|
|
--- |
|
|
library_name: transformers |
|
|
base_model: |
|
|
- mistralai/Devstral-2-123B-Instruct-2512 |
|
|
--- |
|
|
|
|
|
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [mistralai/Devstral-2-123B-Instruct-2512](https://huggingface.co/mistralai/Devstral-2-123B-Instruct-2512). |
|
|
|
|
|
### Example usage: |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import Ministral3ForCausalLM, MistralCommonBackend |
|
|
|
|
|
# Load model and tokenizer |
|
|
model_id = "tiny-random/devstral-2" |
|
|
model = Ministral3ForCausalLM.from_pretrained( |
|
|
model_id, |
|
|
device_map="cuda", |
|
|
torch_dtype="bfloat16", |
|
|
trust_remote_code=True, |
|
|
) |
|
|
tokenizer = MistralCommonBackend.from_pretrained(model_id) |
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": "Hi", |
|
|
}, |
|
|
] |
|
|
|
|
|
tokenized = tokenizer.apply_chat_template( |
|
|
messages, return_tensors="pt", return_dict=True) |
|
|
output = model.generate( |
|
|
**tokenized.to("cuda"), |
|
|
max_new_tokens=32, |
|
|
)[0] |
|
|
decoded_output = tokenizer.decode(output[len(tokenized["input_ids"][0]):]) |
|
|
print(decoded_output) |
|
|
``` |
|
|
|
|
|
### Codes to create this repo: |
|
|
|
|
|
```python |
|
|
import json |
|
|
from pathlib import Path |
|
|
|
|
|
import accelerate |
|
|
import torch |
|
|
from huggingface_hub import file_exists, hf_hub_download |
|
|
from transformers import ( |
|
|
AutoConfig, |
|
|
AutoModelForCausalLM, |
|
|
AutoProcessor, |
|
|
GenerationConfig, |
|
|
Ministral3ForCausalLM, |
|
|
MistralCommonBackend, |
|
|
set_seed, |
|
|
) |
|
|
|
|
|
source_model_id = "mistralai/Devstral-2-123B-Instruct-2512" |
|
|
save_folder = "/tmp/tiny-random/devstral-2" |
|
|
|
|
|
processor = AutoProcessor.from_pretrained( |
|
|
source_model_id, trust_remote_code=True) |
|
|
processor.save_pretrained(save_folder) |
|
|
processor = MistralCommonBackend.from_pretrained( |
|
|
source_model_id, trust_remote_code=True) |
|
|
processor.save_pretrained(save_folder) |
|
|
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
|
config_json = json.load(f) |
|
|
config_json.update({ |
|
|
"head_dim": 32, |
|
|
"hidden_size": 8, |
|
|
"intermediate_size": 64, |
|
|
"num_attention_heads": 8, |
|
|
"num_hidden_layers": 2, |
|
|
"num_key_value_heads": 4, |
|
|
"tie_word_embeddings": True, |
|
|
}) |
|
|
del config_json['quantization_config'] |
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
|
save_folder, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
print(config) |
|
|
torch.set_default_dtype(torch.bfloat16) |
|
|
model = Ministral3ForCausalLM(config) |
|
|
torch.set_default_dtype(torch.float32) |
|
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
|
model.generation_config = GenerationConfig.from_pretrained( |
|
|
source_model_id, trust_remote_code=True, |
|
|
) |
|
|
model.generation_config.do_sample = True |
|
|
print(model.generation_config) |
|
|
model = model.cpu() |
|
|
with torch.no_grad(): |
|
|
for name, p in sorted(model.named_parameters()): |
|
|
torch.nn.init.normal_(p, 0, 0.1) |
|
|
print(name, p.shape) |
|
|
model.save_pretrained(save_folder) |
|
|
print(model) |
|
|
``` |
|
|
|
|
|
### Printing the model: |
|
|
|
|
|
```text |
|
|
Ministral3ForCausalLM( |
|
|
(model): Ministral3Model( |
|
|
(embed_tokens): Embedding(131072, 8, padding_idx=11) |
|
|
(layers): ModuleList( |
|
|
(0-1): 2 x Ministral3DecoderLayer( |
|
|
(self_attn): Ministral3Attention( |
|
|
(q_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(k_proj): Linear(in_features=8, out_features=128, bias=False) |
|
|
(v_proj): Linear(in_features=8, out_features=128, bias=False) |
|
|
(o_proj): Linear(in_features=256, out_features=8, bias=False) |
|
|
) |
|
|
(mlp): Ministral3MLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=64, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=64, bias=False) |
|
|
(down_proj): Linear(in_features=64, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
(input_layernorm): Ministral3RMSNorm((8,), eps=1e-05) |
|
|
(post_attention_layernorm): Ministral3RMSNorm((8,), eps=1e-05) |
|
|
) |
|
|
) |
|
|
(norm): Ministral3RMSNorm((8,), eps=1e-05) |
|
|
(rotary_emb): Ministral3RotaryEmbedding() |
|
|
) |
|
|
(lm_head): Linear(in_features=8, out_features=131072, bias=False) |
|
|
) |
|
|
``` |