Small LMs Text Embedding
					Collection
				
Contrastive fine-tuned version of Language Models up to 2B parameters using LoRA
					• 
				3 items
				• 
				Updated
					
				•
					
					4
This is a fine-tuned version of Gemma-2b-it to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets. The paper can be found here.
git clone https://huggingface.co/google/gemma-2b-it
tokenizer_config.json"add_eos_token": true
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np
class GemmaSentenceEmbedding:
    def __init__(self, model_path='google/gemma-2b-it', adapter_path=None):
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, 
                                                          torch_dtype=torch.bfloat16,
                                                          device_map='cuda',
                                                          trust_remote_code=True)
        if adapter_path != None:
            # Load fine-tuned LoRA
            self.model.load_adapter(adapter_path)
    def get_last_hidden_state(self, text):
        inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
        with torch.no_grad():
            out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
        return out.squeeze().float().cpu().numpy()
    def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
        """
        Returns a list of embeddings for the given sentences.
        
        Args:
            sentences: List of sentences to encode
        Returns:
            List of embeddings for the given sentences
        """
        out = []
        for s in sentences:
            out.append(self.get_last_hidden_state(s))
        return out
gemma_sentence_embedding = GemmaSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/Gemma-2B-Text-Embedding-cft')
example_sentences = ["I don't like apples", "I like apples"]
encoded_sentences = gemma_sentence_embedding.encode(example_sentences)
print(encoded_sentences) 
| Training Details | Value | 
|---|---|
| Loss | InfoNCE | 
| Batch Size | 60 | 
| InfoNCE Temperature | 0.05 | 
| Learning Rate | 5e-05 | 
| Warmup Steps | 100 | 
| Learning Rate Scheduler | CosineAnnealingLR | 
| LoRA Rank | 8 | 
| LoRA Alpha | 32 | 
| LoRA Dropout | 0.1 | 
| Training Precision | bf16 | 
| Max Epoch | 1 | 
| GPU | RTX3090 | 
| Num GPUs | 4 | 
The training script for this model is written in this Github repository.
We provide checkpoints every 500 training steps which can be found here.
| Benchmarks | Before cft | After cft | 
|---|---|---|
| STS12 | 43.83 | 75.80 | 
| STS13 | 66.36 | 85.45 | 
| STS14 | 49.57 | 80.08 | 
| STS15 | 57.40 | 85.02 | 
| STS16 | 70.13 | 83.33 | 
| STS17 | 58.34 | 88.22 | 
| STSBenchmark | 57.36 | 85.61 | 
| BOISSES | 48.67 | 73.83 | 
| SICK-R | 58.02 | 76.69 | 
| Overall | 56.63 | 81.56 | 
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
This work is the final project of the Natural Language Processing Spring 2024 course at Tsinghua University 🟣. We would like to express our sincere gratitude to this course !