File size: 2,210 Bytes
58b75b1
979066d
58b75b1
 
 
 
 
 
979066d
 
 
 
58b75b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c68a0
58b75b1
 
92ffe4d
58b75b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ffe4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
datasets:
- vitalune/business-assistant-ai-tools
language:
- en
base_model:
- mistralai/Mistral-7B-v0.1
tags:
- business
- startup
- ai_tools
---

# Ovarra-v1 โ€” Business Planning Assistant (Fine-tuned Mistral 7B)

**Ovarra-v1** is a fine-tuned version of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), designed to help users plan, clarify, and launch AI-powered business ideas.

This model acts like a **startup co-pilot**, guiding users from rough ideas to concrete action steps โ€” with AI tools, strategy, and marketing guidance embedded in every response.

---

## ๐Ÿ“Œ Model Details

| Attribute         | Value                                   |
|------------------|-----------------------------------------|
| Base model       | `mistralai/Mistral-7B-v0.1`              |
| Finetuned on     | ~1500 GPT-4-generated prompt-response pairs, validated by human reviews of the best AI tools for each sector. |
| Format           | Instruction-tuned with `[INST] ... [/INST]` |
| Finetuning method| QLoRA (4-bit), Flash Attention 2         |
| Trainer          | Axolotl + RunPod (A40 GPU)             |

---

## Training Objective

The model was trained to:
- **Ask clarifying questions** when input is vague
- **Plan structured roadmaps** (4โ€“6 steps)
- **Recommend relevant AI tools** for each stage
- **Support follow-up questions** with contextual awareness

Training categories included:
- AI tool integration
- Product planning
- MVP prototyping
- Marketing strategy
- Startup operations

---

## Example Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("vitalune/ovarra-v1", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("vitalune/ovarra-v1")

prompt = "[INST] I want to launch an AI copywriting SaaS. Help me plan it. [/INST]"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

output = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## Credits

- Fine-tuned and built by @vitalune
- Based on prompt logic and data generation co-created using GPT-4 API
- Hosted and accelerated via RunPod