BM25S Index
This is a BM25S index created with the bm25s library (version 0.2.2), an ultra-fast implementation of BM25. It can be used for lexical retrieval tasks.
BM25S Related Links:
- ๐ Homepage
- ๐ปGitHub Repository
- ๐คBlog Post
- ๐Technical Report
Installation
You can install the bm25s library with pip:
pip install "bm25s==0.2.2"
# Include extra dependencies like stemmer
pip install "bm25s[full]==0.2.2"
# For huggingface hub usage
pip install huggingface_hub
	
		
	
	
		Loading a bm25s index
	
You can use this index for information retrieval tasks. Here is an example:
import bm25s
from bm25s.hf import BM25HF
# Load the index
retriever = BM25HF.load_from_hub("tien314/bm25s")
# You can retrieve now
query = "a cat is a feline"
results = retriever.retrieve(bm25s.tokenize(query), k=3)
	
		
	
	
		Saving a bm25s index
	
You can save a bm25s index to the Hugging Face Hub. Here is an example:
import bm25s
from bm25s.hf import BM25HF
corpus = [
    "a cat is a feline and likes to purr",
    "a dog is the human's best friend and loves to play",
    "a bird is a beautiful animal that can fly",
    "a fish is a creature that lives in water and swims",
]
retriever = BM25HF(corpus=corpus)
retriever.index(bm25s.tokenize(corpus))
token = None  # You can get a token from the Hugging Face website
retriever.save_to_hub("tien314/bm25s", token=token)
Advanced usage
You can leverage more advanced features of the BM25S library during load_from_hub:
# Load corpus and index in memory-map (mmap=True) to reduce memory
retriever = BM25HF.load_from_hub("tien314/bm25s", load_corpus=True, mmap=True)
# Load a different branch/revision
retriever = BM25HF.load_from_hub("tien314/bm25s", revision="main")
# Change directory where the local files should be downloaded
retriever = BM25HF.load_from_hub("tien314/bm25s", local_dir="/path/to/dir")
# Load private repositories with a token:
retriever = BM25HF.load_from_hub("tien314/bm25s", token=token)
Tokenizer
If you have saved a Tokenizer object with the index using the following approach:
from bm25s.hf import TokenizerHF
token = "your_hugging_face_token"
tokenizer = TokenizerHF(corpus=corpus, stopwords="english")
tokenizer.save_to_hub("tien314/bm25s", token=token)
# and stopwords too
tokenizer.save_stopwords_to_hub("tien314/bm25s", token=token)
Then, you can load the tokenizer using the following code:
from bm25s.hf import TokenizerHF
tokenizer = TokenizerHF(corpus=corpus, stopwords=[])
tokenizer.load_vocab_from_hub("tien314/bm25s", token=token)
tokenizer.load_stopwords_from_hub("tien314/bm25s", token=token)
Stats
This dataset was created using the following data:
| Statistic | Value | 
|---|---|
| Number of documents | 4107805 | 
| Number of tokens | 44086459 | 
| Average tokens per document | 10.73 | 
Parameters
The index was created with the following parameters:
| Parameter | Value | 
|---|---|
| k1 | 1.5 | 
| b | 0.75 | 
| delta | 0.5 | 
| method | lucene | 
| idf method | lucene | 
Citation
To cite bm25s, please use the following bibtex:
@misc{lu_2024_bm25s,
      title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring}, 
      author={Xing Han Lรน},
      year={2024},
      eprint={2407.03618},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2407.03618}, 
}
- Downloads last month
- -
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support
