Model card for tf_efficientnet_cc_b0_4e.in1k
A EfficientNet-CondConv image classification model. Trained on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:- Params (M): 13.3
- GMACs: 0.4
- Activations (M): 9.4
- Image size: 224 x 224
 
- Papers:- CondConv: Conditionally Parameterized Convolutions for Efficient Inference: https://arxiv.org/abs/1904.04971
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946
 
- Dataset: ImageNet-1k
- Original: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('tf_efficientnet_cc_b0_4e.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'tf_efficientnet_cc_b0_4e.in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 16, 112, 112])
    #  torch.Size([1, 24, 56, 56])
    #  torch.Size([1, 40, 28, 28])
    #  torch.Size([1, 112, 14, 14])
    #  torch.Size([1, 320, 7, 7])
    print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'tf_efficientnet_cc_b0_4e.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1280, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@article{yang2019condconv,
  title={Condconv: Conditionally parameterized convolutions for efficient inference},
  author={Yang, Brandon and Bender, Gabriel and Le, Quoc V and Ngiam, Jiquan},
  journal={Advances in Neural Information Processing Systems},
  volume={32},
  year={2019}
}
@inproceedings{tan2019efficientnet,
  title={Efficientnet: Rethinking model scaling for convolutional neural networks},
  author={Tan, Mingxing and Le, Quoc},
  booktitle={International conference on machine learning},
  pages={6105--6114},
  year={2019},
  organization={PMLR}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 170
