DGMR Solar Radiation Nowcasting โ˜€๏ธ

A deep learning model for solar radiation nowcasting using modified Deep Generative Model of Rainfall (DGMR) architecture with Solar radiation Output (DGMR-SO). The model predicts clearsky index and converts it to solar radiation for up to 36 time steps ahead.

Solar Prediction Example

Overview

This repository implements two model variants for solar radiation forecasting:

  • DGMR_SO: Full Deep Generative Models with one generator and two discriminators during the training stage
  • Generator_only: Only one generator during the training stage

The model uses multiple input sources:

  • Himawari satellite data: Clearsky index calculated from Himawari satellite data
  • WRF Prediction: Clearsky index from WRF's solar irradiation prediction
  • Topography: Static topographical features
  • Time features: Temporal sin/cos encoding for day and hour

Installation

  1. Clone the repository & install Git LFS:
git lfs install
git clone <repository-url>
cd DGMR_SolRad
git lfs pull
git lfs ls-files # confirm whether models weights & sample data are downloaded
  1. Install dependencies:
pip install -r requirements.txt

Requirements

  • Python 3.x
  • PyTorch 2.4.0
  • NumPy 1.26.4
  • einops 0.8.0

Usage

Basic Inference

Run solar radiation prediction using the pre-trained models:

python inference.py --model-type DGMR_SO --basetime 202504131100

Command Line Arguments

  • --model-type: Choose between DGMR_SO or Generator_only (default: DGMR_SO)
  • --basetime: Timestamp for input data in format YYYYMMDDHHMM (default: 202504131100)

Example

# Using DGMR_SO model
python inference.py --model-type DGMR_SO --basetime 202504131100

# Using Generator-only model
python inference.py --model-type Generator_only --basetime 202507151200

Sample Data

The repository includes sample data files:

  • sample_202504131100.npz
  • sample_202504161200.npz
  • sample_202507151200.npz

Model Weights

Pre-trained weights are available for both models:

  • model_weights/DGMR_SO/ft36/weights.ckpt
  • model_weights/Generator_only/ft36/weights.ckpt

License

This project is released under the MIT License.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support