File size: 23,220 Bytes
c55052c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

# ================================================================================================================

from typing import Optional, Tuple

import numpy as np
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss

from torch import Tensor

import copy

from dataclasses import dataclass
from transformers.activations import ACT2FN
from transformers.file_utils import ModelOutput

from transformers.models.bert.modeling_bert import (
    BertAttention,
    BertEmbeddings,
    BertEncoder,
    BertIntermediate,
    BertLayer,
    BertModel,
    BertOutput,
    BertPooler,
    BertPreTrainedModel,
)

import logging
logger = logging.getLogger(__name__)


def use_experts(layer_idx):
    return True


def process_ffn(model):
    if model.config.model_type == "bert":
        inner_model = model.bert
    else:
        raise ValueError("Model type not recognized.")

    for i in range(model.config.num_hidden_layers):
        model_layer = inner_model.encoder.layer[i]


class FeedForward(nn.Module):
    def __init__(self, config, intermediate_size, dropout):
        nn.Module.__init__(self)

        # first layer
        self.fc1 = nn.Linear(config.hidden_size, intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

        # second layer
        self.fc2 = nn.Linear(intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(dropout)

    def forward(self, hidden_states: Tensor):
        input_tensor = hidden_states
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


@dataclass
class MoEModelOutput(ModelOutput):
    last_hidden_state: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    gate_loss: torch.FloatTensor = None


@dataclass
class MoEModelOutputWithPooling(ModelOutput):
    last_hidden_state: torch.FloatTensor = None
    pooler_output: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    gate_loss: torch.FloatTensor = None


# ================================================================================================================


class MoELayer(nn.Module):
    def __init__(self, hidden_size, num_experts, expert, route_method, vocab_size, hash_list):
        nn.Module.__init__(self)
        self.num_experts = num_experts
        self.experts = nn.ModuleList([copy.deepcopy(expert) for i in range(num_experts)])
        self.route_method = route_method
        if route_method in ["gate-token", "gate-sentence"]:
            self.gate = nn.Linear(hidden_size, num_experts, bias=False).float()
        elif route_method == "hash-random":
            self.hash_list = self._random_hash_list(vocab_size)
        elif route_method == "hash-balance":
            self.hash_list = self._balance_hash_list(hash_list)
        else:
            raise KeyError("Routing method not supported.")

    def _random_hash_list(self, vocab_size):
        hash_list = torch.randint(low=0, high=self.num_experts, size=(vocab_size,))
        return hash_list

    def _balance_hash_list(self, hash_list):
        with open(hash_list, "rb") as file:
            result = pickle.load(file)
        result = torch.tensor(result, dtype=torch.int64)
        return result

    def _forward_gate_token(self, x):
        bsz, seq_len, dim = x.size()

        x = x.view(-1, dim)
        logits_gate = self.gate(x)
        prob_gate = F.softmax(logits_gate, dim=-1)
        gate = torch.argmax(prob_gate, dim=-1)

        order = gate.argsort(0)
        num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0)
        gate_load = num_tokens.clone()
        x = x[order]  # reorder according to expert number
        x = x.split(num_tokens.tolist(), dim=0)  # a list of length self.num_experts

        # compute the load balancing loss
        P = prob_gate.mean(0)
        temp = num_tokens.float()
        f = temp / temp.sum(0, keepdim=True)
        balance_loss = self.num_experts * torch.sum(P * f)

        prob_gate = prob_gate.gather(dim=1, index=gate.unsqueeze(1))
        prob_gate = prob_gate[order]
        prob_gate = prob_gate.split(num_tokens.tolist(), dim=0)

        def forward_expert(input_x, prob_x, expert_idx):
            input_x = self.experts[expert_idx].forward(input_x)
            input_x = input_x * prob_x
            return input_x

        x = [forward_expert(x[i], prob_gate[i], i) for i in range(self.num_experts)]
        x = torch.vstack(x)
        x = x[order.argsort(0)]  # restore original order
        x = x.view(bsz, seq_len, dim)

        return x, balance_loss, gate_load

    def _forward_gate_sentence(self, x, attention_mask):
        x_masked = x * attention_mask.unsqueeze(-1)
        x_average = x_masked.sum(1) / attention_mask.unsqueeze(-1).sum(1)
        logits_gate = self.gate(x_average)
        prob_gate = F.softmax(logits_gate, dim=-1)
        gate = torch.argmax(prob_gate, dim=-1)

        order = gate.argsort(0)
        num_sentences = F.one_hot(gate, self.num_experts).gt(0).sum(0)
        gate_load = num_sentences.clone()
        x = x[order]  # reorder according to expert number
        x = x.split(num_sentences.tolist(), dim=0)  # a list of length self.num_experts

        # compute the load balancing loss
        P = prob_gate.mean(0)
        temp = num_sentences.float()
        f = temp / temp.sum(0, keepdim=True)
        balance_loss = self.num_experts * torch.sum(P * f)

        prob_gate = prob_gate.gather(dim=1, index=gate.unsqueeze(1))
        prob_gate = prob_gate[order]
        prob_gate = prob_gate.split(num_sentences.tolist(), dim=0)

        def forward_expert(input_x, prob_x, expert_idx):
            input_x = self.experts[expert_idx].forward(input_x)
            input_x = input_x * prob_x.unsqueeze(-1)
            return input_x

        result = []
        for i in range(self.num_experts):
            if x[i].size(0) > 0:
                result.append(forward_expert(x[i], prob_gate[i], i))
        result = torch.vstack(result)
        result = result[order.argsort(0)]  # restore original order

        return result, balance_loss, gate_load

    def _forward_sentence_single_expert(self, x, attention_mask):
        x_masked = x * attention_mask.unsqueeze(-1)
        x_average = x_masked.sum(1) / attention_mask.unsqueeze(-1).sum(1)
        logits_gate = self.gate(x_average)
        prob_gate = F.softmax(logits_gate, dim=-1)
        gate = torch.argmax(prob_gate, dim=-1)

        gate_load = F.one_hot(gate, self.num_experts).gt(0).sum(0)
        x = self.experts[gate.cpu().item()].forward(x)
        return x, 0.0, gate_load

    def _forward_hash(self, x, input_ids):
        bsz, seq_len, dim = x.size()

        x = x.view(-1, dim)
        self.hash_list = self.hash_list.to(x.device)
        gate = self.hash_list[input_ids.view(-1)]

        order = gate.argsort(0)
        num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0)
        gate_load = num_tokens.clone()
        x = x[order]  # reorder according to expert number
        x = x.split(num_tokens.tolist(), dim=0)  # a list of length self.num_experts

        x = [self.experts[i].forward(x[i]) for i in range(self.num_experts)]
        x = torch.vstack(x)
        x = x[order.argsort(0)]  # restore original order
        x = x.view(bsz, seq_len, dim)

        return x, 0.0, gate_load

    def forward(self, x, input_ids, attention_mask):
        if self.route_method == "gate-token":
            x, balance_loss, gate_load = self._forward_gate_token(x)
        elif self.route_method == "gate-sentence":
            if x.size(0) == 1:
                x, balance_loss, gate_load = self._forward_sentence_single_expert(x, attention_mask)
            else:
                x, balance_loss, gate_load = self._forward_gate_sentence(x, attention_mask)
        elif self.route_method in ["hash-random", "hash-balance"]:
            x, balance_loss, gate_load = self._forward_hash(x, input_ids)
        else:
            raise KeyError("Routing method not supported.")

        return x, balance_loss, gate_load

# ================================================================================================================



def symmetric_KL_loss(p, q):
    """ symmetric KL-divergence 1/2*(KL(p||q)+KL(q||p)) """
    p, q = p.float(), q.float()
    loss = (p - q) * (torch.log(p) - torch.log(q))
    return 0.5 * loss.sum()


def softmax(x):
    return F.softmax(x, dim=-1, dtype=torch.float32)


class MoEBertLayer(BertLayer):
    def __init__(self, config, layer_idx=-100):
        nn.Module.__init__(self)
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

        # construct experts
        self.use_experts = use_experts(layer_idx)
        dropout = config.moebert_expert_dropout if self.use_experts else config.hidden_dropout_prob
        if self.use_experts:
            ffn = FeedForward(config, config.moebert_expert_dim, dropout)
            self.experts = MoELayer(
                hidden_size=config.hidden_size,
                expert=ffn,
                num_experts=config.moebert_expert_num,
                route_method=config.moebert_route_method,
                vocab_size=config.vocab_size,
                hash_list=config.moebert_route_hash_list,
            )
        else:
            self.experts = FeedForward(config, config.intermediate_size, dropout)

    def forward(
            self,
            hidden_states,
            attention_mask=None,
            head_mask=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            past_key_value=None,
            output_attentions=False,
            expert_input_ids=None,
            expert_attention_mask=None,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = self.feed_forward(attention_output, expert_input_ids, expert_attention_mask)
        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

        return outputs

    def feed_forward(self, attention_output, expert_input_ids, expert_attention_mask):
        if not self.use_experts:
            layer_output = self.experts(attention_output)
            return layer_output, 0.0

        layer_output, gate_loss, gate_load = self.experts(
            attention_output, expert_input_ids, expert_attention_mask
        )
        return layer_output, gate_loss


class MoEBertEncoder(BertEncoder):
    def __init__(self, config):
        nn.Module.__init__(self)
        self.config = config
        self.layer = nn.ModuleList([MoEBertLayer(config, i) for i in range(config.num_hidden_layers)])

    def forward(
            self,
            hidden_states,
            attention_mask=None,
            head_mask=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            past_key_values=None,
            use_cache=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
            expert_input_ids=None,
            expert_attention_mask=None,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

        next_decoder_cache = () if use_cache else None
        gate_loss = 0.0
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                if use_cache:
                    logger.warn(
                        "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                        "`use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                    expert_input_ids,
                    expert_attention_mask,
                )

            hidden_states = layer_outputs[0][0]
            gate_loss = gate_loss + layer_outputs[0][1]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return MoEModelOutput(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
            gate_loss=gate_loss,
        )


class MoEBertModel(BertModel):
    def __init__(self, config, add_pooling_layer=True):
        BertModel.__init__(self, config)
        self.config = config

        self.embeddings = BertEmbeddings(config)
        self.encoder = MoEBertEncoder(config)

        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.init_weights()

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            past_key_values=None,
            use_cache=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
            expert_input_ids=None,
            expert_attention_mask=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            batch_size, seq_length = input_shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size, seq_length = input_shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            expert_input_ids=expert_input_ids,
            expert_attention_mask=expert_attention_mask,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return MoEModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
            gate_loss=encoder_outputs.gate_loss,
        )