. |
|
|
|
|
|
μΈκ³μμ κ°μ₯ λμ μ°μ μλ² λ μ€νΈ(8,848λ―Έν° λλ 29,031νΌνΈ)μ΄κ³ , λ λ²μ§Έλ‘ λμ μ°μ μΉΈμ²Έμμ
(8,586λ―Έν° λλ 28,169νΌνΈ)μ
λλ€. |
|
|
``` |
|
|
|
|
|
</details> |