Upload folder using huggingface_hub
Browse files- config.json +36 -0
- configuration_bert_moe.py +29 -0
- model.safetensors +3 -0
- modeling_bert_moe.py +587 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"MoEBertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_bert_moe.MoeBertConfig",
|
| 8 |
+
"AutoModel": "modeling_bert_hash.MoeBertModel"
|
| 9 |
+
},
|
| 10 |
+
"classifier_dropout": null,
|
| 11 |
+
"dtype": "float32",
|
| 12 |
+
"gradient_checkpointing": false,
|
| 13 |
+
"hidden_act": "gelu",
|
| 14 |
+
"hidden_dropout_prob": 0.1,
|
| 15 |
+
"hidden_size": 128,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 128,
|
| 18 |
+
"layer_norm_eps": 1e-12,
|
| 19 |
+
"max_position_embeddings": 512,
|
| 20 |
+
"model_type": "bert_moe",
|
| 21 |
+
"moebert_expert_dim": 128,
|
| 22 |
+
"moebert_expert_dropout": 0.1,
|
| 23 |
+
"moebert_expert_num": 16,
|
| 24 |
+
"moebert_load_importance": null,
|
| 25 |
+
"moebert_route_hash_list": null,
|
| 26 |
+
"moebert_route_method": "gate-token",
|
| 27 |
+
"moebert_share_importance": 0.5,
|
| 28 |
+
"num_attention_heads": 2,
|
| 29 |
+
"num_hidden_layers": 2,
|
| 30 |
+
"pad_token_id": 0,
|
| 31 |
+
"position_embedding_type": "absolute",
|
| 32 |
+
"transformers_version": "4.57.3",
|
| 33 |
+
"type_vocab_size": 2,
|
| 34 |
+
"use_cache": true,
|
| 35 |
+
"vocab_size": 30522
|
| 36 |
+
}
|
configuration_bert_moe.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
| 2 |
+
|
| 3 |
+
class MoeBertConfig(BertConfig):
|
| 4 |
+
"""
|
| 5 |
+
Extension of Bert configuration to add projections parameter.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
model_type = "bert_moe"
|
| 9 |
+
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
moebert_expert_num = 16,
|
| 13 |
+
moebert_route_method = gate-token,
|
| 14 |
+
moebert_expert_dropout = 0.1,
|
| 15 |
+
moebert_expert_dim = 128,
|
| 16 |
+
moebert_route_hash_list = None,
|
| 17 |
+
moebert_share_importance = 0.5,
|
| 18 |
+
moebert_load_importance = None,
|
| 19 |
+
**kwargs
|
| 20 |
+
):
|
| 21 |
+
super().__init__(**kwargs)
|
| 22 |
+
self.moebert_expert_num = moebert_expert_num
|
| 23 |
+
self.moebert_route_method = moebert_route_method
|
| 24 |
+
self.moebert_expert_dropout = moebert_expert_dropout
|
| 25 |
+
self.moebert_expert_dim = moebert_expert_dim
|
| 26 |
+
self.moebert_route_hash_list = moebert_route_hash_list
|
| 27 |
+
self.moebert_share_importance = moebert_share_importance
|
| 28 |
+
self.moebert_load_importance = moebert_load_importance
|
| 29 |
+
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf20feb98e9017638464385ae6c9cc161664b462c8b904838c1b07e62680e9c3
|
| 3 |
+
size 21056872
|
modeling_bert_moe.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# ================================================================================================================
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pickle
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
| 12 |
+
|
| 13 |
+
from torch import Tensor
|
| 14 |
+
|
| 15 |
+
import copy
|
| 16 |
+
|
| 17 |
+
from dataclasses import dataclass
|
| 18 |
+
from transformers.activations import ACT2FN
|
| 19 |
+
from transformers.file_utils import ModelOutput
|
| 20 |
+
|
| 21 |
+
from transformers.models.bert.modeling_bert import (
|
| 22 |
+
BertAttention,
|
| 23 |
+
BertEmbeddings,
|
| 24 |
+
BertEncoder,
|
| 25 |
+
BertIntermediate,
|
| 26 |
+
BertLayer,
|
| 27 |
+
BertModel,
|
| 28 |
+
BertOutput,
|
| 29 |
+
BertPooler,
|
| 30 |
+
BertPreTrainedModel,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
import logging
|
| 34 |
+
logger = logging.getLogger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def use_experts(layer_idx):
|
| 38 |
+
return True
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def process_ffn(model):
|
| 42 |
+
if model.config.model_type == "bert":
|
| 43 |
+
inner_model = model.bert
|
| 44 |
+
else:
|
| 45 |
+
raise ValueError("Model type not recognized.")
|
| 46 |
+
|
| 47 |
+
for i in range(model.config.num_hidden_layers):
|
| 48 |
+
model_layer = inner_model.encoder.layer[i]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class FeedForward(nn.Module):
|
| 52 |
+
def __init__(self, config, intermediate_size, dropout):
|
| 53 |
+
nn.Module.__init__(self)
|
| 54 |
+
|
| 55 |
+
# first layer
|
| 56 |
+
self.fc1 = nn.Linear(config.hidden_size, intermediate_size)
|
| 57 |
+
if isinstance(config.hidden_act, str):
|
| 58 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 59 |
+
else:
|
| 60 |
+
self.intermediate_act_fn = config.hidden_act
|
| 61 |
+
|
| 62 |
+
# second layer
|
| 63 |
+
self.fc2 = nn.Linear(intermediate_size, config.hidden_size)
|
| 64 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 65 |
+
self.dropout = nn.Dropout(dropout)
|
| 66 |
+
|
| 67 |
+
def forward(self, hidden_states: Tensor):
|
| 68 |
+
input_tensor = hidden_states
|
| 69 |
+
hidden_states = self.fc1(hidden_states)
|
| 70 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 71 |
+
hidden_states = self.fc2(hidden_states)
|
| 72 |
+
hidden_states = self.dropout(hidden_states)
|
| 73 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 74 |
+
return hidden_states
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@dataclass
|
| 78 |
+
class MoEModelOutput(ModelOutput):
|
| 79 |
+
last_hidden_state: torch.FloatTensor = None
|
| 80 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 81 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 82 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 83 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 84 |
+
gate_loss: torch.FloatTensor = None
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@dataclass
|
| 88 |
+
class MoEModelOutputWithPooling(ModelOutput):
|
| 89 |
+
last_hidden_state: torch.FloatTensor = None
|
| 90 |
+
pooler_output: torch.FloatTensor = None
|
| 91 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 92 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 93 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 94 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 95 |
+
gate_loss: torch.FloatTensor = None
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# ================================================================================================================
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class MoELayer(nn.Module):
|
| 102 |
+
def __init__(self, hidden_size, num_experts, expert, route_method, vocab_size, hash_list):
|
| 103 |
+
nn.Module.__init__(self)
|
| 104 |
+
self.num_experts = num_experts
|
| 105 |
+
self.experts = nn.ModuleList([copy.deepcopy(expert) for i in range(num_experts)])
|
| 106 |
+
self.route_method = route_method
|
| 107 |
+
if route_method in ["gate-token", "gate-sentence"]:
|
| 108 |
+
self.gate = nn.Linear(hidden_size, num_experts, bias=False).float()
|
| 109 |
+
elif route_method == "hash-random":
|
| 110 |
+
self.hash_list = self._random_hash_list(vocab_size)
|
| 111 |
+
elif route_method == "hash-balance":
|
| 112 |
+
self.hash_list = self._balance_hash_list(hash_list)
|
| 113 |
+
else:
|
| 114 |
+
raise KeyError("Routing method not supported.")
|
| 115 |
+
|
| 116 |
+
def _random_hash_list(self, vocab_size):
|
| 117 |
+
hash_list = torch.randint(low=0, high=self.num_experts, size=(vocab_size,))
|
| 118 |
+
return hash_list
|
| 119 |
+
|
| 120 |
+
def _balance_hash_list(self, hash_list):
|
| 121 |
+
with open(hash_list, "rb") as file:
|
| 122 |
+
result = pickle.load(file)
|
| 123 |
+
result = torch.tensor(result, dtype=torch.int64)
|
| 124 |
+
return result
|
| 125 |
+
|
| 126 |
+
def _forward_gate_token(self, x):
|
| 127 |
+
bsz, seq_len, dim = x.size()
|
| 128 |
+
|
| 129 |
+
x = x.view(-1, dim)
|
| 130 |
+
logits_gate = self.gate(x)
|
| 131 |
+
prob_gate = F.softmax(logits_gate, dim=-1)
|
| 132 |
+
gate = torch.argmax(prob_gate, dim=-1)
|
| 133 |
+
|
| 134 |
+
order = gate.argsort(0)
|
| 135 |
+
num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0)
|
| 136 |
+
gate_load = num_tokens.clone()
|
| 137 |
+
x = x[order] # reorder according to expert number
|
| 138 |
+
x = x.split(num_tokens.tolist(), dim=0) # a list of length self.num_experts
|
| 139 |
+
|
| 140 |
+
# compute the load balancing loss
|
| 141 |
+
P = prob_gate.mean(0)
|
| 142 |
+
temp = num_tokens.float()
|
| 143 |
+
f = temp / temp.sum(0, keepdim=True)
|
| 144 |
+
balance_loss = self.num_experts * torch.sum(P * f)
|
| 145 |
+
|
| 146 |
+
prob_gate = prob_gate.gather(dim=1, index=gate.unsqueeze(1))
|
| 147 |
+
prob_gate = prob_gate[order]
|
| 148 |
+
prob_gate = prob_gate.split(num_tokens.tolist(), dim=0)
|
| 149 |
+
|
| 150 |
+
def forward_expert(input_x, prob_x, expert_idx):
|
| 151 |
+
input_x = self.experts[expert_idx].forward(input_x)
|
| 152 |
+
input_x = input_x * prob_x
|
| 153 |
+
return input_x
|
| 154 |
+
|
| 155 |
+
x = [forward_expert(x[i], prob_gate[i], i) for i in range(self.num_experts)]
|
| 156 |
+
x = torch.vstack(x)
|
| 157 |
+
x = x[order.argsort(0)] # restore original order
|
| 158 |
+
x = x.view(bsz, seq_len, dim)
|
| 159 |
+
|
| 160 |
+
return x, balance_loss, gate_load
|
| 161 |
+
|
| 162 |
+
def _forward_gate_sentence(self, x, attention_mask):
|
| 163 |
+
x_masked = x * attention_mask.unsqueeze(-1)
|
| 164 |
+
x_average = x_masked.sum(1) / attention_mask.unsqueeze(-1).sum(1)
|
| 165 |
+
logits_gate = self.gate(x_average)
|
| 166 |
+
prob_gate = F.softmax(logits_gate, dim=-1)
|
| 167 |
+
gate = torch.argmax(prob_gate, dim=-1)
|
| 168 |
+
|
| 169 |
+
order = gate.argsort(0)
|
| 170 |
+
num_sentences = F.one_hot(gate, self.num_experts).gt(0).sum(0)
|
| 171 |
+
gate_load = num_sentences.clone()
|
| 172 |
+
x = x[order] # reorder according to expert number
|
| 173 |
+
x = x.split(num_sentences.tolist(), dim=0) # a list of length self.num_experts
|
| 174 |
+
|
| 175 |
+
# compute the load balancing loss
|
| 176 |
+
P = prob_gate.mean(0)
|
| 177 |
+
temp = num_sentences.float()
|
| 178 |
+
f = temp / temp.sum(0, keepdim=True)
|
| 179 |
+
balance_loss = self.num_experts * torch.sum(P * f)
|
| 180 |
+
|
| 181 |
+
prob_gate = prob_gate.gather(dim=1, index=gate.unsqueeze(1))
|
| 182 |
+
prob_gate = prob_gate[order]
|
| 183 |
+
prob_gate = prob_gate.split(num_sentences.tolist(), dim=0)
|
| 184 |
+
|
| 185 |
+
def forward_expert(input_x, prob_x, expert_idx):
|
| 186 |
+
input_x = self.experts[expert_idx].forward(input_x)
|
| 187 |
+
input_x = input_x * prob_x.unsqueeze(-1)
|
| 188 |
+
return input_x
|
| 189 |
+
|
| 190 |
+
result = []
|
| 191 |
+
for i in range(self.num_experts):
|
| 192 |
+
if x[i].size(0) > 0:
|
| 193 |
+
result.append(forward_expert(x[i], prob_gate[i], i))
|
| 194 |
+
result = torch.vstack(result)
|
| 195 |
+
result = result[order.argsort(0)] # restore original order
|
| 196 |
+
|
| 197 |
+
return result, balance_loss, gate_load
|
| 198 |
+
|
| 199 |
+
def _forward_sentence_single_expert(self, x, attention_mask):
|
| 200 |
+
x_masked = x * attention_mask.unsqueeze(-1)
|
| 201 |
+
x_average = x_masked.sum(1) / attention_mask.unsqueeze(-1).sum(1)
|
| 202 |
+
logits_gate = self.gate(x_average)
|
| 203 |
+
prob_gate = F.softmax(logits_gate, dim=-1)
|
| 204 |
+
gate = torch.argmax(prob_gate, dim=-1)
|
| 205 |
+
|
| 206 |
+
gate_load = F.one_hot(gate, self.num_experts).gt(0).sum(0)
|
| 207 |
+
x = self.experts[gate.cpu().item()].forward(x)
|
| 208 |
+
return x, 0.0, gate_load
|
| 209 |
+
|
| 210 |
+
def _forward_hash(self, x, input_ids):
|
| 211 |
+
bsz, seq_len, dim = x.size()
|
| 212 |
+
|
| 213 |
+
x = x.view(-1, dim)
|
| 214 |
+
self.hash_list = self.hash_list.to(x.device)
|
| 215 |
+
gate = self.hash_list[input_ids.view(-1)]
|
| 216 |
+
|
| 217 |
+
order = gate.argsort(0)
|
| 218 |
+
num_tokens = F.one_hot(gate, self.num_experts).gt(0).sum(0)
|
| 219 |
+
gate_load = num_tokens.clone()
|
| 220 |
+
x = x[order] # reorder according to expert number
|
| 221 |
+
x = x.split(num_tokens.tolist(), dim=0) # a list of length self.num_experts
|
| 222 |
+
|
| 223 |
+
x = [self.experts[i].forward(x[i]) for i in range(self.num_experts)]
|
| 224 |
+
x = torch.vstack(x)
|
| 225 |
+
x = x[order.argsort(0)] # restore original order
|
| 226 |
+
x = x.view(bsz, seq_len, dim)
|
| 227 |
+
|
| 228 |
+
return x, 0.0, gate_load
|
| 229 |
+
|
| 230 |
+
def forward(self, x, input_ids, attention_mask):
|
| 231 |
+
if self.route_method == "gate-token":
|
| 232 |
+
x, balance_loss, gate_load = self._forward_gate_token(x)
|
| 233 |
+
elif self.route_method == "gate-sentence":
|
| 234 |
+
if x.size(0) == 1:
|
| 235 |
+
x, balance_loss, gate_load = self._forward_sentence_single_expert(x, attention_mask)
|
| 236 |
+
else:
|
| 237 |
+
x, balance_loss, gate_load = self._forward_gate_sentence(x, attention_mask)
|
| 238 |
+
elif self.route_method in ["hash-random", "hash-balance"]:
|
| 239 |
+
x, balance_loss, gate_load = self._forward_hash(x, input_ids)
|
| 240 |
+
else:
|
| 241 |
+
raise KeyError("Routing method not supported.")
|
| 242 |
+
|
| 243 |
+
return x, balance_loss, gate_load
|
| 244 |
+
|
| 245 |
+
# ================================================================================================================
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def symmetric_KL_loss(p, q):
|
| 250 |
+
""" symmetric KL-divergence 1/2*(KL(p||q)+KL(q||p)) """
|
| 251 |
+
p, q = p.float(), q.float()
|
| 252 |
+
loss = (p - q) * (torch.log(p) - torch.log(q))
|
| 253 |
+
return 0.5 * loss.sum()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def softmax(x):
|
| 257 |
+
return F.softmax(x, dim=-1, dtype=torch.float32)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
class MoEBertLayer(BertLayer):
|
| 261 |
+
def __init__(self, config, layer_idx=-100):
|
| 262 |
+
nn.Module.__init__(self)
|
| 263 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 264 |
+
self.seq_len_dim = 1
|
| 265 |
+
self.attention = BertAttention(config)
|
| 266 |
+
self.is_decoder = config.is_decoder
|
| 267 |
+
self.add_cross_attention = config.add_cross_attention
|
| 268 |
+
if self.add_cross_attention:
|
| 269 |
+
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
| 270 |
+
self.crossattention = BertAttention(config)
|
| 271 |
+
self.intermediate = BertIntermediate(config)
|
| 272 |
+
self.output = BertOutput(config)
|
| 273 |
+
|
| 274 |
+
# construct experts
|
| 275 |
+
self.use_experts = use_experts(layer_idx)
|
| 276 |
+
dropout = config.moebert_expert_dropout if self.use_experts else config.hidden_dropout_prob
|
| 277 |
+
if self.use_experts:
|
| 278 |
+
ffn = FeedForward(config, config.moebert_expert_dim, dropout)
|
| 279 |
+
self.experts = MoELayer(
|
| 280 |
+
hidden_size=config.hidden_size,
|
| 281 |
+
expert=ffn,
|
| 282 |
+
num_experts=config.moebert_expert_num,
|
| 283 |
+
route_method=config.moebert_route_method,
|
| 284 |
+
vocab_size=config.vocab_size,
|
| 285 |
+
hash_list=config.moebert_route_hash_list,
|
| 286 |
+
)
|
| 287 |
+
else:
|
| 288 |
+
self.experts = FeedForward(config, config.intermediate_size, dropout)
|
| 289 |
+
|
| 290 |
+
def forward(
|
| 291 |
+
self,
|
| 292 |
+
hidden_states,
|
| 293 |
+
attention_mask=None,
|
| 294 |
+
head_mask=None,
|
| 295 |
+
encoder_hidden_states=None,
|
| 296 |
+
encoder_attention_mask=None,
|
| 297 |
+
past_key_value=None,
|
| 298 |
+
output_attentions=False,
|
| 299 |
+
expert_input_ids=None,
|
| 300 |
+
expert_attention_mask=None,
|
| 301 |
+
):
|
| 302 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 303 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
| 304 |
+
self_attention_outputs = self.attention(
|
| 305 |
+
hidden_states,
|
| 306 |
+
attention_mask,
|
| 307 |
+
head_mask,
|
| 308 |
+
output_attentions=output_attentions,
|
| 309 |
+
past_key_value=self_attn_past_key_value,
|
| 310 |
+
)
|
| 311 |
+
attention_output = self_attention_outputs[0]
|
| 312 |
+
|
| 313 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 314 |
+
if self.is_decoder:
|
| 315 |
+
outputs = self_attention_outputs[1:-1]
|
| 316 |
+
present_key_value = self_attention_outputs[-1]
|
| 317 |
+
else:
|
| 318 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 319 |
+
|
| 320 |
+
cross_attn_present_key_value = None
|
| 321 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 322 |
+
assert hasattr(
|
| 323 |
+
self, "crossattention"
|
| 324 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 325 |
+
|
| 326 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 327 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
| 328 |
+
cross_attention_outputs = self.crossattention(
|
| 329 |
+
attention_output,
|
| 330 |
+
attention_mask,
|
| 331 |
+
head_mask,
|
| 332 |
+
encoder_hidden_states,
|
| 333 |
+
encoder_attention_mask,
|
| 334 |
+
cross_attn_past_key_value,
|
| 335 |
+
output_attentions,
|
| 336 |
+
)
|
| 337 |
+
attention_output = cross_attention_outputs[0]
|
| 338 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
| 339 |
+
|
| 340 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 341 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 342 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 343 |
+
|
| 344 |
+
layer_output = self.feed_forward(attention_output, expert_input_ids, expert_attention_mask)
|
| 345 |
+
outputs = (layer_output,) + outputs
|
| 346 |
+
|
| 347 |
+
# if decoder, return the attn key/values as the last output
|
| 348 |
+
if self.is_decoder:
|
| 349 |
+
outputs = outputs + (present_key_value,)
|
| 350 |
+
|
| 351 |
+
return outputs
|
| 352 |
+
|
| 353 |
+
def feed_forward(self, attention_output, expert_input_ids, expert_attention_mask):
|
| 354 |
+
if not self.use_experts:
|
| 355 |
+
layer_output = self.experts(attention_output)
|
| 356 |
+
return layer_output, 0.0
|
| 357 |
+
|
| 358 |
+
layer_output, gate_loss, gate_load = self.experts(
|
| 359 |
+
attention_output, expert_input_ids, expert_attention_mask
|
| 360 |
+
)
|
| 361 |
+
return layer_output, gate_loss
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class MoEBertEncoder(BertEncoder):
|
| 365 |
+
def __init__(self, config):
|
| 366 |
+
nn.Module.__init__(self)
|
| 367 |
+
self.config = config
|
| 368 |
+
self.layer = nn.ModuleList([MoEBertLayer(config, i) for i in range(config.num_hidden_layers)])
|
| 369 |
+
|
| 370 |
+
def forward(
|
| 371 |
+
self,
|
| 372 |
+
hidden_states,
|
| 373 |
+
attention_mask=None,
|
| 374 |
+
head_mask=None,
|
| 375 |
+
encoder_hidden_states=None,
|
| 376 |
+
encoder_attention_mask=None,
|
| 377 |
+
past_key_values=None,
|
| 378 |
+
use_cache=None,
|
| 379 |
+
output_attentions=False,
|
| 380 |
+
output_hidden_states=False,
|
| 381 |
+
return_dict=True,
|
| 382 |
+
expert_input_ids=None,
|
| 383 |
+
expert_attention_mask=None,
|
| 384 |
+
):
|
| 385 |
+
all_hidden_states = () if output_hidden_states else None
|
| 386 |
+
all_self_attentions = () if output_attentions else None
|
| 387 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 388 |
+
|
| 389 |
+
next_decoder_cache = () if use_cache else None
|
| 390 |
+
gate_loss = 0.0
|
| 391 |
+
for i, layer_module in enumerate(self.layer):
|
| 392 |
+
if output_hidden_states:
|
| 393 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 394 |
+
|
| 395 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 396 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 397 |
+
|
| 398 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
| 399 |
+
|
| 400 |
+
if use_cache:
|
| 401 |
+
logger.warn(
|
| 402 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
| 403 |
+
"`use_cache=False`..."
|
| 404 |
+
)
|
| 405 |
+
use_cache = False
|
| 406 |
+
|
| 407 |
+
def create_custom_forward(module):
|
| 408 |
+
def custom_forward(*inputs):
|
| 409 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 410 |
+
|
| 411 |
+
return custom_forward
|
| 412 |
+
|
| 413 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 414 |
+
create_custom_forward(layer_module),
|
| 415 |
+
hidden_states,
|
| 416 |
+
attention_mask,
|
| 417 |
+
layer_head_mask,
|
| 418 |
+
encoder_hidden_states,
|
| 419 |
+
encoder_attention_mask,
|
| 420 |
+
)
|
| 421 |
+
else:
|
| 422 |
+
layer_outputs = layer_module(
|
| 423 |
+
hidden_states,
|
| 424 |
+
attention_mask,
|
| 425 |
+
layer_head_mask,
|
| 426 |
+
encoder_hidden_states,
|
| 427 |
+
encoder_attention_mask,
|
| 428 |
+
past_key_value,
|
| 429 |
+
output_attentions,
|
| 430 |
+
expert_input_ids,
|
| 431 |
+
expert_attention_mask,
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
hidden_states = layer_outputs[0][0]
|
| 435 |
+
gate_loss = gate_loss + layer_outputs[0][1]
|
| 436 |
+
if use_cache:
|
| 437 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 438 |
+
if output_attentions:
|
| 439 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 440 |
+
if self.config.add_cross_attention:
|
| 441 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 442 |
+
|
| 443 |
+
if output_hidden_states:
|
| 444 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 445 |
+
|
| 446 |
+
if not return_dict:
|
| 447 |
+
return tuple(
|
| 448 |
+
v
|
| 449 |
+
for v in [
|
| 450 |
+
hidden_states,
|
| 451 |
+
next_decoder_cache,
|
| 452 |
+
all_hidden_states,
|
| 453 |
+
all_self_attentions,
|
| 454 |
+
all_cross_attentions,
|
| 455 |
+
]
|
| 456 |
+
if v is not None
|
| 457 |
+
)
|
| 458 |
+
return MoEModelOutput(
|
| 459 |
+
last_hidden_state=hidden_states,
|
| 460 |
+
past_key_values=next_decoder_cache,
|
| 461 |
+
hidden_states=all_hidden_states,
|
| 462 |
+
attentions=all_self_attentions,
|
| 463 |
+
cross_attentions=all_cross_attentions,
|
| 464 |
+
gate_loss=gate_loss,
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class MoEBertModel(BertModel):
|
| 469 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 470 |
+
BertModel.__init__(self, config)
|
| 471 |
+
self.config = config
|
| 472 |
+
|
| 473 |
+
self.embeddings = BertEmbeddings(config)
|
| 474 |
+
self.encoder = MoEBertEncoder(config)
|
| 475 |
+
|
| 476 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 477 |
+
|
| 478 |
+
self.init_weights()
|
| 479 |
+
|
| 480 |
+
def forward(
|
| 481 |
+
self,
|
| 482 |
+
input_ids=None,
|
| 483 |
+
attention_mask=None,
|
| 484 |
+
token_type_ids=None,
|
| 485 |
+
position_ids=None,
|
| 486 |
+
head_mask=None,
|
| 487 |
+
inputs_embeds=None,
|
| 488 |
+
encoder_hidden_states=None,
|
| 489 |
+
encoder_attention_mask=None,
|
| 490 |
+
past_key_values=None,
|
| 491 |
+
use_cache=None,
|
| 492 |
+
output_attentions=None,
|
| 493 |
+
output_hidden_states=None,
|
| 494 |
+
return_dict=None,
|
| 495 |
+
expert_input_ids=None,
|
| 496 |
+
expert_attention_mask=None,
|
| 497 |
+
):
|
| 498 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 499 |
+
output_hidden_states = (
|
| 500 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 501 |
+
)
|
| 502 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 503 |
+
|
| 504 |
+
if self.config.is_decoder:
|
| 505 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 506 |
+
else:
|
| 507 |
+
use_cache = False
|
| 508 |
+
|
| 509 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 510 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 511 |
+
elif input_ids is not None:
|
| 512 |
+
input_shape = input_ids.size()
|
| 513 |
+
batch_size, seq_length = input_shape
|
| 514 |
+
elif inputs_embeds is not None:
|
| 515 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 516 |
+
batch_size, seq_length = input_shape
|
| 517 |
+
else:
|
| 518 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 519 |
+
|
| 520 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 521 |
+
|
| 522 |
+
# past_key_values_length
|
| 523 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 524 |
+
|
| 525 |
+
if attention_mask is None:
|
| 526 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 527 |
+
if token_type_ids is None:
|
| 528 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 529 |
+
|
| 530 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 531 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 532 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
| 533 |
+
|
| 534 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 535 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 536 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 537 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 538 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 539 |
+
if encoder_attention_mask is None:
|
| 540 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 541 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 542 |
+
else:
|
| 543 |
+
encoder_extended_attention_mask = None
|
| 544 |
+
|
| 545 |
+
# Prepare head mask if needed
|
| 546 |
+
# 1.0 in head_mask indicate we keep the head
|
| 547 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 548 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 549 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 550 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 551 |
+
|
| 552 |
+
embedding_output = self.embeddings(
|
| 553 |
+
input_ids=input_ids,
|
| 554 |
+
position_ids=position_ids,
|
| 555 |
+
token_type_ids=token_type_ids,
|
| 556 |
+
inputs_embeds=inputs_embeds,
|
| 557 |
+
past_key_values_length=past_key_values_length,
|
| 558 |
+
)
|
| 559 |
+
encoder_outputs = self.encoder(
|
| 560 |
+
embedding_output,
|
| 561 |
+
attention_mask=extended_attention_mask,
|
| 562 |
+
head_mask=head_mask,
|
| 563 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 564 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 565 |
+
past_key_values=past_key_values,
|
| 566 |
+
use_cache=use_cache,
|
| 567 |
+
output_attentions=output_attentions,
|
| 568 |
+
output_hidden_states=output_hidden_states,
|
| 569 |
+
return_dict=return_dict,
|
| 570 |
+
expert_input_ids=expert_input_ids,
|
| 571 |
+
expert_attention_mask=expert_attention_mask,
|
| 572 |
+
)
|
| 573 |
+
sequence_output = encoder_outputs[0]
|
| 574 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 575 |
+
|
| 576 |
+
if not return_dict:
|
| 577 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 578 |
+
|
| 579 |
+
return MoEModelOutputWithPooling(
|
| 580 |
+
last_hidden_state=sequence_output,
|
| 581 |
+
pooler_output=pooled_output,
|
| 582 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 583 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 584 |
+
attentions=encoder_outputs.attentions,
|
| 585 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 586 |
+
gate_loss=encoder_outputs.gate_loss,
|
| 587 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|