WAN 2.1 FP16 - 720p Image-to-Video Model
High-fidelity 720p image-to-video generation model in full FP16 precision for maximum quality output.
Model Description
WAN (Wan An) 2.1 is a state-of-the-art transformer-based diffusion model for image-to-video generation. This repository contains the 720p variant in full FP16 (16-bit floating point) precision, providing the highest quality video generation with enhanced detail and clarity. The model transforms static images into dynamic video sequences with temporal consistency and cinematic quality.
Key Capabilities:
- Image-to-video generation at 720p resolution
 - 14 billion parameter transformer architecture
 - Full FP16 precision for maximum generation quality
 - High temporal consistency across frames
 - Compatible with camera control LoRAs (available separately)
 
Repository Contents
wan21-fp16-720p/
βββ diffusion_models/
    βββ wan/
        βββ wan21-i2v-720p-14b-fp16.safetensors  (31 GB)
Total Repository Size: ~31 GB
Model Files
| File | Size | Description | 
|---|---|---|
diffusion_models/wan/wan21-i2v-720p-14b-fp16.safetensors | 
31 GB | WAN 2.1 Image-to-Video 720p transformer model (14B parameters, FP16) | 
Note: This repository contains only the 720p diffusion model. For complete functionality, you will also need:
- WAN 2.1 VAE (available separately, ~243 MB)
 - Camera Control LoRAs (optional, for cinematic camera movements, ~343 MB each)
 
Hardware Requirements
Minimum Requirements
- VRAM: 40GB+ (FP16 full precision at 720p)
 - Disk Space: 31 GB for model storage
 - System RAM: 32GB+ recommended
 - GPU: High-end NVIDIA GPU with 40GB+ VRAM
- Recommended: RTX A6000 (48GB), A100 (40/80GB)
 - Alternative: RTX 4090 (24GB) with memory optimizations
 
 
Recommended Hardware
- GPU: NVIDIA A6000 48GB, A100 40/80GB, or RTX 6000 Ada
 - System RAM: 64GB for optimal performance
 - Storage: NVMe SSD for faster model loading
 - VRAM Optimization: Enable gradient checkpointing and attention slicing for 24GB GPUs
 
Usage Examples
Basic Image-to-Video Generation
from diffusers import DiffusionPipeline, AutoencoderKL
import torch
from PIL import Image
# Load the WAN 2.1 720p FP16 model
pipe = DiffusionPipeline.from_single_file(
    "E:/huggingface/wan21-fp16-720p/diffusion_models/wan/wan21-i2v-720p-14b-fp16.safetensors",
    torch_dtype=torch.float16,
    use_safetensors=True
)
# Load WAN 2.1 VAE (must be downloaded separately)
pipe.vae = AutoencoderKL.from_single_file(
    "E:/huggingface/wan21-vae/vae/wan/wan21-vae.safetensors"
)
# Move to GPU
pipe.to("cuda")
# Load input image
input_image = Image.open("path/to/your/image.jpg")
# Generate video from image
video_frames = pipe(
    image=input_image,
    prompt="cinematic video with smooth motion",
    num_frames=24,
    num_inference_steps=50,
    guidance_scale=7.5
).frames[0]
# Export video
from diffusers.utils import export_to_video
export_to_video(video_frames, "output_video.mp4", fps=8)
Memory-Optimized Usage (for 24GB GPUs)
from diffusers import DiffusionPipeline, AutoencoderKL
import torch
# Load model with memory optimizations
pipe = DiffusionPipeline.from_single_file(
    "E:/huggingface/wan21-fp16-720p/diffusion_models/wan/wan21-i2v-720p-14b-fp16.safetensors",
    torch_dtype=torch.float16,
    use_safetensors=True
)
# Enable memory-efficient attention
pipe.enable_attention_slicing(1)
pipe.enable_vae_slicing()
# Enable gradient checkpointing (if supported)
if hasattr(pipe.unet, 'enable_gradient_checkpointing'):
    pipe.unet.enable_gradient_checkpointing()
pipe.to("cuda")
# Generate with reduced memory footprint
video_frames = pipe(
    image=input_image,
    prompt="your prompt here",
    num_frames=16,  # Reduce frames for lower VRAM
    num_inference_steps=40,
    guidance_scale=7.5
).frames[0]
Using with Camera Control LoRAs (Optional)
# Load camera control LoRA (must be downloaded separately)
pipe.load_lora_weights(
    "E:/huggingface/wan21-loras/loras/wan/wan21-camera-rotation-rank16-v1.safetensors"
)
# Generate video with camera movement
video_frames = pipe(
    image=input_image,
    prompt="rotating camera around the subject, cinematic",
    num_frames=24,
    num_inference_steps=50,
    guidance_scale=7.5
).frames[0]
Model Specifications
- Architecture: Transformer-based diffusion model for image-to-video generation
 - Parameters: 14 billion (14B)
 - Precision: FP16 (16-bit floating point)
- 1 sign bit, 5-bit exponent, 10-bit mantissa
 - Full numerical precision for maximum quality
 
 - Resolution: 720p (1280x720)
 - Format: SafeTensors (secure and efficient serialization)
 - Model Type: Image-to-Video (I2V)
 - Framework Compatibility: diffusers, PyTorch 2.0+
 
Performance Tips
- Resolution and Quality: This 720p model provides maximum detail and clarity but requires significant VRAM
 - Memory Optimization:
- Enable attention slicing: 
pipe.enable_attention_slicing(1) - Enable VAE slicing: 
pipe.enable_vae_slicing() - Reduce frame count: Use 16-24 frames instead of 32+
 
 - Enable attention slicing: 
 - Inference Speed:
- Use fp16 dtype for optimal GPU utilization
 - Reduce inference steps (30-40) for faster generation with minimal quality loss
 
 - Prompt Engineering:
- Be specific about desired motion: "slow panning", "gentle zoom", "smooth transition"
 - Include cinematic keywords: "cinematic", "smooth", "professional"
 - Specify camera movements if using LoRAs: "rotating camera", "aerial view"
 
 - Batch Generation: Process single videos at a time due to high VRAM requirements
 - Storage: Use NVMe SSD for faster model loading times
 
Installation Requirements
# Install required dependencies
pip install diffusers transformers accelerate safetensors torch torchvision
# For video export functionality
pip install opencv-python imageio imageio-ffmpeg
Python Environment:
- Python 3.8+
 - PyTorch 2.0+ with CUDA support
 - diffusers >= 0.21.0
 - transformers
 - accelerate
 - safetensors
 
Version Comparison
WAN 2.1 Precision Variants
| Variant | Size | VRAM | Quality | Speed | Use Case | 
|---|---|---|---|---|---|
| FP16 (this model) | 31 GB | 40GB+ | Maximum | Standard | Research, archival quality, maximum fidelity | 
| FP8 | 16 GB | 24GB+ | High | Faster | Production deployment, efficient inference | 
Resolution Variants
| Resolution | Model Size | VRAM | Quality | Details | 
|---|---|---|---|---|
| 480p | 31 GB | 32GB+ | High | Balanced quality/performance | 
| 720p (this model) | 31 GB | 40GB+ | Maximum | Enhanced detail and clarity | 
When to use FP16 720p:
- Maximum quality requirements
 - Research and development
 - Professional/commercial production
 - Archival and reference generation
 - GPU with 40GB+ VRAM available
 
Consider alternatives if:
- VRAM limited to 24GB or less (use FP8 or 480p)
 - Inference speed is critical (use FP8)
 - Running on consumer GPUs (use FP8 480p)
 
License
This model is released under a custom WAN license. Please review the license terms before use:
- Commercial use restrictions may apply
 - Attribution requirements may be specified
 - Refer to official WAN documentation for complete license terms
 
License Type: other (Custom WAN License)
Citation
If you use this model in your research or projects, please cite:
@software{wan21_fp16_720p,
  title={WAN 2.1 FP16 720p: High-Fidelity Image-to-Video Generation},
  year={2024},
  note={14B parameter transformer-based diffusion model for 720p video generation in full FP16 precision}
}
Related Resources
Official Resources
- WAN Project: Official model documentation and updates
 - Hugging Face Model Hub: Community-shared models and discussions
 - diffusers Documentation: https://huggingface.co/docs/diffusers
 
Related Models
- WAN 2.1 480p FP16: Lower resolution variant with same precision (32GB VRAM)
 - WAN 2.1 FP8: Quantized models for efficient deployment (24GB VRAM)
 - WAN 2.2: Next generation with enhanced features and quality improvements
 - WAN 2.1 VAE: Required for complete functionality (download separately)
 - WAN Camera Control LoRAs: Optional adapters for cinematic camera movements
 
Complementary Components
- VAE: 
wan21-vae.safetensors(~243 MB, required) - Camera LoRAs (optional):
- Rotation LoRA: Orbital camera movements
 - Arc Shot LoRA: Curved dolly movements
 - Drone LoRA: Aerial perspectives
 
 
Technical Notes
FP16 Precision Characteristics
- Numerical Range: Β±65,504 (max value)
 - Precision: ~3-4 decimal digits
 - Advantages:
- Maximum generation quality
 - No quantization artifacts
 - Broad hardware support
 - Research standard
 
 - Trade-offs:
- 2x size vs FP8
 - Higher VRAM requirements
 - Slightly slower on tensor core GPUs
 
 
Model Architecture Details
- Type: Transformer-based diffusion model
 - Conditioning: Text and image conditioning
 - Temporal Modeling: Attention mechanisms across frames
 - Latent Space: Works in VAE latent space for efficiency
 - Denoising Schedule: Learned diffusion schedule
 
Compatibility Notes
- Requires PyTorch with FP16 support (all modern versions)
 - Compatible with CUDA compute capability 6.0+ (Pascal and newer)
 - Works with mixed precision training/inference
 - Supports gradient checkpointing for memory efficiency
 
Troubleshooting
Out of Memory Errors
- Enable attention slicing: 
pipe.enable_attention_slicing(1) - Enable VAE slicing: 
pipe.enable_vae_slicing() - Reduce frame count to 16-24 frames
 - Reduce inference steps to 30-40
 - Consider using the 480p variant or FP8 quantized model
 
Slow Generation Speed
- Ensure model is on GPU: 
pipe.to("cuda") - Use FP16 dtype: 
torch_dtype=torch.float16 - Reduce inference steps (minimal quality impact at 30-40 steps)
 - Use faster scheduler (DPM-Solver++ or DDIM)
 - Consider FP8 variant for production deployment
 
Quality Issues
- Increase inference steps (50-80 for maximum quality)
 - Adjust guidance scale (7.0-8.5 recommended range)
 - Use more descriptive prompts with motion details
 - Ensure proper VAE is loaded
 - Check input image quality and resolution
 
Changelog
Version v1.0 (Initial Release)
- Initial README creation for WAN 2.1 720p FP16 model
 - Comprehensive documentation of model specifications
 - Usage examples with memory optimization
 - Hardware requirements and performance tips
 - Troubleshooting guide and compatibility notes
 
Model Status: Production-ready for research and high-quality video generation Last Updated: 2025-10-13 Maintained By: Community documentation (unofficial)
Ethical Use: Please use this model responsibly and in accordance with ethical AI guidelines. Be mindful of:
- Content authenticity and disclosure when using AI-generated videos
 - Respect for intellectual property and likeness rights
 - Potential misuse for deepfakes or misleading content
 - Environmental impact of large model inference
 
For questions, issues, or contributions to this documentation, please refer to the Hugging Face community forums and official WAN project resources.
- Downloads last month
 - -