WAN 2.1 FP16 - 720p Image-to-Video Model

High-fidelity 720p image-to-video generation model in full FP16 precision for maximum quality output.

Model Description

WAN (Wan An) 2.1 is a state-of-the-art transformer-based diffusion model for image-to-video generation. This repository contains the 720p variant in full FP16 (16-bit floating point) precision, providing the highest quality video generation with enhanced detail and clarity. The model transforms static images into dynamic video sequences with temporal consistency and cinematic quality.

Key Capabilities:

  • Image-to-video generation at 720p resolution
  • 14 billion parameter transformer architecture
  • Full FP16 precision for maximum generation quality
  • High temporal consistency across frames
  • Compatible with camera control LoRAs (available separately)

Repository Contents

wan21-fp16-720p/
└── diffusion_models/
    └── wan/
        └── wan21-i2v-720p-14b-fp16.safetensors  (31 GB)

Total Repository Size: ~31 GB

Model Files

File Size Description
diffusion_models/wan/wan21-i2v-720p-14b-fp16.safetensors 31 GB WAN 2.1 Image-to-Video 720p transformer model (14B parameters, FP16)

Note: This repository contains only the 720p diffusion model. For complete functionality, you will also need:

  • WAN 2.1 VAE (available separately, ~243 MB)
  • Camera Control LoRAs (optional, for cinematic camera movements, ~343 MB each)

Hardware Requirements

Minimum Requirements

  • VRAM: 40GB+ (FP16 full precision at 720p)
  • Disk Space: 31 GB for model storage
  • System RAM: 32GB+ recommended
  • GPU: High-end NVIDIA GPU with 40GB+ VRAM
    • Recommended: RTX A6000 (48GB), A100 (40/80GB)
    • Alternative: RTX 4090 (24GB) with memory optimizations

Recommended Hardware

  • GPU: NVIDIA A6000 48GB, A100 40/80GB, or RTX 6000 Ada
  • System RAM: 64GB for optimal performance
  • Storage: NVMe SSD for faster model loading
  • VRAM Optimization: Enable gradient checkpointing and attention slicing for 24GB GPUs

Usage Examples

Basic Image-to-Video Generation

from diffusers import DiffusionPipeline, AutoencoderKL
import torch
from PIL import Image

# Load the WAN 2.1 720p FP16 model
pipe = DiffusionPipeline.from_single_file(
    "E:/huggingface/wan21-fp16-720p/diffusion_models/wan/wan21-i2v-720p-14b-fp16.safetensors",
    torch_dtype=torch.float16,
    use_safetensors=True
)

# Load WAN 2.1 VAE (must be downloaded separately)
pipe.vae = AutoencoderKL.from_single_file(
    "E:/huggingface/wan21-vae/vae/wan/wan21-vae.safetensors"
)

# Move to GPU
pipe.to("cuda")

# Load input image
input_image = Image.open("path/to/your/image.jpg")

# Generate video from image
video_frames = pipe(
    image=input_image,
    prompt="cinematic video with smooth motion",
    num_frames=24,
    num_inference_steps=50,
    guidance_scale=7.5
).frames[0]

# Export video
from diffusers.utils import export_to_video
export_to_video(video_frames, "output_video.mp4", fps=8)

Memory-Optimized Usage (for 24GB GPUs)

from diffusers import DiffusionPipeline, AutoencoderKL
import torch

# Load model with memory optimizations
pipe = DiffusionPipeline.from_single_file(
    "E:/huggingface/wan21-fp16-720p/diffusion_models/wan/wan21-i2v-720p-14b-fp16.safetensors",
    torch_dtype=torch.float16,
    use_safetensors=True
)

# Enable memory-efficient attention
pipe.enable_attention_slicing(1)
pipe.enable_vae_slicing()

# Enable gradient checkpointing (if supported)
if hasattr(pipe.unet, 'enable_gradient_checkpointing'):
    pipe.unet.enable_gradient_checkpointing()

pipe.to("cuda")

# Generate with reduced memory footprint
video_frames = pipe(
    image=input_image,
    prompt="your prompt here",
    num_frames=16,  # Reduce frames for lower VRAM
    num_inference_steps=40,
    guidance_scale=7.5
).frames[0]

Using with Camera Control LoRAs (Optional)

# Load camera control LoRA (must be downloaded separately)
pipe.load_lora_weights(
    "E:/huggingface/wan21-loras/loras/wan/wan21-camera-rotation-rank16-v1.safetensors"
)

# Generate video with camera movement
video_frames = pipe(
    image=input_image,
    prompt="rotating camera around the subject, cinematic",
    num_frames=24,
    num_inference_steps=50,
    guidance_scale=7.5
).frames[0]

Model Specifications

  • Architecture: Transformer-based diffusion model for image-to-video generation
  • Parameters: 14 billion (14B)
  • Precision: FP16 (16-bit floating point)
    • 1 sign bit, 5-bit exponent, 10-bit mantissa
    • Full numerical precision for maximum quality
  • Resolution: 720p (1280x720)
  • Format: SafeTensors (secure and efficient serialization)
  • Model Type: Image-to-Video (I2V)
  • Framework Compatibility: diffusers, PyTorch 2.0+

Performance Tips

  1. Resolution and Quality: This 720p model provides maximum detail and clarity but requires significant VRAM
  2. Memory Optimization:
    • Enable attention slicing: pipe.enable_attention_slicing(1)
    • Enable VAE slicing: pipe.enable_vae_slicing()
    • Reduce frame count: Use 16-24 frames instead of 32+
  3. Inference Speed:
    • Use fp16 dtype for optimal GPU utilization
    • Reduce inference steps (30-40) for faster generation with minimal quality loss
  4. Prompt Engineering:
    • Be specific about desired motion: "slow panning", "gentle zoom", "smooth transition"
    • Include cinematic keywords: "cinematic", "smooth", "professional"
    • Specify camera movements if using LoRAs: "rotating camera", "aerial view"
  5. Batch Generation: Process single videos at a time due to high VRAM requirements
  6. Storage: Use NVMe SSD for faster model loading times

Installation Requirements

# Install required dependencies
pip install diffusers transformers accelerate safetensors torch torchvision

# For video export functionality
pip install opencv-python imageio imageio-ffmpeg

Python Environment:

  • Python 3.8+
  • PyTorch 2.0+ with CUDA support
  • diffusers >= 0.21.0
  • transformers
  • accelerate
  • safetensors

Version Comparison

WAN 2.1 Precision Variants

Variant Size VRAM Quality Speed Use Case
FP16 (this model) 31 GB 40GB+ Maximum Standard Research, archival quality, maximum fidelity
FP8 16 GB 24GB+ High Faster Production deployment, efficient inference

Resolution Variants

Resolution Model Size VRAM Quality Details
480p 31 GB 32GB+ High Balanced quality/performance
720p (this model) 31 GB 40GB+ Maximum Enhanced detail and clarity

When to use FP16 720p:

  • Maximum quality requirements
  • Research and development
  • Professional/commercial production
  • Archival and reference generation
  • GPU with 40GB+ VRAM available

Consider alternatives if:

  • VRAM limited to 24GB or less (use FP8 or 480p)
  • Inference speed is critical (use FP8)
  • Running on consumer GPUs (use FP8 480p)

License

This model is released under a custom WAN license. Please review the license terms before use:

  • Commercial use restrictions may apply
  • Attribution requirements may be specified
  • Refer to official WAN documentation for complete license terms

License Type: other (Custom WAN License)

Citation

If you use this model in your research or projects, please cite:

@software{wan21_fp16_720p,
  title={WAN 2.1 FP16 720p: High-Fidelity Image-to-Video Generation},
  year={2024},
  note={14B parameter transformer-based diffusion model for 720p video generation in full FP16 precision}
}

Related Resources

Official Resources

  • WAN Project: Official model documentation and updates
  • Hugging Face Model Hub: Community-shared models and discussions
  • diffusers Documentation: https://huggingface.co/docs/diffusers

Related Models

  • WAN 2.1 480p FP16: Lower resolution variant with same precision (32GB VRAM)
  • WAN 2.1 FP8: Quantized models for efficient deployment (24GB VRAM)
  • WAN 2.2: Next generation with enhanced features and quality improvements
  • WAN 2.1 VAE: Required for complete functionality (download separately)
  • WAN Camera Control LoRAs: Optional adapters for cinematic camera movements

Complementary Components

  • VAE: wan21-vae.safetensors (~243 MB, required)
  • Camera LoRAs (optional):
    • Rotation LoRA: Orbital camera movements
    • Arc Shot LoRA: Curved dolly movements
    • Drone LoRA: Aerial perspectives

Technical Notes

FP16 Precision Characteristics

  • Numerical Range: Β±65,504 (max value)
  • Precision: ~3-4 decimal digits
  • Advantages:
    • Maximum generation quality
    • No quantization artifacts
    • Broad hardware support
    • Research standard
  • Trade-offs:
    • 2x size vs FP8
    • Higher VRAM requirements
    • Slightly slower on tensor core GPUs

Model Architecture Details

  • Type: Transformer-based diffusion model
  • Conditioning: Text and image conditioning
  • Temporal Modeling: Attention mechanisms across frames
  • Latent Space: Works in VAE latent space for efficiency
  • Denoising Schedule: Learned diffusion schedule

Compatibility Notes

  • Requires PyTorch with FP16 support (all modern versions)
  • Compatible with CUDA compute capability 6.0+ (Pascal and newer)
  • Works with mixed precision training/inference
  • Supports gradient checkpointing for memory efficiency

Troubleshooting

Out of Memory Errors

  1. Enable attention slicing: pipe.enable_attention_slicing(1)
  2. Enable VAE slicing: pipe.enable_vae_slicing()
  3. Reduce frame count to 16-24 frames
  4. Reduce inference steps to 30-40
  5. Consider using the 480p variant or FP8 quantized model

Slow Generation Speed

  1. Ensure model is on GPU: pipe.to("cuda")
  2. Use FP16 dtype: torch_dtype=torch.float16
  3. Reduce inference steps (minimal quality impact at 30-40 steps)
  4. Use faster scheduler (DPM-Solver++ or DDIM)
  5. Consider FP8 variant for production deployment

Quality Issues

  1. Increase inference steps (50-80 for maximum quality)
  2. Adjust guidance scale (7.0-8.5 recommended range)
  3. Use more descriptive prompts with motion details
  4. Ensure proper VAE is loaded
  5. Check input image quality and resolution

Changelog

Version v1.0 (Initial Release)

  • Initial README creation for WAN 2.1 720p FP16 model
  • Comprehensive documentation of model specifications
  • Usage examples with memory optimization
  • Hardware requirements and performance tips
  • Troubleshooting guide and compatibility notes

Model Status: Production-ready for research and high-quality video generation Last Updated: 2025-10-13 Maintained By: Community documentation (unofficial)

Ethical Use: Please use this model responsibly and in accordance with ethical AI guidelines. Be mindful of:

  • Content authenticity and disclosure when using AI-generated videos
  • Respect for intellectual property and likeness rights
  • Potential misuse for deepfakes or misleading content
  • Environmental impact of large model inference

For questions, issues, or contributions to this documentation, please refer to the Hugging Face community forums and official WAN project resources.

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including wangkanai/wan21-fp16-720p