RAGΒΆ
OverviewΒΆ
Retrieval-augmented generation (βRAGβ) models combine the powers of pretrained dense retrieval (DPR) and sequence-to-sequence models. RAG models retrieve documents, pass them to a seq2seq model, then marginalize to generate outputs. The retriever and seq2seq modules are initialized from pretrained models, and fine-tuned jointly, allowing both retrieval and generation to adapt to downstream tasks.
It is based on the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich KΓΌttler, Mike Lewis, Wen-tau Yih, Tim RocktΓ€schel, Sebastian Riedel, Douwe Kiela.
The abstract from the paper is the following:
Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge remain open research problems. Pre-trained models with a differentiable access mechanism to explicit nonparametric memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) β models which combine pre-trained parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages across the whole generated sequence, the other can use different passages per token. We fine-tune and evaluate our models on a wide range of knowledge-intensive NLP tasks and set the state-of-the-art on three open domain QA tasks, outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
RagConfigΒΆ
-
class
transformers.RagConfig(vocab_size=None, is_encoder_decoder=True, prefix=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, decoder_start_token_id=None, title_sep=' / ', doc_sep=' // ', n_docs=5, max_combined_length=300, retrieval_vector_size=768, retrieval_batch_size=8, dataset='wiki_dpr', dataset_split='train', index_name='compressed', index_path=None, passages_path=None, use_dummy_dataset=False, reduce_loss=False, label_smoothing=0.0, do_deduplication=True, exclude_bos_score=False, do_marginalize=False, output_retrieved=False, **kwargs)[source]ΒΆ RagConfigstores the configuration of a RagModel. Configuration objects inherit fromPretrainedConfigand can be used to control the model outputs. Read the documentation fromPretrainedConfigfor more information.- Parameters
title_sep (
str, optional, defaults to" / ") β Separator inserted between the title and the text of the retrieved document when callingRagRetriever.doc_sep (
str, optional, defaults to" // ") β Separator inserted between the the text of the retrieved document and the original input when calliangRagRetriever.n_docs (
int, optional, defaults to 5) β Number of documents to retrieve.max_combined_length (
int, optional, defaults to 300) β Max length of contextualized input returned by__call__().retrieval_vector_size (
int, optional, defaults to 768) β Dimensionality of the document embeddings indexed byRagRetriever.retrieval_batch_size (
int, optional, defaults to 8) β Retrieval batch size, defined as the number of queries issues concurrently to the faiss index excapsulatedRagRetriever.dataset (
str, optional, defaults to"wiki_dpr") β A dataset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids usingdatasets.list_datasets()).dataset_split (
str, optional, defaults to"train") β Which split of thedatasetto load.index_name (
str, optional, defaults to"compressed") β The index name of the index associated with thedataset. One can choose between"legacy","exact"and"compressed".index_path (
str, optional) β The path to the serialized faiss index on disk.passages_path β (
str, optional): A path to text passages compatible with the faiss index. Required if usingLegacyIndexuse_dummy_dataset (
bool, optional, defaults toFalse) β Whether to load a βdummyβ variant of the dataset specified bydataset.label_smoothing (
float, optional, defaults to 0.0) β Only relevant ifreturn_lossis set toTrue. Controls theepsilonparameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed.do_marginalize (
bool, optional, defaults toFalse) β IfTrue, the logits are marginalized over all documents by making use oftorch.nn.functional.log_softmax.reduce_loss (
bool, optional, defaults toFalse) β Whether or not to reduce the NLL loss using thetorch.Tensor.sumoperation.do_deduplication (
bool, optional, defaults toTrue) β Whether or not to deduplicate the generations from different context documents for a given input. Has to be set toFalseif used while training with distributed backend.exclude_bos_score (
bool, optional, defaults toFalse) β Whether or not to disregard the BOS token when computing the loss.output_retrieved (
bool, optional, defaults toFalse) β If set toTrue,retrieved_doc_embeds,retrieved_doc_ids,context_input_idsandcontext_attention_maskare returned. See returned tensors for more detail.
-
classmethod
from_question_encoder_generator_configs(question_encoder_config: transformers.configuration_utils.PretrainedConfig, generator_config: transformers.configuration_utils.PretrainedConfig, **kwargs) → transformers.configuration_utils.PretrainedConfig[source]ΒΆ Instantiate a
EncoderDecoderConfig(or a derived class) from a pre-trained encoder model configuration and decoder model configuration.- Returns
An instance of a configuration object
- Return type
RagTokenizerΒΆ
-
class
transformers.RagTokenizer(question_encoder, generator)[source]ΒΆ -
prepare_seq2seq_batch(src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = 'longest', return_tensors: str = 'np', truncation=True, **kwargs) → transformers.tokenization_utils_base.BatchEncoding[source]ΒΆ Prepare model inputs for translation. For best performance, translate one sentence at a time.
- Parameters
src_texts (
List[str]) β List of documents to summarize or source language texts.tgt_texts (
list, optional) β List of summaries or target language texts.max_length (
int, optional) β Controls the maximum length for encoder inputs (documents to summarize or source language texts) If left unset or set toNone, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.max_target_length (
int, optional) β Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set toNone, this will use the max_length value.padding (
bool,strorPaddingStrategy, optional, defaults toFalse) βActivates and controls padding. Accepts the following values:
Trueor'longest': Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).'max_length': Pad to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided.Falseor'do_not_pad'(default): No padding (i.e., can output a batch with sequences of different lengths).
return_tensors (
strorTensorType, optional, defaults to βptβ) βIf set, will return tensors instead of list of python integers. Acceptable values are:
'tf': Return TensorFlowtf.constantobjects.'pt': Return PyTorchtorch.Tensorobjects.'np': Return Numpynp.ndarrayobjects.
truncation (
bool,strorTruncationStrategy, optional, defaults toTrue) βActivates and controls truncation. Accepts the following values:
Trueor'longest_first': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.'only_first': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.Falseor'do_not_truncate'(default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).
**kwargs β Additional keyword arguments passed along to
self.__call__.
- Returns
A
BatchEncodingwith the following fields:input_ids β List of token ids to be fed to the encoder.
attention_mask β List of indices specifying which tokens should be attended to by the model.
decoder_input_ids β List of token ids to be fed to the decoder.
- decoder_attention_mask β List of indices specifying which tokens should be attended to by the decoder.
This does not include causal mask, which is built by the model.
The full set of keys
[input_ids, attention_mask, decoder_input_ids, decoder_attention_mask], will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys.- Return type
-
Rag specific outputsΒΆ
-
class
transformers.modeling_rag.RetrievAugLMMarginOutput(loss: Optional[torch.FloatTensor] = None, logits: torch.FloatTensor = None, doc_scores: torch.FloatTensor = None, past_key_values: Optional[List[torch.FloatTensor]] = None, retrieved_doc_embeds: Optional[torch.FloatTensor] = None, retrieved_doc_ids: Optional[torch.LongTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None, question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None, generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None, generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None, generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ Base class for retriever augmented marginalized models outputs.
- Parameters
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Languaged modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddings (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) βList of
torch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.retrieved_doc_embeds (
torch.FloatTensorof shape(batch_size, config.n_docs, hidden_size), optional, returned when output_retrieved=True) β Embedded documents retrieved by the retriever. Is used withquestion_encoder_last_hidden_stateto compute thedoc_scores.retrieved_doc_ids (
torch.LongTensorof shape(batch_size, config.n_docs), optional, returned when output_retrieved=True) β The indexes of the embedded documents retrieved by the retriever.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Attention mask post-processed from the retrieved documents and the question encoderinput_idsby the retriever.question_encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model.question_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_enc_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the generator encoder of the model.generator_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_dec_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
-
class
transformers.modeling_rag.RetrievAugLMOutput(logits: torch.FloatTensor = None, doc_scores: torch.FloatTensor = None, past_key_values: Optional[List[torch.FloatTensor]] = None, retrieved_doc_embeds: Optional[torch.FloatTensor] = None, retrieved_doc_ids: Optional[torch.LongTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None, question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None, generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None, generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None, generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ - Parameters
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddings (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) βList of
torch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.retrieved_doc_embeds (
torch.FloatTensorof shape(batch_size, config.n_docs, hidden_size), optional, returned when output_retrieved=True) β Embedded documents retrieved by the retriever. Is used withquestion_encoder_last_hidden_stateto compute thedoc_scores.retrieved_doc_ids (
torch.LongTensorof shape(batch_size, config.n_docs), optional, returned when output_retrieved=True) β The indexes of the embedded documents retrieved by the retriever.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Attention mask post-processed from the retrieved documents and the question encoderinput_idsby the retriever.question_encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model.question_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_enc_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the generator encoder of the model.generator_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_dec_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
RAGRetrieverΒΆ
-
class
transformers.RagRetriever(config, question_encoder_tokenizer, generator_tokenizer)[source]ΒΆ Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents contents, and it formats them to be used with a RagModel.
- Parameters
config (
RagConfig) β The configuration of the RAG model this Retriever is used with. Contains parameters indicating whichIndexto build.question_encoder_tokenizer (
PreTrainedTokenizer) β The tokenizer that was used to tokenize the question. It is used to decode the question and then use the generator_tokenizer.generator_tokenizer (
PreTrainedTokenizer) β The tokenizer used for the generator part of the RagModel.
-
postprocess_docs(docs, input_strings, prefix, n_docs, return_tensors=None)[source]ΒΆ Postprocessing retrieved
docsand combining them withinput_strings.- Parameters
doc_scores (
np.ndarrayof shape(batch_size, n_docs)) β Retrieval scores of respective docs - passed for logging.docs (
dict) β Retrieved documents.input_strings (
str) β Input strings decoded bypreprocess_query.prefix (
str) β Prefix added at the beginning of each input, typically used with T5-based models.
- Returns
a tuple consisting of two elements: contextualized
input_idsand a compatibleattention_mask.- Return type
tuple(tensors)
-
retrieve(question_hidden_states: numpy.ndarray, n_docs: int) → Tuple[numpy.ndarray, List[dict]][source]ΒΆ Retrieves documents for specified
question_hidden_states.- Parameters
question_hidden_states (
np.ndarrayof shape(batch_size, vector_size)) β A batch of query vectors to retrieve with.n_docs (
int) β The number of docs retrieved per query.
- Returns
A tuple with the following objects:
retrieved_doc_embeds (
np.ndarrayof shape(batch_size, n_docs, dim)) β The retrieval embeddings of the retrieved docs per query.doc_ids (
np.ndarrayof shape(batch_size, n_docs)) β The ids of the documents in the indexdoc_dicts (
List[dict]): Theretrieved_doc_embedsexamples per query.
- Return type
Tuple[np.ndarray, np.ndarray, List[dict]]
RagModelΒΆ
-
class
transformers.RagModel(config: Optional[transformers.configuration_utils.PretrainedConfig] = None, question_encoder: Optional[transformers.modeling_utils.PreTrainedModel] = None, generator: Optional[transformers.modeling_utils.PreTrainedModel] = None, retriever: Optional = None, **kwargs)[source]ΒΆ The
RagModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator.
The question encoder can be any autoencoding model, preferably
DPRQuestionEncoder, and the generator can be any seq2seq model, preferablyBartForConditionalGeneration.The model can be initialized with a
RagRetrieverfor end-to-end generation or used in combination with the outputs of a retriever in multiple stepsβsee examples for more details. The model is compatible any autoencoding model as thequestion_encoderand any seq2seq model with language model head as thegenerator. It has been tested withDPRQuestionEncoderas thequestion_encoderandBartForConditionalGenerationorT5ForConditionalGenerationas thegenerator.This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
RagConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.question_encoder (
transformers.PreTrainedModel) β An encoder model compatible with the faiss index encapsulated by theretriever.generator (
transformers.PreTrainedModel) β A seq2seq model used as the generator in the RAG architecture.retriever (
RagRetriever) β A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
-
forward(input_ids=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, doc_scores=None, context_input_ids=None, context_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_retrieved=None)[source]ΒΆ The
RagModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) β Indices of input sequence tokens in the vocabulary.RagConfig, used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are maked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) βTuple consists of (
generator_enc_last_hidden_state, optional:generator_enc_hidden_states, optional:generator_enc_attentions).generator_enc_last_hidden_stateof shape(batch_size, n_docs * sequence_length, hidden_size)is a sequence of hidden-states at the output of the last layer of the generatorβs encoder.Used by the (
RagModel) model during decoding.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for generation tasks. None by default, constuct as per instructions for the generator model youβre using with your RAG instance.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, target_sequence_length), optional) β Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.past_key_values (
tuple(tuple(torch.FloatTensor))) β Tuple consists of two elements:encoder_outputsof the RAG model (seeencoder_outputs) andpast_key_valuesof the underlying generator. Can be used to speed up decoding.past_key_valuesare used in the (RagTokenForGeneration) model during decoding.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddigs (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state. If the model has is not initialized with aretrieverdoc_scoreshas to be provided to the forward pass.doc_scorescan be computed viaquestion_encoder_last_hidden_stateandretrieved_doc_embeds, see examples for more information.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βInput IDs post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retrievercontext_input_idshas to be provided to the forward pass.context_input_idsare returned by__call__().context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βAttention mask post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retrievercontext_attention_maskhas to be provided to the forward pass.context_attention_maskare returned by__call__().use_cache (
bool, optional, defaults toTrue) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.output_retrieved (
bool, optional) β Whether or not to return theretrieved_doc_embeds,retrieved_doc_ids,context_input_idsandcontext_attention_mask. See returned tensors for more detail.
- Returns
A
RetrievAugLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (RagConfig) and inputs.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddings (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.retrieved_doc_embeds (
torch.FloatTensorof shape(batch_size, config.n_docs, hidden_size), optional, returned when output_retrieved=True) β Embedded documents retrieved by the retriever. Is used withquestion_encoder_last_hidden_stateto compute thedoc_scores.retrieved_doc_ids (
torch.LongTensorof shape(batch_size, config.n_docs), optional, returned when output_retrieved=True) β The indexes of the embedded documents retrieved by the retriever.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Attention mask post-processed from the retrieved documents and the question encoderinput_idsby the retriever.question_encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model.question_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_enc_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the generator encoder of the model.generator_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_dec_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import RagTokenizer, RagRetriever, RagModel >>> import torch >>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="exact", use_dummy_dataset=True) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever) >>> input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids=input_ids, labels=input_dict["labels"])
- Return type
RetrievAugLMOutputortuple(torch.FloatTensor)
RagSequenceForGenerationΒΆ
-
class
transformers.RagSequenceForGeneration(config: Optional[transformers.configuration_utils.PretrainedConfig] = None, question_encoder: Optional[transformers.modeling_utils.PreTrainedModel] = None, generator: Optional[transformers.modeling_utils.PreTrainedModel] = None, retriever: Optional = None, **kwargs)[source]ΒΆ The
RagSequenceForGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. A RAG-sequence model impementation. It performs RAG-sequence specific marginalization in the forward pass.RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator.
The question encoder can be any autoencoding model, preferably
DPRQuestionEncoder, and the generator can be any seq2seq model, preferablyBartForConditionalGeneration.The model can be initialized with a
RagRetrieverfor end-to-end generation or used in combination with the outputs of a retriever in multiple stepsβsee examples for more details. The model is compatible any autoencoding model as thequestion_encoderand any seq2seq model with language model head as thegenerator. It has been tested withDPRQuestionEncoderas thequestion_encoderandBartForConditionalGenerationorT5ForConditionalGenerationas thegenerator.This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
RagConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.question_encoder (
transformers.PreTrainedModel) β An encoder model compatible with the faiss index encapsulated by theretriever.generator (
transformers.PreTrainedModel) β A seq2seq model used as the generator in the RAG architecture.retriever (
RagRetriever) β A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
-
forward(input_ids=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, context_input_ids=None, context_attention_mask=None, doc_scores=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_retrieved=None, exclude_bos_score=None, reduce_loss=None, labels=None, **kwargs)[source]ΒΆ The
RagSequenceForGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) β Indices of input sequence tokens in the vocabulary.RagConfig, used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are maked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) βTuple consists of (
generator_enc_last_hidden_state, optional:generator_enc_hidden_states, optional:generator_enc_attentions).generator_enc_last_hidden_stateof shape(batch_size, n_docs * sequence_length, hidden_size)is a sequence of hidden-states at the output of the last layer of the generatorβs encoder.Used by the (
RagModel) model during decoding.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for generation tasks. None by default, constuct as per instructions for the generator model youβre using with your RAG instance.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, target_sequence_length), optional) β Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.past_key_values (
tuple(tuple(torch.FloatTensor))) β Tuple consists of two elements:encoder_outputsof the RAG model (seeencoder_outputs) andpast_key_valuesof the underlying generator. Can be used to speed up decoding.past_key_valuesare used in the (RagTokenForGeneration) model during decoding.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddigs (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state. If the model has is not initialized with aretrieverdoc_scoreshas to be provided to the forward pass.doc_scorescan be computed viaquestion_encoder_last_hidden_stateandretrieved_doc_embeds, see examples for more information.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βInput IDs post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retrievercontext_input_idshas to be provided to the forward pass.context_input_idsare returned by__call__().context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βAttention mask post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retrievercontext_attention_maskhas to be provided to the forward pass.context_attention_maskare returned by__call__().use_cache (
bool, optional, defaults toTrue) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.output_retrieved (
bool, optional) β Whether or not to return theretrieved_doc_embeds,retrieved_doc_ids,context_input_idsandcontext_attention_mask. See returned tensors for more detail.exclude_bos_score (
bool, optional) β Only relevant iflabelsis passed. IfTrue, the score of the BOS token is disregarded when computing the loss.reduce_loss (
bool, optional) β Only relevant iflabelsis passed. IfTrue, the NLL loss is reduced using thetorch.Tensor.sumoperation.kwargs (
Dict[str, any], optional, defaults to {}) β Legacy dictionary, which is required so that model can use generate() function.
- Returns
A
RetrievAugLMMarginOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (RagConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Languaged modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddings (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.retrieved_doc_embeds (
torch.FloatTensorof shape(batch_size, config.n_docs, hidden_size), optional, returned when output_retrieved=True) β Embedded documents retrieved by the retriever. Is used withquestion_encoder_last_hidden_stateto compute thedoc_scores.retrieved_doc_ids (
torch.LongTensorof shape(batch_size, config.n_docs), optional, returned when output_retrieved=True) β The indexes of the embedded documents retrieved by the retriever.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Attention mask post-processed from the retrieved documents and the question encoderinput_idsby the retriever.question_encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model.question_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_enc_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the generator encoder of the model.generator_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_dec_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration >>> import torch >>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids=input_ids, labels=input_dict["labels"]) >>> # or use retriever seperately >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)).squeeze(1) >>> # 3. Forward to generator >>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=input_dict["labels"]) >>> # or directly generate >>> generated = model.generate(input_ids=input_dict["input_ids"]) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
- Return type
RetrievAugLMMarginOutputortuple(torch.FloatTensor)
-
generate(input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids=None, do_deduplication=None, num_return_sequences=None, num_beams=None, **kwargs)[source]ΒΆ Implements RAG sequence βthoroughβ decoding. Read the
generate`()documentation for more information on how to set other generate input parameters.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) β The sequence used as a prompt for the generation. Ifinput_idsis not passed, thencontext_input_idshas to be provided.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are maked.
context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever.do_deduplication (
bool, optional) β Whether or not to deduplicate the generations from different context documents for a given input. Has to be set toFalseif used while training with distributed backend.num_return_sequences (
int, optional, defaults to 1) β The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to thegeneratorβs :func:`~transformers.PreTrainedModel.generate` function, where we setnum_return_sequencestonum_beams.num_beams (
int, optional, defaults to 1) β Number of beams for beam search. 1 means no beam search.kwargs β Additional kwargs will be passed to
generate().
- Returns
The generated sequences. The second dimension (sequence length) is either equal to
max_lengthor shorter if all batches finished early due to theeos_token_id.- Return type
torch.LongTensorof shape(batch_size * num_return_sequences, sequence_length)
RagTokenForGenerationΒΆ
-
class
transformers.RagTokenForGeneration(config: Optional[transformers.configuration_utils.PretrainedConfig] = None, question_encoder: Optional[transformers.modeling_utils.PreTrainedModel] = None, generator: Optional[transformers.modeling_utils.PreTrainedModel] = None, retriever: Optional = None, **kwargs)[source]ΒΆ The
RagTokenForGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. A RAG-token model impementation. It performs RAG-token specific marginalization in the forward pass.RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator.
The question encoder can be any autoencoding model, preferably
DPRQuestionEncoder, and the generator can be any seq2seq model, preferablyBartForConditionalGeneration.The model can be initialized with a
RagRetrieverfor end-to-end generation or used in combination with the outputs of a retriever in multiple stepsβsee examples for more details. The model is compatible any autoencoding model as thequestion_encoderand any seq2seq model with language model head as thegenerator. It has been tested withDPRQuestionEncoderas thequestion_encoderandBartForConditionalGenerationorT5ForConditionalGenerationas thegenerator.This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
RagConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.question_encoder (
transformers.PreTrainedModel) β An encoder model compatible with the faiss index encapsulated by theretriever.generator (
transformers.PreTrainedModel) β A seq2seq model used as the generator in the RAG architecture.retriever (
RagRetriever) β A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
-
forward(input_ids=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, past_key_values=None, context_input_ids=None, context_attention_mask=None, doc_scores=None, use_cache=None, output_attentions=None, output_hidden_states=None, output_retrieved=None, do_marginalize=None, reduce_loss=None, labels=None, **kwargs)[source]ΒΆ The
RagTokenForGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) β Indices of input sequence tokens in the vocabulary.RagConfig, used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are maked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) βTuple consists of (
generator_enc_last_hidden_state, optional:generator_enc_hidden_states, optional:generator_enc_attentions).generator_enc_last_hidden_stateof shape(batch_size, n_docs * sequence_length, hidden_size)is a sequence of hidden-states at the output of the last layer of the generatorβs encoder.Used by the (
RagModel) model during decoding.decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for generation tasks. None by default, constuct as per instructions for the generator model youβre using with your RAG instance.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, target_sequence_length), optional) β Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.past_key_values (
tuple(tuple(torch.FloatTensor))) β Tuple consists of two elements:encoder_outputsof the RAG model (seeencoder_outputs) andpast_key_valuesof the underlying generator. Can be used to speed up decoding.past_key_valuesare used in the (RagTokenForGeneration) model during decoding.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddigs (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state. If the model has is not initialized with aretrieverdoc_scoreshas to be provided to the forward pass.doc_scorescan be computed viaquestion_encoder_last_hidden_stateandretrieved_doc_embeds, see examples for more information.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βInput IDs post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retrievercontext_input_idshas to be provided to the forward pass.context_input_idsare returned by__call__().context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βAttention mask post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retrievercontext_attention_maskhas to be provided to the forward pass.context_attention_maskare returned by__call__().use_cache (
bool, optional, defaults toTrue) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.output_retrieved (
bool, optional) β Whether or not to return theretrieved_doc_embeds,retrieved_doc_ids,context_input_idsandcontext_attention_mask. See returned tensors for more detail.do_marginalize (
bool, optional) β IfTrue, the logits are marginalized over all documents by making use oftorch.nn.functional.log_softmax.reduce_loss (
bool, optional) β Only relevant iflabelsis passed. IfTrue, the NLL loss is reduced using thetorch.Tensor.sumoperation.kwargs (
Dict[str, any], optional, defaults to {}) β Legacy dictionary, which is required so that model can use generate() function.
- Returns
A
RetrievAugLMMarginOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (RagConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Languaged modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token.doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) β Score between each retrieved document embeddings (seeretrieved_doc_embeds) andquestion_encoder_last_hidden_state.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.retrieved_doc_embeds (
torch.FloatTensorof shape(batch_size, config.n_docs, hidden_size), optional, returned when output_retrieved=True) β Embedded documents retrieved by the retriever. Is used withquestion_encoder_last_hidden_stateto compute thedoc_scores.retrieved_doc_ids (
torch.LongTensorof shape(batch_size, config.n_docs), optional, returned when output_retrieved=True) β The indexes of the embedded documents retrieved by the retriever.context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) β Attention mask post-processed from the retrieved documents and the question encoderinput_idsby the retriever.question_encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model.question_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_enc_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the generator encoder of the model.generator_enc_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
generator_dec_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings and one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration >>> import torch >>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids=input_ids, labels=input_dict["labels"]) >>> # or use retriever seperately >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)).squeeze(1) >>> # 3. Forward to generator >>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=input_dict["labels"]) >>> # or directly generate >>> generated = model.generate(input_ids=input_dict["input_ids"]) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
- Return type
RetrievAugLMMarginOutputortuple(torch.FloatTensor)
-
generate(input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, max_length=None, min_length=None, early_stopping=None, use_cache=None, num_beams=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, length_penalty=None, no_repeat_ngram_size=None, bad_words_ids=None, num_return_sequences=None, decoder_start_token_id=None, **kwargs)[source]ΒΆ Implements RAG token decoding.
- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) β The sequence used as a prompt for the generation. Ifinput_idsis not passed, thencontext_input_idshas to be provided.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are maked.
context_input_ids (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βInput IDs post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retriever,context_input_idshas to be provided to the forward pass.context_input_idsare returned by__call__().context_attention_mask (
torch.LongTensorof shape(batch_size * config.n_docs, config.max_combined_length), optional, returned when output_retrieved=True) βAttention mask post-processed from the retrieved documents and the question encoder
input_idsby the retriever.If the model has is not initialized with a
retriever,context_input_idshas to be provided to the forward pass.context_input_idsare returned by__call__().doc_scores (
torch.FloatTensorof shape(batch_size, config.n_docs)) βScore between each retrieved document embeddigs (see
retrieved_doc_embeds) andquestion_encoder_last_hidden_state.If the model has is not initialized with a
retriever,context_input_idshas to be provided to the forward pass.context_input_idsare returned by__call__().max_length (
int, optional, defaults to 20) β The maximum length of the sequence to be generated.min_length (
int, optional, defaults to 10) β The minimum length of the sequence to be generated.early_stopping (
bool, optional, defaults toFalse) β Whether or not to stop the beam search when at leastnum_beamssentences are finished per batch or not.use_cache β (
bool, optional, defaults toTrue): Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.pad_token_id (
int, optional) β The id of the padding token.bos_token_id (
int, optional) β The id of the beginning-of-sequence token.eos_token_id (
int, optional) β The id of the end-of-sequence token.length_penalty (
float, optional, defaults to 1.0) βExponential penalty to the length. 1.0 means no penalty.
Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences.
no_repeat_ngram_size (
int, optional, defaults to 0) β If set to int > 0, all ngrams of that size can only occur once.bad_words_ids (
List[int], optional) β List of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, usetokenizer.encode(bad_word, add_prefix_space=True).num_beams (
int, optional, defaults to 1) β Number of beams for beam search. 1 means no beam search.num_return_sequences (
int, optional, defaults to 1) β The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to thegeneratorβs :func:`~transformers.PreTrainedModel.generate function, where we setnum_return_sequencestonum_beams.decoder_start_token_id (
int, optional) β If an encoder-decoder model starts decoding with a different token than bos, the id of that token.
- Returns
The generated sequences. The second dimension (sequence_length) is either equal to
max_lengthor shorter if all batches finished early due to theeos_token_id.- Return type
torch.LongTensorof shape(batch_size * num_return_sequences, sequence_length)