AutoClasses¶
In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you
are supplying to the from_pretrained() method.
AutoClasses are here to do this job for you so that you automatically retrieve the relevant model given the name/path
to the pretrained weights/config/vocabulary.
Instantiating one of AutoConfig, AutoModel, and
AutoTokenizer will directly create a class of the relevant architecture. For instance
model = AutoModel.from_pretrained('bert-base-cased')
will create a model that is an instance of BertModel.
There is one class of AutoModel for each task, and for each backend (PyTorch or TensorFlow).
AutoConfig¶
-
class
transformers.AutoConfig[source]¶ This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the
from_pretrained()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_pretrained(pretrained_model_name_or_path, **kwargs)[source]¶ Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the
model_typeproperty of the config object that is loaded, or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:retribert –
RetriBertConfig(RetriBERT model)t5 –
T5Config(T5 model)mobilebert –
MobileBertConfig(MobileBERT model)distilbert –
DistilBertConfig(DistilBERT model)albert –
AlbertConfig(ALBERT model)bert-generation –
BertGenerationConfig(Bert Generation model)camembert –
CamembertConfig(CamemBERT model)xlm-roberta –
XLMRobertaConfig(XLM-RoBERTa model)pegasus –
PegasusConfig(Pegasus model)marian –
MarianConfig(Marian model)mbart –
MBartConfig(mBART model)bart –
BartConfig(BART model)reformer –
ReformerConfig(Reformer model)longformer –
LongformerConfig(Longformer model)roberta –
RobertaConfig(RoBERTa model)flaubert –
FlaubertConfig(FlauBERT model)fsmt –
FSMTConfig(FairSeq Machine-Translation model)bert –
BertConfig(BERT model)openai-gpt –
OpenAIGPTConfig(OpenAI GPT model)gpt2 –
GPT2Config(OpenAI GPT-2 model)transfo-xl –
TransfoXLConfig(Transformer-XL model)xlnet –
XLNetConfig(XLNet model)xlm –
XLMConfig(XLM model)ctrl –
CTRLConfig(CTRL model)electra –
ElectraConfig(ELECTRA model)encoder-decoder –
EncoderDecoderConfig(Encoder decoder model)funnel –
FunnelConfig(Funnel Transformer model)lxmert –
LxmertConfig(LXMERT model)dpr –
DPRConfig(DPR model)layoutlm –
LayoutLMConfig(LayoutLM model)rag –
RagConfig(RAG model)
- Parameters
pretrained_model_name_or_path (
str) –Can be either:
A string with the shortcut name of a pretrained model configuration to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model configuration that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing a configuration file saved using the
save_pretrained()method, or thesave_pretrained()method, e.g.,./my_model_directory/.A path or url to a saved configuration JSON file, e.g.,
./my_model_directory/configuration.json.
cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.return_unused_kwargs (
bool, optional, defaults toFalse) –If
False, then this function returns just the final configuration object.If
True, then this functions returns aTuple(config, unused_kwargs)where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part ofkwargswhich has not been used to updateconfigand is otherwise ignored.kwargs (additional keyword arguments, optional) – The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled by the
return_unused_kwargskeyword parameter.
Examples:
>>> from transformers import AutoConfig >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> # Download configuration from S3 (user-uploaded) and cache. >>> config = AutoConfig.from_pretrained('dbmdz/bert-base-german-cased') >>> # If configuration file is in a directory (e.g., was saved using `save_pretrained('./test/saved_model/')`). >>> config = AutoConfig.from_pretrained('./test/bert_saved_model/') >>> # Load a specific configuration file. >>> config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json') >>> # Change some config attributes when loading a pretrained config. >>> config = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False) >>> config.output_attentions True >>> config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True) >>> config.output_attentions True >>> config.unused_kwargs {'foo': False}
-
classmethod
AutoTokenizer¶
-
class
transformers.AutoTokenizer[source]¶ This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the
AutoTokenizer.from_pretrained()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)[source]¶ Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
The tokenizer class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:retribert –
RetriBertTokenizer(RetriBERT model)t5 –
T5Tokenizer(T5 model)mobilebert –
MobileBertTokenizer(MobileBERT model)distilbert –
DistilBertTokenizer(DistilBERT model)albert –
AlbertTokenizer(ALBERT model)bert-generation –
BertGenerationTokenizer(Bert Generation model)camembert –
CamembertTokenizer(CamemBERT model)xlm-roberta –
XLMRobertaTokenizer(XLM-RoBERTa model)pegasus –
PegasusTokenizer(Pegasus model)marian –
MarianTokenizer(Marian model)mbart –
MBartTokenizer(mBART model)bart –
BartTokenizer(BART model)reformer –
ReformerTokenizer(Reformer model)longformer –
LongformerTokenizer(Longformer model)roberta –
RobertaTokenizer(RoBERTa model)flaubert –
FlaubertTokenizer(FlauBERT model)fsmt –
FSMTTokenizer(FairSeq Machine-Translation model)bert –
BertTokenizer(BERT model)openai-gpt –
OpenAIGPTTokenizer(OpenAI GPT model)gpt2 –
GPT2Tokenizer(OpenAI GPT-2 model)transfo-xl –
TransfoXLTokenizer(Transformer-XL model)xlnet –
XLNetTokenizer(XLNet model)xlm –
XLMTokenizer(XLM model)ctrl –
CTRLTokenizer(CTRL model)electra –
ElectraTokenizer(ELECTRA model)funnel –
FunnelTokenizer(Funnel Transformer model)lxmert –
LxmertTokenizer(LXMERT model)dpr –
DPRQuestionEncoderTokenizer(DPR model)layoutlm –
LayoutLMTokenizer(LayoutLM model)rag –
RagTokenizer(RAG model)
- Params:
- pretrained_model_name_or_path (
str): Can be either:
A string with the shortcut name of a predefined tokenizer to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a predefined tokenizer that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing vocabulary files required by the tokenizer, for instance saved using the
save_pretrained()method, e.g.,./my_model_directory/.A path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (like Bert or XLNet), e.g.:
./my_model_directory/vocab.txt. (Not applicable to all derived classes)
- inputs (additional positional arguments, optional):
Will be passed along to the Tokenizer
__init__()method.- config (
PreTrainedConfig, optional) The configuration object used to dertermine the tokenizer class to instantiate.
- cache_dir (
str, optional): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.
- force_download (
bool, optional, defaults toFalse): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist.
- resume_download (
bool, optional, defaults toFalse): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.
- proxies (
Dict[str, str], optional): A dictionary of proxy servers to use by protocol or endpoint, e.g.,
{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.- use_fast (
bool, optional, defaults toFalse): Whether or not to try to load the fast version of the tokenizer.
- kwargs (additional keyword arguments, optional):
Will be passed to the Tokenizer
__init__()method. Can be used to set special tokens likebos_token,eos_token,unk_token,sep_token,pad_token,cls_token,mask_token,additional_special_tokens. See parameters in the__init__()for more details.
- pretrained_model_name_or_path (
Examples:
>>> from transformers import AutoTokenizer >>> # Download vocabulary from S3 and cache. >>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') >>> # Download vocabulary from S3 (user-uploaded) and cache. >>> tokenizer = AutoTokenizer.from_pretrained('dbmdz/bert-base-german-cased') >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`) >>> tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/')
-
classmethod
AutoModel¶
-
class
transformers.AutoModel[source]¶ This is a generic model class that will be instantiated as one of the base model classes of the library when created with the when created with the
from_pretrained()class method or thefrom_config()class methods.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the base model classes of the library from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
RetriBertConfigconfiguration class:RetriBertModel(RetriBERT model)DistilBertConfigconfiguration class:DistilBertModel(DistilBERT model)AlbertConfigconfiguration class:AlbertModel(ALBERT model)CamembertConfigconfiguration class:CamembertModel(CamemBERT model)XLMRobertaConfigconfiguration class:XLMRobertaModel(XLM-RoBERTa model)BartConfigconfiguration class:BartModel(BART model)LongformerConfigconfiguration class:LongformerModel(Longformer model)RobertaConfigconfiguration class:RobertaModel(RoBERTa model)LayoutLMConfigconfiguration class:LayoutLMModel(LayoutLM model)BertConfigconfiguration class:BertModel(BERT model)OpenAIGPTConfigconfiguration class:OpenAIGPTModel(OpenAI GPT model)GPT2Configconfiguration class:GPT2Model(OpenAI GPT-2 model)MobileBertConfigconfiguration class:MobileBertModel(MobileBERT model)TransfoXLConfigconfiguration class:TransfoXLModel(Transformer-XL model)XLNetConfigconfiguration class:XLNetModel(XLNet model)FlaubertConfigconfiguration class:FlaubertModel(FlauBERT model)FSMTConfigconfiguration class:FSMTModel(FairSeq Machine-Translation model)CTRLConfigconfiguration class:CTRLModel(CTRL model)ElectraConfigconfiguration class:ElectraModel(ELECTRA model)ReformerConfigconfiguration class:ReformerModel(Reformer model)FunnelConfigconfiguration class:FunnelModel(Funnel Transformer model)LxmertConfigconfiguration class:LxmertModel(LXMERT model)BertGenerationConfigconfiguration class:BertGenerationEncoder(Bert Generation model)DPRConfigconfiguration class:DPRQuestionEncoder(DPR model)
Examples:
>>> from transformers import AutoConfig, AutoModel >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModel.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the base model classes of the library from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:retribert –
RetriBertModel(RetriBERT model)t5 –
T5Model(T5 model)mobilebert –
MobileBertModel(MobileBERT model)distilbert –
DistilBertModel(DistilBERT model)albert –
AlbertModel(ALBERT model)bert-generation –
BertGenerationEncoder(Bert Generation model)camembert –
CamembertModel(CamemBERT model)xlm-roberta –
XLMRobertaModel(XLM-RoBERTa model)bart –
BartModel(BART model)reformer –
ReformerModel(Reformer model)longformer –
LongformerModel(Longformer model)roberta –
RobertaModel(RoBERTa model)flaubert –
FlaubertModel(FlauBERT model)fsmt –
FSMTModel(FairSeq Machine-Translation model)bert –
BertModel(BERT model)openai-gpt –
OpenAIGPTModel(OpenAI GPT model)gpt2 –
GPT2Model(OpenAI GPT-2 model)transfo-xl –
TransfoXLModel(Transformer-XL model)xlnet –
XLNetModel(XLNet model)xlm –
XLMModel(XLM model)ctrl –
CTRLModel(CTRL model)electra –
ElectraModel(ELECTRA model)funnel –
FunnelModel(Funnel Transformer model)lxmert –
LxmertModel(LXMERT model)dpr –
DPRQuestionEncoder(DPR model)layoutlm –
LayoutLMModel(LayoutLM model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModel >>> # Download model and configuration from S3 and cache. >>> model = AutoModel.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
AutoModelForPreTraining¶
-
class
transformers.AutoModelForPreTraining[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with the architecture used for pretraining this model—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with the architecture used for pretraining this model—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
LayoutLMConfigconfiguration class:LayoutLMForMaskedLM(LayoutLM model)RetriBertConfigconfiguration class:RetriBertModel(RetriBERT model)T5Configconfiguration class:T5ForConditionalGeneration(T5 model)DistilBertConfigconfiguration class:DistilBertForMaskedLM(DistilBERT model)AlbertConfigconfiguration class:AlbertForPreTraining(ALBERT model)CamembertConfigconfiguration class:CamembertForMaskedLM(CamemBERT model)XLMRobertaConfigconfiguration class:XLMRobertaForMaskedLM(XLM-RoBERTa model)BartConfigconfiguration class:BartForConditionalGeneration(BART model)FSMTConfigconfiguration class:FSMTForConditionalGeneration(FairSeq Machine-Translation model)LongformerConfigconfiguration class:LongformerForMaskedLM(Longformer model)RobertaConfigconfiguration class:RobertaForMaskedLM(RoBERTa model)BertConfigconfiguration class:BertForPreTraining(BERT model)OpenAIGPTConfigconfiguration class:OpenAIGPTLMHeadModel(OpenAI GPT model)GPT2Configconfiguration class:GPT2LMHeadModel(OpenAI GPT-2 model)MobileBertConfigconfiguration class:MobileBertForPreTraining(MobileBERT model)TransfoXLConfigconfiguration class:TransfoXLLMHeadModel(Transformer-XL model)XLNetConfigconfiguration class:XLNetLMHeadModel(XLNet model)FlaubertConfigconfiguration class:FlaubertWithLMHeadModel(FlauBERT model)XLMConfigconfiguration class:XLMWithLMHeadModel(XLM model)CTRLConfigconfiguration class:CTRLLMHeadModel(CTRL model)ElectraConfigconfiguration class:ElectraForPreTraining(ELECTRA model)LxmertConfigconfiguration class:LxmertForPreTraining(LXMERT model)
Examples:
>>> from transformers import AutoConfig, AutoModelForPreTraining >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModelForPreTraining.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with the architecture used for pretraining this model—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:retribert –
RetriBertModel(RetriBERT model)t5 –
T5ForConditionalGeneration(T5 model)mobilebert –
MobileBertForPreTraining(MobileBERT model)distilbert –
DistilBertForMaskedLM(DistilBERT model)albert –
AlbertForPreTraining(ALBERT model)camembert –
CamembertForMaskedLM(CamemBERT model)xlm-roberta –
XLMRobertaForMaskedLM(XLM-RoBERTa model)bart –
BartForConditionalGeneration(BART model)longformer –
LongformerForMaskedLM(Longformer model)roberta –
RobertaForMaskedLM(RoBERTa model)flaubert –
FlaubertWithLMHeadModel(FlauBERT model)fsmt –
FSMTForConditionalGeneration(FairSeq Machine-Translation model)bert –
BertForPreTraining(BERT model)openai-gpt –
OpenAIGPTLMHeadModel(OpenAI GPT model)gpt2 –
GPT2LMHeadModel(OpenAI GPT-2 model)transfo-xl –
TransfoXLLMHeadModel(Transformer-XL model)xlnet –
XLNetLMHeadModel(XLNet model)xlm –
XLMWithLMHeadModel(XLM model)ctrl –
CTRLLMHeadModel(CTRL model)electra –
ElectraForPreTraining(ELECTRA model)lxmert –
LxmertForPreTraining(LXMERT model)layoutlm –
LayoutLMForMaskedLM(LayoutLM model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModelForPreTraining >>> # Download model and configuration from S3 and cache. >>> model = AutoModelForPreTraining.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModelForPreTraining.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
AutoModelWithLMHead¶
-
class
transformers.AutoModelWithLMHead[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a language modeling head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).Warning
This class is deprecated and will be removed in a future version. Please use
AutoModelForCausalLMfor causal language models,AutoModelForMaskedLMfor masked language models andAutoModelForSeq2SeqLMfor encoder-decoder models.-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a language modeling head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
LayoutLMConfigconfiguration class:LayoutLMForMaskedLM(LayoutLM model)T5Configconfiguration class:T5ForConditionalGeneration(T5 model)DistilBertConfigconfiguration class:DistilBertForMaskedLM(DistilBERT model)AlbertConfigconfiguration class:AlbertForMaskedLM(ALBERT model)CamembertConfigconfiguration class:CamembertForMaskedLM(CamemBERT model)XLMRobertaConfigconfiguration class:XLMRobertaForMaskedLM(XLM-RoBERTa model)MarianConfigconfiguration class:MarianMTModel(Marian model)FSMTConfigconfiguration class:FSMTForConditionalGeneration(FairSeq Machine-Translation model)BartConfigconfiguration class:BartForConditionalGeneration(BART model)LongformerConfigconfiguration class:LongformerForMaskedLM(Longformer model)RobertaConfigconfiguration class:RobertaForMaskedLM(RoBERTa model)BertConfigconfiguration class:BertForMaskedLM(BERT model)OpenAIGPTConfigconfiguration class:OpenAIGPTLMHeadModel(OpenAI GPT model)GPT2Configconfiguration class:GPT2LMHeadModel(OpenAI GPT-2 model)MobileBertConfigconfiguration class:MobileBertForMaskedLM(MobileBERT model)TransfoXLConfigconfiguration class:TransfoXLLMHeadModel(Transformer-XL model)XLNetConfigconfiguration class:XLNetLMHeadModel(XLNet model)FlaubertConfigconfiguration class:FlaubertWithLMHeadModel(FlauBERT model)XLMConfigconfiguration class:XLMWithLMHeadModel(XLM model)CTRLConfigconfiguration class:CTRLLMHeadModel(CTRL model)ElectraConfigconfiguration class:ElectraForMaskedLM(ELECTRA model)EncoderDecoderConfigconfiguration class:EncoderDecoderModel(Encoder decoder model)ReformerConfigconfiguration class:ReformerModelWithLMHead(Reformer model)FunnelConfigconfiguration class:FunnelForMaskedLM(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, AutoModelWithLMHead >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModelWithLMHead.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a language modeling head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:t5 –
T5ForConditionalGeneration(T5 model)mobilebert –
MobileBertForMaskedLM(MobileBERT model)distilbert –
DistilBertForMaskedLM(DistilBERT model)albert –
AlbertForMaskedLM(ALBERT model)camembert –
CamembertForMaskedLM(CamemBERT model)xlm-roberta –
XLMRobertaForMaskedLM(XLM-RoBERTa model)marian –
MarianMTModel(Marian model)bart –
BartForConditionalGeneration(BART model)reformer –
ReformerModelWithLMHead(Reformer model)longformer –
LongformerForMaskedLM(Longformer model)roberta –
RobertaForMaskedLM(RoBERTa model)flaubert –
FlaubertWithLMHeadModel(FlauBERT model)fsmt –
FSMTForConditionalGeneration(FairSeq Machine-Translation model)bert –
BertForMaskedLM(BERT model)openai-gpt –
OpenAIGPTLMHeadModel(OpenAI GPT model)gpt2 –
GPT2LMHeadModel(OpenAI GPT-2 model)transfo-xl –
TransfoXLLMHeadModel(Transformer-XL model)xlnet –
XLNetLMHeadModel(XLNet model)xlm –
XLMWithLMHeadModel(XLM model)ctrl –
CTRLLMHeadModel(CTRL model)electra –
ElectraForMaskedLM(ELECTRA model)encoder-decoder –
EncoderDecoderModel(Encoder decoder model)funnel –
FunnelForMaskedLM(Funnel Transformer model)layoutlm –
LayoutLMForMaskedLM(LayoutLM model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModelWithLMHead >>> # Download model and configuration from S3 and cache. >>> model = AutoModelWithLMHead.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
AutoModelForSequenceClassification¶
-
class
transformers.AutoModelForSequenceClassification[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a sequence classification head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a sequence classification head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
DistilBertConfigconfiguration class:DistilBertForSequenceClassification(DistilBERT model)AlbertConfigconfiguration class:AlbertForSequenceClassification(ALBERT model)CamembertConfigconfiguration class:CamembertForSequenceClassification(CamemBERT model)XLMRobertaConfigconfiguration class:XLMRobertaForSequenceClassification(XLM-RoBERTa model)BartConfigconfiguration class:BartForSequenceClassification(BART model)LongformerConfigconfiguration class:LongformerForSequenceClassification(Longformer model)RobertaConfigconfiguration class:RobertaForSequenceClassification(RoBERTa model)BertConfigconfiguration class:BertForSequenceClassification(BERT model)XLNetConfigconfiguration class:XLNetForSequenceClassification(XLNet model)MobileBertConfigconfiguration class:MobileBertForSequenceClassification(MobileBERT model)FlaubertConfigconfiguration class:FlaubertForSequenceClassification(FlauBERT model)XLMConfigconfiguration class:XLMForSequenceClassification(XLM model)ElectraConfigconfiguration class:ElectraForSequenceClassification(ELECTRA model)FunnelConfigconfiguration class:FunnelForSequenceClassification(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, AutoModelForSequenceClassification >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModelForSequenceClassification.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a sequence classification head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
MobileBertForSequenceClassification(MobileBERT model)distilbert –
DistilBertForSequenceClassification(DistilBERT model)albert –
AlbertForSequenceClassification(ALBERT model)camembert –
CamembertForSequenceClassification(CamemBERT model)xlm-roberta –
XLMRobertaForSequenceClassification(XLM-RoBERTa model)bart –
BartForSequenceClassification(BART model)longformer –
LongformerForSequenceClassification(Longformer model)roberta –
RobertaForSequenceClassification(RoBERTa model)flaubert –
FlaubertForSequenceClassification(FlauBERT model)bert –
BertForSequenceClassification(BERT model)xlnet –
XLNetForSequenceClassification(XLNet model)xlm –
XLMForSequenceClassification(XLM model)electra –
ElectraForSequenceClassification(ELECTRA model)funnel –
FunnelForSequenceClassification(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModelForSequenceClassification >>> # Download model and configuration from S3 and cache. >>> model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
AutoModelForMultipleChoice¶
-
class
transformers.AutoModelForMultipleChoice[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a multiple choice classifcation head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a multiple choice classification head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
CamembertConfigconfiguration class:CamembertForMultipleChoice(CamemBERT model)ElectraConfigconfiguration class:ElectraForMultipleChoice(ELECTRA model)XLMRobertaConfigconfiguration class:XLMRobertaForMultipleChoice(XLM-RoBERTa model)LongformerConfigconfiguration class:LongformerForMultipleChoice(Longformer model)RobertaConfigconfiguration class:RobertaForMultipleChoice(RoBERTa model)BertConfigconfiguration class:BertForMultipleChoice(BERT model)DistilBertConfigconfiguration class:DistilBertForMultipleChoice(DistilBERT model)MobileBertConfigconfiguration class:MobileBertForMultipleChoice(MobileBERT model)XLNetConfigconfiguration class:XLNetForMultipleChoice(XLNet model)AlbertConfigconfiguration class:AlbertForMultipleChoice(ALBERT model)XLMConfigconfiguration class:XLMForMultipleChoice(XLM model)FlaubertConfigconfiguration class:FlaubertForMultipleChoice(FlauBERT model)FunnelConfigconfiguration class:FunnelForMultipleChoice(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, AutoModelForMultipleChoice >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModelForMultipleChoice.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a multiple choice classification head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
MobileBertForMultipleChoice(MobileBERT model)distilbert –
DistilBertForMultipleChoice(DistilBERT model)albert –
AlbertForMultipleChoice(ALBERT model)camembert –
CamembertForMultipleChoice(CamemBERT model)xlm-roberta –
XLMRobertaForMultipleChoice(XLM-RoBERTa model)longformer –
LongformerForMultipleChoice(Longformer model)roberta –
RobertaForMultipleChoice(RoBERTa model)flaubert –
FlaubertForMultipleChoice(FlauBERT model)bert –
BertForMultipleChoice(BERT model)xlnet –
XLNetForMultipleChoice(XLNet model)xlm –
XLMForMultipleChoice(XLM model)electra –
ElectraForMultipleChoice(ELECTRA model)funnel –
FunnelForMultipleChoice(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModelForMultipleChoice >>> # Download model and configuration from S3 and cache. >>> model = AutoModelForMultipleChoice.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModelForMultipleChoice.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModelForMultipleChoice.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
AutoModelForTokenClassification¶
-
class
transformers.AutoModelForTokenClassification[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a token classification head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a token classification head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
LayoutLMConfigconfiguration class:LayoutLMForTokenClassification(LayoutLM model)DistilBertConfigconfiguration class:DistilBertForTokenClassification(DistilBERT model)CamembertConfigconfiguration class:CamembertForTokenClassification(CamemBERT model)FlaubertConfigconfiguration class:FlaubertForTokenClassification(FlauBERT model)XLMConfigconfiguration class:XLMForTokenClassification(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForTokenClassification(XLM-RoBERTa model)LongformerConfigconfiguration class:LongformerForTokenClassification(Longformer model)RobertaConfigconfiguration class:RobertaForTokenClassification(RoBERTa model)BertConfigconfiguration class:BertForTokenClassification(BERT model)MobileBertConfigconfiguration class:MobileBertForTokenClassification(MobileBERT model)XLNetConfigconfiguration class:XLNetForTokenClassification(XLNet model)AlbertConfigconfiguration class:AlbertForTokenClassification(ALBERT model)ElectraConfigconfiguration class:ElectraForTokenClassification(ELECTRA model)FunnelConfigconfiguration class:FunnelForTokenClassification(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, AutoModelForTokenClassification >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModelForTokenClassification.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a token classification head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
MobileBertForTokenClassification(MobileBERT model)distilbert –
DistilBertForTokenClassification(DistilBERT model)albert –
AlbertForTokenClassification(ALBERT model)camembert –
CamembertForTokenClassification(CamemBERT model)xlm-roberta –
XLMRobertaForTokenClassification(XLM-RoBERTa model)longformer –
LongformerForTokenClassification(Longformer model)roberta –
RobertaForTokenClassification(RoBERTa model)flaubert –
FlaubertForTokenClassification(FlauBERT model)bert –
BertForTokenClassification(BERT model)xlnet –
XLNetForTokenClassification(XLNet model)xlm –
XLMForTokenClassification(XLM model)electra –
ElectraForTokenClassification(ELECTRA model)funnel –
FunnelForTokenClassification(Funnel Transformer model)layoutlm –
LayoutLMForTokenClassification(LayoutLM model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModelForTokenClassification >>> # Download model and configuration from S3 and cache. >>> model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
AutoModelForQuestionAnswering¶
-
class
transformers.AutoModelForQuestionAnswering[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a question answering head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a question answering head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
DistilBertConfigconfiguration class:DistilBertForQuestionAnswering(DistilBERT model)AlbertConfigconfiguration class:AlbertForQuestionAnswering(ALBERT model)CamembertConfigconfiguration class:CamembertForQuestionAnswering(CamemBERT model)BartConfigconfiguration class:BartForQuestionAnswering(BART model)LongformerConfigconfiguration class:LongformerForQuestionAnswering(Longformer model)XLMRobertaConfigconfiguration class:XLMRobertaForQuestionAnswering(XLM-RoBERTa model)RobertaConfigconfiguration class:RobertaForQuestionAnswering(RoBERTa model)BertConfigconfiguration class:BertForQuestionAnswering(BERT model)XLNetConfigconfiguration class:XLNetForQuestionAnsweringSimple(XLNet model)FlaubertConfigconfiguration class:FlaubertForQuestionAnsweringSimple(FlauBERT model)MobileBertConfigconfiguration class:MobileBertForQuestionAnswering(MobileBERT model)XLMConfigconfiguration class:XLMForQuestionAnsweringSimple(XLM model)ElectraConfigconfiguration class:ElectraForQuestionAnswering(ELECTRA model)ReformerConfigconfiguration class:ReformerForQuestionAnswering(Reformer model)FunnelConfigconfiguration class:FunnelForQuestionAnswering(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = AutoModelForQuestionAnswering.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a question answering head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
MobileBertForQuestionAnswering(MobileBERT model)distilbert –
DistilBertForQuestionAnswering(DistilBERT model)albert –
AlbertForQuestionAnswering(ALBERT model)camembert –
CamembertForQuestionAnswering(CamemBERT model)xlm-roberta –
XLMRobertaForQuestionAnswering(XLM-RoBERTa model)bart –
BartForQuestionAnswering(BART model)reformer –
ReformerForQuestionAnswering(Reformer model)longformer –
LongformerForQuestionAnswering(Longformer model)roberta –
RobertaForQuestionAnswering(RoBERTa model)flaubert –
FlaubertForQuestionAnsweringSimple(FlauBERT model)bert –
BertForQuestionAnswering(BERT model)xlnet –
XLNetForQuestionAnsweringSimple(XLNet model)xlm –
XLMForQuestionAnsweringSimple(XLM model)electra –
ElectraForQuestionAnswering(ELECTRA model)funnel –
FunnelForQuestionAnswering(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering >>> # Download model and configuration from S3 and cache. >>> model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') >>> model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
-
classmethod
TFAutoModel¶
-
class
transformers.TFAutoModel[source]¶ This is a generic model class that will be instantiated as one of the base model classes of the library when created with the when created with the
from_pretrained()class method or thefrom_config()class methods.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the base model classes of the library from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
DistilBertConfigconfiguration class:TFDistilBertModel(DistilBERT model)AlbertConfigconfiguration class:TFAlbertModel(ALBERT model)CamembertConfigconfiguration class:TFCamembertModel(CamemBERT model)XLMRobertaConfigconfiguration class:TFXLMRobertaModel(XLM-RoBERTa model)LongformerConfigconfiguration class:TFLongformerModel(Longformer model)RobertaConfigconfiguration class:TFRobertaModel(RoBERTa model)BertConfigconfiguration class:TFBertModel(BERT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTModel(OpenAI GPT model)GPT2Configconfiguration class:TFGPT2Model(OpenAI GPT-2 model)MobileBertConfigconfiguration class:TFMobileBertModel(MobileBERT model)TransfoXLConfigconfiguration class:TFTransfoXLModel(Transformer-XL model)XLNetConfigconfiguration class:TFXLNetModel(XLNet model)FlaubertConfigconfiguration class:TFFlaubertModel(FlauBERT model)XLMConfigconfiguration class:TFXLMModel(XLM model)CTRLConfigconfiguration class:TFCTRLModel(CTRL model)ElectraConfigconfiguration class:TFElectraModel(ELECTRA model)FunnelConfigconfiguration class:TFFunnelModel(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModel >>> # Download configuration from S3 and cache. >>> config = TFAutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModel.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the base model classes of the library from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:t5 –
TFT5Model(T5 model)mobilebert –
TFMobileBertModel(MobileBERT model)distilbert –
TFDistilBertModel(DistilBERT model)albert –
TFAlbertModel(ALBERT model)camembert –
TFCamembertModel(CamemBERT model)xlm-roberta –
TFXLMRobertaModel(XLM-RoBERTa model)longformer –
TFLongformerModel(Longformer model)roberta –
TFRobertaModel(RoBERTa model)flaubert –
TFFlaubertModel(FlauBERT model)bert –
TFBertModel(BERT model)openai-gpt –
TFOpenAIGPTModel(OpenAI GPT model)gpt2 –
TFGPT2Model(OpenAI GPT-2 model)transfo-xl –
TFTransfoXLModel(Transformer-XL model)xlnet –
TFXLNetModel(XLNet model)xlm –
TFXLMModel(XLM model)ctrl –
TFCTRLModel(CTRL model)electra –
TFElectraModel(ELECTRA model)funnel –
TFFunnelModel(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, AutoModel >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModel.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModel.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod
TFAutoModelForPreTraining¶
-
class
transformers.TFAutoModelForPreTraining[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with the architecture used for pretraining this model—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with the architecture used for pretraining this model—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
T5Configconfiguration class:TFT5ForConditionalGeneration(T5 model)DistilBertConfigconfiguration class:TFDistilBertForMaskedLM(DistilBERT model)AlbertConfigconfiguration class:TFAlbertForPreTraining(ALBERT model)CamembertConfigconfiguration class:TFCamembertForMaskedLM(CamemBERT model)XLMRobertaConfigconfiguration class:TFXLMRobertaForMaskedLM(XLM-RoBERTa model)RobertaConfigconfiguration class:TFRobertaForMaskedLM(RoBERTa model)BertConfigconfiguration class:TFBertForPreTraining(BERT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTLMHeadModel(OpenAI GPT model)GPT2Configconfiguration class:TFGPT2LMHeadModel(OpenAI GPT-2 model)MobileBertConfigconfiguration class:TFMobileBertForPreTraining(MobileBERT model)TransfoXLConfigconfiguration class:TFTransfoXLLMHeadModel(Transformer-XL model)XLNetConfigconfiguration class:TFXLNetLMHeadModel(XLNet model)FlaubertConfigconfiguration class:TFFlaubertWithLMHeadModel(FlauBERT model)XLMConfigconfiguration class:TFXLMWithLMHeadModel(XLM model)CTRLConfigconfiguration class:TFCTRLLMHeadModel(CTRL model)ElectraConfigconfiguration class:TFElectraForPreTraining(ELECTRA model)FunnelConfigconfiguration class:TFFunnelForPreTraining(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForPreTraining >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModelForPreTraining.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with the architecture used for pretraining this model—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:t5 –
TFT5ForConditionalGeneration(T5 model)mobilebert –
TFMobileBertForPreTraining(MobileBERT model)distilbert –
TFDistilBertForMaskedLM(DistilBERT model)albert –
TFAlbertForPreTraining(ALBERT model)camembert –
TFCamembertForMaskedLM(CamemBERT model)xlm-roberta –
TFXLMRobertaForMaskedLM(XLM-RoBERTa model)roberta –
TFRobertaForMaskedLM(RoBERTa model)flaubert –
TFFlaubertWithLMHeadModel(FlauBERT model)bert –
TFBertForPreTraining(BERT model)openai-gpt –
TFOpenAIGPTLMHeadModel(OpenAI GPT model)gpt2 –
TFGPT2LMHeadModel(OpenAI GPT-2 model)transfo-xl –
TFTransfoXLLMHeadModel(Transformer-XL model)xlnet –
TFXLNetLMHeadModel(XLNet model)xlm –
TFXLMWithLMHeadModel(XLM model)ctrl –
TFCTRLLMHeadModel(CTRL model)electra –
TFElectraForPreTraining(ELECTRA model)funnel –
TFFunnelForPreTraining(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, TFAutoModelForPreTraining >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModelForPreTraining.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModelForPreTraining.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModelForPreTraining.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod
TFAutoModelWithLMHead¶
-
class
transformers.TFAutoModelWithLMHead[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a language modeling head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).Warning
This class is deprecated and will be removed in a future version. Please use
TFAutoModelForCausalLMfor causal language models,TFAutoModelForMaskedLMfor masked language models andTFAutoModelForSeq2SeqLMfor encoder-decoder models.-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a language modeling head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
T5Configconfiguration class:TFT5ForConditionalGeneration(T5 model)DistilBertConfigconfiguration class:TFDistilBertForMaskedLM(DistilBERT model)AlbertConfigconfiguration class:TFAlbertForMaskedLM(ALBERT model)CamembertConfigconfiguration class:TFCamembertForMaskedLM(CamemBERT model)XLMRobertaConfigconfiguration class:TFXLMRobertaForMaskedLM(XLM-RoBERTa model)LongformerConfigconfiguration class:TFLongformerForMaskedLM(Longformer model)RobertaConfigconfiguration class:TFRobertaForMaskedLM(RoBERTa model)BertConfigconfiguration class:TFBertForMaskedLM(BERT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTLMHeadModel(OpenAI GPT model)GPT2Configconfiguration class:TFGPT2LMHeadModel(OpenAI GPT-2 model)MobileBertConfigconfiguration class:TFMobileBertForMaskedLM(MobileBERT model)TransfoXLConfigconfiguration class:TFTransfoXLLMHeadModel(Transformer-XL model)XLNetConfigconfiguration class:TFXLNetLMHeadModel(XLNet model)FlaubertConfigconfiguration class:TFFlaubertWithLMHeadModel(FlauBERT model)XLMConfigconfiguration class:TFXLMWithLMHeadModel(XLM model)CTRLConfigconfiguration class:TFCTRLLMHeadModel(CTRL model)ElectraConfigconfiguration class:TFElectraForMaskedLM(ELECTRA model)FunnelConfigconfiguration class:TFFunnelForMaskedLM(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelWithLMHead >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModelWithLMHead.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a language modeling head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:t5 –
TFT5ForConditionalGeneration(T5 model)mobilebert –
TFMobileBertForMaskedLM(MobileBERT model)distilbert –
TFDistilBertForMaskedLM(DistilBERT model)albert –
TFAlbertForMaskedLM(ALBERT model)camembert –
TFCamembertForMaskedLM(CamemBERT model)xlm-roberta –
TFXLMRobertaForMaskedLM(XLM-RoBERTa model)longformer –
TFLongformerForMaskedLM(Longformer model)roberta –
TFRobertaForMaskedLM(RoBERTa model)flaubert –
TFFlaubertWithLMHeadModel(FlauBERT model)bert –
TFBertForMaskedLM(BERT model)openai-gpt –
TFOpenAIGPTLMHeadModel(OpenAI GPT model)gpt2 –
TFGPT2LMHeadModel(OpenAI GPT-2 model)transfo-xl –
TFTransfoXLLMHeadModel(Transformer-XL model)xlnet –
TFXLNetLMHeadModel(XLNet model)xlm –
TFXLMWithLMHeadModel(XLM model)ctrl –
TFCTRLLMHeadModel(CTRL model)electra –
TFElectraForMaskedLM(ELECTRA model)funnel –
TFFunnelForMaskedLM(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, TFAutoModelWithLMHead >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModelWithLMHead.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod
TFAutoModelForSequenceClassification¶
-
class
transformers.TFAutoModelForSequenceClassification[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a sequence classification head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a sequence classification head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
DistilBertConfigconfiguration class:TFDistilBertForSequenceClassification(DistilBERT model)AlbertConfigconfiguration class:TFAlbertForSequenceClassification(ALBERT model)CamembertConfigconfiguration class:TFCamembertForSequenceClassification(CamemBERT model)XLMRobertaConfigconfiguration class:TFXLMRobertaForSequenceClassification(XLM-RoBERTa model)RobertaConfigconfiguration class:TFRobertaForSequenceClassification(RoBERTa model)BertConfigconfiguration class:TFBertForSequenceClassification(BERT model)XLNetConfigconfiguration class:TFXLNetForSequenceClassification(XLNet model)MobileBertConfigconfiguration class:TFMobileBertForSequenceClassification(MobileBERT model)FlaubertConfigconfiguration class:TFFlaubertForSequenceClassification(FlauBERT model)XLMConfigconfiguration class:TFXLMForSequenceClassification(XLM model)ElectraConfigconfiguration class:TFElectraForSequenceClassification(ELECTRA model)FunnelConfigconfiguration class:TFFunnelForSequenceClassification(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForSequenceClassification >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModelForSequenceClassification.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a sequence classification head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
TFMobileBertForSequenceClassification(MobileBERT model)distilbert –
TFDistilBertForSequenceClassification(DistilBERT model)albert –
TFAlbertForSequenceClassification(ALBERT model)camembert –
TFCamembertForSequenceClassification(CamemBERT model)xlm-roberta –
TFXLMRobertaForSequenceClassification(XLM-RoBERTa model)roberta –
TFRobertaForSequenceClassification(RoBERTa model)flaubert –
TFFlaubertForSequenceClassification(FlauBERT model)bert –
TFBertForSequenceClassification(BERT model)xlnet –
TFXLNetForSequenceClassification(XLNet model)xlm –
TFXLMForSequenceClassification(XLM model)electra –
TFElectraForSequenceClassification(ELECTRA model)funnel –
TFFunnelForSequenceClassification(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, TFAutoModelForSequenceClassification >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModelForSequenceClassification.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod
TFAutoModelForMultipleChoice¶
-
class
transformers.TFAutoModelForMultipleChoice[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a multiple choice classifcation head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a multiple choice classification head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
CamembertConfigconfiguration class:TFCamembertForMultipleChoice(CamemBERT model)XLMConfigconfiguration class:TFXLMForMultipleChoice(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForMultipleChoice(XLM-RoBERTa model)RobertaConfigconfiguration class:TFRobertaForMultipleChoice(RoBERTa model)BertConfigconfiguration class:TFBertForMultipleChoice(BERT model)DistilBertConfigconfiguration class:TFDistilBertForMultipleChoice(DistilBERT model)MobileBertConfigconfiguration class:TFMobileBertForMultipleChoice(MobileBERT model)XLNetConfigconfiguration class:TFXLNetForMultipleChoice(XLNet model)FlaubertConfigconfiguration class:TFFlaubertForMultipleChoice(FlauBERT model)AlbertConfigconfiguration class:TFAlbertForMultipleChoice(ALBERT model)ElectraConfigconfiguration class:TFElectraForMultipleChoice(ELECTRA model)FunnelConfigconfiguration class:TFFunnelForMultipleChoice(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForMultipleChoice >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModelForMultipleChoice.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a multiple choice classification head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
TFMobileBertForMultipleChoice(MobileBERT model)distilbert –
TFDistilBertForMultipleChoice(DistilBERT model)albert –
TFAlbertForMultipleChoice(ALBERT model)camembert –
TFCamembertForMultipleChoice(CamemBERT model)xlm-roberta –
TFXLMRobertaForMultipleChoice(XLM-RoBERTa model)roberta –
TFRobertaForMultipleChoice(RoBERTa model)flaubert –
TFFlaubertForMultipleChoice(FlauBERT model)bert –
TFBertForMultipleChoice(BERT model)xlnet –
TFXLNetForMultipleChoice(XLNet model)xlm –
TFXLMForMultipleChoice(XLM model)electra –
TFElectraForMultipleChoice(ELECTRA model)funnel –
TFFunnelForMultipleChoice(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, TFAutoModelForMultipleChoice >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModelForMultipleChoice.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModelForMultipleChoice.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModelForMultipleChoice.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod
TFAutoModelForTokenClassification¶
-
class
transformers.TFAutoModelForTokenClassification[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a token classification head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a token classification head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
DistilBertConfigconfiguration class:TFDistilBertForTokenClassification(DistilBERT model)AlbertConfigconfiguration class:TFAlbertForTokenClassification(ALBERT model)CamembertConfigconfiguration class:TFCamembertForTokenClassification(CamemBERT model)FlaubertConfigconfiguration class:TFFlaubertForTokenClassification(FlauBERT model)XLMConfigconfiguration class:TFXLMForTokenClassification(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForTokenClassification(XLM-RoBERTa model)RobertaConfigconfiguration class:TFRobertaForTokenClassification(RoBERTa model)BertConfigconfiguration class:TFBertForTokenClassification(BERT model)MobileBertConfigconfiguration class:TFMobileBertForTokenClassification(MobileBERT model)XLNetConfigconfiguration class:TFXLNetForTokenClassification(XLNet model)ElectraConfigconfiguration class:TFElectraForTokenClassification(ELECTRA model)FunnelConfigconfiguration class:TFFunnelForTokenClassification(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForTokenClassification >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModelForTokenClassification.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a token classification head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
TFMobileBertForTokenClassification(MobileBERT model)distilbert –
TFDistilBertForTokenClassification(DistilBERT model)albert –
TFAlbertForTokenClassification(ALBERT model)camembert –
TFCamembertForTokenClassification(CamemBERT model)xlm-roberta –
TFXLMRobertaForTokenClassification(XLM-RoBERTa model)roberta –
TFRobertaForTokenClassification(RoBERTa model)flaubert –
TFFlaubertForTokenClassification(FlauBERT model)bert –
TFBertForTokenClassification(BERT model)xlnet –
TFXLNetForTokenClassification(XLNet model)xlm –
TFXLMForTokenClassification(XLM model)electra –
TFElectraForTokenClassification(ELECTRA model)funnel –
TFFunnelForTokenClassification(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, TFAutoModelForTokenClassification >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModelForTokenClassification.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModelForTokenClassification.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod
TFAutoModelForQuestionAnswering¶
-
class
transformers.TFAutoModelForQuestionAnswering[source]¶ This is a generic model class that will be instantiated as one of the model classes of the library—with a question answering head—when created with the when created with the
from_pretrained()class method or thefrom_config()class method.This class cannot be instantiated directly using
__init__()(throws an error).-
classmethod
from_config(config)[source]¶ Instantiates one of the model classes of the library—with a question answering head—from a configuration.
Note
Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use
from_pretrained()to load the model weights.- Parameters
config (
PretrainedConfig) –The model class to instantiate is selected based on the configuration class:
DistilBertConfigconfiguration class:TFDistilBertForQuestionAnswering(DistilBERT model)AlbertConfigconfiguration class:TFAlbertForQuestionAnswering(ALBERT model)CamembertConfigconfiguration class:TFCamembertForQuestionAnswering(CamemBERT model)XLMRobertaConfigconfiguration class:TFXLMRobertaForQuestionAnswering(XLM-RoBERTa model)LongformerConfigconfiguration class:TFLongformerForQuestionAnswering(Longformer model)RobertaConfigconfiguration class:TFRobertaForQuestionAnswering(RoBERTa model)BertConfigconfiguration class:TFBertForQuestionAnswering(BERT model)XLNetConfigconfiguration class:TFXLNetForQuestionAnsweringSimple(XLNet model)MobileBertConfigconfiguration class:TFMobileBertForQuestionAnswering(MobileBERT model)FlaubertConfigconfiguration class:TFFlaubertForQuestionAnsweringSimple(FlauBERT model)XLMConfigconfiguration class:TFXLMForQuestionAnsweringSimple(XLM model)ElectraConfigconfiguration class:TFElectraForQuestionAnswering(ELECTRA model)FunnelConfigconfiguration class:TFFunnelForQuestionAnswering(Funnel Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForQuestionAnswering >>> # Download configuration from S3 and cache. >>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> model = TFAutoModelForQuestionAnswering.from_config(config)
-
classmethod
from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)[source]¶ Instantiate one of the model classes of the library—with a question answering head—from a pretrained model.
The model class to instantiate is selected based on the
model_typeproperty of the config object (either passed as an argument or loaded frompretrained_model_name_or_pathif possible), or when it’s missing, by falling back to using pattern matching onpretrained_model_name_or_path:mobilebert –
TFMobileBertForQuestionAnswering(MobileBERT model)distilbert –
TFDistilBertForQuestionAnswering(DistilBERT model)albert –
TFAlbertForQuestionAnswering(ALBERT model)camembert –
TFCamembertForQuestionAnswering(CamemBERT model)xlm-roberta –
TFXLMRobertaForQuestionAnswering(XLM-RoBERTa model)longformer –
TFLongformerForQuestionAnswering(Longformer model)roberta –
TFRobertaForQuestionAnswering(RoBERTa model)flaubert –
TFFlaubertForQuestionAnsweringSimple(FlauBERT model)bert –
TFBertForQuestionAnswering(BERT model)xlnet –
TFXLNetForQuestionAnsweringSimple(XLNet model)xlm –
TFXLMForQuestionAnsweringSimple(XLM model)electra –
TFElectraForQuestionAnswering(ELECTRA model)funnel –
TFFunnelForQuestionAnswering(Funnel Transformer model)
The model is set in evaluation mode by default using
model.eval()(so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode withmodel.train()- Parameters
pretrained_model_name_or_path –
Can be either:
A string with the shortcut name of a pretrained model to load from cache or download, e.g.,
bert-base-uncased.A string with the identifier name of a pretrained model that was user-uploaded to our S3, e.g.,
dbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, optional) – Will be passed along to the underlying model
__init__()method.config (
PretrainedConfig, optional) –Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
The model is a model provided by the library (loaded with the shortcut name string of a pretrained model).
The model was saved using
save_pretrained()and is reloaded by suppling the save directory.The model is loaded by suppling a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
state_dict (Dict[str, torch.Tensor], optional) –
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using
save_pretrained()andfrom_pretrained()is not a simpler option.cache_dir (
str, optional) – Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.from_tf (
bool, optional, defaults toFalse) – Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument).force_download (
bool, optional, defaults toFalse) – Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.resume_download (
bool, optional, defaults toFalse) – Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.proxies (
Dict[str, str], `optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.output_loading_info (
bool, optional, defaults toFalse) – Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error messages.local_files_only (
bool, optional, defaults toFalse) – Whether or not to only look at local files (e.g., not try doanloading the model).use_cdn (
bool, optional, defaults toTrue) – Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set toFalsefor checkpoints larger than 20GB.kwargs (additional keyword arguments, optional) –
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done)If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
Examples:
>>> from transformers import AutoConfig, TFAutoModelForQuestionAnswering >>> # Download model and configuration from S3 and cache. >>> model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') >>> # Update configuration during loading >>> model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_json_file('./pt_model/bert_pt_model_config.json') >>> model = TFAutoModelForQuestionAnswering.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
-
classmethod