Update README.md
Browse files
README.md
CHANGED
|
@@ -24,7 +24,7 @@ This model acts like a **startup co-pilot**, guiding users from rough ideas to c
|
|
| 24 |
| Finetuned on | ~1500 GPT-4-generated prompt-response pairs |
|
| 25 |
| Format | Instruction-tuned with `[INST] ... [/INST]` |
|
| 26 |
| Finetuning method| QLoRA (4-bit), Flash Attention 2 |
|
| 27 |
-
| Trainer | Axolotl + RunPod (
|
| 28 |
|
| 29 |
---
|
| 30 |
|
|
@@ -41,4 +41,27 @@ Training categories included:
|
|
| 41 |
- Product planning
|
| 42 |
- MVP prototyping
|
| 43 |
- Marketing strategy
|
| 44 |
-
- Startup operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
| Finetuned on | ~1500 GPT-4-generated prompt-response pairs |
|
| 25 |
| Format | Instruction-tuned with `[INST] ... [/INST]` |
|
| 26 |
| Finetuning method| QLoRA (4-bit), Flash Attention 2 |
|
| 27 |
+
| Trainer | Axolotl + RunPod (A40 GPU) |
|
| 28 |
|
| 29 |
---
|
| 30 |
|
|
|
|
| 41 |
- Product planning
|
| 42 |
- MVP prototyping
|
| 43 |
- Marketing strategy
|
| 44 |
+
- Startup operations
|
| 45 |
+
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
## Example Usage
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 52 |
+
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained("vitalune/ovarra-v1", device_map="auto")
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained("vitalune/ovarra-v1")
|
| 55 |
+
|
| 56 |
+
prompt = "[INST] I want to launch an AI copywriting SaaS. Help me plan it. [/INST]"
|
| 57 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 58 |
+
|
| 59 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
| 60 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## Credits
|
| 64 |
+
|
| 65 |
+
- Fine-tuned and built by @vitalune
|
| 66 |
+
- Based on prompt logic and data generation co-created using GPT-4 API
|
| 67 |
+
- Hosted and accelerated via RunPod
|