tanjumajerin's picture
End of training
084a51a verified
metadata
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
library_name: peft
model-index:
  - name: llama-3-full-data-changed
    results: []

llama-3-full-data-changed

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0986
  • Accuracy: 0.5904
  • F1: 0.5855
  • Precision: 0.5975
  • Recall: 0.5904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4985 0.1935 2000 1.1392 0.5867 0.5795 0.5962 0.5867
0.4899 0.3870 4000 1.0967 0.5910 0.5827 0.6023 0.5910
0.4878 0.5805 6000 1.1262 0.5903 0.5826 0.6007 0.5903
0.478 0.7740 8000 1.0881 0.5806 0.5784 0.5840 0.5806
0.471 0.9675 10000 1.1098 0.5786 0.5764 0.5820 0.5786
0.4632 1.1610 12000 1.1000 0.5748 0.5743 0.5760 0.5748
0.4561 1.3546 14000 1.1171 0.5868 0.5823 0.5933 0.5868
0.4585 1.5481 16000 1.1054 0.5914 0.5836 0.6020 0.5914
0.4561 1.7416 18000 1.0993 0.5895 0.5848 0.5962 0.5895
0.4564 1.9351 20000 1.0986 0.5904 0.5855 0.5975 0.5904

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1