Delete hunyuan3d-paint-v2-0-turbo
#56
by
niiaco
- opened
- hunyuan3d-paint-v2-0-turbo/.gitattributes +0 -35
- hunyuan3d-paint-v2-0-turbo/README.md +0 -53
- hunyuan3d-paint-v2-0-turbo/feature_extractor/preprocessor_config.json +0 -20
- hunyuan3d-paint-v2-0-turbo/image_encoder/config.json +0 -23
- hunyuan3d-paint-v2-0-turbo/image_encoder/model.safetensors +0 -3
- hunyuan3d-paint-v2-0-turbo/image_encoder/preprocessor_config.json +0 -27
- hunyuan3d-paint-v2-0-turbo/model_index.json +0 -37
- hunyuan3d-paint-v2-0-turbo/scheduler/scheduler_config.json +0 -15
- hunyuan3d-paint-v2-0-turbo/text_encoder/config.json +0 -25
- hunyuan3d-paint-v2-0-turbo/text_encoder/pytorch_model.bin +0 -3
- hunyuan3d-paint-v2-0-turbo/tokenizer/merges.txt +0 -0
- hunyuan3d-paint-v2-0-turbo/tokenizer/special_tokens_map.json +0 -24
- hunyuan3d-paint-v2-0-turbo/tokenizer/tokenizer_config.json +0 -34
- hunyuan3d-paint-v2-0-turbo/tokenizer/vocab.json +0 -0
- hunyuan3d-paint-v2-0-turbo/unet/config.json +0 -45
- hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin +0 -3
- hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.safetensors +0 -3
- hunyuan3d-paint-v2-0-turbo/unet/modules.py +0 -610
- hunyuan3d-paint-v2-0-turbo/vae/config.json +0 -29
- hunyuan3d-paint-v2-0-turbo/vae/diffusion_pytorch_model.bin +0 -3
hunyuan3d-paint-v2-0-turbo/.gitattributes
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/README.md
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: openrail++
|
| 3 |
-
tags:
|
| 4 |
-
- stable-diffusion
|
| 5 |
-
- text-to-image
|
| 6 |
-
---
|
| 7 |
-
|
| 8 |
-
# SD v2.1-base with Zero Terminal SNR (LAION Aesthetic 6+)
|
| 9 |
-
|
| 10 |
-
This model is used in [Diffusion Model with Perceptual Loss](https://arxiv.org/abs/2401.00110) paper as the MSE baseline.
|
| 11 |
-
|
| 12 |
-
This model is trained using zero terminal SNR schedule following [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891) paper on LAION aesthetic 6+ data.
|
| 13 |
-
|
| 14 |
-
This model is finetuned from [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base).
|
| 15 |
-
|
| 16 |
-
This model is meant for research demonstration, not for production use.
|
| 17 |
-
|
| 18 |
-
## Usage
|
| 19 |
-
|
| 20 |
-
```python
|
| 21 |
-
from diffusers import StableDiffusionPipeline
|
| 22 |
-
prompt = "A young girl smiling"
|
| 23 |
-
pipe = StableDiffusionPipeline.from_pretrained("ByteDance/sd2.1-base-zsnr-laionaes6").to("cuda")
|
| 24 |
-
pipe(prompt, guidance_scale=7.5, guidance_rescale=0.7).images[0].save("out.jpg")
|
| 25 |
-
```
|
| 26 |
-
|
| 27 |
-
## Related Models
|
| 28 |
-
|
| 29 |
-
* [bytedance/sd2.1-base-zsnr-laionaes5](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes5)
|
| 30 |
-
* [bytedance/sd2.1-base-zsnr-laionaes6](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes6)
|
| 31 |
-
* [bytedance/sd2.1-base-zsnr-laionaes6-perceptual](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes6-perceptual)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
## Cite as
|
| 35 |
-
```
|
| 36 |
-
@misc{lin2024diffusion,
|
| 37 |
-
title={Diffusion Model with Perceptual Loss},
|
| 38 |
-
author={Shanchuan Lin and Xiao Yang},
|
| 39 |
-
year={2024},
|
| 40 |
-
eprint={2401.00110},
|
| 41 |
-
archivePrefix={arXiv},
|
| 42 |
-
primaryClass={cs.CV}
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
@misc{lin2023common,
|
| 46 |
-
title={Common Diffusion Noise Schedules and Sample Steps are Flawed},
|
| 47 |
-
author={Shanchuan Lin and Bingchen Liu and Jiashi Li and Xiao Yang},
|
| 48 |
-
year={2023},
|
| 49 |
-
eprint={2305.08891},
|
| 50 |
-
archivePrefix={arXiv},
|
| 51 |
-
primaryClass={cs.CV}
|
| 52 |
-
}
|
| 53 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/feature_extractor/preprocessor_config.json
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"crop_size": 224,
|
| 3 |
-
"do_center_crop": true,
|
| 4 |
-
"do_convert_rgb": true,
|
| 5 |
-
"do_normalize": true,
|
| 6 |
-
"do_resize": true,
|
| 7 |
-
"feature_extractor_type": "CLIPFeatureExtractor",
|
| 8 |
-
"image_mean": [
|
| 9 |
-
0.48145466,
|
| 10 |
-
0.4578275,
|
| 11 |
-
0.40821073
|
| 12 |
-
],
|
| 13 |
-
"image_std": [
|
| 14 |
-
0.26862954,
|
| 15 |
-
0.26130258,
|
| 16 |
-
0.27577711
|
| 17 |
-
],
|
| 18 |
-
"resample": 3,
|
| 19 |
-
"size": 224
|
| 20 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/image_encoder/config.json
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "D:\\.cache\\huggingface\\hub\\models--sudo-ai--zero123plus-v1.1\\snapshots\\36df7de980afd15f80b2e1a4e9a920d7020e2654\\vision_encoder",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"CLIPVisionModelWithProjection"
|
| 5 |
-
],
|
| 6 |
-
"attention_dropout": 0.0,
|
| 7 |
-
"dropout": 0.0,
|
| 8 |
-
"hidden_act": "gelu",
|
| 9 |
-
"hidden_size": 1280,
|
| 10 |
-
"image_size": 224,
|
| 11 |
-
"initializer_factor": 1.0,
|
| 12 |
-
"initializer_range": 0.02,
|
| 13 |
-
"intermediate_size": 5120,
|
| 14 |
-
"layer_norm_eps": 1e-05,
|
| 15 |
-
"model_type": "clip_vision_model",
|
| 16 |
-
"num_attention_heads": 16,
|
| 17 |
-
"num_channels": 3,
|
| 18 |
-
"num_hidden_layers": 32,
|
| 19 |
-
"patch_size": 14,
|
| 20 |
-
"projection_dim": 1024,
|
| 21 |
-
"torch_dtype": "float16",
|
| 22 |
-
"transformers_version": "4.36.0"
|
| 23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/image_encoder/model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:ae616c24393dd1854372b0639e5541666f7521cbe219669255e865cb7f89466a
|
| 3 |
-
size 1264217240
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/image_encoder/preprocessor_config.json
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"crop_size": {
|
| 3 |
-
"height": 224,
|
| 4 |
-
"width": 224
|
| 5 |
-
},
|
| 6 |
-
"do_center_crop": true,
|
| 7 |
-
"do_convert_rgb": true,
|
| 8 |
-
"do_normalize": true,
|
| 9 |
-
"do_rescale": true,
|
| 10 |
-
"do_resize": true,
|
| 11 |
-
"image_mean": [
|
| 12 |
-
0.48145466,
|
| 13 |
-
0.4578275,
|
| 14 |
-
0.40821073
|
| 15 |
-
],
|
| 16 |
-
"image_processor_type": "CLIPImageProcessor",
|
| 17 |
-
"image_std": [
|
| 18 |
-
0.26862954,
|
| 19 |
-
0.26130258,
|
| 20 |
-
0.27577711
|
| 21 |
-
],
|
| 22 |
-
"resample": 3,
|
| 23 |
-
"rescale_factor": 0.00392156862745098,
|
| 24 |
-
"size": {
|
| 25 |
-
"shortest_edge": 224
|
| 26 |
-
}
|
| 27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/model_index.json
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "StableDiffusionPipeline",
|
| 3 |
-
"_diffusers_version": "0.23.1",
|
| 4 |
-
"feature_extractor": [
|
| 5 |
-
"transformers",
|
| 6 |
-
"CLIPImageProcessor"
|
| 7 |
-
],
|
| 8 |
-
"requires_safety_checker": false,
|
| 9 |
-
"safety_checker": [
|
| 10 |
-
null,
|
| 11 |
-
null
|
| 12 |
-
],
|
| 13 |
-
"scheduler": [
|
| 14 |
-
"diffusers",
|
| 15 |
-
"DDIMScheduler"
|
| 16 |
-
],
|
| 17 |
-
"text_encoder": [
|
| 18 |
-
"transformers",
|
| 19 |
-
"CLIPTextModel"
|
| 20 |
-
],
|
| 21 |
-
"tokenizer": [
|
| 22 |
-
"transformers",
|
| 23 |
-
"CLIPTokenizer"
|
| 24 |
-
],
|
| 25 |
-
"image_encoder": [
|
| 26 |
-
"transformers",
|
| 27 |
-
"CLIPVisionModelWithProjection"
|
| 28 |
-
],
|
| 29 |
-
"unet": [
|
| 30 |
-
"modules",
|
| 31 |
-
"UNet2p5DConditionModel"
|
| 32 |
-
],
|
| 33 |
-
"vae": [
|
| 34 |
-
"diffusers",
|
| 35 |
-
"AutoencoderKL"
|
| 36 |
-
]
|
| 37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/scheduler/scheduler_config.json
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "DDIMScheduler",
|
| 3 |
-
"_diffusers_version": "0.23.1",
|
| 4 |
-
"beta_end": 0.012,
|
| 5 |
-
"beta_schedule": "scaled_linear",
|
| 6 |
-
"beta_start": 0.00085,
|
| 7 |
-
"clip_sample": false,
|
| 8 |
-
"num_train_timesteps": 1000,
|
| 9 |
-
"prediction_type": "v_prediction",
|
| 10 |
-
"set_alpha_to_one": true,
|
| 11 |
-
"steps_offset": 1,
|
| 12 |
-
"trained_betas": null,
|
| 13 |
-
"timestep_spacing": "trailing",
|
| 14 |
-
"rescale_betas_zero_snr": true
|
| 15 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/text_encoder/config.json
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "stabilityai/stable-diffusion-2",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"CLIPTextModel"
|
| 5 |
-
],
|
| 6 |
-
"attention_dropout": 0.0,
|
| 7 |
-
"bos_token_id": 0,
|
| 8 |
-
"dropout": 0.0,
|
| 9 |
-
"eos_token_id": 2,
|
| 10 |
-
"hidden_act": "gelu",
|
| 11 |
-
"hidden_size": 1024,
|
| 12 |
-
"initializer_factor": 1.0,
|
| 13 |
-
"initializer_range": 0.02,
|
| 14 |
-
"intermediate_size": 4096,
|
| 15 |
-
"layer_norm_eps": 1e-05,
|
| 16 |
-
"max_position_embeddings": 77,
|
| 17 |
-
"model_type": "clip_text_model",
|
| 18 |
-
"num_attention_heads": 16,
|
| 19 |
-
"num_hidden_layers": 23,
|
| 20 |
-
"pad_token_id": 1,
|
| 21 |
-
"projection_dim": 512,
|
| 22 |
-
"torch_dtype": "float32",
|
| 23 |
-
"transformers_version": "4.25.0.dev0",
|
| 24 |
-
"vocab_size": 49408
|
| 25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/text_encoder/pytorch_model.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c3e254d7b61353497ea0be2c4013df4ea8f739ee88cffa0ba58cd085459ed565
|
| 3 |
-
size 1361671895
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/tokenizer/merges.txt
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
hunyuan3d-paint-v2-0-turbo/tokenizer/special_tokens_map.json
DELETED
|
@@ -1,24 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bos_token": {
|
| 3 |
-
"content": "<|startoftext|>",
|
| 4 |
-
"lstrip": false,
|
| 5 |
-
"normalized": true,
|
| 6 |
-
"rstrip": false,
|
| 7 |
-
"single_word": false
|
| 8 |
-
},
|
| 9 |
-
"eos_token": {
|
| 10 |
-
"content": "<|endoftext|>",
|
| 11 |
-
"lstrip": false,
|
| 12 |
-
"normalized": true,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false
|
| 15 |
-
},
|
| 16 |
-
"pad_token": "!",
|
| 17 |
-
"unk_token": {
|
| 18 |
-
"content": "<|endoftext|>",
|
| 19 |
-
"lstrip": false,
|
| 20 |
-
"normalized": true,
|
| 21 |
-
"rstrip": false,
|
| 22 |
-
"single_word": false
|
| 23 |
-
}
|
| 24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/tokenizer/tokenizer_config.json
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"add_prefix_space": false,
|
| 3 |
-
"bos_token": {
|
| 4 |
-
"__type": "AddedToken",
|
| 5 |
-
"content": "<|startoftext|>",
|
| 6 |
-
"lstrip": false,
|
| 7 |
-
"normalized": true,
|
| 8 |
-
"rstrip": false,
|
| 9 |
-
"single_word": false
|
| 10 |
-
},
|
| 11 |
-
"do_lower_case": true,
|
| 12 |
-
"eos_token": {
|
| 13 |
-
"__type": "AddedToken",
|
| 14 |
-
"content": "<|endoftext|>",
|
| 15 |
-
"lstrip": false,
|
| 16 |
-
"normalized": true,
|
| 17 |
-
"rstrip": false,
|
| 18 |
-
"single_word": false
|
| 19 |
-
},
|
| 20 |
-
"errors": "replace",
|
| 21 |
-
"model_max_length": 77,
|
| 22 |
-
"name_or_path": "stabilityai/stable-diffusion-2",
|
| 23 |
-
"pad_token": "<|endoftext|>",
|
| 24 |
-
"special_tokens_map_file": "./special_tokens_map.json",
|
| 25 |
-
"tokenizer_class": "CLIPTokenizer",
|
| 26 |
-
"unk_token": {
|
| 27 |
-
"__type": "AddedToken",
|
| 28 |
-
"content": "<|endoftext|>",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": true,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false
|
| 33 |
-
}
|
| 34 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/tokenizer/vocab.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
hunyuan3d-paint-v2-0-turbo/unet/config.json
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "UNet2DConditionModel",
|
| 3 |
-
"_diffusers_version": "0.10.0.dev0",
|
| 4 |
-
"act_fn": "silu",
|
| 5 |
-
"attention_head_dim": [
|
| 6 |
-
5,
|
| 7 |
-
10,
|
| 8 |
-
20,
|
| 9 |
-
20
|
| 10 |
-
],
|
| 11 |
-
"block_out_channels": [
|
| 12 |
-
320,
|
| 13 |
-
640,
|
| 14 |
-
1280,
|
| 15 |
-
1280
|
| 16 |
-
],
|
| 17 |
-
"center_input_sample": false,
|
| 18 |
-
"cross_attention_dim": 1024,
|
| 19 |
-
"down_block_types": [
|
| 20 |
-
"CrossAttnDownBlock2D",
|
| 21 |
-
"CrossAttnDownBlock2D",
|
| 22 |
-
"CrossAttnDownBlock2D",
|
| 23 |
-
"DownBlock2D"
|
| 24 |
-
],
|
| 25 |
-
"downsample_padding": 1,
|
| 26 |
-
"dual_cross_attention": false,
|
| 27 |
-
"flip_sin_to_cos": true,
|
| 28 |
-
"freq_shift": 0,
|
| 29 |
-
"in_channels": 4,
|
| 30 |
-
"layers_per_block": 2,
|
| 31 |
-
"mid_block_scale_factor": 1,
|
| 32 |
-
"norm_eps": 1e-05,
|
| 33 |
-
"norm_num_groups": 32,
|
| 34 |
-
"num_class_embeds": null,
|
| 35 |
-
"only_cross_attention": false,
|
| 36 |
-
"out_channels": 4,
|
| 37 |
-
"sample_size": 64,
|
| 38 |
-
"up_block_types": [
|
| 39 |
-
"UpBlock2D",
|
| 40 |
-
"CrossAttnUpBlock2D",
|
| 41 |
-
"CrossAttnUpBlock2D",
|
| 42 |
-
"CrossAttnUpBlock2D"
|
| 43 |
-
],
|
| 44 |
-
"use_linear_projection": true
|
| 45 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:24e7f1aea8a7c94cee627eb06f5265f19eeff4e19568636c5eaef050cc19ba3d
|
| 3 |
-
size 7325432923
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d6acffa4a22f4da61d87f446bfa83e7ac245481c1535fbf25b200fe4462d0b22
|
| 3 |
-
size 3722161032
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/unet/modules.py
DELETED
|
@@ -1,610 +0,0 @@
|
|
| 1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
| 2 |
-
# and Other Licenses of the Third-Party Components therein:
|
| 3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
| 4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
| 5 |
-
|
| 6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
| 7 |
-
# The below software and/or models in this distribution may have been
|
| 8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
| 9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
| 10 |
-
|
| 11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
| 12 |
-
# except for the third-party components listed below.
|
| 13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
| 14 |
-
# in the repsective licenses of these third-party components.
|
| 15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
| 16 |
-
# components and must ensure that the usage of the third party components adheres to
|
| 17 |
-
# all relevant laws and regulations.
|
| 18 |
-
|
| 19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
| 20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
| 21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
| 22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
| 23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
| 24 |
-
|
| 25 |
-
import copy
|
| 26 |
-
import json
|
| 27 |
-
import os
|
| 28 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 29 |
-
|
| 30 |
-
import torch
|
| 31 |
-
import torch.nn as nn
|
| 32 |
-
import torch.nn.functional as F
|
| 33 |
-
from diffusers.models import UNet2DConditionModel
|
| 34 |
-
from diffusers.models.attention_processor import Attention
|
| 35 |
-
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
|
| 36 |
-
from einops import rearrange
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
| 40 |
-
# "feed_forward_chunk_size" can be used to save memory
|
| 41 |
-
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
| 42 |
-
raise ValueError(
|
| 43 |
-
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]}"
|
| 44 |
-
f"has to be divisible by chunk size: {chunk_size}."
|
| 45 |
-
f" Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
| 49 |
-
ff_output = torch.cat(
|
| 50 |
-
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
| 51 |
-
dim=chunk_dim,
|
| 52 |
-
)
|
| 53 |
-
return ff_output
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
class Basic2p5DTransformerBlock(torch.nn.Module):
|
| 57 |
-
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True, is_turbo=False) -> None:
|
| 58 |
-
super().__init__()
|
| 59 |
-
self.transformer = transformer
|
| 60 |
-
self.layer_name = layer_name
|
| 61 |
-
self.use_ma = use_ma
|
| 62 |
-
self.use_ra = use_ra
|
| 63 |
-
self.is_turbo = is_turbo
|
| 64 |
-
|
| 65 |
-
# multiview attn
|
| 66 |
-
if self.use_ma:
|
| 67 |
-
self.attn_multiview = Attention(
|
| 68 |
-
query_dim=self.dim,
|
| 69 |
-
heads=self.num_attention_heads,
|
| 70 |
-
dim_head=self.attention_head_dim,
|
| 71 |
-
dropout=self.dropout,
|
| 72 |
-
bias=self.attention_bias,
|
| 73 |
-
cross_attention_dim=None,
|
| 74 |
-
upcast_attention=self.attn1.upcast_attention,
|
| 75 |
-
out_bias=True,
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
# ref attn
|
| 79 |
-
if self.use_ra:
|
| 80 |
-
self.attn_refview = Attention(
|
| 81 |
-
query_dim=self.dim,
|
| 82 |
-
heads=self.num_attention_heads,
|
| 83 |
-
dim_head=self.attention_head_dim,
|
| 84 |
-
dropout=self.dropout,
|
| 85 |
-
bias=self.attention_bias,
|
| 86 |
-
cross_attention_dim=None,
|
| 87 |
-
upcast_attention=self.attn1.upcast_attention,
|
| 88 |
-
out_bias=True,
|
| 89 |
-
)
|
| 90 |
-
if self.is_turbo:
|
| 91 |
-
self._initialize_attn_weights()
|
| 92 |
-
|
| 93 |
-
def _initialize_attn_weights(self):
|
| 94 |
-
|
| 95 |
-
if self.use_ma:
|
| 96 |
-
self.attn_multiview.load_state_dict(self.attn1.state_dict())
|
| 97 |
-
with torch.no_grad():
|
| 98 |
-
for layer in self.attn_multiview.to_out:
|
| 99 |
-
for param in layer.parameters():
|
| 100 |
-
param.zero_()
|
| 101 |
-
if self.use_ra:
|
| 102 |
-
self.attn_refview.load_state_dict(self.attn1.state_dict())
|
| 103 |
-
with torch.no_grad():
|
| 104 |
-
for layer in self.attn_refview.to_out:
|
| 105 |
-
for param in layer.parameters():
|
| 106 |
-
param.zero_()
|
| 107 |
-
|
| 108 |
-
def __getattr__(self, name: str):
|
| 109 |
-
try:
|
| 110 |
-
return super().__getattr__(name)
|
| 111 |
-
except AttributeError:
|
| 112 |
-
return getattr(self.transformer, name)
|
| 113 |
-
|
| 114 |
-
def forward(
|
| 115 |
-
self,
|
| 116 |
-
hidden_states: torch.Tensor,
|
| 117 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 118 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 119 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 120 |
-
timestep: Optional[torch.LongTensor] = None,
|
| 121 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
| 122 |
-
class_labels: Optional[torch.LongTensor] = None,
|
| 123 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 124 |
-
) -> torch.Tensor:
|
| 125 |
-
|
| 126 |
-
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 127 |
-
# 0. Self-Attention
|
| 128 |
-
batch_size = hidden_states.shape[0]
|
| 129 |
-
|
| 130 |
-
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 131 |
-
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
|
| 132 |
-
mode = cross_attention_kwargs.pop('mode', None)
|
| 133 |
-
if not self.is_turbo:
|
| 134 |
-
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
|
| 135 |
-
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
|
| 136 |
-
else:
|
| 137 |
-
position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
|
| 138 |
-
position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
|
| 139 |
-
mva_scale = 1.0
|
| 140 |
-
ref_scale = 1.0
|
| 141 |
-
|
| 142 |
-
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
|
| 143 |
-
|
| 144 |
-
if self.norm_type == "ada_norm":
|
| 145 |
-
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 146 |
-
elif self.norm_type == "ada_norm_zero":
|
| 147 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 148 |
-
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 149 |
-
)
|
| 150 |
-
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
| 151 |
-
norm_hidden_states = self.norm1(hidden_states)
|
| 152 |
-
elif self.norm_type == "ada_norm_continuous":
|
| 153 |
-
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
| 154 |
-
elif self.norm_type == "ada_norm_single":
|
| 155 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 156 |
-
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
| 157 |
-
).chunk(6, dim=1)
|
| 158 |
-
norm_hidden_states = self.norm1(hidden_states)
|
| 159 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 160 |
-
else:
|
| 161 |
-
raise ValueError("Incorrect norm used")
|
| 162 |
-
|
| 163 |
-
if self.pos_embed is not None:
|
| 164 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 165 |
-
|
| 166 |
-
# 1. Prepare GLIGEN inputs
|
| 167 |
-
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 168 |
-
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
| 169 |
-
|
| 170 |
-
attn_output = self.attn1(
|
| 171 |
-
norm_hidden_states,
|
| 172 |
-
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 173 |
-
attention_mask=attention_mask,
|
| 174 |
-
**cross_attention_kwargs,
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
if self.norm_type == "ada_norm_zero":
|
| 178 |
-
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 179 |
-
elif self.norm_type == "ada_norm_single":
|
| 180 |
-
attn_output = gate_msa * attn_output
|
| 181 |
-
|
| 182 |
-
hidden_states = attn_output + hidden_states
|
| 183 |
-
if hidden_states.ndim == 4:
|
| 184 |
-
hidden_states = hidden_states.squeeze(1)
|
| 185 |
-
|
| 186 |
-
# 1.2 Reference Attention
|
| 187 |
-
if 'w' in mode:
|
| 188 |
-
condition_embed_dict[self.layer_name] = rearrange(
|
| 189 |
-
norm_hidden_states, '(b n) l c -> b (n l) c',
|
| 190 |
-
n=num_in_batch
|
| 191 |
-
) # B, (N L), C
|
| 192 |
-
|
| 193 |
-
if 'r' in mode and self.use_ra:
|
| 194 |
-
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1,
|
| 195 |
-
1) # B N L C
|
| 196 |
-
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
|
| 197 |
-
|
| 198 |
-
attn_output = self.attn_refview(
|
| 199 |
-
norm_hidden_states,
|
| 200 |
-
encoder_hidden_states=condition_embed,
|
| 201 |
-
attention_mask=None,
|
| 202 |
-
**cross_attention_kwargs
|
| 203 |
-
)
|
| 204 |
-
if not self.is_turbo:
|
| 205 |
-
ref_scale_timing = ref_scale
|
| 206 |
-
if isinstance(ref_scale, torch.Tensor):
|
| 207 |
-
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
|
| 208 |
-
for _ in range(attn_output.ndim - 1):
|
| 209 |
-
ref_scale_timing = ref_scale_timing.unsqueeze(-1)
|
| 210 |
-
|
| 211 |
-
hidden_states = ref_scale_timing * attn_output + hidden_states
|
| 212 |
-
|
| 213 |
-
if hidden_states.ndim == 4:
|
| 214 |
-
hidden_states = hidden_states.squeeze(1)
|
| 215 |
-
|
| 216 |
-
# 1.3 Multiview Attention
|
| 217 |
-
if num_in_batch > 1 and self.use_ma:
|
| 218 |
-
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
|
| 219 |
-
|
| 220 |
-
if self.is_turbo:
|
| 221 |
-
position_mask = None
|
| 222 |
-
if position_attn_mask is not None:
|
| 223 |
-
if multivew_hidden_states.shape[1] in position_attn_mask:
|
| 224 |
-
position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
|
| 225 |
-
position_indices = None
|
| 226 |
-
if position_voxel_indices is not None:
|
| 227 |
-
if multivew_hidden_states.shape[1] in position_voxel_indices:
|
| 228 |
-
position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
|
| 229 |
-
attn_output = self.attn_multiview(
|
| 230 |
-
multivew_hidden_states,
|
| 231 |
-
encoder_hidden_states=multivew_hidden_states,
|
| 232 |
-
attention_mask=position_mask,
|
| 233 |
-
position_indices=position_indices,
|
| 234 |
-
**cross_attention_kwargs
|
| 235 |
-
)
|
| 236 |
-
else:
|
| 237 |
-
attn_output = self.attn_multiview(
|
| 238 |
-
multivew_hidden_states,
|
| 239 |
-
encoder_hidden_states=multivew_hidden_states,
|
| 240 |
-
**cross_attention_kwargs
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
|
| 244 |
-
|
| 245 |
-
hidden_states = mva_scale * attn_output + hidden_states
|
| 246 |
-
if hidden_states.ndim == 4:
|
| 247 |
-
hidden_states = hidden_states.squeeze(1)
|
| 248 |
-
|
| 249 |
-
# 1.2 GLIGEN Control
|
| 250 |
-
if gligen_kwargs is not None:
|
| 251 |
-
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
| 252 |
-
|
| 253 |
-
# 3. Cross-Attention
|
| 254 |
-
if self.attn2 is not None:
|
| 255 |
-
if self.norm_type == "ada_norm":
|
| 256 |
-
norm_hidden_states = self.norm2(hidden_states, timestep)
|
| 257 |
-
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
| 258 |
-
norm_hidden_states = self.norm2(hidden_states)
|
| 259 |
-
elif self.norm_type == "ada_norm_single":
|
| 260 |
-
# For PixArt norm2 isn't applied here:
|
| 261 |
-
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
| 262 |
-
norm_hidden_states = hidden_states
|
| 263 |
-
elif self.norm_type == "ada_norm_continuous":
|
| 264 |
-
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
| 265 |
-
else:
|
| 266 |
-
raise ValueError("Incorrect norm")
|
| 267 |
-
|
| 268 |
-
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
| 269 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 270 |
-
|
| 271 |
-
attn_output = self.attn2(
|
| 272 |
-
norm_hidden_states,
|
| 273 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 274 |
-
attention_mask=encoder_attention_mask,
|
| 275 |
-
**cross_attention_kwargs,
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
hidden_states = attn_output + hidden_states
|
| 279 |
-
|
| 280 |
-
# 4. Feed-forward
|
| 281 |
-
# i2vgen doesn't have this norm 🤷♂️
|
| 282 |
-
if self.norm_type == "ada_norm_continuous":
|
| 283 |
-
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
| 284 |
-
elif not self.norm_type == "ada_norm_single":
|
| 285 |
-
norm_hidden_states = self.norm3(hidden_states)
|
| 286 |
-
|
| 287 |
-
if self.norm_type == "ada_norm_zero":
|
| 288 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 289 |
-
|
| 290 |
-
if self.norm_type == "ada_norm_single":
|
| 291 |
-
norm_hidden_states = self.norm2(hidden_states)
|
| 292 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 293 |
-
|
| 294 |
-
if self._chunk_size is not None:
|
| 295 |
-
# "feed_forward_chunk_size" can be used to save memory
|
| 296 |
-
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
| 297 |
-
else:
|
| 298 |
-
ff_output = self.ff(norm_hidden_states)
|
| 299 |
-
|
| 300 |
-
if self.norm_type == "ada_norm_zero":
|
| 301 |
-
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 302 |
-
elif self.norm_type == "ada_norm_single":
|
| 303 |
-
ff_output = gate_mlp * ff_output
|
| 304 |
-
|
| 305 |
-
hidden_states = ff_output + hidden_states
|
| 306 |
-
if hidden_states.ndim == 4:
|
| 307 |
-
hidden_states = hidden_states.squeeze(1)
|
| 308 |
-
|
| 309 |
-
return hidden_states
|
| 310 |
-
|
| 311 |
-
@torch.no_grad()
|
| 312 |
-
def compute_voxel_grid_mask(position, grid_resolution=8):
|
| 313 |
-
|
| 314 |
-
position = position.half()
|
| 315 |
-
B,N,_,H,W = position.shape
|
| 316 |
-
assert H%grid_resolution==0 and W%grid_resolution==0
|
| 317 |
-
|
| 318 |
-
valid_mask = (position != 1).all(dim=2, keepdim=True)
|
| 319 |
-
valid_mask = valid_mask.expand_as(position)
|
| 320 |
-
position[valid_mask==False] = 0
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
position = rearrange(
|
| 324 |
-
position,
|
| 325 |
-
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 326 |
-
num_h=grid_resolution, num_w=grid_resolution
|
| 327 |
-
)
|
| 328 |
-
valid_mask = rearrange(
|
| 329 |
-
valid_mask,
|
| 330 |
-
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 331 |
-
num_h=grid_resolution, num_w=grid_resolution
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
grid_position = position.sum(dim=(-2, -1))
|
| 335 |
-
count_masked = valid_mask.sum(dim=(-2, -1))
|
| 336 |
-
|
| 337 |
-
grid_position = grid_position / count_masked.clamp(min=1)
|
| 338 |
-
grid_position[count_masked<5] = 0
|
| 339 |
-
|
| 340 |
-
grid_position = grid_position.permute(0,1,4,2,3)
|
| 341 |
-
grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c')
|
| 342 |
-
|
| 343 |
-
grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4) # 形状变为 B, N, 1, L, 1, 3
|
| 344 |
-
grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3) # 形状变为 B, 1, N, 1, L, 3
|
| 345 |
-
|
| 346 |
-
# 计算欧氏距离
|
| 347 |
-
distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1) # 形状为 B, N, N, L, L
|
| 348 |
-
|
| 349 |
-
weights = distances
|
| 350 |
-
grid_distance = 1.73/grid_resolution
|
| 351 |
-
|
| 352 |
-
#weights = weights*-32
|
| 353 |
-
#weights = weights.clamp(min=-10000.0)
|
| 354 |
-
|
| 355 |
-
weights = weights< grid_distance
|
| 356 |
-
|
| 357 |
-
return weights
|
| 358 |
-
|
| 359 |
-
def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]):
|
| 360 |
-
position_attn_mask = {}
|
| 361 |
-
with torch.no_grad():
|
| 362 |
-
for grid_resolution in grid_resolutions:
|
| 363 |
-
position_mask = compute_voxel_grid_mask(position_maps, grid_resolution)
|
| 364 |
-
position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)')
|
| 365 |
-
position_attn_mask[position_mask.shape[1]] = position_mask
|
| 366 |
-
return position_attn_mask
|
| 367 |
-
|
| 368 |
-
@torch.no_grad()
|
| 369 |
-
def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128):
|
| 370 |
-
|
| 371 |
-
position = position.half()
|
| 372 |
-
B,N,_,H,W = position.shape
|
| 373 |
-
assert H%grid_resolution==0 and W%grid_resolution==0
|
| 374 |
-
|
| 375 |
-
valid_mask = (position != 1).all(dim=2, keepdim=True)
|
| 376 |
-
valid_mask = valid_mask.expand_as(position)
|
| 377 |
-
position[valid_mask==False] = 0
|
| 378 |
-
|
| 379 |
-
position = rearrange(
|
| 380 |
-
position,
|
| 381 |
-
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 382 |
-
num_h=grid_resolution, num_w=grid_resolution
|
| 383 |
-
)
|
| 384 |
-
valid_mask = rearrange(
|
| 385 |
-
valid_mask,
|
| 386 |
-
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 387 |
-
num_h=grid_resolution, num_w=grid_resolution
|
| 388 |
-
)
|
| 389 |
-
|
| 390 |
-
grid_position = position.sum(dim=(-2, -1))
|
| 391 |
-
count_masked = valid_mask.sum(dim=(-2, -1))
|
| 392 |
-
|
| 393 |
-
grid_position = grid_position / count_masked.clamp(min=1)
|
| 394 |
-
grid_position[count_masked<5] = 0
|
| 395 |
-
|
| 396 |
-
grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W
|
| 397 |
-
voxel_indices = grid_position * (voxel_resolution - 1)
|
| 398 |
-
voxel_indices = torch.round(voxel_indices).long()
|
| 399 |
-
return voxel_indices
|
| 400 |
-
|
| 401 |
-
def compute_multi_resolution_discrete_voxel_indice(
|
| 402 |
-
position_maps,
|
| 403 |
-
grid_resolutions=[64, 32, 16, 8],
|
| 404 |
-
voxel_resolutions=[512, 256, 128, 64]
|
| 405 |
-
):
|
| 406 |
-
voxel_indices = {}
|
| 407 |
-
with torch.no_grad():
|
| 408 |
-
for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
|
| 409 |
-
voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
|
| 410 |
-
voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
|
| 411 |
-
voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
|
| 412 |
-
return voxel_indices
|
| 413 |
-
|
| 414 |
-
class UNet2p5DConditionModel(torch.nn.Module):
|
| 415 |
-
def __init__(self, unet: UNet2DConditionModel) -> None:
|
| 416 |
-
super().__init__()
|
| 417 |
-
self.unet = unet
|
| 418 |
-
|
| 419 |
-
self.use_ma = True
|
| 420 |
-
self.use_ra = True
|
| 421 |
-
self.use_camera_embedding = True
|
| 422 |
-
self.use_dual_stream = True
|
| 423 |
-
self.is_turbo = False
|
| 424 |
-
|
| 425 |
-
if self.use_dual_stream:
|
| 426 |
-
self.unet_dual = copy.deepcopy(unet)
|
| 427 |
-
self.init_attention(self.unet_dual)
|
| 428 |
-
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra, is_turbo=self.is_turbo)
|
| 429 |
-
self.init_condition()
|
| 430 |
-
self.init_camera_embedding()
|
| 431 |
-
|
| 432 |
-
@staticmethod
|
| 433 |
-
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
| 434 |
-
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
|
| 435 |
-
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
|
| 436 |
-
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
|
| 437 |
-
with open(config_path, 'r', encoding='utf-8') as file:
|
| 438 |
-
config = json.load(file)
|
| 439 |
-
unet = UNet2DConditionModel(**config)
|
| 440 |
-
unet = UNet2p5DConditionModel(unet)
|
| 441 |
-
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
|
| 442 |
-
unet.load_state_dict(unet_ckpt, strict=True)
|
| 443 |
-
unet = unet.to(torch_dtype)
|
| 444 |
-
return unet
|
| 445 |
-
|
| 446 |
-
def init_condition(self):
|
| 447 |
-
self.unet.conv_in = torch.nn.Conv2d(
|
| 448 |
-
12,
|
| 449 |
-
self.unet.conv_in.out_channels,
|
| 450 |
-
kernel_size=self.unet.conv_in.kernel_size,
|
| 451 |
-
stride=self.unet.conv_in.stride,
|
| 452 |
-
padding=self.unet.conv_in.padding,
|
| 453 |
-
dilation=self.unet.conv_in.dilation,
|
| 454 |
-
groups=self.unet.conv_in.groups,
|
| 455 |
-
bias=self.unet.conv_in.bias is not None)
|
| 456 |
-
|
| 457 |
-
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024))
|
| 458 |
-
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024))
|
| 459 |
-
|
| 460 |
-
def init_camera_embedding(self):
|
| 461 |
-
|
| 462 |
-
if self.use_camera_embedding:
|
| 463 |
-
time_embed_dim = 1280
|
| 464 |
-
self.max_num_ref_image = 5
|
| 465 |
-
self.max_num_gen_image = 12 * 3 + 4 * 2
|
| 466 |
-
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim)
|
| 467 |
-
|
| 468 |
-
def init_attention(self, unet, use_ma=False, use_ra=False, is_turbo=False):
|
| 469 |
-
|
| 470 |
-
for down_block_i, down_block in enumerate(unet.down_blocks):
|
| 471 |
-
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
| 472 |
-
for attn_i, attn in enumerate(down_block.attentions):
|
| 473 |
-
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 474 |
-
if isinstance(transformer, BasicTransformerBlock):
|
| 475 |
-
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 476 |
-
transformer,
|
| 477 |
-
f'down_{down_block_i}_{attn_i}_{transformer_i}',
|
| 478 |
-
use_ma, use_ra, is_turbo
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
|
| 482 |
-
for attn_i, attn in enumerate(unet.mid_block.attentions):
|
| 483 |
-
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 484 |
-
if isinstance(transformer, BasicTransformerBlock):
|
| 485 |
-
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 486 |
-
transformer,
|
| 487 |
-
f'mid_{attn_i}_{transformer_i}',
|
| 488 |
-
use_ma, use_ra, is_turbo
|
| 489 |
-
)
|
| 490 |
-
|
| 491 |
-
for up_block_i, up_block in enumerate(unet.up_blocks):
|
| 492 |
-
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
|
| 493 |
-
for attn_i, attn in enumerate(up_block.attentions):
|
| 494 |
-
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 495 |
-
if isinstance(transformer, BasicTransformerBlock):
|
| 496 |
-
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 497 |
-
transformer,
|
| 498 |
-
f'up_{up_block_i}_{attn_i}_{transformer_i}',
|
| 499 |
-
use_ma, use_ra, is_turbo
|
| 500 |
-
)
|
| 501 |
-
|
| 502 |
-
def __getattr__(self, name: str):
|
| 503 |
-
try:
|
| 504 |
-
return super().__getattr__(name)
|
| 505 |
-
except AttributeError:
|
| 506 |
-
return getattr(self.unet, name)
|
| 507 |
-
|
| 508 |
-
def forward(
|
| 509 |
-
self, sample, timestep, encoder_hidden_states,
|
| 510 |
-
*args, down_intrablock_additional_residuals=None,
|
| 511 |
-
down_block_res_samples=None, mid_block_res_sample=None,
|
| 512 |
-
**cached_condition,
|
| 513 |
-
):
|
| 514 |
-
B, N_gen, _, H, W = sample.shape
|
| 515 |
-
assert H == W
|
| 516 |
-
|
| 517 |
-
if self.use_camera_embedding:
|
| 518 |
-
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
|
| 519 |
-
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
|
| 520 |
-
else:
|
| 521 |
-
camera_info_gen = None
|
| 522 |
-
|
| 523 |
-
sample = [sample]
|
| 524 |
-
if 'normal_imgs' in cached_condition:
|
| 525 |
-
sample.append(cached_condition["normal_imgs"])
|
| 526 |
-
if 'position_imgs' in cached_condition:
|
| 527 |
-
sample.append(cached_condition["position_imgs"])
|
| 528 |
-
sample = torch.cat(sample, dim=2)
|
| 529 |
-
|
| 530 |
-
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
|
| 531 |
-
|
| 532 |
-
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
|
| 533 |
-
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
|
| 534 |
-
|
| 535 |
-
if self.use_ra:
|
| 536 |
-
if 'condition_embed_dict' in cached_condition:
|
| 537 |
-
condition_embed_dict = cached_condition['condition_embed_dict']
|
| 538 |
-
else:
|
| 539 |
-
condition_embed_dict = {}
|
| 540 |
-
ref_latents = cached_condition['ref_latents']
|
| 541 |
-
N_ref = ref_latents.shape[1]
|
| 542 |
-
if self.use_camera_embedding:
|
| 543 |
-
camera_info_ref = cached_condition['camera_info_ref']
|
| 544 |
-
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
|
| 545 |
-
else:
|
| 546 |
-
camera_info_ref = None
|
| 547 |
-
|
| 548 |
-
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
|
| 549 |
-
|
| 550 |
-
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
|
| 551 |
-
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
|
| 552 |
-
|
| 553 |
-
noisy_ref_latents = ref_latents
|
| 554 |
-
timestep_ref = 0
|
| 555 |
-
|
| 556 |
-
if self.use_dual_stream:
|
| 557 |
-
unet_ref = self.unet_dual
|
| 558 |
-
else:
|
| 559 |
-
unet_ref = self.unet
|
| 560 |
-
unet_ref(
|
| 561 |
-
noisy_ref_latents, timestep_ref,
|
| 562 |
-
encoder_hidden_states=encoder_hidden_states_ref,
|
| 563 |
-
class_labels=camera_info_ref,
|
| 564 |
-
# **kwargs
|
| 565 |
-
return_dict=False,
|
| 566 |
-
cross_attention_kwargs={
|
| 567 |
-
'mode': 'w', 'num_in_batch': N_ref,
|
| 568 |
-
'condition_embed_dict': condition_embed_dict},
|
| 569 |
-
)
|
| 570 |
-
cached_condition['condition_embed_dict'] = condition_embed_dict
|
| 571 |
-
else:
|
| 572 |
-
condition_embed_dict = None
|
| 573 |
-
|
| 574 |
-
mva_scale = cached_condition.get('mva_scale', 1.0)
|
| 575 |
-
ref_scale = cached_condition.get('ref_scale', 1.0)
|
| 576 |
-
|
| 577 |
-
if self.is_turbo:
|
| 578 |
-
cross_attention_kwargs_ = {
|
| 579 |
-
'mode': 'r', 'num_in_batch': N_gen,
|
| 580 |
-
'condition_embed_dict': condition_embed_dict,
|
| 581 |
-
'position_attn_mask':position_attn_mask,
|
| 582 |
-
'position_voxel_indices':position_voxel_indices,
|
| 583 |
-
'mva_scale': mva_scale,
|
| 584 |
-
'ref_scale': ref_scale,
|
| 585 |
-
}
|
| 586 |
-
else:
|
| 587 |
-
cross_attention_kwargs_ = {
|
| 588 |
-
'mode': 'r', 'num_in_batch': N_gen,
|
| 589 |
-
'condition_embed_dict': condition_embed_dict,
|
| 590 |
-
'mva_scale': mva_scale,
|
| 591 |
-
'ref_scale': ref_scale,
|
| 592 |
-
}
|
| 593 |
-
return self.unet(
|
| 594 |
-
sample, timestep,
|
| 595 |
-
encoder_hidden_states_gen, *args,
|
| 596 |
-
class_labels=camera_info_gen,
|
| 597 |
-
down_intrablock_additional_residuals=[
|
| 598 |
-
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
|
| 599 |
-
] if down_intrablock_additional_residuals is not None else None,
|
| 600 |
-
down_block_additional_residuals=[
|
| 601 |
-
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
|
| 602 |
-
] if down_block_res_samples is not None else None,
|
| 603 |
-
mid_block_additional_residual=(
|
| 604 |
-
mid_block_res_sample.to(dtype=self.unet.dtype)
|
| 605 |
-
if mid_block_res_sample is not None else None
|
| 606 |
-
),
|
| 607 |
-
return_dict=False,
|
| 608 |
-
cross_attention_kwargs=cross_attention_kwargs_,
|
| 609 |
-
)
|
| 610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/vae/config.json
DELETED
|
@@ -1,29 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "AutoencoderKL",
|
| 3 |
-
"_diffusers_version": "0.10.0.dev0",
|
| 4 |
-
"act_fn": "silu",
|
| 5 |
-
"block_out_channels": [
|
| 6 |
-
128,
|
| 7 |
-
256,
|
| 8 |
-
512,
|
| 9 |
-
512
|
| 10 |
-
],
|
| 11 |
-
"down_block_types": [
|
| 12 |
-
"DownEncoderBlock2D",
|
| 13 |
-
"DownEncoderBlock2D",
|
| 14 |
-
"DownEncoderBlock2D",
|
| 15 |
-
"DownEncoderBlock2D"
|
| 16 |
-
],
|
| 17 |
-
"in_channels": 3,
|
| 18 |
-
"latent_channels": 4,
|
| 19 |
-
"layers_per_block": 2,
|
| 20 |
-
"norm_num_groups": 32,
|
| 21 |
-
"out_channels": 3,
|
| 22 |
-
"sample_size": 768,
|
| 23 |
-
"up_block_types": [
|
| 24 |
-
"UpDecoderBlock2D",
|
| 25 |
-
"UpDecoderBlock2D",
|
| 26 |
-
"UpDecoderBlock2D",
|
| 27 |
-
"UpDecoderBlock2D"
|
| 28 |
-
]
|
| 29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hunyuan3d-paint-v2-0-turbo/vae/diffusion_pytorch_model.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1b4889b6b1d4ce7ae320a02dedaeff1780ad77d415ea0d744b476155c6377ddc
|
| 3 |
-
size 334707217
|
|
|
|
|
|
|
|
|
|
|
|